A MINIMAJ-PRESERVING CRYSTAL ON ORDERED MULTISET
PARTITIONS

GEORGIA BENKART, LAURA COLMENAREJO, PAMELA E. HARRIS, ROSA ORELLANA,
GRETA PANOVA, ANNE SCHILLING, AND MARTHA YIP

ABSTRACT. We provide a crystal structure on the set of ordered multiset partitions, which
recently arose in the pursuit of the Delta Conjecture. This conjecture was stated by
Haglund, Remmel and Wilson as a generalization of the Shuffle Conjecture. Various sta-
tistics on ordered multiset partitions arise in the combinatorial analysis of the Delta Con-
jecture, one of them being the minimaj statistic, which is a variant of the major index
statistic on words. Our crystal has the property that the minimaj statistic is constant
on connected components of the crystal. In particular, this yields another proof of the
Schur positivity of the graded Frobenius series of the generalization R, ; due to Haglund,
Rhoades and Shimozono of the coinvariant algebra R,. The crystal structure also enables
us to demonstrate the equidistributivity of the minimaj statistic with the major index
statistic on ordered multiset partitions.

1. INTRODUCTION

The Shuffle Conjecture [HHL05], now a theorem due to Carlsson and Mellit [CM15],
provides an explicit combinatorial description of the bigraded Frobenius characteristic of
the S,-module of diagonal harmonic polynomials. It is stated in terms of parking functions
and involves two statistics, area and dinv.

Recently, Haglund, Remmel and Wilson [HRW15] introduced a generalization of the Shuf-
fle Theorem, coined the Delta Conjecture. The Delta Conjecture involves two quasisym-
metric functions Risey, 1(x;¢,t) and Val, 1(x; ¢,t), which have combinatorial expressions in
terms of labelled Dyck paths. In this paper, we are only concerned with the specializations
g=0or t=0, in which case [HRW15, Theorem 4.1] and [Rho16, Theorem 1.3] show

Rise,, (x;0,t) = Risey, 1 (x;¢t,0) = Val,, 1(x;0,t) = Val, r(x;,0).
It was proven in [HRW15, Proposition 4.1] that

(1.1) Va|n7k(x; 0,t) = Z tminimaj(W)XWt(ﬂ')’
TFGO/PHJC_‘_l

where OP,, 41 is the set of ordered multiset partitions of the multiset {1*,2"2,...} into
k + 1 nonempty blocks, where v = (vq,10,...) is a weak composition of n. In addition,
minimaj(7) is the minimum value of the major index of the set partition 7 over all possible
ways to order the elements in each block of 7, and wt(r) is the weight of 7. The symmetric
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function Val, (x;0,t) is known [Will6, Rhol6] to be Schur positive, meaning that the
coefficients are polynomials in ¢ with nonnegative coefficients.

In this paper, we provide a crystal structure on the set of ordered multiset partitions
OP, k- Crystal bases are ¢ — 0 shadows of representations for quantum groups U, (g) [Kas90,
Kas91], though they can also be understood from a purely combinatorial perspective [Ste03,
BS17]. In type A, the character of a connected crystal component with highest weight ele-
ment of highest weight A is the Schur function sy. Hence, having a type A crystal structure
on a combinatorial set (in our case on OP,, ) naturally yields the Schur expansion of the
associated symmetric function. Furthermore, if the statistic (in our case minimaj) is con-
stant on connected components, then the graded character can also be naturally computed
using the crystal.

Haglund, Rhoades and Shimozono [HRS16] introduced a generalization R, ;, for k < n of
the coinvariant algebra R,,, with R, , = R,. Just as the combinatorics of R, is governed
by permutations in Sy, the combinatorics of R, j is controlled by ordered set partitions of
{1,2...,n} with k blocks. The graded Frobenius series of R,, ;, is (up to a minor twist) equal
to Val,, x(x;0,t). It is still an open problem to find a bigraded S,-module whose Frobenius
image is Val, 1,(x; ¢, t). Our crystal provides another representation-theoretic interpretation
of Val, 1(x;0,t) as a crystal character.

Wilson [Will6] analyzed various statistics on ordered multiset partitions, including inv,
dinv, maj, and minimaj. In particular, he gave a Carlitz type bijection, which proves equidis-
tributivity of inv, dinv, maj on OP,, ;. Rhoades [Rhol6] provided a non-bijective proof that
these statistics are also equidistributed with minimaj. Using our new crystal, we can give
a combinatorial proof of the equidistributivity of the minimaj statistic and the maj statistic
on ordered multiset partitions.

The paper is organized as follows. In Section 2 we define ordered multiset partitions and
the minimaj and maj statistics on them. In Section 3 we provide a bijection ¢ from ordered
multiset partitions to tuples of semistandard Young tableaux that will be used in Section 4
to define a crystal structure, which preserves minimaj. We conclude in Section 5 with a
proof that the minimaj and maj statistics are equidistributed using the same bijection (.
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2. ORDERED MULTISET PARTITIONS AND THE MINIMAJ AND MAJ STATISTICS

We consider ordered multiset partitions of order n with k£ blocks. Given a weak composi-
tion v = (v, 1, ...) of n into nonnegative integer parts, which we denote v = n, let OP,
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be the set of partitions of the multiset {¢* | i > 1} into k nonempty ordered blocks, such
that the elements within each block are distinct. For each ¢ > 1, the notation %% should
be interpreted as saying that the integer ¢ occurs v; times in such a partition. The weak
composition v is also called the weight wt(m) of m € OP, ). Let

OPns = | OPus.

vEn
We now specify a particular reading order for an ordered multiset partition 7 = (7 |
mo | ... | m;) € OPy 1 with blocks 7;. Start by writing 7, in increasing order. Assume ;41

has been ordered, and let r; be the largest integer in 7; that is less than or equal to the
leftmost element of 7;41. If no such r; exists, arrange m; in increasing order. When such
an r; exists, arrange the elements of 7; in increasing order, and then cycle them so that r;
is the rightmost number. Continue with m;_1, ..., 7, 7 until all blocks have been ordered.
This ordering of the numbers in 7 is defined in [HRW15] and is called the minimaj order.

