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1. Introduction

A positive dimensional, oriented, closed manifold M has a very large group of
automorphisms (i.e., orientation preserving self-homeomorphisms). In fact this group
Homeo™ (M) is infinite dimensional. But its finite subgroups are quite restricted. In
1969, Borel showed (in a classic paper [6] but which appeared only in 1983 in his collected
works) that if M is a K (, 1)-manifold with fundamental group I' = 7 (M), whose center
is trivial, then every finite transformation group G in Homeo™ (M) is mapped injectively
into the outer automorphism group Out(I') by the natural map (or more precisely into
the subgroup Out™ (') — see §2 — which has an index at most 2 in Out(T)).

Let now M be a locally symmetric manifold of the form I'\ H/K when H is a connected
non-compact semisimple group with trivial center and with no compact factor and I a
torsion free uniform irreducible lattice in H. In the situation in which strong rigidity (in
the sense of Mostow [39]) holds (i.e., if H is not locally isomorphic to SL2(R)), Out(T") is
a finite group, G < Out™ (T); in fact, Out™ (I') € Ny (I')/T and it acts on M as the group
of (orientation preserving) self-isometries Isom™ (M) of the Riemannian manifold M. It
follows now from Borel’s theorem that every finite subgroup of Homeo™ (M) is isomorphic
to a subgroup of one finite group, G(M) = Isom™ (M).

Borel ends his paper by remarking: “The author does not know whether the finite
subgroups of Homeo™ (M) form finitely many conjugacy classes, nor whether one can
find a I with no outer automorphism.”

The goal of the current paper is to answer these two questions. For an efficient for-
mulation of our results, let us make the following definition(s):

Definition 1.1. Let G be a finite group. An oriented manifold M will be called
G-dominated (resp., G-weakly-dominated) if there is a faithful action of G on M, so
that G can be identified with a subgroup of Homeot (M) and if F is any finite subgroup
of Homeo™t (M), then F is conjugate (resp., isomorphic) to a subgroup of G.

Note that Borel’s Theorem combined with strong rigidity implies that unless H is lo-
cally isomorphic to SLy(R), M as above is always at least Isom™ (M )-weakly-dominated.
We now assert (to be proved in section 2)

Theorem 1.2. For every finite group G and every 3 < n € N, there exist infinitely many
oriented closed hyperbolic manifolds M = M™(G) of dimension n, with G ~ Isom™ (M)
and when n # 4 these M™(G) are also G-dominated.

The very special case G = {e} answers Borel’s second question (where one can also
deduce it from [2]). It also answers the question of Schultz [41,42], attributed there to
D. Burghelea, who asked whether there exist asymmetric closed manifolds with degree
one maps onto hyperbolic manifolds. Our examples are even hyperbolic themselves.

The situation for dimension 2 is very different:
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Theorem 1.3. For no group G, does there exist a G-weakly-dominated 2-dimensional
closed manifold.

In fact, for every closed, oriented surface X, of genus g, Homeo ™ (¥) has more than
one (but only finitely many) isomorphism classes of maximal finite subgroups, and this
number is unbounded as a function of g — see Proposition 6.2.

As mentioned before, for M as above with dimM > 3, M is always G-weakly-
dominated. But the G-dominatedness shown in Theorem 1.2 is not the general phe-
nomenon. We can determine the situation in (almost) all cases. But first we need another
definition.

Definition 1.4. For an automorphism ¢ of a manifold M, denote by Fiz(p) the fixed
point set of ¢ and for a subgroup G' C Homeo™ (M), denote its singular set S(G) =
U{Fiz(p)|lp € G,p # id}. If M is an oriented Riemannian manifold, then we will call
S(Isom™ (M)) the singular set of M and we denote it Sy;.

We note that dim(M)—dim(Sy,) is always even, as we are only considering orientation
preserving actions.

Before stating our main theorem, let us recall that in our situation, i.e., when M is
locally symmetric, every finite subgroup of Homeo™t (M) is contained in a maximal finite
subgroup. We can now give a very detailed answer to Borel’s first question.

Theorem 1.5 (Trichotomy theorem). Let M = T'\H/K a locally symmetric manifold as
above, and assume dim M # 2 or 4. Let G = Isom™* (M), so G = N/T where N = Ng(T').
Then one of the following holds:

(a) Homeo" (M) has a unique conjugacy class of mazimal finite subgroups, all of whose
members are conjugate to Isom™ (M).

(b) Homeo™ (M) has countably infinite many mazimal finite subgroups, up to conjugacy
or

(c) Homeo™ (M) has a continuum of such subgroups (up to conjugacy).

These cases happen, if and only if the following hold, respectively:

(a) (i) Sy =0, i.e., Isom™ (M) acts freely on M, or
(ii) the singular set Sy is 0-dimensional and either dim(M) is divisible by 4 or all
elements of order 2 act freely.

(b) M is of dimension equal 2 (mod 4), the singular set is 0-dimensional and some
element of order 2 has a non-empty fized point set, or

(c) the singular set Syy is positive dimensional, i.e., M has some non-trivial isometry
with a positive dimensional fixed point set.



28 S. Cappell et al. / Advances in Mathematics 327 (2018) 25-46

The cases treated in Theorem 1.2 are with N = Ng(T') torsion free (see §2), i.e.,
S(G) = B where G = Isom™ (M), so we are in case (a)(i) and these manifolds M are
Isom™ (M)-dominated also by Theorem 1.5.

An interesting corollary of the theorem is that if Homeo™ (M) has only finitely many
conjugacy classes of maximal finite subgroups then it has a unique one, the class of
Isom™ (M), in contrast to Theorem 1.3.

In dimension 4 when the action has positive dimensional singular set, we do construct
uncountably many actions. If the singular set is finite, then we have countability, but we
do not know whether/when this countable set of actions consists of a unique possibility.
As a consequence, the following dichotomy holds in all dimensions:

Corollary 1.6. Let M be as above with arbitrary dimension. Then Homeot (M) has an
uncountable number of conjugacy classes of finite subgroups if and only if the singular

set of Isom™ (M) acting on M is positive dimensional.

The uniqueness in Theorem 1.5 fails in the smooth case (i.e., for Diff" (M)). In that
case, the number of conjugacy classes is always countable. (This is a straightforward
consequence of the equivariant tubular neighborhood [8] theorem and countability of the
number of compact manifolds in any dimension, which in turn follows, in the smooth
case from handelbody theory.)

