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Abstract. We provide a crystal structure on the set of ordered multiset partitions, which
recently arose in the pursuit of the Delta Conjecture. This conjecture was stated by
Haglund, Remmel and Wilson as a generalization of the Shuffle Conjecture. Various sta-
tistics on ordered multiset partitions arise in the combinatorial analysis of the Delta Con-
jecture, one of them being the minimaj statistic, which is a variant of the major index
statistic on words. Our crystal has the property that the minimaj statistic is constant
on connected components of the crystal. In particular, this yields another proof of the
Schur positivity of the graded Frobenius series of the generalization Rn,k due to Haglund,
Rhoades and Shimozono of the coinvariant algebra Rn. The crystal structure also enables
us to demonstrate the equidistributivity of the minimaj statistic with the major index
statistic on ordered multiset partitions.

1. Introduction

The Shuffle Conjecture [HHL+05], now a theorem due to Carlsson and Mellit [CM15],
provides an explicit combinatorial description of the bigraded Frobenius characteristic of
the Sn-module of diagonal harmonic polynomials. It is stated in terms of parking functions
and involves two statistics, area and dinv.

Recently, Haglund, Remmel and Wilson [HRW15] introduced a generalization of the Shuf-
fle Theorem, coined the Delta Conjecture. The Delta Conjecture involves two quasisym-
metric functions Risen,k(x; q, t) and Valn,k(x; q, t), which have combinatorial expressions in
terms of labelled Dyck paths. In this paper, we are only concerned with the specializations
q = 0 or t = 0, in which case [HRW15, Theorem 4.1] and [Rho16, Theorem 1.3] show

Risen,k(x; 0, t) = Risen,k(x; t, 0) = Valn,k(x; 0, t) = Valn,k(x; t, 0).

It was proven in [HRW15, Proposition 4.1] that

(1.1) Valn,k(x; 0, t) =
∑

π∈OPn,k+1

tminimaj(π)xwt(π),

where OPn,k+1 is the set of ordered multiset partitions of the multiset {1ν1 , 2ν2 , . . .} into
k + 1 nonempty blocks, where ν = (ν1, ν2, . . .) is a weak composition of n. In addition,
minimaj(π) is the minimum value of the major index of the set partition π over all possible
ways to order the elements in each block of π, and wt(π) is the weight of π. The symmetric
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function Valn,k(x; 0, t) is known [Wil16, Rho16] to be Schur positive, meaning that the
coefficients are polynomials in t with nonnegative coefficients.

In this paper, we provide a crystal structure on the set of ordered multiset partitions
OPn,k. Crystal bases are q → 0 shadows of representations for quantum groups Uq(g) [Kas90,
Kas91], though they can also be understood from a purely combinatorial perspective [Ste03,
BS17]. In type A, the character of a connected crystal component with highest weight ele-
ment of highest weight λ is the Schur function sλ. Hence, having a type A crystal structure
on a combinatorial set (in our case on OPn,k) naturally yields the Schur expansion of the
associated symmetric function. Furthermore, if the statistic (in our case minimaj) is con-
stant on connected components, then the graded character can also be naturally computed
using the crystal.

Haglund, Rhoades and Shimozono [HRS16] introduced a generalization Rn,k for k 6 n of
the coinvariant algebra Rn, with Rn,n = Rn. Just as the combinatorics of Rn is governed
by permutations in Sn, the combinatorics of Rn,k is controlled by ordered set partitions of
{1, 2 . . . , n} with k blocks. The graded Frobenius series of Rn,k is (up to a minor twist) equal
to Valn,k(x; 0, t). It is still an open problem to find a bigraded Sn-module whose Frobenius
image is Valn,k(x; q, t). Our crystal provides another representation-theoretic interpretation
of Valn,k(x; 0, t) as a crystal character.

Wilson [Wil16] analyzed various statistics on ordered multiset partitions, including inv,
dinv, maj, and minimaj. In particular, he gave a Carlitz type bijection, which proves equidis-
tributivity of inv, dinv, maj on OPn,k. Rhoades [Rho16] provided a non-bijective proof that
these statistics are also equidistributed with minimaj. Using our new crystal, we can give
a combinatorial proof of the equidistributivity of the minimaj statistic and the maj statistic
on ordered multiset partitions.

The paper is organized as follows. In Section 2 we define ordered multiset partitions and
the minimaj and maj statistics on them. In Section 3 we provide a bijection ϕ from ordered
multiset partitions to tuples of semistandard Young tableaux that will be used in Section 4
to define a crystal structure, which preserves minimaj. We conclude in Section 5 with a
proof that the minimaj and maj statistics are equidistributed using the same bijection ϕ.
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2. Ordered multiset partitions and the minimaj and maj statistics

We consider ordered multiset partitions of order n with k blocks. Given a weak composi-
tion ν = (ν1, ν2, . . .) of n into nonnegative integer parts, which we denote ν |= n, let OPν,k
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be the set of partitions of the multiset {iνi | i > 1} into k nonempty ordered blocks, such
that the elements within each block are distinct. For each i > 1, the notation iνi should
be interpreted as saying that the integer i occurs νi times in such a partition. The weak
composition ν is also called the weight wt(π) of π ∈ OPν,k. Let

OPn,k =
⋃
ν|=n

OPν,k.

We now specify a particular reading order for an ordered multiset partition π = (π1 |
π2 | . . . | πk) ∈ OPn,k with blocks πi. Start by writing πk in increasing order. Assume πi+1

has been ordered, and let ri be the largest integer in πi that is less than or equal to the
leftmost element of πi+1. If no such ri exists, arrange πi in increasing order. When such
an ri exists, arrange the elements of πi in increasing order, and then cycle them so that ri
is the rightmost number. Continue with πi−1, . . . , π2, π1 until all blocks have been ordered.
This ordering of the numbers in π is defined in [HRW15] and is called the minimaj order .