Example 2.1. If 7 = (157 | 24 | 56 | 468 | 13 | 123) € OP156, then the minimaj order of 7
is = (571 ] 24| 56 | 468 | 31 | 123).

For two sequences «, 8 of integers, we write a < § to mean that each element of « is less
than every element of 5. Suppose m € OP,, ;. is in minimaj order. Then each block m; of
7 is nonempty and can be written in the form m; = b;«;5;, where b; € Z~¢, and «y, 5; are
sequences (possibly empty) of distinct increasing integers such that either ; < b; < «; or
a; = (. Inequalities with empty sets should be ignored.

Lemma 2.2. With the above notation, 7 € OP,, . is in minimaj order if the following hold:
(1) . = bray, with by, < o and B = @,‘
(2) forl<i<k, either
(a) a; =0, m = b8, and b; < B; < biy1, or
(b) Bi <biy1 <bi < .

A sequence or word wyws - - - w, has a descent in position 1 < i < n if w; > w;11. Let
m € OP, k. be in minimaj order. Observe that a descent occurs in 7; only in Case 2 (b) of
Lemma 2.2, and such a descent is either between the largest and smallest elements of 7; or
between the last element of 7; and the first element of ;1.

Example 2.3. Continuing Example 2.1 with 7 = (571 | 24 | 56 | 468 | 31 | 123), we have

b1:57a1:77/81:1 b2:27042:@,/82:4 b3:57a3:67ﬁ3:®
by =4,04 = 68,58, =0 bs =3,a5 =0,85 =1 be = 1,06 = 23, 86 = 0.

Suppose that 7 in minimaj order has descents in positions
D(m) = {d1,d1 + da,...,d1 +do+ -+ ds}

for some ¢ € [0,k —1] (¢ = 0 indicates no descents). Furthermore assume that these descents
occur in the blocks 7, i, iy, - -+, Ty 4iottip, Where i; > 0 for 1 < j </ and iy +ig+-- -+
ig < k. Assume dgq1 and iy are the distances to the end, that is, dy+da+- - -+dg+dps1 =n
and i1 +ig + -+ +ip + i1 = k.

The minimaj statistic minimaj(m) of m € OP,, , as given by [HRW15] is

L

(2.1) minimaj(m) = > d=» ((+1-j)d;.
)

deD(w Jj=1
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Example 2.4. The descents for the multiset partition 7 = (57.1 | 24 | 56. | 468. | 3.1 | 123)
occur at positions 2,7,10,11 and are designated with periods. Hence £ =4, dy = 2, dy = 5,
d3 =3, dy =1 and d5 = 4, and minimaj(w) = 2+ 74 10 + 11 = 30. The descents occur in
blocks my, w3, m4, and 75, so that i1 =1, 40 =2, i3 =1, iy = 1, and i5 = 1.

To define the major index of m € OP,, i, we consider the word w obtained by ordering each
block 7; in decreasing order, called the major index order [Will6]. Recursively construct
a word v by setting vg = 0 and v; = v;—1 + x(j is the last position in its block) for each
1 < j < n. Here x(True) = 1 and x(False) = 0. Then

(2.2) maj(r) = > v

7 Wi >Wj41

Example 2.5. Continuing Example 2.1, note that the major index order of m = (157 | 24 |
56 | 468 | 13 | 123) € OP1is56 is m = (751 | 42 | 65 | 864 | 31 | 321). Writing the word v
underneath w (omitting vy = 0), we obtain

w=751]4265 | 864 |31 | 321
v=001]12|23]334]45 | 556,
so that maj(r) =0+ 0+1+2+3+3+44+4+5+5=27.

Note that throughout this section, we could have also restricted ourselves to ordered
multiset partitions with lettersin {1,2,...,r} instead of Z~¢. That is, let v = (v1,...,1;) be

a weak composition of n and let (973( r) be the set of partitions of the multiset {7 | 1 < i < r}
into k£ nonempty ordered blocks, such that the elements within each block are distinct. Let

or!) = |J or)
vEn
This restriction will be important when we discuss the crystal structure on ordered multiset
partitions.

3. BIJECTION WITH TUPLES OF SEMISTANDARD YOUNG TABLEAUX

In this section, we describe a bijection from ordered multiset partitions to tuples of
semistandard Young tableaux that allows us to impose a crystal structure on the set of
ordered multiset partitions in Section 4.

Recall that a semistandard Young tableau T is a filling of a (skew) Young diagram (also
called the shape of T') with positive integers that weakly increase across rows and strictly
increase down columns. The weight of T is the tuple wt(T") = (a1, ag, . ..), where a; records
the number of letters ¢ in 7. The set of semistandard Young tableaux of shape A, where
A is a (skew) partition, is denoted by SSYT(A). If we want to restrict the entries in the
semistandard Young tableau from Z-( to a finite alphabet {1,2,...,7}, we denote the set
by SSYT)(A).

