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a b s t r a c t

This paper focuses on a class of generalized Ginzburg–Landau equations with random

switching. In our formulation, the nonlinear term is allowed to have higher polynomial

growth rate than the usual cubic polynomials. The random switching is modeled by

a continuous-time Markov chain with a finite state space. First, an explicit solution is

obtained. Then properties such as stochastic-ultimate boundedness and permanence of the

solution processes are investigated. Finally, two-time-scale models are examined leading

to a reduction of complexity.
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1. Introduction

This paper focuses on a class of generalized Ginzburg–Landau equations, namely, stochastic Ginzburg–Landau equations

in random environmentmodeled by a random switching process. In contrast to thewell-knownGinzburg–Landau equations

with random disturbances considered in the literature, higher order nonlinearity is allowed. More importantly, the systems

are in a random environment that is modeled as a random discrete event process given by a switching process. Thus, the

systemunder considerationmay be considered as a hybrid system inwhich continuous dynamics anddiscrete events coexist.

Our effort in this paper is devoted to obtaining existence anduniqueness of solutions, permanence of solutions, and reduction

of complexity using two-time-scale formulation.

In 1950, Ginzburg and Landau proposed a class of deterministic differential equations to describe phase transitions for

superconductivity in [1]. They observed the existence of two types of superconductors depending on the energy of the

interface between the normal and superconducting states. Their paper has led to significant developments to the nowadays

known Ginzburg–Landau theory. Because of its prevalence in applications, this class of equations has been attracting much

attention in the past decades. For instance, Ginzburg–Landau equations have been used in many areas including the theory

of bistable systems, chemical turbulence, phase transitions in non-equilibrium systems, nonlinear, optics with dissipation,

thermodynamics, and hydrodynamic systems, etc.; see [2–4] and references there in.

Because random noise is often unavoidable, taking into consideration of stochastic disturbances is necessary. To account

for the noise effect, stochastic Ginzburg–Landau equations have received much attention in recent years. For example,

Neiman and Geier [5] studied stochastic resonance in an over-damped bistable system driven bywhite and harmonic noises.

In [6,7], delay stochastic Ginzburg–Landau equations were considered, whose solutions describe the stochastic evolution of
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the position of a particle trapped in a double well potential in the presence of a time delayed force and Gaussian white noise.
Subsequently, in [8], Kloeden and Platen provided an explicit solution to the Ginzburg–Landau equation given by

dx(t) = [(a +
σ 2

2
)x(t) − bx3(t)]dt + σx(t)dW (t), (1.1)

whereW (t) is a standard Brownianmotion, a, σ , and b > 0 are constants. Dung [9] studied a number of qualitative properties
of the solution to a stochastic Ginzburg–Landau equation with impulsive effects.

Because of the rapid growth in science and technology, networked systems come into being. The new challenges call
for more sophisticated mathematical models. One of the important advances is the development of novel models of hybrid
systems inwhich continuous dynamics and discrete events coexist and interact. To consider both randomuncertainty due to
Brownian motion type of disturbances and stochastic environment represented by jump processes taking values in a finite
set, switching diffusions have gained much needed attention recently; see [10,11] among others. Such switching dynamic
systems are nonlinear stochastic systems with another stochastic source depicting the random environment changes as
switching processes. The presence of both continuous dynamics anddiscrete events enables one to describe complex systems
and their inherent uncertainty and randomness in the environment effectively.

Aiming at enlarging the applicability and suitability for a wider range of problems, this paper focuses on a class of real-
valued systemsknownas generalized stochasticGinzburg–Landau equationswith regime switching. It is a generalizedmodel
since the nonlinear terms have faster growth rates than that of the usual Ginzburg–Landau equations. More importantly, we
use a randomly switching process to model stochastic environment and other random factors that are not covered in the
usual stochastic differential equations.

The rest of the paper is organized as follows. Section 2 presents the generalized Ginzburg–Landau equations with
switching that we wish to study. Also derived in this section is an explicit solution. Section 3 investigates properties such
as stochastically ultimate boundedness and permanence of the solution processes. These results may shed some light for
the subsequent study on superconductivity and other desired properties. Section 4 examines a class of systems with two-
time scales. The main idea here is to reduce the computational complexity. Finally, Section 5 gives some further remarks to
conclude the paper.

2. Formulation and existence of solution

2.1. Formulation

LetW (·) be a real-valued Brownianmotion, and α(·) be a continuous-timeMarkov chain that is independent ofW (·) with
a state spaceM = {1, . . . ,m} and generator Q = (qij). Recall, Q satisfies the conditions qij ≥ 0 for i ̸= j and

∑m

j=1qij = 0 for
each i ∈ M. Note that for the continuous-time Markov chain α(t),

P{α(t + δ) = j|α(t) = i} =

{
qijδ + o(δ), if i ̸= j,

1 + qiiδ + o(δ), if i = j.