Example 2.1. lf π = (157 | 24 | 56 | 468 | 13 | 123) ∈ OP15,6, then the minimaj order of π
is π = (571 | 24 | 56 | 468 | 31 | 123).

For two sequences α, β of integers, we write α < β to mean that each element of α is less
than every element of β. Suppose π ∈ OPn,k is in minimaj order. Then each block πi of
π is nonempty and can be written in the form πi = biαiβi, where bi ∈ Z>0, and αi, βi are
sequences (possibly empty) of distinct increasing integers such that either βi < bi < αi or
αi = ∅. Inequalities with empty sets should be ignored.

Lemma 2.2. With the above notation, π ∈ OPn,k is in minimaj order if the following hold:

(1) πk = bkαk with bk < αk and βk = ∅;
(2) for 1 6 i < k, either

(a) αi = ∅, πi = biβi, and bi < βi 6 bi+1, or
(b) βi 6 bi+1 < bi < αi.

A sequence or word w1w2 · · ·wn has a descent in position 1 6 i < n if wi > wi+1. Let
π ∈ OPn,k be in minimaj order. Observe that a descent occurs in πi only in Case 2 (b) of
Lemma 2.2, and such a descent is either between the largest and smallest elements of πi or
between the last element of πi and the first element of πi+1.

Example 2.3. Continuing Example 2.1 with π = (571 | 24 | 56 | 468 | 31 | 123), we have

b1 = 5, α1 = 7, β1 = 1 b2 = 2, α2 = ∅, β2 = 4 b3 = 5, α3 = 6, β3 = ∅
b4 = 4, α4 = 68, β4 = ∅ b5 = 3, α5 = ∅, β5 = 1 b6 = 1, α6 = 23, β6 = ∅.

Suppose that π in minimaj order has descents in positions

D(π) = {d1, d1 + d2, . . . , d1 + d2 + · · ·+ d`}
for some ` ∈ [0, k−1] (` = 0 indicates no descents). Furthermore assume that these descents
occur in the blocks πi1 , πi1+i2 , . . . , πi1+i2+···+i` , where ij > 0 for 1 6 j 6 ` and i1 + i2 + · · ·+
i` < k. Assume d`+1 and i`+1 are the distances to the end, that is, d1+d2+· · ·+d`+d`+1 = n
and i1 + i2 + · · ·+ i` + i`+1 = k.

The minimaj statistic minimaj(π) of π ∈ OPn,k as given by [HRW15] is

(2.1) minimaj(π) =
∑

d∈D(π)

d =
∑̀
j=1

(`+ 1− j)dj .
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Example 2.4. The descents for the multiset partition π = (57.1 | 24 | 56. | 468. | 3.1 | 123)
occur at positions 2,7,10,11 and are designated with periods. Hence ` = 4, d1 = 2, d2 = 5,
d3 = 3, d4 = 1 and d5 = 4, and minimaj(π) = 2 + 7 + 10 + 11 = 30. The descents occur in
blocks π1, π3, π4, and π5, so that i1 = 1, i2 = 2, i3 = 1, i4 = 1, and i5 = 1.

To define the major index of π ∈ OPn,k, we consider the word w obtained by ordering each
block πi in decreasing order, called the major index order [Wil16]. Recursively construct
a word v by setting v0 = 0 and vj = vj−1 + χ(j is the last position in its block) for each
1 6 j 6 n. Here χ(True) = 1 and χ(False) = 0. Then

(2.2) maj(π) =
∑

j : wj>wj+1

vj .

Example 2.5. Continuing Example 2.1, note that the major index order of π = (157 | 24 |
56 | 468 | 13 | 123) ∈ OP15,6 is π = (751 | 42 | 65 | 864 | 31 | 321). Writing the word v
underneath w (omitting v0 = 0), we obtain

w = 751 | 42 | 65 | 864 | 31 | 321

v = 001 | 12 | 23 | 334 | 45 | 556,

so that maj(π) = 0 + 0 + 1 + 2 + 3 + 3 + 4 + 4 + 5 + 5 = 27.

Note that throughout this section, we could have also restricted ourselves to ordered
multiset partitions with letters in {1, 2, . . . , r} instead of Z>0. That is, let ν = (ν1, . . . , νr) be

a weak composition of n and letOP(r)
ν,k be the set of partitions of the multiset {iνi | 1 6 i 6 r}

into k nonempty ordered blocks, such that the elements within each block are distinct. Let

OP(r)
n,k =

⋃
ν|=n

OP(r)
ν,k.

This restriction will be important when we discuss the crystal structure on ordered multiset
partitions.

3. Bijection with tuples of semistandard Young tableaux

In this section, we describe a bijection from ordered multiset partitions to tuples of
semistandard Young tableaux that allows us to impose a crystal structure on the set of
ordered multiset partitions in Section 4.

Recall that a semistandard Young tableau T is a filling of a (skew) Young diagram (also
called the shape of T ) with positive integers that weakly increase across rows and strictly
increase down columns. The weight of T is the tuple wt(T ) = (a1, a2, . . .), where ai records
the number of letters i in T . The set of semistandard Young tableaux of shape λ, where
λ is a (skew) partition, is denoted by SSYT(λ). If we want to restrict the entries in the
semistandard Young tableau from Z>0 to a finite alphabet {1, 2, . . . , r}, we denote the set

by SSYT(r)(λ).
The tableaux relevant for us here are of two types: a single column of boxes with entries

that increase from top to bottom, or a skew ribbon tableau. If γ = {γ1, γ2, . . . , γm} is a skew
ribbon shape with γj boxes in the j-th row starting from the bottom, the ribbon condition
requires that row j + 1 starts in the last column of row j. This condition is equivalent to
saying that γ is connected and contains no 2× 2 block of squares. Let SSYT(1c) be the set
of semistandard Young tableaux obtained by filling a column of length c and SSYT(γ) be
the set of semistandard Young tableaux obtained by filling the skew ribbon shape γ.
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To state our bijection, we need the following notation. For fixed positive integers n and
k, assume D = {d1, d1 + d2, . . . , d1 + d2 + · · · + d`} ⊆ {1, 2, . . . , n − 1} and I = {i1, i1 +
i2, . . . , i1 + i2 + · · · + i`} ⊆ {1, 2, . . . , k − 1} are sets of ` distinct elements each. Define
d`+1 := n− (d1 + · · ·+ d`) and i`+1 := k − (i1 + · · ·+ i`).