Finiteness without uniqueness is also possible. The simplest example occurs in dimen-
sion 7 where one can take any exotic differential structure on S” and connect sum it with
T7 28 times to get the standard 77. This can easily be used to construct free exotic Zag
actions on T7. (That the quotient manifold is not T7 is proved exactly the same way as
the proof by Milnor that the original exotic sphere is not standard.)

The boundary between finite and infinite number of conjugacy classes of finite sub-
groups of Difft (M) can be largely analyzed by the methods of this paper, but works out
somewhat differently (e.g., one has finiteness in some cases of one dimensional singular
set) and is especially more involved when the singular set is 2-dimensional. We shall not
discuss this here.

Finally, let us present our result from an additional point of view: Given H as above
and T' a uniform lattice in it. It acts via the standard action py by translation on the
symmetric space H/K which topologically is R?. The Farrell-Jones topological rigidity
result implies that if T" is torsion free, every proper discontinuous (orientation preserving)
action p of I on H/K is conjugate within Homeo™ (H/K) to po. It has been known for
a long time (cf. [46] for discussion and references) that this is not necessarily the case if
I" has torsion. Our discussion above (with some additional ingredient based on [15.46] —
see §7) gives the essentially complete picture. But first a definition:
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Definition. For I', H, K and pg as above, say

(1) The lattice I has topological strong rigidity if every proper discontinuous action p
of ' on H/K, is conjugate to py by an element of Homeo™ (H/K).

(2) T has local topological rigidity if for every proper discontinuous action p of T' on
H/K, there exists a small neighborhood U of p in Hom(I', Homeo™ (H/K)) such
that any p’ € U is conjugate to p by an element of Homeo™ (H/K)).

The following two results follow from Corollary 1.6 and Theorem 1.5 (see §7):

Theorem 1.7. Let H be a semisimple group, K a maximal compact subgroup and I' an
irreducible uniform lattice in H. Then I satisfies the topological local rigidity if and only
if for every non-trivial element of I' of finite order, the fized point set of its action on
H/K is zero dimensional.

Theorem 1.8. For H, K and ' as in Theorem 1.7 but assuming dim(H/K) # 2,4. Then
one of the following holds:

(a) T has topological strong rigidity, i.e., it has a unique (up to conjugation) proper
discontinuous action on H/K ~R".

(b) T has an infinite countable number of such actions, yet all are locally rigid.

(¢) T has uncountably many (conjugacy classes) of such actions.

These cases happen if and only if the following hold, respectively:

(a) (i) T acts freely on H/K or
(ii) every torsion (i.e., non-trivial of finite order) element of T' has 0-dimensional
fized point set in H/K and either dim(M) = 0 (mod 4) or there are no elements
of order 2.
(b) dim(H/K) =2 (mod4), the fized point set of every torsion element is 0-dimensional
and there is some element of order 2, or
(c) there exist a torsion element in T with a positive dimensional fized point set.

The paper is organized as follows. In §2, we prove Theorem 1.2. In §3, we give prelim-
inaries for the proof of Theorem 1.5, which will be given in §4. In this proof we depend
crucially on the deep works of Farrell and Jones [18,19] and Bartels and Lueck [2] related
to the (famous) Borel conjecture as well as recent work of [15]. In §5, we analyze mani-
folds of dimension 4, while in §6 we prove Theorem 1.3. Section 7 discusses topological
rigidity of lattices and proves Theorem 1.7 and 1.8.

Remark. If one allows orientation reversing actions then if dim M > 7 there is a
trichotomy theorem; rigidity holds if the action is free or dimM = 1 mod 4 or if
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dim M = 3(4) and the elements of order 2 act freely. The proof of this is similar to
the one we give below for Theorem 1.5. We believe that the remaining cases, at least
when dim M # 4, work out similarly to that theorem.

Acknowledgments: This work was partially done while the authors visited Yale Univer-
sity. They are grateful to Dan Mostow for a useful conversation. We are also grateful
to NYU, the Hebrew University, ETH-ITS for their hospitality as well as to the NSF,
ERC, ISF, Dr. Max Réssler, the Walter Haefner Foundation and the ETH Foundation,
for their support.

This paper is dedicated to David Kazhdan on his 70th birthday, recognizing the
profound impact he has had on our and our community’s mathematics, and wishing him
many more years of leadership.

2. Proof of Theorem 1.2

The proof of the theorem is in four steps:

Step I: In [4], M. Belolipetsky and the second named author showed that for every n > 3
and for every finite group G, there exist infinitely many closed, oriented, hyperbolic
manifolds M = M™(G) with Isom™ (M) ~ G. More precisely, it is shown there that if T'g
is the non-arithmetic cocompact lattice in H = PO™(n,1) = Isom™ (H™) constructed in
[26], then it has infinitely many finite index subgroups I' with Ny (I")/T" ~ G. The proof
shows that I' can be chosen so that Ny(T') is torsion free and moreover Ny (T')/T ~
Isom™ (M) = Isom(M) for M = T'\H". This implies that G = Ng(I')/T" acts on M
freely, (as a fixed point for an element of G could be lifted, by covering space theory,
to an isometry of the universal cover, fixing a point, which would necessarily give us an
element of finite order in Ny (I")), a fact we will use in Step IV below.

Let M = M"™(G) be one of these manifolds, I' = m(M). So I" can be considered
as a cocompact lattice in Isom™ (H") = PO (n, 1), the group of orientation preserving
isometries of the n-dimensional hyperbolic space H™.

Step II: The Mostow Strong Rigidity Theorem [39] for compact hyperbolic manifolds
asserts that if I'y and T'y are torsion free cocompact lattices in Isom(H"), then every
group theoretical isomorphism from I'y to I'y is realized by a conjugation within Isom(H™)
(or in a geometric language, homotopical equivalence of hyperbolic manifolds implies an
isomorphism as Riemannian manifolds). Indeed, as T' has no center, this conjugating
element is unique.

Applying Mostow’s theorem for the automorphisms of I' = 71 (M) implies that Aut(T")
can be identified with Nigom(en)(I'), the normalizer of I' in Isom(H"). Hence the outer
automorphism group Out(I') = Aut(I')/Inn(T") of " is isomorphic to Nigomn)(I')/I" and
hence also to Isom (M), which in our case is equal to Isom™ (M) by step 1.