The objective of this paper is to treat the generalized Ginzburg–Landau equations with random switching in which the
coefficients of the systems depend on an additional time variable. Thus the coefficients of the systems are time varying in
addition to the time-varying and jump properties due to the Markov chain. Consider the equation

dX(t) =
[
a(t, α(t))X(t) − b(t, α(t))Xk+1(t)

]
dt + σ (t, α(t))X(t)dW (t), (2.1)

where k ≥ 2 is an integer. It then follows that the associated generator L is given by

Lf (t, x, i) =
∂ f (t, x, i)

∂t
+ (a(t, i)x − b(t, i)xk+1)

∂ f (t, x, i)

∂x

+
1

2
σ 2(t, i)x2

∂2f (t, x, i)

∂x2
+

m∑

j=1

qijf (t, x, j),
(2.2)

for each i ∈ M, where f (·, ·, ·) : [0, ∞) × R × M ↦→ R such that for each i ∈ M, f (·, ·, i) ∈ C1,2. That is, f has continuous
partial derivative with respect to t , and continuous partial derivative with respect to x up to the second order.

2.2. Explicit solution

In this section, we demonstrate that (2.1) has a global explicit solution that is positive for t ≥ 0.

(A1) For each i ∈ M, a(t, i), b(t, i) and σ (t, i) are bounded integrable functions defined on [0, +∞) and b(t, i) ≥ 0.

Theorem 2.1. Assume (A1). Then for any initial condition x0 := X(0) > 0, there is a unique positive solution of (2.1) on t ≥ 0
explicitly given by

X(t) =
exp(Γ (t))

[
1

xk
0

+ k
∫ t

0
b(s, α(s)) exp(kΓ (s))ds

] 1
k

, (2.3)
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where

Γ (t) =

∫ t

0

[a(s, α(s)) −
1

2
σ 2(s, α(s))]ds +

∫ t

0

σ (s, α(s))dW (s).

Proof. Since the coefficients of (2.1) are locally Lipschitz, by the standard argument in stochastic differential equations, there
exists a unique local solution X(t) on [0, t1) ⊂ [0, ∞) for some t1 > 0.

We proceed to find the solution. Define

U(x, t) = e−kxF (t), (2.4)

where

F (t) =
1

xk0
+ k

∫ t

0

b(s, α(s))ekΓ (s)ds.

Let

G(t) = U(Γ (t), t).

Then by the generalized Itô formula [11, pp. 29–30] (or [10]),

dG(t) =
{
kb(t, α(t)) +

k

2
G(t)

[
(k + 1)σ 2(t, α(t)) − 2a(t, α(t))

]}
dt

− kσ (t, α(t))G(t)dW (t).

(2.5)

Let

X(t) =
1

G
1
k (t)

.

Then X(t) exits for all t ∈ [0, +∞), X(t) > 0, and is continuous. Using the generalized Itô formula again, it is straightforward
to verify

dX(t) = −
1

k
G− k+1

k (t)dG(t) +
k + 1

2k2
G− 2k+1

k (t)[dG(t)]2

=
[
a(t, α(t))X(t) − b(t, α(t))Xk+1(t)

]
dt + σ (t, α(t))X(t)dW (t).

Therefore, we conclude that X(t) given by (2.3) is a continuous positive solution of (2.1) not only for t ∈ [0, t1) but for all
t ≥ 0. Thus, the solution exists for all t ∈ [0, ∞) (i.e., it is a global solution). This completes the proof of the theorem. □

3. Stochastic boundedness and permanence

This section is devoted to obtaining stochastic boundedness and permanence of the solutions of the generalized
Ginzburg–Landau equations. The discussion in this section is under assumptions (A1) and (A2) given below. Recall that
α(t) is irreducible, if the system of equations νQ = 0,

∑m

i=1νi = 1 has a unique solution ν = (ν1, . . . , νm) with each νi > 0.
The ν is termed the stationary distribution, and is used throughout the rest of the paper.

(A2) The Markov chain α(t) given in (2.1) is irreducible.

For notational simplicity in the following discussion, we use

h̆(i) := inf
t∈[0,+∞)

h(t, i),

ĥ(i) := sup
t∈[0,+∞)

h(t, i),

where h(t, i) can be any of the a(·, ·), b(·, ·), or σ (·, ·). To proceed, we define the stochastic boundedness and permanence in
what follows.

Definition 3.1. For each positive initial condition, the solution X(t) of (2.1) is called stochastically ultimately upper bounded,
if for any ε ∈ (0, 1), there exists a positive constant H = H(ε) such that the solution of (2.1) satisfies

lim sup
t→+∞

P{X(t) > H} < ε.

Definition 3.2. For each positive initial condition, the solution X(t) of (2.1) is called stochastically ultimately lower bounded,
if for any ε ∈ (0, 1), there exists a positive constant δ = δ(ε) such that the solution of (2.1) satisfies that

lim sup
t→+∞

P{X(t) < δ} < ε.
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Definition 3.3. Eq. (2.1) or its solution is said to be stochastically permanent if for any ε ∈ (0, 1), there exist positive

constants H = H(ε) and δ = δ(ε) such that

lim inf
t→+∞

P{X(t) ≤ H} ≥ 1 − ε, lim inf
t→+∞

P{X(t) ≥ δ} ≥ 1 − ε,

where X(t) is the solution of (2.1) with any positive initial value.

It is clear that a stochastic equation is stochastically permanent if and only if its solution is both stochastically ultimately

upper bounded and lower bounded. To continue, we obtain a number of lemmas.