Proposition 3.1. For fixed positive integers n and k and sets D and I as above, let

M(D, I) = {π ∈ OPn,k | D(π) = D, and the descents occur in πi for i ∈ I}.
Then the following map is a weight-preserving bijection:

ϕ : M(D, I)→ SSYT(1c1)× · · · × SSYT(1c`)× SSYT(γ)

π 7→ T1 × · · · × T` × T`+1
(3.1)

where

(i) γ = {1d1−i1 , i1, i2, . . . , i`+1} and cj = d`+2−j − i`+2−j for 1 6 j 6 `.
(ii) The skew ribbon tableau T`+1 of shape γ is constructed as follows:

• The entries in the first column of the skew ribbon tableau T`+1 beneath the first
box are the first d1 − i1 elements of π in increasing order from top to bottom,
excluding any bj in that range.
• The remaining rows d1 − i1 + j of T`+1 for 1 6 j 6 `+ 1 are filled with
bi1+···+ij−1+1, bi1+···+ij−1+2, . . . , bi1+···+ij .

(iii) The tableau Tj for 1 6 j 6 ` is the column filled with the elements of π from the
positions d1+d2+· · ·+d`−j+1+1 through and including position d1+d2+· · ·+d`−j+2,
but excluding any bi in that range.

Note that in item (ii), the rows of γ are assumed to be numbered from bottom to top
and are filled starting with row d1 − i1 + 1 and ending with row d1 − i1 + `+ 1 at the top.

Also observe that since the bijection stated in Proposition 3.1 preserves the weight, it
can be restricted to a bijection

ϕ : M(D, I)(r) → SSYT(r)(1c1)× · · · × SSYT(r)(1c`)× SSYT(r)(γ),

where M(D, I)(r) = M(D, I) ∩ OP(r)
n,k.

Before giving the proof, it is helpful to consider two examples to illustrate the map ϕ.

Example 3.2. When the entries of π ∈ OPn,k in minimaj order are increasing, then ` = 0.
In this case, d1 = n and i1 = k. The mapping ϕ takes π to the semistandard tableau T = T1
that is of ribbon-shape γ = (1n−k, k). The entries of the boxes in the first column of the
tableau T are b1, followed by the n− k numbers in the sequences β1, β2, . . . , βk−1, αk from
top to bottom. (The fact that π has no descents means that all the αi = ∅ for 1 6 i < k
and we are in Case 2 (a) of Lemma 2.2 for 1 6 i < k and Case 1 for i = k.) Columns 2
through k of T1 are filled with the numbers b2, . . . , bk respectively, and b2 6 b3 6 · · · 6 bk.
The result is a semistandard tableau T1 of hook shape.

Now suppose that T is such a hook-shape tableau with entries b1, b2, . . . , bk from left to
right in its top row, and entries b1, t1, . . . , tn−k down its first column. The inverse ϕ−1 maps
T to the set partition π that has as its first block π1 = b1β1, where β1 = t1, . . . , tm1 , and
t1 < · · · < tm1 6 b2, but tm1+1 > b2 so that β1 is in the interval (b1, b2]. The second block
of π is given by π2 = b2β2, where β2 = tm1+1, . . . , tm2 , and tm1+1 < tm1+2 < · · · < tm2 6 b3,
but tm2+1 > b3 and β2 ⊆ (b2, b3]. Continuing in this fashion, we set πk = bkαk, where
αk = tmk−1+1, . . . , tn−k and αk ⊆ (bk,+∞). Then ϕ−1(T ) = π = (π1 | π2 | · · · | πk), where
the ordered multiset partition π has no descents.
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Example 3.3. The ordered multiset partition π = (124 | 45. | 3 | 46.1 | 23.1 | 1 | 25) ∈
OP15,7 has the following data:

b1 = 1, α1 = ∅, β1 = 24 b2 = 4, α2 = 5, β2 = ∅ b3 = 3, α3 = ∅, β3 = ∅
b4 = 4, α4 = 6, β4 = 1 b5 = 2, α5 = 3, β5 = 1 b6 = 1, α6 = ∅, β6 = ∅
b7 = 2, α7 = 5, β7 = ∅

and ` = 3, d1 = 5, d2 = d3 = 3, d4 = 4 and i1 = i2 = 2, i3 = 1, i4 = 2. Then

π = (124 | 45. | 3 | 46.1 | 23.1 | 1 | 25) 7→ 1
5
× 1

3
× 6 × 1 2

2
3 4

1 4
2
4
5

.

It is helpful to keep the following picture in mind during the proof of Proposition 3.1,
where the map ϕ is taking the ordered multiset partition π to the collection of tableaux Ti
as illustrated below. We adopt the shorthand notation ηj := i1 + · · · + ij for 1 6 j 6 `,
where we also set η0 = 0 and η`+1 = k:

π = (b1β1|b2β2| · · · |bη1αη1 .βη1 |bη1+1βη1+1| · · · |bηjαηj .βηj |bηj+1βηj+1| · · · |bkαk)

(3.2)

T`+1−j =
βηj

βηj+1

...

