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(2) the number of maximal subgroups of Homeo+(M) can be 
either one, countably many or continuum and we deter-
mine (at least for dimM Ó= 4) when each case occurs.

Our detailed analysis of (2) also gives a complete characteri-
zation of the topological local rigidity and topological strong 
rigidity (for dimM Ó= 4) of proper discontinuous actions of 
uniform lattices in semisimple Lie groups on the associated 
symmetric spaces.
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1. Introduction

A positive dimensional, oriented, closed manifold M has a very large group of 

automorphisms (i.e., orientation preserving self-homeomorphisms). In fact this group 

Homeo+(M) is infinite dimensional. But its finite subgroups are quite restricted. In 

1969, Borel showed (in a classic paper [6] but which appeared only in 1983 in his collected 

works) that if M is a K(π, 1)-manifold with fundamental group Γ = π1(M), whose center 

is trivial, then every finite transformation group G in Homeo+(M) is mapped injectively 

into the outer automorphism group Out(Γ) by the natural map (or more precisely into 

the subgroup Out+(Γ) – see §2 – which has an index at most 2 in Out(Γ)).

Let now M be a locally symmetric manifold of the form Γ\H/K when H is a connected 

non-compact semisimple group with trivial center and with no compact factor and Γ a 

torsion free uniform irreducible lattice in H. In the situation in which strong rigidity (in 

the sense of Mostow [39]) holds (i.e., if H is not locally isomorphic to SL2(R)), Out(Γ) is 

a finite group, G ≤ Out+(Γ); in fact, Out+(Γ) ⊆ NH(Γ)/Γ and it acts on M as the group 

of (orientation preserving) self-isometries Isom+(M) of the Riemannian manifold M . It 

follows now from Borel’s theorem that every finite subgroup of Homeo+(M) is isomorphic 

to a subgroup of one finite group, G(M) = Isom+(M).

Borel ends his paper by remarking: “The author does not know whether the finite 

subgroups of Homeo+(M) form finitely many conjugacy classes, nor whether one can 

find a Γ with no outer automorphism.”

The goal of the current paper is to answer these two questions. For an efficient for-

mulation of our results, let us make the following definition(s):

Definition 1.1. Let G be a finite group. An oriented manifold M will be called 

G-dominated (resp., G-weakly-dominated) if there is a faithful action of G on M , so 

that G can be identified with a subgroup of Homeo+(M) and if F is any finite subgroup 

of Homeo+(M), then F is conjugate (resp., isomorphic) to a subgroup of G.

Note that Borel’s Theorem combined with strong rigidity implies that unless H is lo-

cally isomorphic to SL2(R), M as above is always at least Isom+(M)-weakly-dominated.

We now assert (to be proved in section 2)

Theorem 1.2. For every finite group G and every 3 ≤ n ∈ N, there exist infinitely many 

oriented closed hyperbolic manifolds M = Mn(G) of dimension n, with G ≃ Isom+(M)

and when n Ó= 4 these Mn(G) are also G-dominated.

The very special case G = {e} answers Borel’s second question (where one can also 

deduce it from [2]). It also answers the question of Schultz [41,42], attributed there to 

D. Burghelea, who asked whether there exist asymmetric closed manifolds with degree 

one maps onto hyperbolic manifolds. Our examples are even hyperbolic themselves.

The situation for dimension 2 is very different:
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Theorem 1.3. For no group G, does there exist a G-weakly-dominated 2-dimensional 

closed manifold.

In fact, for every closed, oriented surface Σg, of genus g, Homeo+(Σ) has more than 

one (but only finitely many) isomorphism classes of maximal finite subgroups, and this 

number is unbounded as a function of g – see Proposition 6.2.

As mentioned before, for M as above with dimM ≥ 3, M is always G-weakly-

dominated. But the G-dominatedness shown in Theorem 1.2 is not the general phe-

nomenon. We can determine the situation in (almost) all cases. But first we need another 

definition.

Definition 1.4. For an automorphism ϕ of a manifold M , denote by Fix(ϕ) the fixed 

point set of ϕ and for a subgroup G ⊆ Homeo+(M), denote its singular set S(G) =

∪{Fix(ϕ)|ϕ ∈ G, ϕ Ó= id}. If M is an oriented Riemannian manifold, then we will call 

S(Isom+(M)) the singular set of M and we denote it SM .

We note that dim(M) −dim(SM ) is always even, as we are only considering orientation 

preserving actions.

Before stating our main theorem, let us recall that in our situation, i.e., when M is 

locally symmetric, every finite subgroup of Homeo+(M) is contained in a maximal finite 

subgroup. We can now give a very detailed answer to Borel’s first question.

Theorem 1.5 (Trichotomy theorem). Let M = Γ\H/K a locally symmetric manifold as 

above, and assume dimM Ó= 2 or 4. Let G = Isom+(M), so G ∼= N/Γ where N = NH(Γ). 

Then one of the following holds:

(a) Homeo+(M) has a unique conjugacy class of maximal finite subgroups, all of whose 

members are conjugate to Isom+(M).

(b) Homeo+(M) has countably infinite many maximal finite subgroups, up to conjugacy 

or

(c) Homeo+(M) has a continuum of such subgroups (up to conjugacy).

These cases happen, if and only if the following hold, respectively:

(a) (i) SM = ∅, i.e., Isom+(M) acts freely on M , or

(ii) the singular set SM is 0-dimensional and either dim(M) is divisible by 4 or all 

elements of order 2 act freely.

(b) M is of dimension equal 2 (mod 4), the singular set is 0-dimensional and some 

element of order 2 has a non-empty fixed point set, or

(c) the singular set SM is positive dimensional, i.e., M has some non-trivial isometry 

with a positive dimensional fixed point set.
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The cases treated in Theorem 1.2 are with N = NH(Γ) torsion free (see §2), i.e., 

S(G) = ∅ where G = Isom+(M), so we are in case (a)(i) and these manifolds M are 

Isom+(M)-dominated also by Theorem 1.5.

An interesting corollary of the theorem is that if Homeo+(M) has only finitely many 

conjugacy classes of maximal finite subgroups then it has a unique one, the class of 

Isom+(M), in contrast to Theorem 1.3.

In dimension 4 when the action has positive dimensional singular set, we do construct 

uncountably many actions. If the singular set is finite, then we have countability, but we 

do not know whether/when this countable set of actions consists of a unique possibility. 

As a consequence, the following dichotomy holds in all dimensions:

Corollary 1.6. Let M be as above with arbitrary dimension. Then Homeo+(M) has an 

uncountable number of conjugacy classes of finite subgroups if and only if the singular 

set of Isom+(M) acting on M is positive dimensional.

The uniqueness in Theorem 1.5 fails in the smooth case (i.e., for Diff+(M)). In that 

case, the number of conjugacy classes is always countable. (This is a straightforward 

consequence of the equivariant tubular neighborhood [8] theorem and countability of the 

number of compact manifolds in any dimension, which in turn follows, in the smooth 

case from handelbody theory.)