Lemma 3.4. Let Y (t) = log X(t), and Z(t) be the solution of the SDE

dZ(t) = (a(t, α(t)) − b(t, α(t)) −
σ 2(t, α(t))

2
− kb(t, α(t))Z(t))dt + σ (t, α(t))dW (t). (3.1)

If Y (0) = Z(0), then Y (t) ≤ Z(t) a.s.

Proof. By the generalized Itô formula [11, pp.29–30],

dY (t) = (a(t, α(t)) −
σ 2(t, α(t))

2
− b(t, α(t))ekY (t))dt + σ (t, α(t))dW (t).

Since eky ≥ 1 + ky for any y ∈ R, we get

dY (t) ≤ [a(t, α(t)) − b(t, α(t)) −
σ 2(t, α(t))

2
− kb(t, α(t))Y (t)]dt + σ (t, α(t))dW (t).

Thus by the differential form of Gronwall’s inequality, Y (t) ≤ Z(t) a.s. □

Consider the system of linear equations

Qc = η, where c ∈ R
m and η ∈ R

m. (3.2)

Lemma 3.5 ([11, Lemma A.12]). The following assertions hold.

• Eq. (3.2) has a solution if and if only νη = 0.

• Suppose that c̃ and c̄ are two solutions of (3.2). Then c̃ − c̄ = γ01l for some γ0 ∈ R, where 1l is a column vector with all

components being 1.

• Any solution of (3.2) can be written as

c = γ01l + h0,

where γ0 ∈ R is an arbitrary constant and h0 ∈ R
m is the unique solution of (3.2) satisfying νh0 = 0.

Lemma 3.6. Assume νβ :=
∑m

i=1νiβ(i) :=
∑m

i=1νib̆(i) > 0. There is a positive constant θ such that

lim sup
t→+∞

E|Z(t)|2θ ≤ K , (3.3)

where Z(t) is the solution of (3.1) and K is a constant defined in (3.10).

Proof. Since

ν[−β + (νβ)1l] = 0,

it follows from Lemma 3.5 that the equation

Qc = −β + (νβ)1l

has a solution c = (c1, c2, . . . , cm)
T ∈ R

m. Therefore,

b̆(i) +

m∑

j=1

qijcj = νβ > 0, i ∈ M. (3.4)



328 Z. Wu et al. / Physica A 506 (2018) 324–336

From (3.4), we have

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ )

= −
( m∑

j=1

qijcj +
ciθ

1 − ciθ

m∑

j=1

qijcj

)

= −
(
νβ − b̆(i) +

ciθ

1 − ciθ

m∑

j=1

qijcj

)
.

(3.5)

Choose a small constant θ ∈ (0, 1
2
) such that

1

2
< 1 − ciθ < 2, i ∈ M (3.6)

and

νβ +
ciθ

1 − ciθ

m∑

i=1

qijcj > 0, i ∈ M. (3.7)

Now, choose a sufficiently small positive number µ such that

νβ +
ciθ

1 − ciθ

m∑

i=1

qijcj −
µ

θ
> 0, i ∈ M. (3.8)

For Z(t) given by (3.1), define the function V (·, ·, ·) : [0, +∞) × R × M by

V (t, z, i) = (1 − ciθ )(1 + z2)θ .

That is, V is independent of t . Then direct calculation reveals that

LV (t, z, i)

= θ (1 − ciθ )(1 + z2)θ−2
{
(−2kb(t, i) +

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ ))z
4

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z3

+
[
(2θ − 1)σ 2(t, i) − 2kb(t, i) +

2

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ )
]
z2

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z + σ 2(t, i) +

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ )
}
.

This leads to

L(eµtV (t, z, i))

= θ (1 − ciθ )(1 + z2)θ−2eµt
{
(−2kb(t, i) +

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ ) +
µ

θ
)z4

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z3

+
[
(2θ − 1)σ 2(t, i) − 2kb(t, i) +

2

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ ) +
2µ

θ

]
z2

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z + σ 2(t, i) +

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ ) +
µ

θ

}

≤ θ (1 − ciθ )(1 + z2)θ−2eµt
{
−

[
(2k − 1)b̆(i) + νβ +

ciθ

1 − ciθ

m∑

j=1

qijcj −
µ

θ

]
z4

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z3

+
[
(2θ − 1)σ 2(t, i) − 2(k − 1)b̆(i) − 2νβ − 2

ciθ

1 − ciθ

m∑

j=1

qijcj +
2µ

θ

]
z2

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z + σ 2(t, i) +

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ ) +
µ

θ

}

≤
1

2
µKeµt ,

(3.9)
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where

K :=
1

2
µ−1

{
sup

(t,z,i)∈[0,+∞)×R×M

{
−

[
(2k − 1)b̆(i) + νβ +

ciθ

1 − ciθ

m∑

j=1

qijcj −
µ

θ

]
z4

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z3

+
[
(2θ − 1)σ 2(t, i) − 2(k − 1)b̆(i) − 2νβ − 2

ciθ

1 − ciθ

m∑

j=1

qijcj +
2µ

θ

]
z2

+ 2(a(t, i) −
1

2
σ 2(t, i) − b(t, i))z + σ 2(t, i) +

1

θ (1 − ciθ )

m∑

j=1

qij(1 − cjθ ) +
µ

θ

}
∨ 1

}
.