βηj+1−1

αηj+1

for 1 6 j 6 `, T`+1 =
bη`+1 · · · bη`+1

...

bηj−1+1 · · · bηj

...

b1 · · · bη1

β1

...

βη1−1

αη1

.

Proof of Proposition 3.1. Since the entries of π are mapped bijectively to the entries of
T1 × T2 × · · · × T`+1, the map ϕ preserves the total weight wt(π) = (p1, p2, . . .) 7→ wt(T ),
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where pi is the number of entries i in π for i ∈ Z>0. We need to show that ϕ is well defined
and exhibit its inverse. For this, we can assume that ` > 1, as the case ` = 0 was treated
in Example 3.2.

Observe first that there are dj entries in π which are between two consecutive descents,
and among these entries there are exactly ij entries that are first elements of a block, since
descents happen ij blocks apart. This implies that the tableaux have the shapes claimed.

To see that the tableaux are semistandard, consider first T`+1, and let ηj = i1+ · · ·+ ij as
above. A row numbered d1− i1+j for 1 6 j 6 `+1 is weakly increasing, because the lack of
a descent in a block πi means bi 6 bi+1, and this holds for i in the interval ηj−1 + 1, . . . , ηj
between two consecutive descents. The leftmost column is strictly increasing because it
consists of the elements b1 < β1 < β2 < · · · < βη1−1 < αη1 (the lack of a descent before πη1
implies that αi = ∅ for i < η1 and bi < βi 6 bi+1 < βi+1 by Case 2 (a) of Lemma 2.2).

The rest of the columns of T`+1 contain elements bi, where bηj−1+1 is the first element in
row d1−i1+j and bηj is the last, and bηj+1 is the first element in the row immediately above
it. We have bηj > bηj+1, since there is a descent in block πij which implies this inequality
by the ordering condition in Case 2 (b) of Lemma 2.2.

The strict inequalities for the column tableaux T1, . . . , T` hold for the same reason that
they hold for the first column in T`+1. That is, the columns consist of the elements βηj <
βηj+1 < · · · < βηj+1−1 < αηj+1 , where all the αi for ηj 6 i < ηj+1 are in fact ∅, since we are
in Case 2 (a) of Lemma 2.2 here.

Next, to show that ϕ is a bijection, we describe the inverse map of ϕ. For D = {d1, d1 +
d2, . . . , d1 + d2 + · · · + d`} ⊆ {1, 2, . . . , n − 1} and I = {i1, i1 + i2, . . . , i1 + i2 + · · · + i`} =
{η1, η2, . . . , η`} ⊆ {1, 2, . . . , k − 1} with ` distinct elements each, suppose d`+1 and i`+1

are such that d1 + d2 + · · · + d`+1 = n and η`+1 = i1 + i2 + · · · + i`+1 = k. Assume
T1×· · ·×T`×T`+1 ∈ SSYT(1c1)×· · ·×SSYT(1c`)×SSYT(γ), where γ = (1d1−i1 , i2, . . . , i`+1)
and cj = d`+2−j− i`+2−j for 1 6 j 6 `. We construct π by applying the following algorithm.

Read off the bottom d1 − i1 entries of the first column of T`+1. Let b1 be the element
immediately above these entries in the first column of T`+1, and note that b1 is less than
all of them. Let b2, . . . , bi1 be the elements in the same row of T`+1 as b1, reading from left
to right. Assign bη1+1, . . . , bη2 to the elements in the next higher row, and so forth, until
reaching row d1 − i1 + `+ 1 (the top row) of T`+1 and assigning bη`+1, . . . , bη`+1

= bk to its
entries. The elements in β1, . . . , βη1−1, αη1 are obtained by cutting the entries in the first
column of T`+1 above b1, so that βi lies in the interval (bi, bi+1], and αη1 lies in the interval
(bη1 ,∞).

Now for 1 6 j 6 `, we obtain βηj , βηj+1, . . . , βηj+1−1, αηj+1 by cutting the elements
in T`+1−j into sequences as follows: βηj = T`+1−j ∩ (−∞, bηj+1], βηj+m = T`+1−j ∩
(bηj+m+1, bηj+m+2] and αηj+1 = T`+1−j ∩ (bηj+1 ,+∞).

The inequalities are naturally forced from the inequalities in the semistandard tableaux,
and the descents at the given positions are also forced, because by construction αηj >
bηj > bηj+1 > βηj . This process constructs the bi, αi, and βi for each i = 1, . . . , k, where
we assume that sequences that have not been defined by the process are empty. Then
ϕ−1(T1 × T2 × · · · × T`+1) = π = (π1 | π2 | · · · | πk), where πi = biαiβi. �

For a partition λ, the Schur function sλ(x) is defined as

(3.3) sλ(x) =
∑

T∈SSYT(λ)

xwt(T ).
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Similarly for m > 1, the m-th elementary symmetric function em(x) is given by

em(x) =
∑

16j1<j2<···<jm

xj1xj2 · · ·xjm .

As an immediate consequence of Proposition 3.1, we have the following symmetric function
identity.

Corollary 3.4. Assume D ⊆ {1, 2, . . . , n−1} and I ⊆ {1, 2, . . . , k−1} are sets of ` distinct
elements each and let M(D, I), γ and cj for 1 6 j 6 ` be as in Proposition 3.1. Then∑

π∈M(D,I)

xwt(π) = sγ(x)
∏̀
j=1

ecj (x).

4. Crystal on ordered multiset partitions

4.1. Crystal structure. Denote the set of words of length n over the alphabet {1, 2, . . . , r}
by W(r)

n . The set W(r)
n can be endowed with an slr-crystal structure as follows. The weight

wt(w) of w ∈ W(r)
n is the tuple (a1, . . . , ar), where ai is the number of letters i in w. The

Kashiwara raising and lowering operators

ei, fi : W(r)
n →W(r)

n ∪ {0} for 1 6 i < r

are defined as follows. Associate to each letter i in w an open bracket “)” and to each
letter i+ 1 in w a closed bracket “(”. Then ei changes the i+ 1 associated to the leftmost
unmatched “(” to an i; if there is no such letter, ei(w) = 0. Similarly, fi changes the i
associated to the rightmost unmatched “)” to an i+ 1; if there is no such letter, fi(w) = 0.