Finiteness without uniqueness is also possible. The simplest example occurs in dimen-

sion 7 where one can take any exotic differential structure on S7 and connect sum it with 

T 7 28 times to get the standard T 7. This can easily be used to construct free exotic Z28

actions on T 7. (That the quotient manifold is not T 7 is proved exactly the same way as 

the proof by Milnor that the original exotic sphere is not standard.)

The boundary between finite and infinite number of conjugacy classes of finite sub-

groups of Diff+(M) can be largely analyzed by the methods of this paper, but works out 

somewhat differently (e.g., one has finiteness in some cases of one dimensional singular 

set) and is especially more involved when the singular set is 2-dimensional. We shall not 

discuss this here.

Finally, let us present our result from an additional point of view: Given H as above 

and Γ a uniform lattice in it. It acts via the standard action ρ0 by translation on the 

symmetric space H/K which topologically is Rd. The Farrell–Jones topological rigidity 

result implies that if Γ is torsion free, every proper discontinuous (orientation preserving) 

action ρ of Γ on H/K is conjugate within Homeo+(H/K) to ρ0. It has been known for 

a long time (cf. [46] for discussion and references) that this is not necessarily the case if 

Γ has torsion. Our discussion above (with some additional ingredient based on [15,46] – 

see §7) gives the essentially complete picture. But first a definition:



S. Cappell et al. / Advances in Mathematics 327 (2018) 25–46 29

Definition. For Γ, H, K and ρ0 as above, say

(1) The lattice Γ has topological strong rigidity if every proper discontinuous action ρ

of Γ on H/K, is conjugate to ρ0 by an element of Homeo+(H/K).

(2) Γ has local topological rigidity if for every proper discontinuous action ρ of Γ on 

H/K, there exists a small neighborhood U of ρ in Hom(Γ, Homeo+(H/K)) such 

that any ρ′ ∈ U is conjugate to ρ by an element of Homeo+(H/K)).

The following two results follow from Corollary 1.6 and Theorem 1.5 (see §7):

Theorem 1.7. Let H be a semisimple group, K a maximal compact subgroup and Γ an 

irreducible uniform lattice in H. Then Γ satisfies the topological local rigidity if and only 

if for every non-trivial element of Γ of finite order, the fixed point set of its action on 

H/K is zero dimensional.

Theorem 1.8. For H, K and Γ as in Theorem 1.7 but assuming dim(H/K) Ó= 2, 4. Then 

one of the following holds:

(a) Γ has topological strong rigidity, i.e., it has a unique (up to conjugation) proper 

discontinuous action on H/K ≃ R
n.

(b) Γ has an infinite countable number of such actions, yet all are locally rigid.

(c) Γ has uncountably many (conjugacy classes) of such actions.

These cases happen if and only if the following hold, respectively:

(a) (i) Γ acts freely on H/K or

(ii) every torsion (i.e., non-trivial of finite order) element of Γ has 0-dimensional 

fixed point set in H/K and either dim(M) ≡ 0 (mod 4) or there are no elements 

of order 2.

(b) dim(H/K) ≡ 2 (mod 4), the fixed point set of every torsion element is 0-dimensional 

and there is some element of order 2, or

(c) there exist a torsion element in Γ with a positive dimensional fixed point set.

The paper is organized as follows. In §2, we prove Theorem 1.2. In §3, we give prelim-

inaries for the proof of Theorem 1.5, which will be given in §4. In this proof we depend 

crucially on the deep works of Farrell and Jones [18,19] and Bartels and Lueck [2] related 

to the (famous) Borel conjecture as well as recent work of [15]. In §5, we analyze mani-

folds of dimension 4, while in §6 we prove Theorem 1.3. Section 7 discusses topological 

rigidity of lattices and proves Theorem 1.7 and 1.8.

Remark. If one allows orientation reversing actions then if dimM ≥ 7 there is a 

trichotomy theorem; rigidity holds if the action is free or dimM ≡ 1 mod 4 or if 
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dimM ≡ 3(4) and the elements of order 2 act freely. The proof of this is similar to 

the one we give below for Theorem 1.5. We believe that the remaining cases, at least 

when dimM Ó= 4, work out similarly to that theorem.
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to NYU, the Hebrew University, ETH-ITS for their hospitality as well as to the NSF, 
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2. Proof of Theorem 1.2

The proof of the theorem is in four steps:

Step I: In [4], M. Belolipetsky and the second named author showed that for every n ≥ 3

and for every finite group G, there exist infinitely many closed, oriented, hyperbolic 

manifolds M = Mn(G) with Isom+(M) ≃ G. More precisely, it is shown there that if Γ0
is the non-arithmetic cocompact lattice in H = PO+(n, 1) = Isom+(Hn) constructed in 

[26], then it has infinitely many finite index subgroups Γ with NH(Γ)/Γ ≃ G. The proof 

shows that Γ can be chosen so that NH(Γ) is torsion free and moreover NH(Γ)/Γ ≃

Isom+(M) = Isom(M) for M = Γ\Hn. This implies that G = NH(Γ)/Γ acts on M

freely, (as a fixed point for an element of G could be lifted, by covering space theory, 

to an isometry of the universal cover, fixing a point, which would necessarily give us an 

element of finite order in NH(Γ)), a fact we will use in Step IV below.

Let M = Mn(G) be one of these manifolds, Γ = π1(M). So Γ can be considered 

as a cocompact lattice in Isom+(Hn) = PO+(n, 1), the group of orientation preserving 

isometries of the n-dimensional hyperbolic space Hn.

Step II: The Mostow Strong Rigidity Theorem [39] for compact hyperbolic manifolds 

asserts that if Γ1 and Γ2 are torsion free cocompact lattices in Isom(Hn), then every 

group theoretical isomorphism from Γ1 to Γ2 is realized by a conjugation within Isom(Hn)

(or in a geometric language, homotopical equivalence of hyperbolic manifolds implies an 

isomorphism as Riemannian manifolds). Indeed, as Γ has no center, this conjugating 

element is unique.

Applying Mostow’s theorem for the automorphisms of Γ = π1(M) implies that Aut(Γ)

can be identified with NIsom(Hn)(Γ), the normalizer of Γ in Isom(Hn). Hence the outer 

automorphism group Out(Γ) = Aut(Γ)/Inn(Γ) of Γ is isomorphic to NIsom(Hn)(Γ)/Γ and 

hence also to Isom(M), which in our case is equal to Isom+(M) by step I.

Step III: In [6], Borel showed that if Γ is a torsion free cocompact lattice in any simple 

non-compact Lie group H, including our H = PO+(n, 1), with a maximal compact 
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subgroup K and associated symmetric space X = H/K, then every finite subgroup F

of Homeo(M) where M = Γ\X, is mapped injectively into Out(π1(M)) = Out(Γ) by 

the natural map. If F ≤ Homeo+(M), then its image is in Out+(Γ) which is the kernel 

of the action of Out(Γ) on Hn(Γ, Z) ≃ Z, so [Out(Γ) : Out+(Γ)] ≤ 2. Borel’s result is 

actually much more general; the reader is referred to that short paper for the general 

result and the proof which uses Smith theory and cohomological methods.