The tableaux relevant for us here are of two types: a single column of boxes with entries
that increase from top to bottom, or a skew ribbon tableau. If v = {y1,72,...,7m} is a skew
ribbon shape with ; boxes in the j-th row starting from the bottom, the ribbon condition
requires that row j + 1 starts in the last column of row j. This condition is equivalent to
saying that v is connected and contains no 2 x 2 block of squares. Let SSYT(1¢) be the set
of semistandard Young tableaux obtained by filling a column of length ¢ and SSYT(v) be
the set of semistandard Young tableaux obtained by filling the skew ribbon shape ~.
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To state our bijection, we need the following notation. For fixed positive integers n and
k, assume D = {d1,d; +do,...,dy +do+ -+ dp} C {1,2,...,n— 1} and I = {iy,4; +
Q9y...,01 +ia+ -+ i} € {1,2,...,k — 1} are sets of ¢ distinct elements each. Define
dey1:=n— (d1+-~-+dg) and 4gy1 :Zk—(il—i—"'-l-ig).

Proposition 3.1. For fixed positive integers n and k and sets D and 1 as above, let
M(D,I) = {m € OP, | D(m) =D, and the descents occur in m; for i € 1}.

Then the following map is a weight-preserving bijection:

@: M(D,I) — SSYT(1) x --- x SSYT (1) x SSYT(~)

3.1
( ) 7Tl—>T1X-'-XTgXTg+1
where
(1) v ={1%"" iy g, ... i1} and ¢j = dpyo—j —ipya—j for 1< j < L.

(ii) The skew ribbon tableau Tyyq of shape v is constructed as follows:

o The entries in the first column of the skew ribbon tableau Ty11 beneath the first
box are the first dy — i1 elements of 7 in increasing order from top to bottom,
excluding any b; in that range.

o The remaining rows di — i1+ j of Tprq for 1 < j <€+ 1 are filled with
bi1+...+7jj_l+1, bi1+...+ij_l+2, Ce 7bi1+~~+ij .

(ili) The tableau Tj for 1 < j < € is the column filled with the elements of m from the
positions di+da+- - -+dp—jy1+1 through and including position di+da+- - -+dy—j12,
but excluding any b; in that range.

Note that in item (ii), the rows of 7 are assumed to be numbered from bottom to top
and are filled starting with row di; — i1 + 1 and ending with row d; — i1 + ¢+ 1 at the top.

Also observe that since the bijection stated in Proposition 3.1 preserves the weight, it
can be restricted to a bijection

o: M(D,1)1) — SSYT()(11) x - x SSYT() (1%) x SSYT)(y),

where M(D,T)”) = M(D, 1) n 0P")..
Before giving the proof, it is helpful to consider two examples to illustrate the map .

Example 3.2. When the entries of 7 € OP,, . in minimaj order are increasing, then £ = 0.
In this case, dy = n and i1 = k. The mapping ¢ takes 7 to the semistandard tableau T' = T}
that is of ribbon-shape v = (1", k). The entries of the boxes in the first column of the
tableau T are by, followed by the n — k numbers in the sequences 51, 5, . . ., Bk_1, ax from
top to bottom. (The fact that 7 has no descents means that all the o; = () for 1 < i < k
and we are in Case 2 (a) of Lemma 2.2 for 1 < ¢ < k and Case 1 for i = k.) Columns 2
through k of T} are filled with the numbers bs, ..., by respectively, and by < b3 < -+ - < bg.
The result is a semistandard tableau T; of hook shape.

Now suppose that 7T is such a hook-shape tableau with entries by, bo, ..., by from left to
right in its top row, and entries by, t1, ..., t,_; down its first column. The inverse ¢! maps
T to the set partition 7 that has as its first block m = 0151, where 51 = t1,...,t,, and
tp < -+ <tm, < by, but tp, 41 > ba so that 5y is in the interval (b1, bs]. The second block

of 7 is given by 7o = baf2, where B2 =ty 41, -+, tmy, a0d L1 < tipyg2 < -+ < by < b3,
but tm,+1 > b3 and B2 C (ba,bs]. Continuing in this fashion, we set 7, = bpay, where
k= tmy_+1 -+ tn—k and o C (b, +00). Then o~ H(T) =7 = (m | ma | -+ | k), where

the ordered multiset partition 7 has no descents.
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Example 3.3. The ordered multiset partition 7 = (124 | 45. | 3 | 46.1 | 23.1 | 1 | 25) €
OP15,7 has the following data:

bi=1a1=0,p1 =24 by =4,a0 =5, =10 by = =0,83=10
by =4,04=06,04=1 bs =2,a5 =3,8; =1 bg = =0,8=10
by =2,a7=5,67=10
and€:3, d1:5,d2:d3:3,d4:4andi1:i2:2,i3:1,i4:2. Then
m=(124]45. |3 [46.1[23.1]1]25) [ 1] x [L]x[6]x 12]
2
314
4

’Cﬂ|ﬂ>|l\3 —

It is helpful to keep the following picture in mind during the proof of Proposition 3.1,
where the map ¢ is taking the ordered multiset partition 7 to the collection of tableaux T;
as illustrated below. We adopt the shorthand notation 7; := i1 +--- +; for 1 < j < £,
where we also set 179 = 0 and 741 = k:

T = (b1B1|b2B2] - - - [byy - Bupy by 41 By 1|+ -+ (b 0y B [y 1. By | -+ - [bwcur)
(3.2)
an bWJrl T bm/+1
Tyy1-5 = for 1<y <, Tppq =
/an-i-l
bTIj—1+1 T b"]j
671j+1*1
Onja by e | by
B
/87]1—1
QA

Proof of Proposition 3.1. Since the entries of m are mapped bijectively to the entries of
Ty X Ty x -+ x Tyyq, the map ¢ preserves the total weight wt(m) = (p1,pe,...) — wt(T),
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where p; is the number of entries ¢ in 7 for ¢ € Z~g. We need to show that ¢ is well defined
and exhibit its inverse. For this, we can assume that £ > 1, as the case £ = 0 was treated
in Example 3.2.

Observe first that there are d; entries in m which are between two consecutive descents,
and among these entries there are exactly i; entries that are first elements of a block, since
descents happen i; blocks apart. This implies that the tableaux have the shapes claimed.

To see that the tableaux are semistandard, consider first Ty, and let n; = i1 +---+1; as
above. A row numbered d; —i1+7j for 1 < j < £+1 is weakly increasing, because the lack of
a descent in a block 7; means b; < b; 11, and this holds for 4 in the interval n;_1 +1,...,7;
between two consecutive descents. The leftmost column is strictly increasing because it
consists of the elements by < 1 < 2 < -+ < By, —1 < oy, (the lack of a descent before m,,
implies that o; = () for ¢ < my and b; < 3; < bi41 < Bi+1 by Case 2 (a) of Lemma 2.2).

The rest of the columns of Ty contain elements b;, where by, , 11 is the first element in
row dy —i1+j and by, is the last, and by, 11 is the first element in the row immediately above
it. We have b,; > by, 11, since there is a descent in block m;; which implies this inequality
by the ordering condition in Case 2 (b) of Lemma 2.2.

The strict inequalities for the column tableaux T7,...,Ty hold for the same reason that
they hold for the first column in 7y;1. That is, the columns consist of the elements 3, <
By41 <+ < Bpie—1 < ay,y, where all the o; for n; <i < ;41 are in fact (), since we are
in Case 2 (a) of Lemma 2.2 here.

Next, to show that ¢ is a bijection, we describe the inverse map of ¢. For D = {d;,d; +
doy...,dy+do+---+de} C{1,2,....n—1} and I = {iy,i1 +io,...,91 +ia+ -+ g} =
{m,m2,...,me} € {1,2,...,k — 1} with ¢ distinct elements each, suppose dy;1 and iy
are such that di +dy + -+ dpp1 = n and npy; = 4 +i9 + -+ + igp1 = k. Assume
Ty x- - xTyxTyprq € SSYT(14) x -+ x SSYT(19) x SSYT (7), where v = (197 g ... ipy)
and ¢; = dyyo—j —ip42—; for 1 < j < L. We construct 7 by applying the following algorithm.

Read off the bottom dj — i; entries of the first column of Ty.q. Let b; be the element
immediately above these entries in the first column of Ty41, and note that b; is less than
all of them. Let b, ...,b;, be the elements in the same row of 7y, as by, reading from left
to right. Assign b,,11,...,by, to the elements in the next higher row, and so forth, until
reaching row dy — 41 + £+ 1 (the top row) of Tyy; and assigning by, 11, .., by, = by to its
entries. The elements in 31,..., 8, -1, are obtained by cutting the entries in the first
column of Ty, above by, so that §; lies in the interval (b;, bi+1], and a,, lies in the interval
(bm ’ OO) :

Now for 1 < j < ¢, we obtain S, By;+1,--,Bpjs1—1,n,, by cutting the elements
in Tyy1-;j into sequences as follows: 3, = Tpy15 N (—00,by11], Byyem = Tey1-5 N
(bn;+m+1, byy4m2] and am; = Top1—5 N (byy,,, +00).

The inequalities are naturally forced from the inequalities in the semistandard tableaux,
and the descents at the given positions are also forced, because by construction ay, >

by; > by;+1 = By;. This process constructs the b;, «;, and ; for each i = 1,...,k, where
we assume that sequences that have not been defined by the process are empty. Then
O N Ty x Ty x---xTpp1)=m=(m | m2 |- | m), where m; = by 3;. O

For a partition A, the Schur function sy(x) is defined as

(3.3) sa(x) = Z xWHT)

TESSYT())
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Similarly for m > 1, the m-th elementary symmetric function e, (x) is given by
em(x) = > TjyLjy * Ty,
1<j1<g2 < <Jm
As an immediate consequence of Proposition 3.1, we have the following symmetric function

identity.