For λ a (skew) partition, the slr-crystal action on SSYT(r)(λ) is induced by the crystal

on W(r)
|λ| , where |λ| is the number of boxes in λ. Consider the row-reading word row(T ) of

T ∈ SSYT(r)(λ), which is the word obtained from T by reading the rows from bottom to
top, left to right. Then fi(T ) (resp. ei(T )) is the RSK insertion tableau of fi(row(T )) (resp.

ei(row(T ))). It is well known that fi(T ) is a tableau in SSYT(r)(λ) with weight equal to

wt(T )− εi + εi+1, where εi is i-th standard vector in Zr. Similarly, ei(T ) ∈ SSYT(r)(λ), and
ei(T ) has weight wt(T ) + εi − εi+1. See for example [BS17, Chapter 3].

In the same spirit, an slr-crystal structure can be imposed on

SSYT(r)(1c1 , . . . , 1c` , γ) := SSYT(r)(1c1)× · · · × SSYT(r)(1c`)× SSYT(r)(γ)

by concatenating the reading words of the tableaux in the tuple. This yields crystal opera-
tors

ei, fi : SSYT
(r)(1c1 , . . . , 1c` , γ)→ SSYT(r)(1c1 , . . . , 1c` , γ) ∪ {0}.

Via the bijection ϕ of Proposition 3.1, this also imposes crystal operators on ordered multiset
partitions

ẽi, f̃i : OP(r)
n,k → OP

(r)
n,k ∪ {0}

as ẽi = ϕ−1 ◦ ei ◦ ϕ and f̃i = ϕ−1 ◦ fi ◦ ϕ.

An example of a crystal structure on OP(r)
n,k is given in Figure 1.

Theorem 4.1. The operators ẽi, f̃i, and wt impose an slr-crystal structure on OP(r)
n,k. In

addition, ẽi and f̃i preserve the minimaj statistic.
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(32 | 23)

(1 | 123)

(31 | 12)(23 | 12)

(31 | 13)

(2 | 123)

(312 | 2)

(12 | 23)

(23 | 13) (3 | 123)(123 | 3)

(231 | 1) (21 | 12)

(31 | 23)

(21 | 13)

1

2 22 1

2

2

1

2

1

1

1

Figure 1. The crystal structure on OP(3)
4,2. The minimaj of the connected

components are 2, 0, 1, 1 from left to right.

Proof. The operators ẽi, f̃i, and wt impose an slr-crystal structure by construction since ϕ
is a weight-preserving bijection. The Kashiwara operators ẽi and f̃i preserve the minimaj

statistic, since by Proposition 3.1, the bijection ϕ restricts to M(D, I)(r) which fixes the
descents of the ordered multiset partitions in minimaj order. �

4.2. Explicit crystal operators. Let us now write down the crystal operator f̃i : OPn,k →
OPn,k of Theorem 4.1 explicitly on π ∈ OPn,k in minimaj order.

Start by creating a word w from right to left by reading the first element in each block
of π from right to left, followed by the remaining elements of π from left to right. Use the
crystal operator fi on words to determine which i in w to change to an i + 1. Circle the
corresponding letter i in π. The crystal operator f̃i on π changes the circled i to i+1 unless
we are in one of the following two cases:

· · · i | i f̃i−→ · · · | i i+1 ,(4.1a)

| i i+1
f̃i−→ i+1 | i+1 .(4.1b)

Here “· · · ” indicates that the block is not empty in this region.

Example 4.2. In Figure 1, f̃2(31 2 | 2) = (31 | 2 3 ) is an example of (4.1a). Similarly,

f̃1(31 | 1 2) = (312 | 2 ) is an example of (4.1b).

Proposition 4.3. The above explicit description for f̃i is well defined and agrees with the
definition of Theorem 4.1.

Proof. The word w described above is precisely row(ϕ(π)) on which fi acts. Hence the
circled letter i is indeed the letter changed to i + 1. It remains to check how ϕ−1 changes
the blocks. We will demonstrate this for the cases in (4.1) as the other cases are similar.
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In case (4.1a) the circled letter i in block πj does not correspond to bj in πj as it is not at
the beginning of its block. Hence, it belongs to αj or βj . The circled letter is not a descent.
Changing it to i+ 1 would create a descent. The map ϕ−1 distributes the letters in αj and
βj to preserve descents, hence the circled i moves over to the next block on the right and
becomes a circled i + 1. Note also that i + 1 6∈ πj+1, since otherwise the circled i would
have been bracketed in w, contradicting the fact that fi is acting on it.

In case (4.1b) the circled letter i in block πj corresponds to bj in πj . Again, ϕ−1 now
associates the i + 1 ∈ πj to the previous block after applying fi. Note that i + 1 6∈ πj−1
since it would necessarily be bj−1. But then the circled i would have been bracketed in w,
contradicting the fact that fi is acting on it. �

4.3. Schur expansion. The character of an slr-crystal B is defined as

chB =
∑
b∈B

xwt(b).

Denote by B(λ) the sl∞-crystal on SSYT(λ) defined above. This is a connected highest
weight crystal with highest weight λ, and the character is the Schur function sλ(x) defined
in (3.3)

chB(λ) = sλ(x).

Similarly, denoting by B(r)(λ) the slr-crystal on SSYT(r)(λ), its character is the Schur
polynomial

chB(r)(λ) = sλ(x1, . . . , xr).