Anyway, applying Borel’s result for our M = Mn(G) finishes the proof of the first 

part of Theorem 1.2. In particular, one sees that in all these examples, F acts freely 

on M (and is abstractly a subgroup of G) since the isometry group, in this case, is the 

group of covering transformations, which acts freely on M .

Step IV: We have shown so far that whenever a finite group F acts on M as above, 

there is a natural injective homomorphism F →֒ Out+(π1(M)) ∼= Isom+(M). Denote 

the image of F in Isom+(M) by L. Our next goal is to show that F is conjugate to L

within Homeo+(M). For ease of reading we will call M with the action of F , M ′, to 

avoid confusion.

There is actually an equivariant map M ′ → M that is a homotopy equivalence. To 

see this, recall that NH(Γ) is torsion free and hence so is Γ, the preimage of L in NH(Γ)

with respect to the natural projection NH(Γ) → Out(Γ) = Out(π1(M)). Similarly, let us 

consider all of the possible lifts of all of the elements of F to the universal cover, which 

form a group Γ
′

(the orbifold fundamental group of M ′/F , which we presently show is 

the genuine fundamental group) that fits in an exact sequence:

1 → Γ(= π1(M)) → Γ
′

→ F → 1

As Γ is centerless and F and L induce the same outer automorphism group, it follows 

that Γ
′

is also torsion free and as a corollary F = Γ
′

/Γ acts freely on M ′. Hence M ′/F

is homotopy equivalent to M/L as both have Γ
′

≃ Γ as their fundamental group. [Note 

that two groups containing the same centerless group as a normal subgroup, with an iso-

morphism between quotient groups that preserves the action on the normal subgroup are 

canonically isomorphic.] By the Borel conjecture for hyperbolic closed manifolds (which 

is a Theorem of Farrell and Jones [18] for n ≥ 5 and of Gabai–Meyerhoff–Thurston [23]

for n = 3) the map M ′/F → M/L is homotopic to a homeomorphism which preserves 

π1(M
′) = π1(M), as did the original homotopy equivalence. Since liftability in a cov-

ering space is a homotopy condition, this homeomorphism can be lifted to the cover 

M ′ → M , producing a conjugating homeomorphism between the actions. Theorem 1.2

is now proved.

In summary, the above proof is analogous to (and relies on) the fact that Mostow 

rigidity gives a uniqueness of the isometric action (or in different terminology, the 

uniqueness of the Nielsen realization of a subgroup of Out(Γ)). At the same time, the 

Farrell–Jones/Gabai–Meyerhoff–Thurston rigidity gives the uniqueness of the topologi-

cal realization in the case of free actions. We will see later that this freeness condition is 

essential.
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3. Some ingredients for the proof of Theorem 1.5

The proof of Theorem 1.5 is based on results, sometimes deep theorems, some of which 

are well-known and others which might be folklore (or new). We present them in this 

section and use them in the next one.

Ingredient 3.1. For v ≥ 3, there exist infinitely many non-simply connected homology 

spheres Σv, each bounding a contractible manifold Xv+1 such that the different funda-

mental groups π1(Σ) are all freely indecomposable and are nonisomorphic to each other. 

Moreover, X × [0, 1] is a ball.

Proof. For v > 4 this is very straightforward. According to Kervaire [32], a group π

is the fundamental group of a (PL) homology sphere iff it is finitely presented and 

superperfect (i.e., H1(π) = H2(π) = 0). It is quite simple to produce an infinite family 

of freely indecomposable groups that satisfy these conditions. Among finite groups, one 

can take the universal central extensions of an infinite family of simple groups. Moreover, 

as Kervaire shows in that paper, every PL homology sphere bounds a PL contractible 

manifold (this is true for v ≥ 4, and for v = 3 in the topological category [21]). The 

product of a contractible manifold with [0, 1] is a ball as an immediate application of the 

h-cobordism theorem (see [37]).

For v = 3, we could rely on the work of Mazur in the PL category, but would 

then need to use subsequent work on the structure of manifolds obtained by surgery 

on knots. Instead, as we will be working in the topological category, we rely on [21]

which shows that the analogue of all of the above holds topologically for v = 3, aside 

from the characterization of fundamental groups: however, using the uniqueness of the 

JSJ ([28,29]) decomposition of Haken 3-manifolds, homology spheres obtained by gluing 

together nontrivial knot complements are trivially distinguished from one another. These 

fundamental groups are also freely indecomposable, because the constructed 3-manifolds 

are aspherical. (If they were decomposable, the manifolds would be connected sums, and 

the universal cover would have nontrivial π2).

For v = 4, note that all the fundamental groups of the v = 3 case arise here as 

well: if Σ3 is a homology sphere then ∂(Σo × D2) is a homology 4-sphere with the same 

fundamental group (where Σo denotes, as usual, the punctured manifold). ✷

We also need:

Ingredient 3.2. For m − 1 > c0 ≥ 3 and every orientation preserving linear free action ρ

of G = Zp on Sc0 (in particular, c0 is odd), there exist an infinite number of homology 

spheres Σc0 with non-isomorphic fundamental groups and with a G = Zp-free action 

satisfying: For each such Σ there exists an action of G on Bm fixing 0 ∈ Bm such that

(1) The action of G on Sm−1 is isomorphic to the linear action ρ⊕ Identity, and
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(2) the local fundamental group πlocal1 (Bm \ F, 0) is isomorphic to π1(Σ), when F is the 

fixed point set. Moreover, this action is topologically conjugate to a PL action on a 

polyhedron.

Let us recall what is meant by the local fundamental group: This is the inverse limit 

lim
←−α

π1(Uα, xα) where the {Uα} is a sequence of connected open neighborhoods converg-

ing down to 0, and xα ∈ Uα \ F is a sequence of base points. Note that by the Jordan 

Curve Theorem, Uα \ F is connected as codim F ≥ 2. Also the induced maps are well 

defined up to conjugacy, so the limit is well defined.

Proof. For every homology sphere Σ′ of odd dimension c0, let Σ = pΣ′ = Σ′#Σ′# · · ·#Σ′

p times. We now give Σ a free Zp action, by taking connected sum along an orbit of the 

free linear action on Sc0 with the permutation action on pΣ′. The action on Sc0 bounds 

a linear disk Dc0+1. One can take the (equivariant) boundary connect sum of this disk 

with pX, X the contractible manifold that Σ′ bounds to get a contractible manifold Z

with Zp action fixing just one point which is locally smooth at that point and has the 

given local representation ρ there. (Let Z be the locally linear contractible Zp-manifold 

we just constructed.)