(3.10)

Let ℓ0 be a sufficiently large integer such that Z(0) ∈ [−ℓ0, ℓ0]. Define the stopping time ρℓ = inf{t ≥ 0 : |Z(t)| > ℓ} for
each ℓ ≥ ℓ0. It can be seen that ρℓ is monotonically increasing. Since the linear SDE (3.1) has no finite explosion time, we
have ρ∞ := limℓ→+∞ρℓ = +∞ a.s. By the generalized Itô formula,

M(t) := eµtV (t, Z(t), α(t)) − V (0, Z(0), α(0)) −

∫ t

0

L(eµsV (s, Z(s), α(s)))ds

is a local martingale, which implies that EM(t ∧ ρℓ) = 0. So

E[eµ(t∧ρℓ)V (t ∧ ρℓ, Z(t ∧ ρℓ), α(t ∧ ρℓ))] = EV (0, Z(0), α(0)) + E

∫ t∧ρℓ

0

L(eµsV (s, Z(s), α(s)))ds.

By the definition of ρℓ, e
µ(t∧ρℓ)(1 + Z2(t ∧ ρℓ))

θ is monotonically increasing. It follows from ρ∞ = +∞ a.s. that

lim
ℓ→+∞

Z(t ∧ ρℓ) = Z(t) a.s.,

and

lim
ℓ→+∞

eµ(t∧ρℓ)(1 + Z2(t ∧ ρℓ))
θ = eµt (1 + Z2(t))θ .

From (3.6) and the definition of V (·, ·, ·),

eµ(t∧ρℓ)V (t ∧ ρℓ, Z(t ∧ ρℓ), α(t ∧ ρℓ)) ≤ 2eµt (1 + Z2(t))θ . (3.11)

By (3.9), (3.11) and the dominated convergence theorem,

lim
ℓ→+∞

E[eµ(t∧ρℓ)V (t ∧ ρℓ, Z(t ∧ ρℓ), α(t ∧ ρℓ))] = E[eµtV (t, Z(t), α(t))],

and

lim
ℓ→+∞

E

∫ t∧ρℓ

0

L(eµsV (s, Z(s), α(s)))ds = E

∫ t

0

L(eµsV (s, Z(s), α(s)))ds.

Therefore

E[eµtV (t, Z(t), α(t))] = EV (0, Z(0), α(0)) + E

∫ t

0

L(eµsV (s, Z(s), α(s)))ds,

which leads to

1

2
E[eµt (1 + Z2(t))θ ] ≤ 2(1 + Z2(0))θ +

1

2
Keµt .

Then

lim sup
t→∞

E[(1 + Z2(t))θ ] ≤ K ,

which implies (3.3). □

Theorem 3.7. Assume νβ > 0. Then the solution of (2.1) is stochastically ultimately upper bounded.

Proof. From Lemma3.6, there is a constant θ such that (3.3) holds. For ε ∈ (0, 1), letH = e(Kε−1)
1
2θ
. By Chebyshev’s inequality

and Lemma 3.4,

P{X(t) > H} = P{log X(t) > logH} ≤ P{Z(t) > logH} ≤ P{|Z(t)| > logH} ≤
E|Z(t)|2θ

log2θH
.

Then the desired assertion is obtained from (3.3). □
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Lemma 3.8. Assume

νγ :=

m∑

i=1

νiγ (i) :=

m∑

i=1

νi(ă(i) −
1

2
σ̂ 2(i)) > 0.

Then there is a positive constant θ such that

lim sup
t→+∞

EX−kθ (t) ≤ K , (3.12)

where K is a constant defined in (3.20).

Proof. Define

Y (t) = X−k(t) on t ≥ 0. (3.13)

Then

dY (t) = kY (t)
[
−a(t, α(t)) + b(t, α(t))Xk +

1

2
(k + 1)σ 2(t, α(t))

]
dt − kσ (t, α(t))Y (t)dW (t)

=
{
kY (t)

[
−a(t, α(t)) +

1

2
(k + 1)σ 2(t, α(t))

]
+ kb(t, α(t))

}
dt

−kσ (t, α(t))Y (t)dW (t)

(3.14)

From Lemma 3.5,

Qd = −kγ + k(νγ )1l

has a solution d = (d1, d2, · · · , dm)
T ∈ R

m. Therefore,

kγ (i) +

m∑

j=1

qijdj = kνγ > 0, i ∈ M. (3.15)

From (3.15), we have

1

θ (1 − diθ )

m∑

j=1

qij(1 − djθ ) = −kνγ + kγ (i) −
diθ

1 − diθ

m∑

j=1

qijdj. (3.16)

Pick out a constant θ ∈ (0, 1
2
) such that

1

2
< 1 − diθ < 2, i ∈ M (3.17)

and

kνγ −
1

2
k2θσ̂ 2(i) +

diθ

1 − diθ

m∑

j=1

qijdj > 0, i ∈ M. (3.18)

Now, choose a sufficiently small positive number µ such that

kνγ −
1

2
k2θσ̂ 2(i) +

diθ

1 − diθ

m∑

j=1

qijdj −
µ

θ
> 0, i ∈ M. (3.19)

For Y (t), define the function V (·, ·, ·) : [0, +∞) × R × M by

V (t, y, i) = (1 − diθ )(1 + y)θ .