Step III: In [6], Borel showed that if T is a torsion free cocompact lattice in any simple
non-compact Lie group H, including our H = PO (n,1), with a maximal compact
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subgroup K and associated symmetric space X = H/K, then every finite subgroup F'
of Homeo(M) where M = T'\ X, is mapped injectively into Out(m (M)) = Out(T') by
the natural map. If ' < Homeo™ (M), then its image is in Out™ (T") which is the kernel
of the action of Out(T") on H™(I',Z) ~ Z, so [Out(T) : Out™(I')] < 2. Borel’s result is
actually much more general; the reader is referred to that short paper for the general
result and the proof which uses Smith theory and cohomological methods.

Anyway, applying Borel’s result for our M = M™(G) finishes the proof of the first
part of Theorem 1.2. In particular, one sees that in all these examples, F' acts freely
on M (and is abstractly a subgroup of () since the isometry group, in this case, is the
group of covering transformations, which acts freely on M.

Step IV: We have shown so far that whenever a finite group F' acts on M as above,
there is a natural injective homomorphism F < Out™ (71 (M)) = Isom™ (M). Denote
the image of F' in Isom™ (M) by L. Our next goal is to show that F is conjugate to L
within Homeo™ (M). For ease of reading we will call M with the action of F, M’ to
avoid confusion.

There is actually an equivariant map M’ — M that is a homotopy equivalence. To
see this, recall that Ny (T') is torsion free and hence so is I, the preimage of L in Ny (T)
with respect to the natural projection Ny (I') — Out(T") = Out(71(M)). Similarly, let us
consider all of the possible lifts of all of the elements of F' to the universal cover, which
form a group T (the orbifold fundamental group of M’/F, which we presently show is
the genuine fundamental group) that fits in an exact sequence:

15 T(=mM) T 5 F—1

As T is centerless and F' and L induce the same outer automorphism group, it follows
that T is also torsion free and as a corollary F = T' /T acts freely on M’. Hence M'/F
is homotopy equivalent to M/L as both have T' ~ T as their fundamental group. [Note
that two groups containing the same centerless group as a normal subgroup, with an iso-
morphism between quotient groups that preserves the action on the normal subgroup are
canonically isomorphic.] By the Borel conjecture for hyperbolic closed manifolds (which
is a Theorem of Farrell and Jones [18] for n > 5 and of Gabai-Meyerhoff-Thurston [23]
for n = 3) the map M'/F — M/L is homotopic to a homeomorphism which preserves
m (M) = m (M), as did the original homotopy equivalence. Since liftability in a cov-
ering space is a homotopy condition, this homeomorphism can be lifted to the cover
M' — M, producing a conjugating homeomorphism between the actions. Theorem 1.2
is now proved.

In summary, the above proof is analogous to (and relies on) the fact that Mostow
rigidity gives a uniqueness of the isometric action (or in different terminology, the
uniqueness of the Nielsen realization of a subgroup of Out(I')). At the same time, the
Farrell-Jones/Gabai-Meyerhoff-Thurston rigidity gives the uniqueness of the topologi-
cal realization in the case of free actions. We will see later that this freeness condition is
essential.
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3. Some ingredients for the proof of Theorem 1.5

The proof of Theorem 1.5 is based on results, sometimes deep theorems, some of which
are well-known and others which might be folklore (or new). We present them in this
section and use them in the next one.

Ingredient 3.1. For v > 3, there exist infinitely many non-simply connected homology
spheres X, each bounding a contractible manifold XU+! such that the different funda-
mental groups m1(X) are all freely indecomposable and are nonisomorphic to each other.
Moreover, X x [0,1] is a ball.

Proof. For v > 4 this is very straightforward. According to Kervaire [32], a group w
is the fundamental group of a (PL) homology sphere iff it is finitely presented and
superperfect (i.e., Hy(m) = Ha(mw) = 0). It is quite simple to produce an infinite family
of freely indecomposable groups that satisfy these conditions. Among finite groups, one
can take the universal central extensions of an infinite family of simple groups. Moreover,
as Kervaire shows in that paper, every PL homology sphere bounds a PL contractible
manifold (this is true for v > 4, and for v = 3 in the topological category [21]). The
product of a contractible manifold with [0, 1] is a ball as an immediate application of the
h-cobordism theorem (see [37]).

For v = 3, we could rely on the work of Mazur in the PL category, but would
then need to use subsequent work on the structure of manifolds obtained by surgery
on knots. Instead, as we will be working in the topological category, we rely on [21]
which shows that the analogue of all of the above holds topologically for v = 3, aside
from the characterization of fundamental groups: however, using the uniqueness of the
JSJ ([28,29]) decomposition of Haken 3-manifolds, homology spheres obtained by gluing
together nontrivial knot complements are trivially distinguished from one another. These
fundamental groups are also freely indecomposable, because the constructed 3-manifolds
are aspherical. (If they were decomposable, the manifolds would be connected sums, and
the universal cover would have nontrivial 5).

For v = 4, note that all the fundamental groups of the v = 3 case arise here as
well: if 33 is a homology sphere then 9(3° x D?) is a homology 4-sphere with the same
fundamental group (where 3° denotes, as usual, the punctured manifold). O

We also need:
Ingredient 3.2. For m —1 > co > 3 and every orientation preserving linear free action p
of G =17, on S (in particular, co is odd), there exist an infinite number of homology
spheres X with non-isomorphic fundamental groups and with a G = Z,-free action

satisfying: For each such X there exists an action of G on B™ fizing 0 € B™ such that

(1) The action of G on S™~! is isomorphic to the linear action p® Identity, and
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(2) the local fundamental group /¢4 B™ \ F,0) is isomorphic to m,(S), when F is the
fized point set. Moreover, this action is topologically conjugate to a PL action on a
polyhedron.

Let us recall what is meant by the local fundamental group: This is the inverse limit
<li;m 71 (U, o) where the {U,} is a sequence of connected open neighborhoods converg-
ingadown to 0, and x, € U, \ F is a sequence of base points. Note that by the Jordan
Curve Theorem, U, \ F' is connected as codim F' > 2. Also the induced maps are well
defined up to conjugacy, so the limit is well defined.

Proof. For every homology sphere ¥ of odd dimension cg, let ¥ = pX/ = X/#X # - - #5
p times. We now give X a free Z, action, by taking connected sum along an orbit of the
free linear action on S with the permutation action on pY’. The action on S° bounds
a linear disk D+, One can take the (equivariant) boundary connect sum of this disk
with pX, X the contractible manifold that ¥’ bounds to get a contractible manifold Z
with Z, action fixing just one point which is locally smooth at that point and has the
given local representation p there. (Let Z be the locally linear contractible Z,-manifold
we just constructed.)