For motivation, consider now c(Σ) ×Bm−c0−1 where c(Σ) is the cone of Σ. It is a ball, 

by Edwards’s theorem [11], [34] and [16, p. 3]. (The contractible manifold Σ bounds maps 

to cΣ in a cell like way, and its product with a ball is a ball by the h-cobordism theorem), 

and has an obvious Zp action as desired except that the action on the boundary is not 

linear: the fixed set is Sm−c0−2 but it is not locally flat.

We will now make use of Z to solve this problem. The manifold Z ∪(Σ × [0, 1]) ∪Z is a 

sphere (by the Poincaré conjecture). If one maps this to [0, 1] by the projection on Σ ×[0, 1]

and extending by constant maps on the two copies of Z, then the mapping cylinder of 

this map ϕ : Z ∪ (Σ × [0, 1]) ∪ Z → [0, 1] is a manifold, again by Edwards’s theorem. It 

has an obvious Zp action with fixed set an interval. The action on the boundary sphere is 

locally smooth with two fixed points, so that an old argument of Stallings [44] shows that 

it is topologically linear with ρ as above, see [27] for the details. Note that the nonlocally 

flat points of the fixed point set correspond to the points where the local structures is 

c(Σ) × [0, 1]; hence the local fundamental group is π1(Σ), as required. This proves the 

result for the case m = c0 + 2.

For m > c0+2, one can spin this picture: Map (Sm−c0−1×Zc0+1) ∪ (Bm−c0−1×Σ) to 

Bm−c0 in the obvious way and again the mapping cylinder produces a ball with locally 

linear boundaries and desired fixed set. This time the linearity of the boundary action 

follows from the deeper results of Illman [27]. ✷

We will also need the following group theoretical result:
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Proposition 3.3. If {πi}
∞

i=1 and {π′

i}
∞

i=1 are two infinite countable families of non-

isomorphic freely indecomposable groups such that 
∞

∗
i=1

πi is isomorphic to 
∞

∗
i=1

π′

i, then 

after reordering for every i, πi is isomorphic to π′

i.

Proof. Recall that by the Bass–Serre theory, a group Γ is a free product 
∞

∗
i=1

πi if and 

only if Γ acts on a tree T with trivial edge stabilizers and a contractible quotient and 

with one to one correspondence between the vertices of T and the conjugates of πi(i ∈ N)

in Γ, where each vertex corresponds to its stabilizer. Now assume Γ ≃
∞

∗
i=1

πi and also 

Γ ≃
∞

∗
j=1

π′

j with the corresponding trees T and T ′. Fix i ∈ N, as Γ acts on T ′ with trivial 

edge stabilizers and πi is freely indecomposable, πi fixes a vertex of T ′. Hence there 

exists j ∈ N s.t. πi ⊆ π′ τ
j . In the same way π′ τ

j is a subgroup of some πδ
k for some δ ∈ Γ. 

This means that πi ⊆ πδ
k. But in a free product a free factor cannot have a non-trivial 

intersection with another factor or with a conjugate of it. Moreover, if πi ∩ πδ
i Ó= {e}, 

then πδ
i = πi. Indeed, if g is in this intersection, it fixes the fixed vertex of πi as well 

as that of πδ
i , hence also the geodesic between them, in contradiction to the fact that Γ

acts with trivial edge stabilizers.

We deduce that πi ⊆ π′ τ
j ⊆ πi and hence πi = π′ τ

j .

This shows by symmetry that the collections {πi} and {π′

j} are identical. ✷

Finally, let us recall the famous Borel conjecture which asserts that two aspherical 

manifolds which are homotopy equivalent are homeomorphic. Moreover, the original 

homotopy equivalence is homotopic to a homeomorphism. This conjecture of Borel was 

proved by Farrell and Jones [19] for the locally symmetric manifolds M discussed in this 

paper, if dim(M) ≥ 5 and by Gabai–Meyerhoff–Thurston [23] for the case of dim(M) = 3. 

This, in particular, says that there is a unique cocompact proper topological action of 

Γ = π1(M) on the symmetric space H/K for any uniform torsion-free lattice.

But if Γ ⊲ Γ is a finite extension with torsion, then the situation is more delicate. In 

fact, as we will see, there is no rigidity anymore in the topological setting and Γ may have 

many inequivalent actions on H/K. In other words, the “equivariant Borel conjecture” is 

not true. It is of interest (though not really relevant to the goals of this paper) to compare 

this with the analogous situation in the setting of C∗-algebras, where the analogue of 

the Borel conjecture is the Baum–Connes conjecture. This latter conjecture is known to 

be true in many situations, even in its equivariant form, i.e., for groups with torsion, 

while the equivariant Borel conjecture fails in some of those cases ([14,40,45,46]). The 

failure is due to the non-vanishing of the Nil and the first author’s UNil groups (see [3]

and [12]).1 The latter is the source of non-rigidity in the case of isolated singularities.

The specific outcome relevant for our needs is the following:

1 More accurately, these algebraic reasons explain the failures of the equivariant Borel conjecture relevant 
here. [46] gives other sorts of examples when the singular set is high dimensional.
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Ingredient 3.4. If ∆ is a lattice containing Γ a torsion free uniform lattice in H as a 

normal subgroup of finite index, so that the normalizer of any finite subgroup of ∆ in 

∆ is finite, then the proper discontinuous actions of ∆ on (the topological manifold) 

H/K are in a one to one correspondence with the action of ∆/Γ on Γ \ H/K, inducing 

the given outer automorphism of Γ. If dim(H/K) Ó= 4 then this action is unique unless 

dim(H/K) is 2 mod 4 and ∆ contains an infinite dihedral subgroup. In that case, the 

number of conjugacy classes is infinite and countable.

Proof. Any proper action of ∆ is automatically free when restricted to Γ (by torsion 

freeness). The action is cocompact, because if it were not, this quotient space would show 

that the cohomological dimension of Γ is less than dim(H/K) which cannot happen, since 

there is a cocompact action. As a result, the Borel conjecture, proved for uniform lattices 

by [19], shows that all of these actions are standard for the Γ subgroup, i.e., equivalent 

to the original action of Γ on H/K.

Note that this argument did not use the fact that the manifold on which ∆ acts is 

H/K; it would apply automatically to any contractible manifold. This shows that such 

a manifold is automatically Euclidean space, as follows quite directly from [43].