That is, V is independent of t . It can be seen that

LV (t, y, i) = θ (1 − diθ )(1 + y)θ−2

×
{[

−k(a(t, i) −
1

2
σ 2(t, i)) +

1

2
k2θσ 2(t, i)

+
1

θ (1 − diθ )

m∑

j=1

qij(1 − djθ )
]
y2

+
[
−ka(t, i) +

1

2
k(k + 1)σ 2(t, i) + kb(t, i)

+
2

θ (1 − diθ )

m∑

j=1

qij(1 − djθ )
]
y + kb(t, i) +

1

θ (1 − diθ )

m∑

j=1

qij(1 − djθ )
}
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and

L(eµtV (t, y, i))

= θ (1 − diθ )e
µt (1 + y)θ−2

{
kb(t, i) +

1

θ (1 − diθ )

m∑

j=1

qij(1 − djθ ) +
µ

θ

+
[
−ka(t, i) +

1

2
k(k + 1)σ 2(t, i) + kb(t, i) +

2

θ (1 − diθ )

m∑

j=1

qij(1 − djθ ) +
2µ

θ

]
y

+
[
−k(a(t, i) −

1

2
σ 2(t, i)) +

1

2
k2θσ 2(t, i) +

1

θ (1 − diθ )

m∑

j=1

qij(1 − djθ ) +
µ

θ

]
y2

}

≤ θ (1 − diθ )e
µt (1 + y)θ−2

{[
−kνγ +

1

2
k2θσ̂ 2(i) −

diθ

1 − diθ

m∑

j=1

qijdj +
µ

θ

]
y2

+
[
−ka(t, i) +

1

2
k(k + 1)σ 2(t, i) + kb(t, i) +

2

θ (1 − diθ )

m∑

j=1

qij(1 − djθ ) +
2µ

θ

]
y

+ kb(t, i) +
1

θ (1 − diθ )

m∑

j=1

qij(1 − djθ ) +
µ

θ

}

≤
1

2
µKeµt ,

where

K := 2µ−1
{

sup
(t,y,i)∈[0,+∞)×R×M

θ (1 − diθ )

×
{[

−kνγ +
1

2
k2θσ̂ 2(i) −

diθ

1 − diθ

m∑

i=1

qijdj +
µ

θ

]
y2

+
[
−ka(t, i) +

1

2
k(k + 1)σ 2(t, i) + kb(t, i) +

2

θ (1 − diθ )

m∑

i=1

qij(1 − djθ ) +
2µ

θ

]
y

+ kb(t, i) +
1

θ (1 − diθ )

m∑

i=1

qij(1 − djθ ) +
µ

θ

}
∨ 1

}
.

(3.20)

Let ℓ0 be a sufficiently large integer such that Y (0) = X−k(0) ∈ [ 1
ℓ0

, ℓ0]. Define the stopping time ρℓ = inf{t ≥ 0 : Y (t) ̸∈

[ 1
ℓ
, ℓ]} for each ℓ ≥ ℓ0.

By the generalized Itô formula,

M(t) := eµtV (t, Y (t), α(t)) − V (0, Y (0), α(0)) −

∫ t

0

L(eµsV (s, Y (s), α(s)))ds

is a local martingale, which implies that EM(t ∧ ρℓ) = 0.

Using similar method as in the proof of Lemma 3.6 and the dominated convergence theorem, it follows that

E[eµtV (t, Y (t), α(t))] = EV (0, Y (0), α(0)) + E

∫ t

0

L(eµsV (s, Y (s), α(s)))ds,

which leads to

1

2
E[eµt (1 + Y (t))θ ] ≤ 2(1 + Y (0))θ +

1

2
Keµt .

Then

lim sup
t→∞

E[(1 + Y (t))θ ] ≤ K ,

which implies (3.12). □

Theorem 3.9. Assume νγ > 0. Then the solution of (2.1) is stochastically ultimately lower bounded.

Proof. From Lemma 3.8,

P{X(t) < δ} = P{X−kθ (t) > δ−kθ } ≤
EX−kθ (t)

δ−kθ
= δkθEX−kθ (t).



332 Z. Wu et al. / Physica A 506 (2018) 324–336

For any ε > 0, let δ = (K−1ε)
1
kθ . Then

lim sup
t→+∞

P{X(t) < δ} < ε.

The proof is therefore complete. □

Theorem 3.10. Assume νγ ′ :=
∑m

i=1νiγ
′(i) :=

∑m

i=1νi (̂a(i) − 1
2
σ̆ 2(i)) < 0. Then the solution X(t) of (2.1) is not stochastically

ultimately lower bounded.

Proof. Let

V (t, x, i) = log x. (3.21)

Then for (t, x, i) ∈ [0, +∞) × R+ × M,

LV (t, x, i) = a(t, i) −
1

2
σ 2(t, i) − b(t, i)xk. (3.22)

Eq. (3.22) together with the generalized Itô formula leads to

log X(t) − log x0

=

∫ t

0

[a(s, α(s)) −
1

2
σ 2(s, α(s)) − b(s, α(s))Xk(s)]ds +

∫ t

0

σ (s, α(s))dW (s).
(3.23)

Therefore,

log X(t) − log x0

≤

∫ t

0

[a(s, α(s)) −
1

2
σ 2(s, α(s))]ds +

∫ t

0

σ (s, α(s))dW (s)

≤

∫ t

0

[̂a(α(s)) −
1

2
σ̆ 2(α(s))]ds +

∫ t

0

σ (s, α(s))dW (s).