For motivation, consider now ¢(X) x B™~%~! where ¢(X) is the cone of 3. It is a ball,
by Edwards’s theorem [11], [34] and [16, p. 3]. (The contractible manifold 3 bounds maps
to ¢ in a cell like way, and its product with a ball is a ball by the h-cobordism theorem),
and has an obvious Z, action as desired except that the action on the boundary is not
linear: the fixed set is S~ ~2 but it is not locally flat.

We will now make use of Z to solve this problem. The manifold ZU(X x [0,1])UZ is a
sphere (by the Poincaré conjecture). If one maps this to [0, 1] by the projection on X x [0, 1]
and extending by constant maps on the two copies of Z, then the mapping cylinder of
this map ¢ : ZU (X x [0,1]) U Z — [0, 1] is a manifold, again by Edwards’s theorem. It
has an obvious Z,, action with fixed set an interval. The action on the boundary sphere is
locally smooth with two fixed points, so that an old argument of Stallings [44] shows that
it is topologically linear with p as above, see [27] for the details. Note that the nonlocally
flat points of the fixed point set correspond to the points where the local structures is
¢(X3) x [0,1]; hence the local fundamental group is 71(X), as required. This proves the
result for the case m = ¢y + 2.

For m > ¢o+2, one can spin this picture: Map (S™m~¢~1 x Z¢+1)y(Bm—c~1 x %) to
B™7¢ in the obvious way and again the mapping cylinder produces a ball with locally
linear boundaries and desired fixed set. This time the linearity of the boundary action
follows from the deeper results of Illman [27]. O

We will also need the following group theoretical result:
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Proposition 3.3. If {m;}2, and {m}}2, are two mﬁmte countable famzl@es of non-
isomorphic freely indecomposable groups such that *171'1 is isomorphic to *17r then
-

after reordering for every i, m; is isomorphic to .

Proof. Recall that by the Bass—Serre theory, a group I' is a free product *17rl if and

only if " acts on a tree T with trivial edge stabilizers and a contractible quotient and
with one to one correspondence between the vertices of T and the conjugates of m;(i € N)
in I', where each vertex corresponds to its stabilizer. Now assume I' ~ Cfl m; and also
I~ jfl 7 with the corresponding trees T'and T". Fix i € N, as I acts on 7" with trivial
edge stabilizers and 7; is freely indecomposable, m; fixes a vertex of T”. Hence there
exists j € Ns.t. m; C 7T;‘T. In the same way T}T is a subgroup of some W,‘z for some § € T.
This means that m; C Wg. But in a free product a free factor cannot have a non-trivial
intersection with another factor or with a conjugate of it. Moreover, if m; N ¢ # {e},
then 7r5 = 7r1 Indeed, if ¢ is in this intersection, it fixes the fixed vertex of m; as well
as that of 7r , hence also the geodesic between them, in contradiction to the fact that I’
acts with terlal edge stabilizers.

We deduce that m; C 7T;-T C m; and hence m; = 7’7

J
This shows by symmetry that the collections {m;} and {7’} are identical. O

Finally, let us recall the famous Borel conjecture which asserts that two aspherical
manifolds which are homotopy equivalent are homeomorphic. Moreover, the original
homotopy equivalence is homotopic to a homeomorphism. This conjecture of Borel was
proved by Farrell and Jones [19] for the locally symmetric manifolds M discussed in this
paper, if dim(M) > 5 and by Gabai-Meyerhoff-Thurston [23] for the case of dim(M) = 3.
This, in particular, says that there is a unique cocompact proper topological action of
' =m (M) on the symmetric space H/K for any uniform torsion-free lattice.

But if T>T is a finite extension with torsion, then the situation is more delicate. In
fact, as we will see, there is no rigidity anymore in the topological setting and T’ may have
many inequivalent actions on H/K. In other words, the “equivariant Borel conjecture” is
not true. It is of interest (though not really relevant to the goals of this paper) to compare
this with the analogous situation in the setting of C*-algebras, where the analogue of
the Borel conjecture is the Baum—Connes conjecture. This latter conjecture is known to
be true in many situations, even in its equivariant form, i.e., for groups with torsion,
while the equivariant Borel conjecture fails in some of those cases ([14,40,45,46]). The
failure is due to the non-vanishing of the Nil and the first author’s UNil groups (see [3]
and [12])." The latter is the source of non-rigidity in the case of isolated singularities.

The specific outcome relevant for our needs is the following:

L More accurately, these algebraic reasons explain the failures of the equivariant Borel conjecture relevant
here. [46] gives other sorts of examples when the singular set is high dimensional.
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Ingredient 3.4. If A is a lattice containing T' a torsion free uniform lattice in H as a
normal subgroup of finite index, so that the mormalizer of any finite subgroup of A in
A is finite, then the proper discontinuous actions of A on (the topological manifold)
H/K are in a one to one correspondence with the action of A/T on T\ H/K, inducing
the given outer automorphism of T'. If dim(H/K) # 4 then this action is unique unless
dim(H/K) is 2 mod 4 and A contains an infinite dihedral subgroup. In that case, the
number of conjugacy classes is infinite and countable.

Proof. Any proper action of A is automatically free when restricted to I' (by torsion
freeness). The action is cocompact, because if it were not, this quotient space would show
that the cohomological dimension of T is less than dim(H/K') which cannot happen, since
there is a cocompact action. As a result, the Borel conjecture, proved for uniform lattices
by [19], shows that all of these actions are standard for the T subgroup, i.e., equivalent
to the original action of I' on H/K.

Note that this argument did not use the fact that the manifold on which A acts is
H/K; it would apply automatically to any contractible manifold. This shows that such
a manifold is automatically Euclidean space, as follows quite directly from [43].