With this preparation, the result now follows from [15] together with [2]: The condition 

on normalizers is equivalent to the discreteness of the fixed point set for the isometric 

action. The exotic action now has the same property by Smith theory (see e.g. [7]), as 

one can see that each element of the isometry group must have discrete fixed set from 

the fact that all the elements of order p do (which is the Smith theoretic statement, 

noting that because for each finite group G, NH(G)/G acts properly on the fixed set of 

G on H/K, mod p acyclicity of a component of fixed set implies that component is a 

point.) Assuming the Farrell–Jones conjecture for ∆, which is a theorem of [2,15] gives 

a description of the set of actions in terms of UNil groups and maximal infinite dihedral 

subgroups ∆.2 A lattice that contains an infinite dihedral subgroup, contains a maximal 

one (by discreteness: the Z subgroups cannot keep growing in a nested sequence, since 

they correspond to shorter and shorter closed geodesics and a compact manifold has a 

positive injectivity radius). ✷

4. Proof of Theorem 1.5

For Theorem 1.2, we have depended on the fact that the construction of [4] produced 

free actions. The constructions we presently describe show that whenever a manifold M

of dimension ≥ 5 has an (orientation preserving) action whose singular set (i.e., the union 

2 Essentially the argument shows that, unlike what is done in the next section in the situation where 
the singular set is positive dimensional, the action of ∆/Γ is equivariantly homotopy equivalent to the 
linear one. Since the singular set is very low dimensional, one can promote this to an isovariant homotopy 
equivalence. At that point, surgery theory can be used to reduce this problem to issues in K-theory and 
L-theory that are handled by the Farrell–Jones conjecture. It turns out that the K-groups of ∆ are the 
limit of those of the finite subgroups of ∆; however, because of UNil, the analogous statement is not true 
for L(∆) and the calculation, in this case, reduces to the infinite dihedral subgroups.
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of the fixed sets of all nontrivial subgroups) is positive dimensional, there are actually 

continuously many actions on M that induce the same outer automorphisms of their 

fundamental group but are not topologically conjugate.

To prove part (c) of the Theorem it suffices to prove it for cyclic group, i.e., that if a 

cyclic group C = Zp, p prime, has a positive dimensional fixed point set, then there is a 

continuum of such non-equivalent actions. The case of general G then easily follows.

Let V be a component of the fixed set of the action of C. Let v = dim(V ) and 

let ρ be the normal representation of Zp on Rc (c = m − v, the codimension of V

in M). If v > 2, take Σv and Xv+1 as in Ingredient 3.1. The product X × D(ρ) is 

a ball with an action of Zp whose fixed set is X. The action of C on the boundary 

∂(X ×Dc(ρ)) = (X ×Sc−1(ρ)) ∪(Σ×Sc−1(ρ)) (Σ ×D(ρ) has Σ as its fixed set (as C has no 

fixed points on Sc−1(ρ) and a unique fixed point – the origin – in the disk D(ρ)). The 

normal representation to this fixed set is still ρ. We can take equivariant connected sum 

of M with this C-sphere to obtain a new C-action on M#Sc+v ≃ M whose fixed set is 

V#Σ. Since the fixed set of the new action does not have the same fundamental group 

as V (e.g., by Grushko’s theorem as π1(Σ) was assumed nontrivial), it is not conjugate 

to the original action. Of course it induces the same outer automorphism on π1. Notice 

that we can think of this procedure as being a local equivariant insertion; near a point 

x ∈ V we modify the action of C only in a small specified ball. This procedure can be 

done any finite number of times to get countably many non-conjugate actions.

In fact, we can even get a continuum of actions of C on M . Let us first make a 

definition: For a finite group G acting topologically on a manifold M , we say that x in M

is a decent fixed point, if the action of G in some open neighborhood of x is topologically 

conjugate to a simplicial action on a polyhedron. Now, apply the process above with 

smaller and smaller disjoint balls in M converging to some point x0 using any choice of 

π1(Σ)’s provided by Ingredient 3.1. The outcome is a copy of M with an action of C on it 

with a fixed point set W containing x0, which is the unique non-decent point onM . This 

set W is not a manifold, but W \ {x0} is. Moreover, the fundamental group of W \ {x0}

is isomorphic to the free product of the fundamental group of the original set V with the 

free product of the infinitely many different π1(Σ)’s which have been used. Now, if two 

such constructions lead to equivalent actions of C on M , then this unique non-decent 

point of the fixed point set should be preserved. Proposition 3.3 would imply that the 

two collections of π1(Σ)’s are equal. An infinite countable set has a continuum number 

of subsets and we can therefore get a continuum number of non-conjugate actions of C. 

This proves case (c) for v ≥ 3.

In the case of v ≥ 3, we replaced balls Bm (with isometric local C-action) of M , 

by copies of the same ball with new C-actions. The new action preserved the original 

normal action ρ but changed dramatically the fixed point set. For v = 1 or 2, we are 

not able to argue like that (for lack of suitable Σ’s as above). Instead we will keep the 

fixed point set in Bm but deform the normal action ρ. In fact, this second method works 

whenever c = m − v > 2, so altogether the two methods cover all cases if dimM ≥ 5.
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One now imitates the procedure described before to modify the original isometric 

action of C on M at a ball around a fixed point by replacing it with some Bm as in 

Ingredient 3.2. The resulting action is not equivalent to the original one as π1(Σ) can be 

recovered from it as the local fundamental group at a fixed point. Doing this procedure 

any finite number of times with different Σ’s each time, gives us an infinite countable 

collection of nonconjugate actions. To get a continuum, we argue as before. In fact, this 

version is easier: The family of π1(Σ)’s used can be recovered from the action of G on 

M as being exactly the collection of non-trivial local fundamental groups at decent fixed 

points of G.

This finishes the proof of part c of Theorem 1.5.

Now, the proof of part (a) is exactly the same as Step IV in the proof of Theorem 1.2.

Part (b) can be deduced from Ingredient 3.4. The existence of a dihedral subgroup in 

Γ is equivalent to the existence of an involution in G fixing a point in M . This is indeed 

the case: If Γ contains a dihedral group, it contains an element of order 2. This element 

has a fixed point on H/K and hence also on M . In the other direction: assume τ ∈ G is 

an involution fixing a point p of M . Then by [13], τ has at least a second fixed point q. 

Let α be a geodesic from p to q, then τ(α) is another such geodesic and indeed, α ∪ τ(α)

is a closed geodesic γ ∈ π1(M, p) = Γ. The group generated by γ and τ is a dihedral 

group. When we have a dihedral subgroup and the dimension is 2 mod 4, ingredient 3.4

gives infinitely many conjugacy classes of ∆ actions. By the Farrell–Jones theorem, these 

action are all conjugate as Γ actions, so the actions of ∆/Γ are nonconjugate actions on 

M = Γ\G/K.

This finishes the proof of Theorem 1.5 for dimM ≥ 5.

To prove Theorem 1.5 for dimension 3 observe that case (b) does not occur; since the 

fixed point set is of even codimension. Now, case (a) is exactly as before, with this time 

the work of Gabai–Meyerhoff–Thurston [23] replacing the work of Farrell and Jones.