Let us define

Val
(r)
n,k(x; 0, t) =

∑
π∈OP(r)

n,k+1

tminimaj(π)xwt(π),

which satisfies Valn,k(x; 0, t) = Val
(r)
n,k(x; 0, t) for r > n, where Valn,k(x; 0, t) is as in (1.1).

As a consequence of Theorem 4.1, we now obtain the Schur expansion of Val
(r)
n,k(x; 0, t).

Corollary 4.4. We have

Val
(r)
n,k−1(x; 0, t) =

∑
π∈OP(r)

n,k

ẽi(π)=0 ∀ 16i<r

tminimaj(π)swt(π).

When r > n, then by [Wil16] and [Rho16, Proposition 3.18] this is also equal to

Valn,k−1(x; 0, t) =
∑
λ`n

∑
T∈SYT(λ)

tmaj(T )+(n−k
2 )−(n−k)des(T )

[
des(T )
n− k

]
sλ(x),

where SYT(λ) is the set of standard Young tableaux of shape λ (that is, the elements in

SSYT(λ) of weight (1|λ|)), des(T ) is the number of descents of T , maj(T ) is the major index
of T (or the sum of descents of T ), and the t-binomial coefficients in the sum are defined
using the rule[

m
p

]
=

[m]!

[p]! [m− p]!
where [p]! = [p][p− 1] · · · [2][1] and [p] = 1 + t+ · · ·+ tp−1.
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Example 4.5. The crystal OP(3)
4,2, displayed in Figure 1, has four highest weight elements

with weights (2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 2) from left to right. Hence, we obtain the Schur
expansion

Val
(3)
4,1(x; 0, t) = (1 + t+ t2) s(2,1,1)(x) + t s(2,2)(x).

5. Equidistributivity of the minimaj and maj statistics

In this section, we describe a bijection ψ : OPn,k → OPn,k in Theorem 5.12 with the
property that minimaj(π) = maj(ψ(π)) for π ∈ OPn,k. This proves the link between minimaj
and maj that was missing in [Wil16]. We can interpret ψ as a crystal isomorphism, where
OPn,k on the left is the minimaj crystal of Section 4 and OPn,k on the right is viewed as a
crystal of k columns with elements written in major index order.

The bijection ψ is the composition of ϕ of Proposition 3.1 with a certain shift operator.
When applying ϕ to π ∈ OPn,k, we obtain the tuple T • = T1 × · · · × T`+1 in (3.2). We
would like to view each column in the tuple of tableaux as a block of a new ordered multiset
partition. However, note that some columns could be empty, namely if cj = d`+2−j− i`+2−j
in Proposition 3.1 is zero for some 1 6 j 6 `. For this reason, let us introduce the set of
weak ordered multiset partitions WOPn,k, where we relax the condition that all blocks need
to be nonempty sets.

Let T • = T1 × · · · × T`+1 be a tuple of skew tableaux. Define read(T •) to be the weak
ordered multiset partition whose blocks are obtained from T • by reading the columns from
the left to the right and from the bottom to the top; each column constitutes one of
the blocks in read(T •). Note that given π = (π1|π2| · · · |πk) ∈ OPn,k in minimaj order,
read(ϕ(π)) is a weak ordered multiset partition in major index order.

Example 5.1. Let π = (1 | 56. | 4. | 37.12 | 2.1 | 1 | 34) ∈ OP13,7, written in minimaj
order. We have minimaj(π) = 22. Then

T • = ϕ(π) = 1
4
× 1

2
× 7 × ∅ × 1 3

2
3
4

1 5
6

and π′ = read(T •) = (4.1 | 2.1 | 7. | ∅ | 6.1 | 5.4.3.2.1 | 3).

Lemma 5.2. Let I = {read(ϕ(π)) | π ∈ OPn,k} ⊆ WOPn,k, π′ = read(ϕ(π)) ∈ I, and bi
the first elements in each block of π in minimaj order as in Lemma 2.2. Then π′ has the
following properties:

(1) The last k elements of π′ are b1, . . . , bk, and bi and bi+1 are in different blocks if and
only if bi 6 bi+1.

(2) If b1, . . . , bk are contained in precisely k− j blocks, then there are at least j descents
in the blocks containing the bi’s.

Proof. Let π ∈ OPn,k, written in minimaj order. Then by (3.2), π′ = read(ϕ(π)) is of the
form

π′ = (αrev
η`+1

βrevη`+1−1 · · ·β
rev
η`
| · · · | αrev

η1 β
rev
η1−1 · · ·β

rev
1 b1 · · · | · · · | bη1bη1−1 · · · | · · · | · · · bk),

where the superscript rev indicates that the elements are listed in decreasing order (rather
than increasing order). Since the rows of a semistandard tableau are weakly increasing and
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the columns are strictly increasing, the blocks of π′ = read(ϕ(π)) are empty or in strictly
decreasing order. This implies that bi and bi+1 are in different blocks of π′ precisely when
bi 6 bi+1, so a block of π′ that contains a bi cannot have a descent at its end. This proves (1).

In a weak ordered multiset partition written in major index order, any block of size r > 2
has r− 1 descents. So if b1, . . . , bk are contained in precisely k− j blocks, then at least j of
these elements are contained in blocks of size at least two, so there are at least j descents
in the blocks containing the bi’s. This proves (2). �

Remark 5.3. Let π′ ∈ WOPn,k be in major index order such that there are at least k
elements after the rightmost occurrence of a block that is either empty or has a descent at
its end. In this case, there exists a skew tableau T • such that π′ = read(T •). In fact, this
characterizes I := im(read ◦ ϕ).

Lemma 5.4. The map read is invertible.