With this preparation, the result now follows from [15] together with [2]: The condition
on normalizers is equivalent to the discreteness of the fixed point set for the isometric
action. The exotic action now has the same property by Smith theory (see e.g. [7]), as
one can see that each element of the isometry group must have discrete fixed set from
the fact that all the elements of order p do (which is the Smith theoretic statement,
noting that because for each finite group G, Ny (G)/G acts properly on the fixed set of
G on H/K, mod p acyclicity of a component of fixed set implies that component is a
point.) Assuming the Farrell-Jones conjecture for A, which is a theorem of [2,15] gives
a description of the set of actions in terms of UNil groups and maximal infinite dihedral
subgroups A.? A lattice that contains an infinite dihedral subgroup, contains a maximal
one (by discreteness: the Z subgroups cannot keep growing in a nested sequence, since
they correspond to shorter and shorter closed geodesics and a compact manifold has a
positive injectivity radius). O

4. Proof of Theorem 1.5

For Theorem 1.2, we have depended on the fact that the construction of [4] produced
free actions. The constructions we presently describe show that whenever a manifold M
of dimension > 5 has an (orientation preserving) action whose singular set (i.e., the union

2 Essentially the argument shows that, unlike what is done in the next section in the situation where
the singular set is positive dimensional, the action of A/I' is equivariantly homotopy equivalent to the
linear one. Since the singular set is very low dimensional, one can promote this to an isovariant homotopy
equivalence. At that point, surgery theory can be used to reduce this problem to issues in K-theory and
L-theory that are handled by the Farrell-Jones conjecture. It turns out that the K-groups of A are the
limit of those of the finite subgroups of A; however, because of UNil, the analogous statement is not true
for L(A) and the calculation, in this case, reduces to the infinite dihedral subgroups.
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of the fixed sets of all nontrivial subgroups) is positive dimensional, there are actually
continuously many actions on M that induce the same outer automorphisms of their
fundamental group but are not topologically conjugate.

To prove part (c) of the Theorem it suffices to prove it for cyclic group, i.e., that if a
cyclic group C' = Z,, p prime, has a positive dimensional fixed point set, then there is a
continuum of such non-equivalent actions. The case of general G then easily follows.

Let V be a component of the fixed set of the action of C. Let v = dim(V) and
let p be the normal representation of Z, on R® (¢ = m — v, the codimension of V'
in M). If v > 2, take ¥ and X"*! as in Ingredient 3.1. The product X x D(p) is
a ball with an action of Z, whose fixed set is X. The action of C' on the boundary
(X xD(p)) = (X x S H(p)) Umxse—1(p)) (X x D(p) has ¥ as its fixed set (as C has no
fixed points on S¢~!(p) and a unique fixed point — the origin — in the disk D(p)). The
normal representation to this fixed set is still p. We can take equivariant connected sum
of M with this C-sphere to obtain a new C-action on M#S5°T ~ M whose fixed set is
V#3.. Since the fixed set of the new action does not have the same fundamental group
as V (e.g., by Grushko’s theorem as 71 (X) was assumed nontrivial), it is not conjugate
to the original action. Of course it induces the same outer automorphism on 7;. Notice
that we can think of this procedure as being a local equivariant insertion; near a point
x € V we modify the action of C only in a small specified ball. This procedure can be
done any finite number of times to get countably many non-conjugate actions.

In fact, we can even get a continuum of actions of C' on M. Let us first make a
definition: For a finite group G acting topologically on a manifold M, we say that = in M
is a decent fized point, if the action of G in some open neighborhood of z is topologically
conjugate to a simplicial action on a polyhedron. Now, apply the process above with
smaller and smaller disjoint balls in M converging to some point xo using any choice of
m1(2)’s provided by Ingredient 3.1. The outcome is a copy of M with an action of C on it
with a fixed point set W containing xg, which is the unique non-decent point on M. This
set W is not a manifold, but W \ {z¢} is. Moreover, the fundamental group of W'\ {zo}
is isomorphic to the free product of the fundamental group of the original set V' with the
free product of the infinitely many different 71 (X)’s which have been used. Now, if two
such constructions lead to equivalent actions of C' on M, then this unique non-decent
point of the fixed point set should be preserved. Proposition 3.3 would imply that the
two collections of 71 (X)’s are equal. An infinite countable set has a continuum number
of subsets and we can therefore get a continuum number of non-conjugate actions of C.
This proves case (¢) for v > 3.

In the case of v > 3, we replaced balls B™ (with isometric local C-action) of M,
by copies of the same ball with new C-actions. The new action preserved the original
normal action p but changed dramatically the fixed point set. For v = 1 or 2, we are
not able to argue like that (for lack of suitable ¥’s as above). Instead we will keep the
fixed point set in B but deform the normal action p. In fact, this second method works
whenever ¢ = m — v > 2, so altogether the two methods cover all cases if dim M > 5.
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One now imitates the procedure described before to modify the original isometric
action of C' on M at a ball around a fixed point by replacing it with some B™ as in
Ingredient 3.2. The resulting action is not equivalent to the original one as m1(X) can be
recovered from it as the local fundamental group at a fixed point. Doing this procedure
any finite number of times with different ¥’s each time, gives us an infinite countable
collection of nonconjugate actions. To get a continuum, we argue as before. In fact, this
version is easier: The family of 7;(X)’s used can be recovered from the action of G on
M as being exactly the collection of non-trivial local fundamental groups at decent fixed
points of G.

This finishes the proof of part ¢ of Theorem 1.5.

Now, the proof of part (a) is exactly the same as Step IV in the proof of Theorem 1.2.

Part (b) can be deduced from Ingredient 3.4. The existence of a dihedral subgroup in
T is equivalent to the existence of an involution in G fixing a point in M. This is indeed
the case: If T contains a dihedral group, it contains an element of order 2. This element
has a fixed point on H/K and hence also on M. In the other direction: assume 7 € G is
an involution fixing a point p of M. Then by [13], 7 has at least a second fixed point g.
Let a be a geodesic from p to ¢, then 7(«) is another such geodesic and indeed, aoU 7 ()
is a closed geodesic v € 71 (M,p) = T'. The group generated by v and 7 is a dihedral
group. When we have a dihedral subgroup and the dimension is 2 mod 4, ingredient 3.4
gives infinitely many conjugacy classes of A actions. By the Farrell-Jones theorem, these
action are all conjugate as I" actions, so the actions of A/T" are nonconjugate actions on
M=T\G/K.

This finishes the proof of Theorem 1.5 for dim M > 5.

To prove Theorem 1.5 for dimension 3 observe that case (b) does not occur; since the
fixed point set is of even codimension. Now, case (a) is exactly as before, with this time
the work of Gabai-Meyerhoff-Thurston [23] replacing the work of Farrell and Jones.