For part (c), we use the same procedure of replacing a ball around one fixed point 

by an exotic action. This time the work of Bing [5], provides us with uncountably many 

actions of G = Zp onB3. (Bing discusses R3, but his construction clearly works on B3 and 

produces actions with given linear G action on ∂B3.) As the actions are distinguished by 

the structures of this non-locally flat set as a subset of the line, they remain inequivalent 

in any manifold. ¤

5. The case of dim M = 4

Theorem 1.5 may hold true in dimension 4 as well, but we can only prove part (c) of 

it, namely:

Theorem 5.1. Let M be a locally symmetric irreducible manifold of dimension 4, with a 

G = Zp faithful isometric action whose fixed point set V is positive dimensional. Then 

G has a continuum number of inequivalent topological actions on M .
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Proof. First note that dimV = 2 as the codimension must be even. The Smith conjecture 

asserts that if Zp acts topologically on Sn, n ≥ 3 with a smooth Sn−2 as its fixed point 

set then Sn−2 is isotopic to the unknot. While this conjecture is true for n = 3, it turns 

out to be false when n ≥ 4 as we now discuss.

Theorem 5.2. There exists an infinite number of G = Zp actions ρi, i ∈ N on S4 satis-

fying:

(1) The fixed point set is a nontrivial knotted S2 ⊂ S4.

(2) The complement of the knot is a 4-dimensional manifold Ni, which fibers over the 

circle, with fibres F 0
i , each a 3-dimensional manifold with boundary S2. Once this 

S2 is filled by a ball, the resulting closed manifold Fi is irreducible.

(3) For every i Ó=j, π1(Fi) is not isomorphic to a subgroup of π1(Fj).

Note that π1(Fi) = πi(F
0
i ) and this is a normal subgroup of π1(Ni), equal to 

[π1(Ni), π1(Ni)] with the quotient isomorphic to Z. Also, as Fi is irreducible, π1(Fi)

is freely indecomposable. We postponed the proof of Theorem 5.2, using it first to prove 

5.1.

Given x ∈ V ⊂ M , we will replace a punctured sphere S4 around x ∈ M (with its 

G-action) by a punctured S4 around a fixed point provided by Theorem 5.2. (We can 

adjust the action on the sphere to have the same normal representation as that of V just 

by changing the generator of G = Zp.) More precisely, as in the proof of Theorem 1.5, 

we replace M by M#S4, but the latter is homeomorphic to M . The new fixed point set 

is V#S2.

This time, neither the fundamental group of the fixed set nor the local fundamental 

group distinguishes the two actions. Thus we will argue slightly differently: Look at the 

universal cover M̃ of M . Take Ṽ to be one of the components of the lift of V in X̃ con-

taining a lift of x (actually Ṽ is the universal cover of V since π1(V ) injects into π1(M)). 

The complement of it has fundamental group isomorphic to Z (as by Hadamard’s Theo-

rem this is diffeomorphic to the linear inclusion Ṽ ≃ R
2 ⊂ R

4 ≃ M̃ , whose complement 

is homotopy equivalent to a circle). On the other hand, if W̃ is a lift of W (= the fixed 

points of the modified action) then the fundamental group of its complement is an infinite 

amalgamated free product of π1(Ni) with itself amalgamated along Z (generated by the 

meridian). This group is certainly not isomorphic to Z and hence the two actions are not 

equivalent. Repeating this with the different Ni’s gives us countably many inequivalent 

actions, as the different π1(Ni)’s are not isomorphic to each other. (These groups have 

π1Fi ∗ π1Fi ∗ . . . as their commutator subgroups.)

To get a continuum number, we argue as follows: Let Ω be an infinite subset of N. 

For every fixed i ∈ Ω, apply the procedure above infinitely many times around disjoint 

balls in M converging to a point xi ∈ M . Do it in such a way that the set {xi}i∈Ω has 

a unique limit point x0.
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We got therefore a new action on G on M depending on Ω. We want to show that 

different Ω’s lead to non-equivalent actions. Indeed, the indecent points are {xi}i∈Ω as 

well as x0 (which is a unique limit point of the indecent points). Now if two families 

Ω and Ω′ lead to equivalent actions then the conjugating homeomorphism takes, after 

reordering, xi, i ∈ Ω to x′

j , j′ ∈ Ω′. Looking, as before, at the neighborhood of a lift of 

xi (and xj′ ,) in the universal cover, we deduce that π1(Fj′) is a subgroup of the infinite 

amalgamated product of infinitely many copies of π1(Ni). In fact it is in the (unique) 

kernel of the map from this group onto Z. Thus π1(Fj′) is a subgroup of this kernel 

which is just a free product of infinitely many copies of π1(Fi). By the Kurosh Subgroup 

Theorem every subgroup of this kernel is a free product of subgroups of π1(Fi) and of a 

free group. As π1(Fj′) is freely indecomposable (since Fj′ is irreducible) we deduce that 

π1(Fj′) is isomorphic to a subgroup of π1(Fi). By part (3) of Theorem 5.2 this implies 

i = j′ and hence Ω = Ω′ and Theorem 5.1 is now proven. ✷

Let us now prove Theorem 5.2.

Proof. There are many ways of doing this construction. We follow the work of [24] and 

[47] and use work of [38] to choose an explicit set of examples. In [47], Zeeman modified 

Artin’s spinning construction of knots in S4 to twist spinning. Artin took a knot and 

imagined a child holding it in two hands and spinning it through the 4-th dimension, 

so that the trajectory of this rotated interval (the part beyond the hands) forms an S2

in S4. He observed that the new knot complement has the fundamental group as the 

original knot complement. Zeeman [47] suggested having the knot rotate in the normal 

direction q times as it makes a rotation. He then saw that this knot in S4 has a Seifert 

surface which is the q-fold branched cyclic cover of S3 over the original knot, and that 

the natural generator of this covering is the monodromy of the action. If p is prime 

to q, then monodromy has a q-th root. Using the 4-dimensional Poincaré conjecture [21], 

Giffen observes3 that this action can be extended to one on the sphere with the twist 

spun knot as fixed set.

If one starts with (r, s) torus knots, one obtains the Brieskorn manifold associated to 

(q, r, s) as the closed fibers. These groups, as observed in [38] are central extensions of 

the (q, r, s)-Delta groups. Their quotients by their centers have as torsion exactly the 

cyclic groups of order {q, r, s}; then by, for example, letting q, r, s run through primes 

these groups do not embed in one another. ✷

6. The case of dim M = 2

The phenomena in dimension 2 genuinely differ from those in higher dimension. Let 

us note that Step I and Step III in the proof of Theorem 1.2 work equally well in 

3
Giffen’s paper also shows that for p odd, one can avoid using the Poincaré conjecture (which was not 

known in any category at the time that paper was written).
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dimension 2. In Borel’s result there is no assumption on the dimension. The paper [4]

assumes n ≥ 3, but the result is true also for n = 2. In fact, it was proved earlier by 

Greenberg [25] with the following elegant argument: He showed that in the Teichmüller 

space classifying the hyperbolic structures on a given surface Sg of genus g, or better 

yet, classifying conjugacy classes of cocompact lattices of PSL2(R) isomorphic to π1(Sg), 

almost every such lattice is maximal and non-arithmetic. Hence by Margulis’ criterion 

for arithmeticity, it is equal to its commensurability group. Now given a finite group G, 

choose g large enough so that π1(Sg) is mapped onto G (this is possible since π1(Sg)

is mapped onto Fg, the free group on g generators, so taking g greater or equal to the 

number of generators of G will do). Now, let Γ be a non-arithmetic maximal lattice with 

epimorphism π : Γ ։ G with kernel Λ. Then NPSL2(R)(Λ) = Γ and so Isom+(Σ) = G for 

Σ = Λ\H2, as needed.