Corollary 3.4. AssumeD C {1,2,...,n—1} and 1 C {1,2,...,k—1} are sets of ¢ distinct
elements each and let M(D,I), v and c¢; for 1 < j < { be as in Proposition 3.1. Then

l
Z X" =5 (x) H ec; (x).
j=1

reM(D,I)

4. CRYSTAL ON ORDERED MULTISET PARTITIONS

4.1. Crystal structure. Denote the set of words of length n over the alphabet {1,2,...,r}

by Wff). The set Wy) can be endowed with an sl.-crystal structure as follows. The weight
(r)

wt(w) of w € Wy’ is the tuple (a,...,a,), where a; is the number of letters ¢ in w. The
Kashiwara raising and lowering operators
ei, fi: W = W U {0} forl<i<r

are defined as follows. Associate to each letter ¢ in w an open bracket “)” and to each
letter 4 + 1 in w a closed bracket “(”. Then e; changes the i + 1 associated to the leftmost
unmatched “(” to an 4; if there is no such letter, e;(w) = 0. Similarly, f; changes the 4
associated to the rightmost unmatched “)” to an i+ 1; if there is no such letter, f;(w) = 0.

For A a (skew) partition, the sl,-crystal action on SSYT()()) is induced by the crystal

on WI(;I)’ where |\| is the number of boxes in A. Consider the row-reading word row(7") of

T e SSYT(T)()\), which is the word obtained from T by reading the rows from bottom to
top, left to right. Then f;(T') (resp. €;(T")) is the RSK insertion tableau of f;(row(T")) (resp.
ei(row(T))). Tt is well known that f;(T) is a tableau in SSYT()()\) with weight equal to
wt(T) — €; + €111, where ¢; is i-th standard vector in Z". Similarly, e;(T) € SSYT()()), and
ei(T) has weight wt(T) + €; — €;41. See for example [BS17, Chapter 3.

In the same spirit, an sl,.-crystal structure can be imposed on

SSYT) (11, ... 1%, ~) := SSYTM (1) x - -+ x SSYTT)(1%) x SSYT") ()

by concatenating the reading words of the tableaux in the tuple. This yields crystal opera-
tors

e, fit SSYTI (14 1%, ~) — SSYT (11, ... 1%, 4) U {0}.
Via the bijection ¢ of Proposition 3.1, this also imposes crystal operators on ordered multiset
partitions
&, fir 0P} — 0PV} U {0}

as & =¢ loeopand f; =¢ o fiop.
)

An example of a crystal structure on (’)ng is given in Figure 1.
Theorem 4.1. The operators é;, fi, and wt impose an sl.-crystal structure on (’)771(3{. In
addition, €; and f; preserve the minimaj statistic.
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(231 1) (11]123) (21 13) (21 ]12)
1 1 1 2
(23 ]12) (12 ] 23) (2 123) (31]12)
2 2 2 / \
(23] 13) (123 | 3) (3 123) (312 2) (31 13)
(31 23)
1
(32| 23)

Ficure 1. The crystal structure on (’)Pi% The minimaj of the connected

components are 2,0,1,1 from left to right.

Proof. The operators é;, fi, and wt impose an sl-crystal structure by construction since ¢
is a weight-preserving bijection. The Kashiwara operators & and f; preserve the minimaj
statistic, since by Proposition 3.1, the bijection ¢ restricts to M(D,I)(r) which fixes the
descents of the ordered multiset partitions in minimaj order. O

4.2. Explicit crystal operators. Let us now write down the crystal operator ﬂ :OPp —
OP,, . of Theorem 4.1 explicitly on 7 € OP,, , in minimaj order.

Start by creating a word w from right to left by reading the first element in each block
of 7 from right to left, followed by the remaining elements of 7w from left to right. Use the
crystal operator f; on words to determine which i in w to change to an 7 + 1. Circle the
corresponding letter ¢ in w. The crystal operator f; on 7 changes the circled 7 to i+ 1 unless
we are in one of the following two cases:

(4.12) NOEER |z@
(4.1b) (D Ly H—H@.

“ooum

Here indicates that the block is not empty in this region.

Example 4.2. In Figure 1, f2(31@ |2)=(31]2 @) is an example of (4.1a). Similarly,
f1(31 @ 2) = (312 | @) is an example of (4.1b).

Proposition 4.3. The above explicit description for ﬁ is well defined and agrees with the
definition of Theorem 4.1.

Proof. The word w described above is precisely row(y(7)) on which f; acts. Hence the
circled letter i is indeed the letter changed to i + 1. It remains to check how ¢! changes
the blocks. We will demonstrate this for the cases in (4.1) as the other cases are similar.
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In case (4.1a) the circled letter ¢ in block 7; does not correspond to b; in 7; as it is not at
the beginning of its block. Hence, it belongs to «; or 8;. The circled letter is not a descent.
Changing it to i 4+ 1 would create a descent. The map ! distributes the letters in a; and
B; to preserve descents, hence the circled ¢ moves over to the next block on the right and
becomes a circled i + 1. Note also that ¢ + 1 ¢ m;41, since otherwise the circled i would
have been bracketed in w, contradicting the fact that f; is acting on it.

In case (4.1b) the circled letter i in block 7; corresponds to b; in ;. Again, ! now
associates the ¢ + 1 € 7; to the previous block after applying f;. Note that ¢ +1 & m;_1
since it would necessarily be b;_;. But then the circled 7 would have been bracketed in w,
contradicting the fact that f; is acting on it. O

4.3. Schur expansion. The character of an sl,.-crystal B is defined as
chB = Z x"t(0)
beB

Denote by B(\) the slo-crystal on SSYT()) defined above. This is a connected highest
weight crystal with highest weight A, and the character is the Schur function sy (x) defined
in (3.3)
chB(A) = s\ (x).
Similarly, denoting by B()()) the sl-crystal on SSYT()(X), its character is the Schur
polynomial
chBM(\) = sy(z1,..., ).
Let us define
Va|£:3€ (X; 0, t) _ Z tminimaj(ﬂ)xwt(ﬁ)’
WGOPSZ:LJFI

which satisfies Val,, ;(x;0,t) = Valgji(x; 0,t) for r > n, where Val, 1(x;0,t) is as in (1.1).