Proof. Suppose π′ ∈ WOPn,k is in major index order such that there are at least k elements
after the rightmost occurrence of a block that is either empty or has a descent at its end.
Since there are no occurrences of an empty block or a descent at the end of a block amongst
the last k elements of π′, the blocks of π′ containing the last k elements form the columns
of a skew ribbon tableau T ∈ SSYT(γ), and the remaining blocks of π′ form the column
tableaux to the left of the skew ribbon tableau, so read is invertible. �

We are now ready to introduce the shift operators.

Definition 5.5. We define the left shift operation L on π′ ∈ I = {read(ϕ(π)) | π ∈ OPn,k}
as follows. Suppose π′ has m > 0 blocks π′pm , . . . , π

′
p1 that are either empty or have a descent

at the end, and 1 6 pm < · · · < p2 < p1 < k. Set

L(π′) = L(m)(π′),

where L(i) for 0 6 i 6 m are defined as follows:

(1) Set L(0)(π′) = π′.

(2) Suppose L(i−1)(π′) for 1 6 i 6 m is defined. By induction, the pi-th block of

L(i−1)(π′) is π′pi . Let Si be the sequence of elements starting immediately to the

right of block π′pi in L(i−1)(π′) up to and including the pi-th descent after the block

π′pi . Let L(i)(π′) be the weak ordered multiset partition obtained by moving each
element in Si one block to its left. Note that all blocks with index smaller than pi
in L(i)(π′) are the same as in π′.

Example 5.6. Continuing Example 5.1, we have π′ = (4.1 | 2.1 | 7. | ∅ | 6.1 | 5.4.3.2.1 | 3),
which is in major index order. We have m = 2 with p2 = 3 < 4 = p1, S1 = 61543, S2 = 6154
and

L(1)(π′) = (4.1 | 2.1 | 7. | 6.1 | 5.4.3. | 2.1 | 3),

L(π′) = L(2)(π′) = (4.1 | 2.1 | 7.6.1 | 5.4. | 3. | 2.1 | 3).

Note that maj(π′) = 28, maj(L(1)(π′)) = 25, and maj(L(π′)) = 22 = minimaj(π).

Proposition 5.7. The left shift operation L : I → OPn,k is well defined.

Proof. Suppose π′ ∈ I has m > 0 blocks π′p1 , . . . , π
′
pm that are either empty or have a

descent at the end, and 1 6 pm < · · · < p2 < p1 < k. If m = 0, then L(π′) = π′ ∈ OPn,k
and we are done.
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We proceed by induction on m. Note that L(1) acts on the rightmost block π′p1 . Notice
that π′p1 cannot contain any of the bi’s by Lemma 5.2 (1). Hence, since there are at least k
elements in the k−p1 blocks following π′p1 , by Lemma 5.2 (2), there are at least p1 descents

after π′p1 , so L(1) can be applied to π′.

Observe that applying L(1) to π′ does not create any new empty blocks to the right of π′p1 ,
because creating a new empty block means that the last element of S1, which is a descent,
is at the end of a block. This cannot happen, since the rightmost occurrence of an empty
block or a descent at the end of its block was assumed to be in π′p1 . However, note that

applying L(1) to π′ does create a new block with a descent at its end, and this descent is
given by the p1-th descent after the block π′p1 (which is the last element of S1).

Now suppose L(i−1)(π′) is defined for i > 2. By induction, there are at least p1 > pi
descents following the block π′pi , so the set Si of Definition 5.5 exists and we can move the

elements in Si left one block to construct L(i)(π′) from L(i−1)(π′). Furthermore, L(i)(π′)
does not have any new empty blocks to the right of π′pi . To see this, note that the number
of descents in Si is pi, so the number of descents in Si is strictly decreasing as i increases.
This implies that the i− 1 newly created descents at the end of a block of L(i−1)(π′) occurs
strictly to the right of Si, and so the last element of Si cannot be a descent at the end of a
block of L(i−1)(π′).

Lastly, L(π′) = L(m)(π′) ∈ OPn,k, since it does not have any empty blocks, and every
block of L(π′) is in decreasing order because either we moved every element of a block into
an empty block or we moved elements into a block with a descent at the end. �

Definition 5.8. We define the right shift operation R on µ ∈ OPn,k in major index order
as follows. Suppose µ has m > 0 blocks µq1 , . . . , µqm that have a descent at the end and
q1 < q2 < · · · < qm. Set

R(µ) = R(m)(µ),

where R(i) for 0 6 i 6 m are defined as follows:

(1) Set R(0)(µ) = µ.

(2) Suppose R(i−1)(µ) for 1 6 i 6 m is defined. Let Ui be the sequence of qi elements

to the left of, and including, the last element in the qi-th block of R(i−1)(µ). Let

R(i)(µ) be the weak ordered multiset partition obtained by moving each element in
Ui one block to its right. Note that all blocks to the right of the (qi + 1)-th block

are the same in µ and R(i)(µ).

Note that R can potentially create empty blocks.

Example 5.9. Continuing Example 5.6, let µ = L(π′) = (4.1 | 2.1 | 7.6.1 | 5.4. | 3. | 2.1 | 3).
We have m = 2 with q1 = 4 < 5 = q2, U1 = 6154, U2 = 61543 and

R(1)(µ) = (4.1 | 2.1 | 7. | 6.1 | 5.4.3. | 2.1 | 3),

R(µ) = R(2)(µ) = (4.1 | 2.1 | 7. | ∅ | 6.1 | 5.4.3.2.1 | 3),

which is the same as π′ in Example 5.6.

Proposition 5.10. The right shift operation R is well defined and is the inverse of L.

Proof. Suppose µ ∈ OPn,k in major index order has descents at the end of the blocks
µq1 , . . . , µqm . If m = 0, then R(µ) = µ ∈ OPn,k ⊆ WOPn,k and there is nothing to show.
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We proceed by induction on m. The ordered multiset partition µ does not have empty
blocks, so there are at least q1 elements in the first q1 blocks of µ, and R(1) can be applied
to µ.