For part (c), we use the same procedure of replacing a ball around one fixed point
by an exotic action. This time the work of Bing [5], provides us with uncountably many
actions of G = Z,, on B®. (Bing discusses R3, but his construction clearly works on B3 and
produces actions with given linear G action on dB3.) As the actions are distinguished by
the structures of this non-locally flat set as a subset of the line, they remain inequivalent
in any manifold. OJ

5. The case of dim M = 4

Theorem 1.5 may hold true in dimension 4 as well, but we can only prove part (c) of
it, namely:

Theorem 5.1. Let M be a locally symmetric irreducible manifold of dimension 4, with a
G = Zy, faithful isometric action whose fized point set V is positive dimensional. Then
G has a continuum number of inequivalent topological actions on M.
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Proof. First note that dim V' = 2 as the codimension must be even. The Smith conjecture
asserts that if Z, acts topologically on S™, n > 3 with a smooth S"~2 as its fixed point
set then S™~2 is isotopic to the unknot. While this conjecture is true for n = 3, it turns
out to be false when n > 4 as we now discuss.

Theorem 5.2. There exists an infinite number of G = Z, actions p;, i € N on S* satis-
fying:

(1) The fized point set is a nontrivial knotted S* C S*.

(2) The complement of the knot is a 4-dimensional manifold N;, which fibers over the
circle, with fibres F, each a S-dimensional manifold with boundary S2. Once this
52 is filled by a ball, the resulting closed manifold F; is irreducible.

(3) For every i#j, m(F;) is not isomorphic to a subgroup of m1(F}).

Note that mi(F;) = m(F?) and this is a normal subgroup of m(N;), equal to
[71(N;), 71 (N;)] with the quotient isomorphic to Z. Also, as F; is irreducible, 71 (F;)
is freely indecomposable. We postponed the proof of Theorem 5.2, using it first to prove
5.1.

Given z € V. C M, we will replace a punctured sphere S* around x € M (with its
G-action) by a punctured S* around a fixed point provided by Theorem 5.2. (We can
adjust the action on the sphere to have the same normal representation as that of V' just
by changing the generator of G = Z,.) More precisely, as in the proof of Theorem 1.5,
we replace M by M#5S*, but the latter is homeomorphic to M. The new fixed point set
is V#52.

This time, neither the fundamental group of the fixed set nor the local fundamental
group distinguishes the two actions. Thus we will argue slightly differently: Look at the
universal cover M of M. Take V to be one of the components of the lift of V in X con-
taining a lift of 2 (actually V is the universal cover of V' since 71 (V) injects into 71 (M)).
The complement of it has fundamental group isomorphic to Z (as by Hadamard’s Theo-
rem this is diffeomorphic to the linear inclusion V ~ R2 ¢ R* ~ M, whose complement
is homotopy equivalent to a circle). On the other hand, if W is a lift of W (= the fixed
points of the modified action) then the fundamental group of its complement is an infinite
amalgamated free product of 71 (NN;) with itself amalgamated along Z (generated by the
meridian). This group is certainly not isomorphic to Z and hence the two actions are not
equivalent. Repeating this with the different N;’s gives us countably many inequivalent
actions, as the different 71 (N;)’s are not isomorphic to each other. (These groups have
m F; « m F; % ... as their commutator subgroups.)

To get a continuum number, we argue as follows: Let €2 be an infinite subset of N.
For every fixed i € €, apply the procedure above infinitely many times around disjoint
balls in M converging to a point z; € M. Do it in such a way that the set {z;};cq has
a unique limit point z.
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We got therefore a new action on G on M depending on ). We want to show that
different {2’s lead to non-equivalent actions. Indeed, the indecent points are {z;}icq as
well as zg (which is a unique limit point of the indecent points). Now if two families
Q and ' lead to equivalent actions then the conjugating homeomorphism takes, after
reordering, z;,7 € § to z}, j' € V. Looking, as before, at the neighborhood of a lift of
x; (and x,) in the universal cover, we deduce that 7 (F}) is a subgroup of the infinite
amalgamated product of infinitely many copies of m1(N;). In fact it is in the (unique)
kernel of the map from this group onto Z. Thus m(Fj ) is a subgroup of this kernel
which is just a free product of infinitely many copies of 71 (F;). By the Kurosh Subgroup
Theorem every subgroup of this kernel is a free product of subgroups of 71 (F;) and of a
free group. As m(Fj/) is freely indecomposable (since F} is irreducible) we deduce that
71 (F}) is isomorphic to a subgroup of m;(F;). By part (3) of Theorem 5.2 this implies
1= 7" and hence Q = ' and Theorem 5.1 is now proven. O

Let us now prove Theorem 5.2.

Proof. There are many ways of doing this construction. We follow the work of [24] and
[47] and use work of [38] to choose an explicit set of examples. In [47], Zeeman modified
Artin’s spinning construction of knots in S* to twist spinning. Artin took a knot and
imagined a child holding it in two hands and spinning it through the 4-th dimension,
so that the trajectory of this rotated interval (the part beyond the hands) forms an S2
in S*. He observed that the new knot complement has the fundamental group as the
original knot complement. Zeeman [47] suggested having the knot rotate in the normal
direction g times as it makes a rotation. He then saw that this knot in S* has a Seifert
surface which is the g-fold branched cyclic cover of S% over the original knot, and that
the natural generator of this covering is the monodromy of the action. If p is prime
to ¢, then monodromy has a ¢-th root. Using the 4-dimensional Poincaré conjecture [21],
Giffen observes® that this action can be extended to one on the sphere with the twist
spun knot as fixed set.

If one starts with (r, s) torus knots, one obtains the Brieskorn manifold associated to
(g, s) as the closed fibers. These groups, as observed in [38] are central extensions of
the (q,r, s)-Delta groups. Their quotients by their centers have as torsion exactly the
cyclic groups of order {q,r, s}; then by, for example, letting ¢,r, s run through primes
these groups do not embed in one another. O

6. The case of dim M = 2

The phenomena in dimension 2 genuinely differ from those in higher dimension. Let
us note that Step I and Step IIT in the proof of Theorem 1.2 work equally well in

3 Giffen’s paper also shows that for p odd, one can avoid using the Poincaré conjecture (which was not
known in any category at the time that paper was written).
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dimension 2. In Borel’s result there is no assumption on the dimension. The paper [4]
assumes n > 3, but the result is true also for n = 2. In fact, it was proved earlier by
Greenberg [25] with the following elegant argument: He showed that in the Teichmiiller
space classifying the hyperbolic structures on a given surface S, of genus g, or better
yet, classifying conjugacy classes of cocompact lattices of PSLy(R) isomorphic to m1(Sy),
almost every such lattice is maximal and non-arithmetic. Hence by Margulis’ criterion
for arithmeticity, it is equal to its commensurability group. Now given a finite group G,
choose g large enough so that m;(S,) is mapped onto G (this is possible since 71 (.Sy)
is mapped onto Fj, the free group on g generators, so taking g greater or equal to the
number of generators of G will do). Now, let I be a non-arithmetic maximal lattice with
epimorphism 7 : I' = G with kernel A. Then Npgy,®)(A) =T and so Isom™ (X)) = G for
¥ = A\H?, as needed.