As a consequence of Theorem 4.1, we now obtain the Schur expansion of Valggc (x;0,1).

Corollary 4.4. We have

VaIT(:’Lil(x; 0,t) = Z tmi”imaj(”)swt(ﬁ).

meoP"),
&(m)=0 V I<i<r

When r > n, then by [Will6] and [Rhol6, Proposition 3.18] this is also equal to
maj n—k) _(n—k)des des(T'
Va1 (x:0,6) =3 37 gmai+("34)~(n-biaes() [ . ( k) ] 6 ().
Abn TESYT(X)

where SYT()) is the set of standard Young tableaux of shape A (that is, the elements in
SSYT()) of weight (11*1)), des(T') is the number of descents of T', maj(T') is the major index
of T' (or the sum of descents of T'), and the ¢-binomial coefficients in the sum are defined
using the rule

] = o e ot = fllp 1) ) and [ = 1 i
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Example 4.5. The crystal OPS’%, displayed in Figure 1, has four highest weight elements
with weights (2,1,1), (2,1,1), (2,1,1), (2,2) from left to right. Hence, we obtain the Schur
expansion

3
Vali%(x; 0,8) = (141 +1%) 59.1,1)(%) + 1 S(2,9) ().
5. EQUIDISTRIBUTIVITY OF THE MINIMAJ AND MAJ STATISTICS

In this section, we describe a bijection ©: OP,, r — OP, ) in Theorem 5.12 with the
property that minimaj(7) = maj(¢)(r)) for 7 € OP,, . This proves the link between minimaj
and maj that was missing in [Will6]. We can interpret ¢ as a crystal isomorphism, where
OP,, i on the left is the minimaj crystal of Section 4 and OP,, ;. on the right is viewed as a
crystal of k columns with elements written in major index order.

The bijection 1 is the composition of ¢ of Proposition 3.1 with a certain shift operator.
When applying ¢ to m € OP,, j,, we obtain the tuple 7® = T x --- x Tp4; in (3.2). We
would like to view each column in the tuple of tableaux as a block of a new ordered multiset
partition. However, note that some columns could be empty, namely if ¢; = dyp1o_j —ip42—;
in Proposition 3.1 is zero for some 1 < j < £. For this reason, let us introduce the set of
weak ordered multiset partitions WOPy, ., where we relax the condition that all blocks need
to be nonempty sets.

Let T* =T} x --- x Tyy1 be a tuple of skew tableaux. Define read(7T®) to be the weak
ordered multiset partition whose blocks are obtained from T by reading the columns from
the left to the right and from the bottom to the top; each column constitutes one of
the blocks in read(7®). Note that given m = (mi|m2|---|m;) € OPp ) in minimaj order,
read(p(7)) is a weak ordered multiset partition in major index order.

Example 5.1. Let 7 = (1 | 56. | 4. | 37.12 | 2.1 | 1 | 34) € OP137, written in minimaj
order. We have minimaj(m) = 22. Then

T‘:go(w):xxx(l)x

3]

and 7/ = read(T*) = (4.1]2.1| 7.0 ]6.1]5.4.3.2.1 ] 3).

Lemma 5.2. Let Z = {read(¢(7)) | 7 € OPp i} € WOP, i, ' = read(p(m)) € Z, and b;
the first elements in each block of m in minimagj order as in Lemma 2.2. Then 7' has the
following properties:

(1) The last k elements of @’ are by, ..., bk, and b; and b;y1 are in different blocks if and
only if by < biy1.

(2) If by,..., by are contained in precisely k — j blocks, then there are at least j descents
in the blocks containing the b;’s.

Proof. Let m € OP,, ), written in minimaj order. Then by (3.2), 7’ = read(¢()) is of the
form

/!

= (8 BV BV e [ @RV B e BBy e e [ by by g | e | e bg),s

Net17Ne1—1 e m Fm—1
where the superscript rev indicates that the elements are listed in decreasing order (rather
than increasing order). Since the rows of a semistandard tableau are weakly increasing and
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the columns are strictly increasing, the blocks of 7’ = read(p(w)) are empty or in strictly
decreasing order. This implies that b; and b;q are in different blocks of 7’ precisely when
b; < bit1, so a block of 7 that contains a b; cannot have a descent at its end. This proves (1).

In a weak ordered multiset partition written in major index order, any block of size r > 2

has r — 1 descents. So if by, ..., b are contained in precisely k — j blocks, then at least j of
these elements are contained in blocks of size at least two, so there are at least j descents
in the blocks containing the b;’s. This proves (2). O

Remark 5.3. Let 7' € WOP,, ;. be in major index order such that there are at least k
elements after the rightmost occurrence of a block that is either empty or has a descent at
its end. In this case, there exists a skew tableau T such that ©’ = read(7"®). In fact, this
characterizes Z := im(read o ¢).

Lemma 5.4. The map read is invertible.