Now suppose R(i−1)(µ) is defined for i > 2. By induction, there are at least qi−1 + 1

elements in the first qi−1 + 1 blocks of R(i−1)(µ). Since the blocks µqi−1+2, . . . , µqi in µ are
all nonempty, there are at least qi−1 +1+(qi− (qi−1 +1)) = qi elements in the first qi blocks

of R(i−1)(µ), so the set Ui of Definition 5.8 exists and we can move the elements in Ui one

block to the right to construct R(i)(µ) from R(i−1)(µ).
Furthermore, every nonempty block of R(µ) is in decreasing order because the rightmost

element of each Ui is a descent. So R(µ) ∈ OPn,k remains in major index order. This
completes the proof that R is well defined.

Next we show that R is the inverse of L. Observe that if π′ ∈ I has m occurrences of
either an empty block or a block with a descent at its end, then µ = L(π′) has m blocks

with a descent at its end. Hence it suffices to show that R(m+1−i) is the inverse operation
to L(i) for each 1 6 i 6 m.

The property that the last element of Si cannot be a descent at the end of a block of
L(i−1)(π′) in the proof of Proposition 5.7 similarly holds for every element in Si. Therefore,

if the last element of Si is in the ri-th block of L(i−1)(π′), then |Si| = pi+(ri−1−pi) = ri−1
because the blocks are decreasing and none of the elements in Si can be descents at the
end of a block. Since the last element of Si becomes a descent at the end of the (ri − 1)-th

block of L(i)(π), this implies ri − 1 = qm−i+1, so Um−i+1 = Si for every 1 6 i 6 m. As the

operation L(i) is a left shift of the elements of Si by one block and the operation R(m+1−i)

is a right shift of the same set of elements by one block, they are inverse operations of each
other. �

For what follows, we need to extend the definition of the major index to the setWOPn,k
of weak ordered multiset partitions of length n and k blocks, in which some of the blocks
may be empty. Given π′ ∈ WOPn,k whose nonempty blocks are in major index order, if
the block π′j 6= ∅, then the last element in π′j is assigned the index j, and the remaining

elements in π′j are assigned the index j − 1 for j = 1, . . . , k. Then maj(π′) is the sum of

the indices where a descent occurs. This agrees with (2.2) in the case when all blocks are
nonempty.

Lemma 5.11. Let π′ ∈ I. With the same notation as in Definition 5.5, we have for
1 6 i 6 m

maj(L(i)(π′)) =

{
maj(L(i−1)(π′))− pi + 1, if π′pi = ∅,
maj(L(i−1)(π′))− pi, if π′pi has a descent at the end of its block.

Proof. Assume π′pi = ∅. In the transformation from L(i−1)(π′) to L(i)(π′), the index of
each of the first pi − 1 descents in Si decreases by one, while the index of the last descent
remains the same, since it is not at the end of a block in L(i−1)(π′), but it becomes the

last element of a block in L(i)(π′). The indices of elements not in Si remain the same, so

maj(L(i)(π′)) = maj(L(i−1)(π′))− pi + 1 in this case.
Next assume that π′pi has a descent at the end of the block. In the transformation from

L(i−1)(π′) to L(i)(π′), the indices of the descents in Si change in the same way as in the
previous case, but in addition, the index of the last descent in π′pi decreases by one, so

maj(L(i)(π′)) = maj(L(i−1)(π′))− pi in this case. �
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Theorem 5.12. Let ψ : OPn,k → OPn,k be the map defined by

ψ(π) = L(read(ϕ(π))) for π ∈ OPn,k in minimaj order.

Then ψ is a bijection that maps ordered multiset partitions in minimaj order to ordered
multiset partitions in major index order. Furthermore, minimaj(π) = maj(ψ(π)).

Proof. By Proposition 3.1, ϕ is a bijection. By Lemma 5.4, the map read is invertible, and
by Proposition 5.10 the shift operation L has an inverse. This implies that ψ is a bijection.

It remains to show that minimaj(π) = maj(ψ(π)) for π ∈ OPn,k in minimaj order.
First suppose that π′ = read(ϕ(π)) has no empty blocks and no descents at the end of

any block. In this case L(π′) = π′, so that in fact π′ = ψ(π). Using the definition of major
index (2.2) and the representation (3.2) (where the columns in the ribbon are viewed as
separate columns due to read), we obtain

(5.1) maj(π′) =
∑̀
j=1

(`+ 1− j)(dj − ij − 1) + `+
∑̀
j=1

(`+ ηj − j),

where dj , ij , ηj = i1 + · · ·+ ij are defined in Proposition 3.1 for π. Here, the first sum in the
formula arises from the contributions of the first ` blocks and the summand ` compensates
for the fact that b1 is in the `-th block. The second sum in the formula comes from the
contributions of the bi’s. Comparing with (2.1), we find

maj(π′) = minimaj(π)−
(
`+ 1

2

)
−
∑̀
j=1

(`+ 1− j)ij +

(
`+ 1

2

)
+
∑̀
j=1

ηj = minimaj(π),

proving the claim.
Now suppose that π′ = read(ϕ(π)) has a descent at the end of block π′p. This will

contribute an extra p compared to the major index in (5.1). If π′p = ∅, then cp = d`+2−p −
i`+2−p = 0 and the term j = ` + 2 − p in (5.1) should be (` + 1 − j)(dj − ij) instead of
(`+ 1− j)(dj − ij − 1) yielding a correction term of `+ 1− j = `+ 1− `− 2 + p = p− 1.
Hence, with the notation of Definition 5.5, we have

maj(π′) = minimaj(π) +

m∑
i=1

pi − e,

where e is the number of empty blocks in π′. Since ψ(π) = L(π′), the claim follows by
Lemma 5.11. �
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