(3.24)

Let

M(t) =

∫ t

0

σ (s, α(s))dW (s),

which is a martingale. The quadratic variation ofM(t) is

⟨M,M⟩t =

∫ t

0

σ 2(α(s))ds ≤ Kt.

By the strong law of numbers for local martingales [12],

lim
t→+∞

M(t)

t
= 0, a.s. (3.25)

Thus

lim sup
t→∞

log X(t)

t
≤ lim sup

t→∞

1

t

∫ t

0

[̂a(α(s)) −
1

2
σ̆ 2(α(s))]ds = νγ ′ < 0.

It follows that

lim
t→+∞

X(t) = 0, a.s.

which implies the desired assertion. □

The next Theorem 3.11 follows directly from Theorem 3.7 and Theorem 3.9.

Theorem 3.11. Assume νβ > 0 and νγ > 0. Then (2.1) is stochastically permanent.

4. Two-time-scale models

In many applications, we encounter the case that the Markov chain is fast varying or it displays certain two-time-scale

behavior. The two time scales include the usual running time and a fast or stretched time. The distinction is represented by

introducing a small parameter ε > 0 in the generator of the Markov chain. The original system is Ginzburg–Landau with
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random switching, whereas when the ε is sufficiently small, the system is close to a limit or ‘‘reduced’’ diffusion without

switching. The closeness is demonstrated by the weak convergence of probability measures. The implication is that for all

practical consideration, one can essentially replace the complex original Ginzburg–Landau equations with switching by a

Ginzburg–Landau diffusion equation without switching. The coefficients of the reduced diffusion equation are averages of

the original system with respect to the stationary distribution of the fast changing part of the Markov chain. This shows a

substantial reduction of complexity.

To proceed, assume that the Markov chain αε(t) is generated by

Q ε =
Q

ε
+ Q0, (4.1)

where 0 < ε ≪ 1, Q is irreducible, and Q0 is a generator of another continuous-time Markov chain. Then (2.1) becomes

dXε(t) =
[
a(t, αε(t))Xε(t) − b(t, αε(t))X

k+1
ε (t)

]
dt + σ (t, αε(t))Xε(t)dW (t). (4.2)

Our study is for reduction of complexity. The rationale is as follows. The switching process αε(·) is fast varying. Thus it acts as

a noise process. As ε is getting smaller and smaller, the noise is averaged out and the complex process (4.2) can be reduced

to a limit Ginzburg–Landau equation without switching, which is much simpler than the process with switching. Then using

the limit as a guide, we may study further properties of the process given in (4.2). To obtain the limit result, we replace (A1)

by a slightly stronger condition.

(A1’) For each i ∈ M, a(t, i), b(t, i) and σ (t, i) are continuous functions defined on [0, +∞) and b(t, i) ≥ 0.

Before proceeding further, let us recall the definition of weak convergence first. Let Yn and Y be R
r -valued random

variables, with r ≥ 1 being a positive integer. We say that Yn converges weakly to Y if and only if for any bounded and

continuous function g(·), Eg(Yn) → Eg(Y ) as n → ∞. The sequence {Yn} is said to be tight if for each η > 0, there is a compact

set Kη such that P(Yn ∈ Kη) ≥ 1− η for all n. The definitions of weak convergence and tightness extend to random variables

in a metric space. The notion of weak convergence is a substantial generalization of convergence in distribution. It implies

muchmore than just convergence in distribution since g(·) can be chosen inmany interestingways. On a complete separable

metric space, the notion of tightness is equivalent to sequential compactness, which is known as Prohorov’s Theorem. Due

to this theorem, we are able to extract convergent subsequences once tightness is verified. Let Dr [0, ∞) denote the space of

R
r -valued functions that are right continuous and have left-hand limits, endowed with the Skorohod topology. For various

notions and terms in weak convergence theory such as Skorohod topology, Skorohod representation etc., we refer to [13,

Chapter 7] and the references therein.

Theorem 4.1. Assume that (A1’) holds and that Q given by (4.1) is irreducible. Suppose Xε(0) = Xε,0 converges weakly to

x(0) = x0 with Xε(0) > 0 a.s. Then as ε → 0, Xε(·) converges weakly to x(·) such that x(·) is a diffusion process, a solution of the

Ginzburg–Landau equation

dx(t) =
[
a(t)x(t) − b(t)xk+1(t)

]
dt + σ (t)x(t)dW (t), (4.3)

where

a(t) =

m∑

i=1

a(t, i)νi, b(t) =

m∑

i=1

b(t, i)νi and σ (t) =

√
m∑

i=1

σ 2(t, i)νi.

Before proceeding to the proof of the theorem, we first state a lemma, which concerns the existence and uniqueness

of solution of (4.3). Thus we omit the details and only mention that the limit diffusion has a unique solution that can be

established similar to that of Theorem 2.1 but only simpler since no switching is involved.

Lemma 4.2. Under the conditions of Theorem 4.1, for any initial condition x(0) = x0 > 0, there is a unique positive solution of

(4.3) on t > 0.