Moreover, it is also true that given a surface S of genus σ ≥ 2, there are only finitely 

many conjugacy classes of finite subgroups in Homeo+(S). (These are, by the Nielsen 

realization theorem [31], in one to one correspondence with the conjugacy classes of finite 

subgroups of the mapping class group MCG(S).) The analysis below shows that this 

number is more than 1 for every genus, in contrast to parts (a) and (b) of Theorem 1.5, 

in spite of the fact that the singular set is always 0-dimensional. To see the finiteness 

note first that for any finite group G there are only finitely many conjugacy classes of 

subgroups of G. That all topological actions of finite groups on surfaces can be smoothed 

is classical [30]. Smooth actions can be made isometric on some hyperbolic structure 

either by direct construction (cut paste PL methods) or by using the uniformization 

theorem: there is a unique hyperbolic structure conformal to any invariant Riemannian 

metric, and that hyperbolic metric has an isometric action of G.

The finiteness of the number of actions is either obvious by thinking of the data 

required to reconstruct Σ → Σ/G in terms of the quotient manifold, ramification points, 

and group homomorphisms from π1 (Nonsingular part of Σ/G) → G or by using the 

uniformization theorem to see that the actions then correspond to the strata of moduli 

space – and there are of course only finitely many strata in any variety. (See our discussion 

of the Riemann–Hurwitz formula below.) As one varies over all finite groups, one has 

only a finite amount of data for any fixed genus.

Despite all this, let us show that Theorem 1.2 fails in dimension 2 in the strongest 

possible way, namely:

Theorem 6.1. For no finite group G does there exists a G-weakly-dominated 2-dimensional 

closed manifold. In fact, for every genus σ > 1, the set of isomorphism classes of finite 

maximal subgroups of Homeo+(Sσ) is finite with more than one element, while for σ = 0

or 1, there are no maximal finite subgroups.

Recall first that closed, oriented surfaces are classified by their genus 0 ≤ σ ∈ Z. 

Clearly the surfaces of genus 0 (the sphere) and genus 1 (the torus) cannot be G-weakly-

dominated for any G since each of them has self-automorphisms of unbounded finite 



S. Cappell et al. / Advances in Mathematics 327 (2018) 25–46 41

order. So from now on assume σ ≥ 2. Now, if S = Sσ and G is a finite group of 

automorphisms, then by [30] and the Hurwitz upper bound |G| ≤ 84(σ − 1). The 

Riemann–Hurwitz formula [9] asserts that in this case, letting S̄ = S/G, π : S → S̄

the quotient map which is a ramified covering, ramified at 0 ≤ r ∈ Z points with ramifi-

cation indices m1, . . . , mr and if S̄ is of genus ρ then the following holds

2σ − 2 = |G|(2ρ − 2 +
r

∑

i=1

(1 −
1

mi
)). (1)

What is even more important for us is the converse. Namely if G is a finite group 

generated by elements a1, . . . , aρ, b1, . . . , bρ, c1, . . . , cr where

ρ
∏

j=1

[aj , bj ]
r

∏

j=1

ci = 1 and (2)

for i = 1, . . . , r, ci is of order mi (3)

and if (1) holds, then G is a quotient of the fundamental group of a surface of genus ρ

with r ramification points with ramification indices m1, . . . , mr. The kernel is a surface 

group of genus σ. Hence G acts faithfully on S = Sσ with quotient S̄ = S/G of genus ρ

and ramification indices m1, . . . , mr.

The Hurwitz upper bound actually follows from equation (1): To get the largest G, 

for a fixed σ, one wants the term in brackets on the right-hand side to be minimal but 

positive. A careful elementary analysis shows that the smallest value is 1
42 and it is 

obtained only if ρ = 0, r = 3 and {m1, m2, m3} = {2, 3, 7}. One also observes that if 

this value is not attained then the next one is 124 with ρ = 0, r = 3 and {m1, m2, m3} =

{1, 2, 8}. It is known that for infinitely many g’s, the upper bound of 84(σ−1) is attained 

but for infinitely many others it is not (cf. [33]). In the second case it follows that 

|G| ≤ 48(σ − 1).

The converse result allows one to prove that various groups act faithfully on Sσ. For 

example, by taking ρ = 2 and r = 0 we see that

(a) The cyclic group cσ−1 of order σ − 1 acts faithfully on Sσ.

Similarly, by taking ρ = 1, r = 2 and m1 = m2 = σ

(b) The cyclic group Cσ of order σ acts faithfully on Sσ.

Finally, the following group

Hσ = 〈x, y|x4 = y2(σ+1) = (xy)2 = x−1y)2 = 1〉

is shown in [1] and [36] to be of order 8(σ+1). (Note that by the two last relations every 

element of Hσ can be written as xayb with 0 ≤ a < 4 and 0 ≤ b < 2(σ + 1)). By taking 

as 3 generators c1 = x, c2 = y and c3 = (xy)−1 which are of orders 4, 2(σ + 1) and 2, 
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respectively, one sees that equation (1) is satisfied with ρ = 0, r = 3 and (m1, m2, m3) =

(4, 2(σ + 1), 2) and hence:

(c) The group Hσ of order 8(σ + 1) acts faithfully on Sσ.

Let us mention in passing that Accola [1] and Macmillan [36] used (c) to prove a 

lower bound (as an analogue to the upper bound of Hurwitz) and they showed that for 

infinitely many σ’s, this lower bound of 8(σ + 1) is best possible.

Back to our goal: We want to show that S = Sσ cannot be G-weakly-dominated for 

any finite group G. Assume it is, then (a), (b) and (c) imply that Cσ−1, Cσ and Hσ are 

subgroups of G and hence:

ℓ.c.m(σ − 1, σ, 8(σ + 1))||G|. (4)

Now clearly ℓ.c.m(σ − 1, σ, 8(σ + 1)) ≥ (σ−1)σ(σ+1)
2 and by the Hurwitz Theorem |G| ≤

84(σ − 1). This implies 12σ(σ + 1) ≤ 84, i.e., σ ≤ 12.

Now checking case by case for σ = 6, 7, 9, 10, 11, 12, one sees that ℓ.c.m(σ −1, σ, 8(σ+

1)) > 84(σ − 1) in all these cases, which leads to a contradiction. We are left with σ = 8

and 2 ≤ σ ≤ 5.