Proof. Suppose 7' € WOP,, . is in major index order such that there are at least k elements
after the rightmost occurrence of a block that is either empty or has a descent at its end.
Since there are no occurrences of an empty block or a descent at the end of a block amongst
the last k& elements of 7/, the blocks of 7’ containing the last k elements form the columns
of a skew ribbon tableau T" € SSYT(7), and the remaining blocks of 7’ form the column
tableaux to the left of the skew ribbon tableau, so read is invertible. ]

We are now ready to introduce the shift operators.

Definition 5.5. We define the left shift opemﬁmz Lon 7’ € Z = {read(p(m)) | m € OP, 1}
as follows. Suppose 7’ has m > 0 blocks TrI’Jm, . p1 that are either empty or have a descent
at the end, and 1 < py, < --- < pa < p1 < k. Set

L(n') = L™ (x'),

where L® for 0 < i < m are defined as follows:
(1) Set LO(x) = 7r
(2) Suppose L LG~ ( "Yfor 1 < i < m is defined. By induction, the p;-th block of

LGV () is T, Let S; be the sequence of elements starting immediately to the
right of block 7, in LG=D(z’) up to and including the p;-th descent after the block

7TI’)Z,. Let L®(7') be the weak ordered multiset partition obtained by moving each

element in S; one block to its left. Note that all blocks with index smaller than p;
in L@ (7') are the same as in 7’

Example 5.6. Continuing Example 5.1, we have 7’ = (4.1 2.1 7.0 | 6.1 | 5.4.3.2.1 | 3),
which is in major index order. We have m = 2 with ps = 3 < 4 = p1, S1 = 61543, Sy = 6154
and

LW (x') = (4.1]2.1]7.]6.1|5.4.3.|2.1]3),
L(x') =L@ (x') = (41]21]7.6.1|54.]3.|2.1]3).
Note that maj(n’) = 28, maj(L1) (x')) = 25, and maj(L(x’)) = 22 = minimaj(r).
Proposition 5.7. The left shift operation L: L — OP,, 1 is well defined.

Proof. Suppose ' € Z has m > 0 blocks 7rp1, . ,ﬂ;m that are either empty or have a

descent at the end, and 1 < py, < -+ < pa <p1 < k. If m =0, then L(7') = 7" € OP,x
and we are done.
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We proceed by induction on m. Note that L) acts on the rightmost block 771’, .- Notice
that 7, cannot contain any of the b;’s by Lemma 5.2 (1). Hence, since there are at least k
elements in the k — p; blocks following W;I, by Lemma 5.2 (2), there are at least p; descents
after 7, , s0 LM can be applied to 7.

Observe that applying L™) to 7/ does not create any new empty blocks to the right of 7r;) -
because creating a new empty block means that the last element of S7, which is a descent,
is at the end of a block. This cannot happen, since the rightmost occurrence of an empty
block or a descent at the end of its block was assumed to be in 7r;)1. However, note that
applying LY to 7/ does create a new block with a descent at its end, and this descent is
given by the p-th descent after the block 7, (which is the last element of Sy).

Now suppose L(i_l)(w’ ) is defined for ¢ > 2. By induction, there are at least p; > p;
descents following the block w;’)i, so the set S; of Definition 5.5 exists and we can move the
elements in S; left one block to construct L (7/) from LG~V (7). Furthermore, L®)(7)
does not have any new empty blocks to the right of 77;1_. To see this, note that the number
of descents in S; is p;, so the number of descents in .5; is strictly decreasing as i increases.
This implies that the i — 1 newly created descents at the end of a block of L~V (7/) occurs
strictly to the right of S;, and so the last element of S; cannot be a descent at the end of a
block of L= (7).

Lastly, L(7') = L™ (7') € OP, 1, since it does not have any empty blocks, and every
block of L(7’) is in decreasing order because either we moved every element of a block into

an empty block or we moved elements into a block with a descent at the end. O

Definition 5.8. We define the right shift operation R on p € OP,, in major index order
as follows. Suppose p has m > 0 blocks jig,, ..., g, that have a descent at the end and
q1 < qg < -+ < @m. Set
R(u) = RU™ (u),
where R for 0 < i < m are defined as follows:
(1) Set RO (1) = .
(2) Suppose RV () for 1 < i < m is defined. Let U; be the sequence of ¢; elements
to the left of, and including, the last element in the g-th block of RG=D (). Let
R® (1) be the weak ordered multiset partition obtained by moving each element in
U; one block to its right. Note that all blocks to the right of the (g; + 1)-th block
are the same in p and R® (y).

Note that R can potentially create empty blocks.

Example 5.9. Continuing Example 5.6, let = L(7') = (4.1 |2.1]7.6.1|54.]3.|2.1]|3).
We have m = 2 with ¢ =4 < 5 = ¢q9, Uy = 6154, Us = 61543 and

RO (p) = (4.1]217.16.1|5.4.3.|2.1]3),
R(p) =R (u) = (4.1]21(7.10]6.1]54.32.1]3),
which is the same as 7’ in Example 5.6.
Proposition 5.10. The right shift operation R is well defined and is the inverse of L.

Proof. Suppose u € OP,; in major index order has descents at the end of the blocks
Haqrs- -y Mg I m =0, then R(u) = p € OPy, ), C WOP,, i, and there is nothing to show.
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We proceed by induction on m. The ordered multiset partition p does not have empty
blocks, so there are at least ¢ elements in the first ¢; blocks of i, and R can be applied
to p.