Moreover, it is also true that given a surface S of genus ¢ > 2, there are only finitely
many conjugacy classes of finite subgroups in Homeo™ (S). (These are, by the Nielsen
realization theorem [31], in one to one correspondence with the conjugacy classes of finite
subgroups of the mapping class group MCG(S).) The analysis below shows that this
number is more than 1 for every genus, in contrast to parts (a) and (b) of Theorem 1.5,
in spite of the fact that the singular set is always 0-dimensional. To see the finiteness
note first that for any finite group G there are only finitely many conjugacy classes of
subgroups of G. That all topological actions of finite groups on surfaces can be smoothed
is classical [30]. Smooth actions can be made isometric on some hyperbolic structure
either by direct construction (cut paste PL methods) or by using the uniformization
theorem: there is a unique hyperbolic structure conformal to any invariant Riemannian
metric, and that hyperbolic metric has an isometric action of G.

The finiteness of the number of actions is either obvious by thinking of the data
required to reconstruct ¥ — /G in terms of the quotient manifold, ramification points,
and group homomorphisms from 7; (Nonsingular part of ¥/G) — G or by using the
uniformization theorem to see that the actions then correspond to the strata of moduli
space —and there are of course only finitely many strata in any variety. (See our discussion
of the Riemann-Hurwitz formula below.) As one varies over all finite groups, one has
only a finite amount of data for any fixed genus.

Despite all this, let us show that Theorem 1.2 fails in dimension 2 in the strongest
possible way, namely:

Theorem 6.1. For no finite group G does there exists a G-weakly-dominated 2-dimensional
closed manifold. In fact, for every genus o > 1, the set of isomorphism classes of finite
mazimal subgroups of Homeo™ (S,) is finite with more than one element, while for o = 0
or 1, there are no maximal finite subgroups.

Recall first that closed, oriented surfaces are classified by their genus 0 < o € Z.
Clearly the surfaces of genus 0 (the sphere) and genus 1 (the torus) cannot be G-weakly-
dominated for any G since each of them has self-automorphisms of unbounded finite
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order. So from now on assume o > 2. Now, if S = S, and G is a finite group of
automorphisms, then by [30] and the Hurwitz upper bound |G| < 84(c — 1). The
Riemann-Hurwitz formula [9] asserts that in this case, letting S = S/G, 7 : S — S
the quotient map which is a ramified covering, ramified at 0 < r € Z points with ramifi-

cation indices my, ..., m, and if S is of genus p then the following holds
d 1
20—2=|G|(2p—2+2(1—ﬁ)). (1)
i=1 *
What is even more important for us is the converse. Namely if G is a finite group
generated by elements ai,...,a,,b1,...,b,,c1,...,c, Where
P r
H[aj’bj] H ¢i =1 and (2)
j=1 j=1
for i=1,...,7, ¢ is of order m; (3)

and if (1) holds, then G is a quotient of the fundamental group of a surface of genus p
with r ramification points with ramification indices my, ..., m,. The kernel is a surface
group of genus o. Hence G acts faithfully on S = S, with quotient S = S/G of genus p
and ramification indices my, ..., m,.

The Hurwitz upper bound actually follows from equation (1): To get the largest G,
for a fixed o, one wants the term in brackets on the right-hand side to be minimal but
positive. A careful elementary analysis shows that the smallest value is 4—12 and it is
obtained only if p = 0,7 = 3 and {mq,ma,m3} = {2,3,7}. One also observes that if
this value is not attained then the next one is 2%1 with p = 0,7 = 3 and {my, ma,m3} =
{1,2,8}. It is known that for infinitely many ¢’s, the upper bound of 84(c —1) is attained
but for infinitely many others it is not (cf. [33]). In the second case it follows that
|G| < 48(c —1).

The converse result allows one to prove that various groups act faithfully on S,. For
example, by taking p = 2 and r = 0 we see that

(a) The cyclic group ¢,_1 of order o — 1 acts faithfully on S,.

Similarly, by taking p=1,r =2 and m; =mg =0

(b) The cyclic group C, of order ¢ acts faithfully on S,.

Finally, the following group
H, = (z,yla* = y?7") = (ay)? =27 'y)* = 1)

is shown in [1] and [36] to be of order 8(c +1). (Note that by the two last relations every
element of H, can be written as x%y® with 0 < a < 4 and 0 < b < 2(c + 1)). By taking
as 3 generators ¢; = x,¢3 = y and c3 = (zy)~! which are of orders 4,2(c + 1) and 2,
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respectively, one sees that equation (1) is satisfied with p = 0, » = 3 and (my,mg, m3) =
(4,2(c 4+ 1),2) and hence:

(¢) The group H, of order 8(c + 1) acts faithfully on S,.

Let us mention in passing that Accola [1] and Macmillan [36] used (c) to prove a
lower bound (as an analogue to the upper bound of Hurwitz) and they showed that for
infinitely many o’s, this lower bound of 8(c 4 1) is best possible.

Back to our goal: We want to show that S = S, cannot be G-weakly-dominated for
any finite group G. Assume it is, then (a), (b) and (c) imply that C,_1,C, and H, are
subgroups of G and hence:

Lem(o —1,0,8(0 +1))||G). (4)

Now clearly ¢.c.m(oc —1,0,8(c + 1)) > % and by the Hurwitz Theorem |G| <
84(c — 1). This implies 20(c+ 1) < 84, i.e., o < 12.

Now checking case by case for o = 6,7,9,10, 11,12, one sees that £.c.om(c —1,0,8(c +
1)) > 84(c — 1) in all these cases, which leads to a contradiction. We are left with o = 8
and 2 <o <5.

For o = 8, we observe that if Sg is G-weakly-dominated than by (b), Cy is a subgroup
of G and so is Hg of (c). But Cs is cyclic, while the 2-sylow subgroup of Hg contains the
non-cyclic subgroup of order 4, generated by zy and ~'y. Thus the 2-sylow subgroup
of GG is non-cyclic and hence of order greater than 8, i.e., at least 16. This implies that
G is of order at least 7-16 -9 > 84 - 7. This contradicts the Hurwitz upper bound and
hence Sg cannot be G-weakly-dominated.