For σ = 8, we observe that if S8 is G-weakly-dominated than by (b), C8 is a subgroup 

of G and so is H8 of (c). But C8 is cyclic, while the 2-sylow subgroup of H8 contains the 

non-cyclic subgroup of order 4, generated by xy and x−1y. Thus the 2-sylow subgroup 

of G is non-cyclic and hence of order greater than 8, i.e., at least 16. This implies that 

G is of order at least 7 · 16 · 9 > 84 · 7. This contradicts the Hurwitz upper bound and 

hence S8 cannot be G-weakly-dominated.

To handle the case σ = 5, let us observe that the Hurwitz upper bound of 84(σ −1) =

336 is obtained in this case. Indeed, look at G = SL2(7), a group of order 336 with the 

generators

c1 =

(

1 1
0 1

)

, c2 =

(

0 1
−1 0

)

and c3 where

c−1
3 = c1c2 =

(

−1 1
−1 0

)

of orders 7, 2 and 3, respectively.

Thus if S5 is G-weakly-dominated, G must be SL2(7) since Hurwitz bound is attained 

for this group. But SL2(7) does not contain the group H5 of (c) of order 48, since 48 

does not divide 336.

Consider now the case σ = 4. We claim that Sym(5) of order 120 acts on it. Indeed, 

taking ρ = 0, r = 3 and

c1 = (1, 2, 3, 4, 5), c2 = (1, 2) and c3 = (c1c2)
−1 = (5, 4, 3, 1)
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of orders 5, 2 and 4 respectively. We get a solution to (1) and hence Sym(5) acts on S4. 

Assume now that S4 is G-weakly-dominated. The Hurwitz bound 84.3 = 254 cannot 

be obtained in such a case, since 120 does not divide 254. Thus G is of order at most 

48 · 3 = 154, but we know that its order should be divisible by 120. Hence |G| = 120

and G = Sym(5). But (c) above shows that G should also contain H4 which is of 

order 40. As Sym(5) has no subgroup of order 40, we get a contradiction. Hence S4 is 

not G-weakly-dominated.

For σ = 2 and 3, a full classification of the finite groups acting on Sσ is given in [10]. 

From the list there it is clear that Sσ is not G-weakly-dominated also in these last two 

cases. The Theorem is now fully proved. ¤

The Theorem says in particular that for every g, Homeo+(Σg) has at least two conju-

gacy classes of maximal finite subgroups (even isomorphism classes). In fact, the number 

of those is unbounded as a function of g:

Proposition 6.2. The number of isomorphism classes of maximal finite subgroups of 

Homeo+(Σg) (or equivalently of MCG(Σg)) is unbounded as a function of g.

Proof. Let Γ be a fixed cocompact lattice in PSL(2, R) which is the fundamental group 

of a surface of genus 2. This group is mapped onto F2 – the free group on 2 generators 

and F2 is mapped onto every 2-generated finite group. This holds therefore also for Γ. 

Every normal subgroup ∆ of Γ of index n defines a covering surface Σr when r = n +1, 

for which Γ/∆ serves as a group of (orientation preserving) isometries and hence define 

a finite subgroup of Homeo+(Σr). Now, the number of isomorphism classes of finite 

groups of order at most n which are generated by 2 elements is superpolynomial (in 

fact, this number of groups grows like nO(log n) – see [35]). Thus, there is an infinite 

set of r’s for which there is an unbounded number of nonisomorphic finite subgroups 

of Homeo+(Σr) of order r − 1. Even if these subgroups are not maximal, there are also 

unboundedly many isomorphism classes of maximal subgroups. Indeed, each one of the 

above is of index at most 84 (by Hurwitz upper bound) in a maximal subgroup. Now, 

every maximal subgroup containing one of these subgroups is generated by at most 

2 + log2(84) < 9 elements. The number of bounded index subgroups in any group with 

a bounded number of generators is uniformly bounded. This finishes the proof of the 

Proposition. ✷

7. Topological rigidity

In this section we prove Theorem 1.7 and 1.8.

Theorem 1.8 is proved essentially the same way as Theorem 1.5, but two modifications 

are needed: Theorem 1.5 was proved by restricting to actions of the cyclic group G = Z/p, 

while now we need similar results for actions of general finite groups G. Let us indicate 

how the method of proof for Z/p generalizes to general G.
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(1) Note that if H is any group acting semifreely (i.e., with only two kinds of orbits, 

fixed points and free orbits) the literally same proof as for Z/p works.

(2) Now if G is a finite group, consider the least singular of the singular points, i.e., the 

non-singular points of the singular set. Each of these will be fixed by some group H. 

The H-fixed set consists of points fixed by H, and maybe also some more singular 

points fixed by a larger group. We will do our modification near points that are fixed 

only by H or by a conjugate of it. These points are the G orbit of points fixed just 

by H.

(3) The modification will be done as follows. Start with a semi-free H-sphere S with 

fixed set Σ and normal representation – the H representation that occurs at a fixed 

point of H (that is on the top stratum of the singular set, as in # 2). We can consider 

the product space (G × S)/H, where H acts on the left on G and the right on S. 

So, G acts on this product. The underlying topological space is G/H × S, but the 

action is more interesting. It is called the induction of the H-action on S to G.

(4) Now take connected sum along an orbit of M with (G × S)/H. It is homeomorphic 

to M , but the singular set is modified by connect sums of copies of Σ in various 

places.

(5) Similar tricks work when we do Edwards modifications.

With the above modification all the results proved in Sections 2–5 can be modified to 

work with general finite group G.

The second modification is easier: We should think of proper discontinuous actions 

of Γ on H/K as follows. Let ∆ be a normal finite index torsion free subgroup of Γ. 

Then M = ∆ \ H/K is a compact manifold upon which G = Γ/∆ acts. Note that M

is indeed compact whatever the (proper discontinuous) action of Γ on H/K is, since 

the cohomological dimension of ∆ is dim(H/K) as deduced from its original isometric 

action. Now, taking the above mentioned modification (from Z/p to G), Theorem 1.8 is 

deduced from Theorem 1.5 by standard covering space theory, changing from M to its 

universal cover H/K. Note, however, that the formulation of the two theorems is slightly 

different due to the fact that γ ∈ Γ has a fixed point in H/K if and only if it is of finite 

order. Also, an automorphism of M = ∆ \ H/K with a fixed point can be lifted to an 

element of finite order in Γ = NH(∆).

Theorem 1.7 is essentially equivalent to Corollary 1.6, but one needs to ensure that 

when there are countably many proper discontinuous actions of Γ on H/K, these actions 

are isolated, i.e., a small perturbation of each such action is conjugate to it. This is indeed 

the case (in contrast with the theory of deformations into Lie groups in which case, if 

there are infinitely many cocompact discrete representations, then local rigidity fails and 

there are continuously many such actions.) The point is that when the fixed points form 

a discrete set one does have a local topological rigidity (and even in dimension 4). This 

follows from Edmonds’ Theorem [17, Theorem 2.8] in high dimensions. The work of [22]

(see also [20]) shows it is true also in dimension 4. The case of dimension 3 is always 

covered by either Theorem 1.5 (a) or (c), and case (b) does not happen. ¤
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