Proof of Theorem 4.1. To prove the desired result, we need to show that {Xε(·)} is tight [14, p. 377]. Once the tightness is

established, we characterize the limit process by means of a martingale problem formulation.

Because system (4.2) is highly nonlinear with polynomial growth in x, we first use a truncation device [13, p. 284]. Denote

the N-sphere by SN = {x : |x| ≤ N} for a fixed but otherwise arbitrary large number N > 0. Let Xε,N (·) be the process that is
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equal to Xε(·) up until the first time exit from SN . Consider

dXε,N (t) =
[
a(t, αε(t))Xε,N (t) − b(t, αε(t))X

k+1
ε,N (t)

]
ζ (Xε,N (t))dt

+σ (t, αε(t))Xε,N (t)ζ (Xε,N (t))dW (t),
(4.4)

where ζ (x) is a truncation function satisfying ζ (x) = 1 for x ∈ SN , ζ (x) = 0 for x ∈ R+\SN+1, and ζ (x) is sufficiently smooth

(C2 in x). We proceed as follows. We first show that {Xε,N (·)} is tight. Then we characterize its limit. Finally, we show that

the untruncated process is also convergent.

Step 1: Tightness of {Xε,N (·)}. For any t > 0, δ > 0, and 0 < s ≤ δ,

Xε,N (t + s) − Xε,N (t)

=

∫ t+s

t

[
a(u, αε(u))Xε,N (u) − b(u, αε(u))X

k+1
ε,N (u)

]
ζ (Xε,N (u))du

+

∫ t+s

t

σ (u, αε(u))Xε,N (u)ζ (Xε,N (u))dW (u).

Use Eε
t to denote the conditional expectation conditioned on F

ε
t = {Xε(0),W (s), αε(s) : s ≤ t}. Using the Hölder inequality

to the first term on the right-hand side and Itô isometry on the second term together with the boundedness of the truncated

process, we obtain that there is a random variable βε(t) such that

Eε
t |Xε,N (t + s) − Xε,N (t)|

2 ≤ Eε
t βε(δ).

Taking limsup over ε and followed by limit as δ → 0, we have

lim
δ→0

lim sup
ε→0

Eβε(δ) = 0.

Thus {Xε,N (·)} is tight by virtue of [15, Theorem 3, p.47].

Step 2: Characterization of the limit. Owing to the Prohorov theorem, in a complete separable metric space, tightness is

equivalent to sequential compactness [13, p. 229]. Because {Xε,N (·)} is tight,we can extract aweakly convergent subsequence.

For notational simplicity, still denote the subsequence by {Xε,N (·)} with limit xN (·). We characterize the limit by means of

martingale problem formulation [14, p. 378] and [13] with operator LN , where

LN f (x, t) =
∂ f (x, t)

∂t
+ (a(t)x − b(t)xk+1)ζN (x)

∂ f (x, t)

∂x

+
1

2
σ 2(t)x2ζN (x)

∂2f (x, t)

∂x2
, for f (·) ∈ C2

0 ,

(4.5)

(the class of C2 functions with compact support).

To proceed, for any t, s > 0, any f (·) ∈ C2
0 , for each i ∈ M, we shall show

f (xN (t + s), t + s) − f (x0, 0) −

∫ t

0

LN f (xN (u), u)du is a martingale. (4.6)

To verify (4.6), it suffices to verify that for any bounded and continuous function H(·), any integer κ , and any tl ≤ t with

l ≤ κ , we have

EH(xN (tl) : l ≤ κ)[f (xN (t + s), t + s) − f (xN (t), t)]

= EH(xN (tl) : l ≤ κ)
(∫ t+s

t

LN f (xN (u), u)du
)
.

(4.7)

To verify (4.7), we work with the process indexed by ε. Because Xε,N (·) converges weakly to xN (·), by virtue of the Skorohod

representation, wemay assumewith a slight abuse of notation (i.e., without changing notation), Xε,N (·) → xN (·) in the sense

of convergence w.p.1. It follows that as ε → 0,

EH(Xε,N (tl) : l ≤ κ)[f (Xε,N (t + s), t + s) − f (Xε,N (t), t)]
→ EH(xN (tl) : l ≤ κ)[f (xN (t + s), t + s) − f (xN (t), t)].

(4.8)

Expanding the difference, we have

lim
ε→0

EH(Xε,N (tl) : l ≤ κ)[f (Xε,N (t + s), t + s) − f (Xε,N (t), t)]

= lim
ε→0

EH(Xε,N (tl) : l ≤ κ)
[ 4∑

j=0

gε,j(t + s, t)
]
,

(4.9)
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where

gε,0(t + s, t) =

∫ t+s

t

∂ fN (Xε,N (u), u)

∂u
du

gε,1(t + s, t) =

∫ t+s

t

m∑

i=1

∂ fN (Xε,N (u), u)

∂x
(a(u, i)Xε,N (u) − b(u, i)Xk+1

ε,N (u))ζN (Xε,N (u))νidu

gε,2(t + s, t) =
1

2

∫ t+s

t

m∑

i=1

∂2f (Xε,N (u), u)

∂x2
σ 2(u, i)X2

ε,N (u)ζN (Xε,N (u))νidu

gε,3(t + s, t) =

∫ t+s

t

m∑

i=1

∂ fN (Xε,N (u), u)

∂x
(a(u, i)Xε,N (u) − b(u, i)Xk+1

ε,N (u))ζN (Xε,N (u))

× [I{αε (u)} − νi]du

gε,4(t + s, t) =
1

2

∫ t+s

t

m∑

i=1

∂2f (Xε,N (u), u)

∂x2
σ 2(u, i)X2

ε,N (u)ζN (Xε,N (u))[I{αε (u)} − νi]du.