To handle the case o = 5, let us observe that the Hurwitz upper bound of 84(c —1) =
336 is obtained in this case. Indeed, look at G = SLs(7), a group of order 336 with the

generators
(11 (0 1
“a=lo 1) 27 \-1 0

—1 -1 1
C3 = C1C2 = -1 0

of orders 7,2 and 3, respectively.

Thus if S5 is G-weakly-dominated, G must be SLy(7) since Hurwitz bound is attained
for this group. But SLy(7) does not contain the group Hs of (¢) of order 48, since 48
does not divide 336.

Consider now the case o = 4. We claim that Sym(5) of order 120 acts on it. Indeed,

and ¢z where

taking p = 0,7 = 3 and

1= (13273743 5)7 Co = (172) and C3 = (6162)71 = (5743371)
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of orders 5, 2 and 4 respectively. We get a solution to (1) and hence Sym(5) acts on Sj.
Assume now that Sy is G-weakly-dominated. The Hurwitz bound 84.3 = 254 cannot
be obtained in such a case, since 120 does not divide 254. Thus G is of order at most
48 - 3 = 154, but we know that its order should be divisible by 120. Hence |G| = 120
and G = Sym(5). But (c) above shows that G should also contain H, which is of
order 40. As Sym(5) has no subgroup of order 40, we get a contradiction. Hence Sy is
not G-weakly-dominated.

For 0 = 2 and 3, a full classification of the finite groups acting on S, is given in [10].
From the list there it is clear that S, is not G-weakly-dominated also in these last two
cases. The Theorem is now fully proved. [

The Theorem says in particular that for every g, Homeo™ (3,) has at least two conju-
gacy classes of maximal finite subgroups (even isomorphism classes). In fact, the number
of those is unbounded as a function of g:

Proposition 6.2. The number of isomorphism classes of maximal finite subgroups of
Homeot (2,) (or equivalently of MCG(X,)) is unbounded as a function of g.

Proof. Let T" be a fixed cocompact lattice in PSL(2, R) which is the fundamental group
of a surface of genus 2. This group is mapped onto F5 — the free group on 2 generators
and F5 is mapped onto every 2-generated finite group. This holds therefore also for T'.
Every normal subgroup A of I' of index n defines a covering surface 3, when r =n + 1,
for which I'/A serves as a group of (orientation preserving) isometries and hence define
a finite subgroup of Homeo+(ZT). Now, the number of isomorphism classes of finite
groups of order at most n which are generated by 2 elements is superpolynomial (in
fact, this number of groups grows like n?(1°8™) — see [35]). Thus, there is an infinite
set of r’s for which there is an unbounded number of nonisomorphic finite subgroups
of Homeo™ (3,) of order r — 1. Even if these subgroups are not maximal, there are also
unboundedly many isomorphism classes of maximal subgroups. Indeed, each one of the
above is of index at most 84 (by Hurwitz upper bound) in a maximal subgroup. Now,
every maximal subgroup containing one of these subgroups is generated by at most
2 4 log,(84) < 9 elements. The number of bounded index subgroups in any group with
a bounded number of generators is uniformly bounded. This finishes the proof of the
Proposition. 0O

7. Topological rigidity

In this section we prove Theorem 1.7 and 1.8.

Theorem 1.8 is proved essentially the same way as Theorem 1.5, but two modifications
are needed: Theorem 1.5 was proved by restricting to actions of the cyclic group G = Z/p,
while now we need similar results for actions of general finite groups G. Let us indicate
how the method of proof for Z/p generalizes to general G.
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(1) Note that if H is any group acting semifreely (i.e., with only two kinds of orbits,
fixed points and free orbits) the literally same proof as for Z/p works.

(2) Now if G is a finite group, consider the least singular of the singular points, i.e., the
non-singular points of the singular set. Each of these will be fixed by some group H.
The H-fixed set consists of points fixed by H, and maybe also some more singular
points fixed by a larger group. We will do our modification near points that are fixed
only by H or by a conjugate of it. These points are the G orbit of points fixed just
by H.

(3) The modification will be done as follows. Start with a semi-free H-sphere S with
fixed set ¥ and normal representation — the H representation that occurs at a fixed
point of H (that is on the top stratum of the singular set, as in # 2). We can consider
the product space (G x S)/H, where H acts on the left on G and the right on S.
So, G acts on this product. The underlying topological space is G/H x S, but the
action is more interesting. It is called the induction of the H-action on S to G.

(4) Now take connected sum along an orbit of M with (G x S)/H. It is homeomorphic
to M, but the singular set is modified by connect sums of copies of ¥ in various
places.

(5) Similar tricks work when we do Edwards modifications.

With the above modification all the results proved in Sections 2-5 can be modified to
work with general finite group G.

The second modification is easier: We should think of proper discontinuous actions
of T' on H/K as follows. Let A be a normal finite index torsion free subgroup of T.
Then M = A\ H/K is a compact manifold upon which G = T'/A acts. Note that M
is indeed compact whatever the (proper discontinuous) action of I' on H/K is, since
the cohomological dimension of A is dim(H/K) as deduced from its original isometric
action. Now, taking the above mentioned modification (from Z/p to G), Theorem 1.8 is
deduced from Theorem 1.5 by standard covering space theory, changing from M to its
universal cover H/K . Note, however, that the formulation of the two theorems is slightly
different due to the fact that v € T has a fixed point in H/K if and only if it is of finite
order. Also, an automorphism of M = A\ H/K with a fixed point can be lifted to an
element of finite order in I' = Ny (A).

Theorem 1.7 is essentially equivalent to Corollary 1.6, but one needs to ensure that
when there are countably many proper discontinuous actions of T on H/ K, these actions
are isolated, i.e., a small perturbation of each such action is conjugate to it. This is indeed
the case (in contrast with the theory of deformations into Lie groups in which case, if
there are infinitely many cocompact discrete representations, then local rigidity fails and
there are continuously many such actions.) The point is that when the fixed points form
a discrete set one does have a local topological rigidity (and even in dimension 4). This
follows from Edmonds’ Theorem [17, Theorem 2.8] in high dimensions. The work of [22]
(see also [20]) shows it is true also in dimension 4. The case of dimension 3 is always
covered by either Theorem 1.5 (a) or (¢), and case (b) does not happen. O
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