Now suppose R(Fl)(u) is defined for ¢ > 2. By induction, there are at least ¢;—1 + 1
elements in the first ¢;_1 + 1 blocks of R~V (1). Since the blocks fig, 12, - -, fig in p are
all nonempty, there are at least ¢;—1 + 14 (¢; — (¢i—1+1)) = ¢; elements in the first ¢; blocks
of RG=D (), so the set U; of Definition 5.8 exists and we can move the elements in U; one
block to the right to construct R (u) from RO~ (p).

Furthermore, every nonempty block of R(x) is in decreasing order because the rightmost
element of each U; is a descent. So R(u) € OP, ) remains in major index order. This
completes the proof that R is well defined.

Next we show that R is the inverse of L. Observe that if 7 € Z has m occurrences of
either an empty block or a block with a descent at its end, then g = L(7") has m blocks
with a descent at its end. Hence it suffices to show that R(™*1=%) is the inverse operation
to L@ for each 1 < i < m.

The property that the last element of S; cannot be a descent at the end of a block of
L(ifl)(w’ ) in the proof of Proposition 5.7 similarly holds for every element in S;. Therefore,
if the last element of S; is in the r;-th block of L(ifl)(ﬂ’), then |S;| = pi+(ri—1—p;) =r;i—1
because the blocks are decreasing and none of the elements in S; can be descents at the
end of a block. Since the last element of S; becomes a descent at the end of the (r; — 1)-th
block of L@ (), this implies 7; — 1 = gm_it1, 50 Upm_ir1 = S; for every 1 < i < m. As the
operation L) is a left shift of the elements of S; by one block and the operation R("+1-9)
is a right shift of the same set of elements by one block, they are inverse operations of each
other. O

For what follows, we need to extend the definition of the major index to the set WOP,, 1.
of weak ordered multiset partitions of length n and k blocks, in which some of the blocks
may be empty. Given 7’ € WOP,, ;, whose nonempty blocks are in major index order, if
the block 779 # (), then the last element in 773 is assigned the index j, and the remaining

elements in 7r;- are assigned the index j — 1 for j = 1,...,k. Then maj(7’) is the sum of
the indices where a descent occurs. This agrees with (2.2) in the case when all blocks are

nonempty.

Lemma 5.11. Let «' € Z. With the same notation as in Definition 5.5, we have for
1<i<m

maj(LY (x")) = {

maj(LE-V(x")) —pi + 1, if m), =0,

maj(Le— (7)) — p;, if m,, has a descent at the end of its block.
Proof. Assume 7, = ). In the transformation from LG=D(7') to L@ (x'), the index of
each of the first p; — 1 descents in S; decreases by one, while the index of the last descent
remains the same, since it is not at the end of a block in LU~ (7’), but it becomes the
last element of a block in L@ (7’). The indices of elements not in S; remain the same, so
maj(L® (7")) = maj(Lé~D(7')) — p; + 1 in this case.

Next assume that 7['7,32, has a descent at the end of the block. In the transformation from

LG=D(x") to L@ (x'), the indices of the descents in S; change in the same way as in the
previous case, but in addition, the index of the last descent in 7[';,2, decreases by one, so

maj(L® (7")) = maj(L¢~Y(7')) — p; in this case. O
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Theorem 5.12. Let ¢: OPy 1 — OP,, 1, be the map defined by
Y(m) = L(read(p(m))) for m € OPy i in minimaj order.

Then Y s a bijection that maps ordered multiset partitions in minimaj order to ordered
multiset partitions in major index order. Furthermore, minimaj(m) = maj(¢(m)).

Proof. By Proposition 3.1, ¢ is a bijection. By Lemma 5.4, the map read is invertible, and
by Proposition 5.10 the shift operation L has an inverse. This implies that ¢ is a bijection.

It remains to show that minimaj(7) = maj(¢(r)) for # € OP,,  in minimaj order.

First suppose that 7’ = read(¢(7)) has no empty blocks and no descents at the end of
any block. In this case L(n") = 7, so that in fact 7’ = ¢)(7). Using the definition of major
index (2.2) and the representation (3.2) (where the columns in the ribbon are viewed as
separate columns due to read), we obtain

l l
(5.1) maj(r') = > (C+1—=j)(dj —i; — 1)+ L+ > (L+n;— ),
Jj=1 J=1
where d;,i;,m; = i1 +---+1i; are defined in Proposition 3.1 for 7. Here, the first sum in the
formula arises from the contributions of the first £ blocks and the summand ¢ compensates
for the fact that b is in the ¢-th block. The second sum in the formula comes from the
contributions of the b;’s. Comparing with (2.1), we find

¢ l

maj(7’) = minimaj(r) — ([42- 1> — Z(ﬁ +1—j)i; + <€—i2_ 1) + an = minimaj(m),
J=1 Jj=1

proving the claim.

Now suppose that 7' = read(¢(m)) has a descent at the end of block m,. This will
contribute an extra p compared to the major index in (5.1). If 7r1’3 =0, then ¢y = dpyo_p —
i¢+2-p = 0 and the term j = £+ 2 — p in (5.1) should be (¢ + 1 — j)(d; — i;) instead of
(+1—j)(dj —ij — 1) yielding a correction term of { +1 —j=¢+1—-0—-24+p=p— 1.
Hence, with the notation of Definition 5.5, we have

m
maj(7’) = minimaj(m) + Zpi —e,
i=1

where e is the number of empty blocks in 7. Since ¢(7) = L(n’), the claim follows by
Lemma 5.11. O
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