(4.10)

By virtue of the weak convergence and the Skorohod representation, we have that as ε → 0,

EH(Xε,N (tl) : l ≤ κ)gε,0(t + s, t)

→ EH(xN (tl) : l ≤ κ)
[∫ t+s

t

∂ f (xN (u), u)

∂u
du

]
,

EH(Xε,N (tl) : l ≤ κ)gε,1(t + s, t)

→ EH(xN (tl) : l ≤ κ)
[∫ t+s

t

∂ f (xN (u), u)

∂x
(a(u)xN (u) − b(u)xk+1

N (u))ζN (xN (u))du
]
,

EH(Xε,N (tl) : l ≤ κ)gε,2(t + s, t)

→
1

2

[∫ t+s

t

∂2f (xN (u), u)

∂x2
σ 2(u)x2N (u)ζN (xN (u))du

]
.

(4.11)

Nextwe show that gε,j(t+s, t) for j = 3, 4 do not contribute anything to the limit process. To this end, let 0 < ∆ < 1, take
a partition of the interval [t, t + s] by using N∆ = ⌊s/ε(1/2)−∆⌋, and denote the partition as t∆0 = t < t∆1 < · · · < t∆N∆

= t + s.

Note that without loss of generality, we have assumed that t∆N∆
coincides with t + s. The modification if this does not hold is

straightforward. Now define

g̃ε,3(t + s, t) =

N∆∑

j=0

∫ t∆
j+1

t∆
j

m∑

i=1

∂ fN (Xε,N (t
∆
j ), t∆j )

∂x

×(a(t∆j , i)Xε,N (t
∆
j ) − b(t∆j , i)Xk+1

ε,N (t∆j ))ζN (Xε,N (t
∆
j ))[I{αε (u)} − νi]du

g̃ε,4(t + s, t) =
1

2

N∆∑

j=0

∫ t∆
j+1

t∆
j

m∑

i=1

∂2f (Xε,N (t
∆
j ), t∆j )

∂x2
σ 2(t∆j , i)X2

ε,N (t
∆
j )ζN (Xε,N (t

∆
j ))

×[I{αε (u)} − νi]du.

(4.12)

Then by using the continuity of a(·, i), b(·, i), and σ (·, i), it can be shown that as ε → 0,

EH(Xε,N (tl) : l ≤ κ)[gε,3(t + s, t) − g̃ε,3(t + s, t)] → 0
EH(Xε,N (tl) : l ≤ κ)[gε,4(t + s, t) − g̃ε,4(t + s, t)] → 0.

(4.13)

To show that g̃ε,j(t + s, t) for j = 3, 4 lead to the zero limit, we note for example,

EH(Xε,N (tl) : l ≤ κ)[̃gε,4(t + s, t)]

= EH(Xε,N (tl) : l ≤ κ)
[1
2

N∆∑

j=0

m∑

i=1

∂2f (Xε,N (t
∆
j ), t∆j )

∂x2
σ 2(t∆j , i)X2

ε,N (t
∆
j )ζN (Xε,N (t

∆
j ))

× Eε

t∆
j

∫ t∆
j+1

t∆
j

[I{αε (u)} − νi]du
]

In the above, we have used the measurability of Xε,N (t
∆
j ) w.r.t. Fε

t∆
j

. Using an argument as in [14, Theorem 5.25], it can be

shown that

Eε

t∆
j

[∫ t∆
j+1

t∆
j

[I{αε (u)} − νi]du
]2

= O(ε).
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Thus,

EH(Xε,N (tl) : l ≤ κ)[̃gε,4(t + s, t)] → 0.

Likewise,

EH(Xε,N (tl) : l ≤ κ)[̃gε,3(t + s, t)] → 0.

Combining the estimateswe obtained thus far, we haveXε,N (·) convergesweakly to xN (·) that is the solution of themartingale
problem with operator LN .

Finally, we prove the untruncated process {Xε(·)} also converges to the desire limit x(·). This process is similar to that
of [15, p. 46]. The details are thus omitted. □

5. Further remarks

This paper developed a class of generalized Ginzburg–Landau equations with random switching. In addition to obtaining
explicit solutions, certain boundedness properties as well permanence are obtained. We also examined a two-time-scale
formulation and established a weak convergence result leading reduction of computational complexity.

Because we focus on Ginzburg–Landau equations in this paper, we chose to use k ≥ 2 in (2.1). It should be pointed out
that if k > 0, our results still hold. It can also be seen that when k = 1, (2.1) is a generalized logistic equation with random
switching, which is an important ecological mathematical model.

In subsequent study, further asymptotic properties such as moment bounds, stability in distribution, and recurrence
deserve careful consideration. Moreover, systems with delay may also be considered in the subsequent study.
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