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1. Introduction

This paper focuses on a class of generalized Ginzburg-Landau equations, namely, stochastic Ginzburg-Landau equations
in random environment modeled by a random switching process. In contrast to the well-known Ginzburg-Landau equations
with random disturbances considered in the literature, higher order nonlinearity is allowed. More importantly, the systems
are in a random environment that is modeled as a random discrete event process given by a switching process. Thus, the
system under consideration may be considered as a hybrid system in which continuous dynamics and discrete events coexist.
Our effort in this paper is devoted to obtaining existence and uniqueness of solutions, permanence of solutions, and reduction
of complexity using two-time-scale formulation.

In 1950, Ginzburg and Landau proposed a class of deterministic differential equations to describe phase transitions for
superconductivity in [1]. They observed the existence of two types of superconductors depending on the energy of the
interface between the normal and superconducting states. Their paper has led to significant developments to the nowadays
known Ginzburg-Landau theory. Because of its prevalence in applications, this class of equations has been attracting much
attention in the past decades. For instance, Ginzburg-Landau equations have been used in many areas including the theory
of bistable systems, chemical turbulence, phase transitions in non-equilibrium systems, nonlinear, optics with dissipation,
thermodynamics, and hydrodynamic systems, etc.; see [2-4] and references there in.

Because random noise is often unavoidable, taking into consideration of stochastic disturbances is necessary. To account
for the noise effect, stochastic Ginzburg-Landau equations have received much attention in recent years. For example,
Neiman and Geier [5] studied stochastic resonance in an over-damped bistable system driven by white and harmonic noises.
In [6,7], delay stochastic Ginzburg-Landau equations were considered, whose solutions describe the stochastic evolution of
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the position of a particle trapped in a double well potential in the presence of a time delayed force and Gaussian white noise.
Subsequently, in [8], Kloeden and Platen provided an explicit solution to the Ginzburg-Landau equation given by

2
dx(t) = [(a + %)x(t) — bx3(0)]dt + ox(£)dW(t), (1.1)

where W(t)is a standard Brownian motion, a,o,and b > 0 are constants. Dung [9] studied a number of qualitative properties
of the solution to a stochastic Ginzburg-Landau equation with impulsive effects.

Because of the rapid growth in science and technology, networked systems come into being. The new challenges call
for more sophisticated mathematical models. One of the important advances is the development of novel models of hybrid
systems in which continuous dynamics and discrete events coexist and interact. To consider both random uncertainty due to
Brownian motion type of disturbances and stochastic environment represented by jump processes taking values in a finite
set, switching diffusions have gained much needed attention recently; see [10,11] among others. Such switching dynamic
systems are nonlinear stochastic systems with another stochastic source depicting the random environment changes as
switching processes. The presence of both continuous dynamics and discrete events enables one to describe complex systems
and their inherent uncertainty and randomness in the environment effectively.

Aiming at enlarging the applicability and suitability for a wider range of problems, this paper focuses on a class of real-
valued systems known as generalized stochastic Ginzburg-Landau equations with regime switching. It is a generalized model
since the nonlinear terms have faster growth rates than that of the usual Ginzburg-Landau equations. More importantly, we
use a randomly switching process to model stochastic environment and other random factors that are not covered in the
usual stochastic differential equations.

The rest of the paper is organized as follows. Section 2 presents the generalized Ginzburg-Landau equations with
switching that we wish to study. Also derived in this section is an explicit solution. Section 3 investigates properties such
as stochastically ultimate boundedness and permanence of the solution processes. These results may shed some light for
the subsequent study on superconductivity and other desired properties. Section 4 examines a class of systems with two-
time scales. The main idea here is to reduce the computational complexity. Finally, Section 5 gives some further remarks to
conclude the paper.

2. Formulation and existence of solution
2.1. Formulation

Let W(-) be a real-valued Brownian motion, and «(-) be a continuous-time Markov chain that is independent of W(-) with
a state space M = {1, ..., m} and generator Q = (gj). Recall, Q satisfies the conditions q; > 0 fori # jand Zj 19i; = 0 for
eachi € M. Note that for the continuous-time Markov chain «(t),

Pla(t +8) = jla(t) = i} = {‘{"’i;ﬁ(i)’o(fsf),i ;iéfj{:j.

The objective of this paper is to treat the generalized Ginzburg-Landau equations with random switching in which the
coefficients of the systems depend on an additional time variable. Thus the coefficients of the systems are time varying in
addition to the time-varying and jump properties due to the Markov chain. Consider the equation

dx(t) = [a(t, a(t)X(t) — b(t, oz(t))X"“(t)]dt + o (t, a(t))X(t)dW(t), (2.1)
where k > 2 is an integer. It then follows that the associated generator £ is given by
af (t, x, 1) of(t, x, i)

of(t,x, i) = T+( a(t, i)x — b(t, i) k+1y o

1 )0
502t f(t *D +;quf(t x.J);

for eachi € M, where f(-, -, ) : [0, 00) X R x M > R such that for eachi € M, f(-, -,i) € C1"2. That is, f has continuous
partial derivative with respect to t, and continuous partial derivative with respect to x up to the second order.

(2.2)

2.2. Explicit solution

In this section, we demonstrate that (2.1) has a global explicit solution that is positive for t > 0.

(A1) Foreachi e M,a(t,i), b(t,i)and o(t, i) are bounded integrable functions defined on [0, +o0) and b(t, i) > 0.
Theorem 2.1. Assume (A1). Then for any initial condition xo := X(0) > O, there is a unique positive solution of (2.1)ont > 0
explicitly given by

X(t) = exp(1°(t)) 7 (23)

[Xlk +k [ b(s, al(s)) exp(lcF(s))ds]

=
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where
F(t):/ [a(s, a(s)) — %az(s, a(s))]ds—i—f o (s, a(s))dW(s).
0 0

Proof. Since the coefficients of (2.1) are locally Lipschitz, by the standard argument in stochastic differential equations, there
exists a unique local solution X(t) on [0, t1) C [0, co) for some t; > 0.
We proceed to find the solution. Define

Ux, t) = e ®F(t), (2.4)

where
F(t) = lk +k / b(s. a(s))e*" ds.
Xo 0
Let
G(t) = U(I(t), ¢).
Then by the generalized It6 formula [11, pp. 29-30] (or [10]),
aG(t) = {kb(t, a(t) + gG(t)[(k + 1)o(t, a(t)) — 2a(t, a(r))] }dt

— ko (t, a(t))G(t)dW(t).
Let

1
X(t) = ——.
Gk(t)
Then X(t) exits forall t € [0, +00), X(t) > 0, and is continuous. Using the generalized It6 formula again, it is straightforward
to verify
1 & k+1 X
aX(O) = — G F (0dG(0) + 6 OGP

= [a(t, a(t)X(t) — b(t, a(t))xk“(t)]dt + o (t, a(t)X(t)dW(t).

Therefore, we conclude that X(t) given by (2.3) is a continuous positive solution of (2.1) not only for t € [0, t;) but for all
t > 0. Thus, the solution exists for all t € [0, oo) (i.e., it is a global solution). This completes the proof of the theorem. O

3. Stochastic boundedness and permanence

This section is devoted to obtaining stochastic boundedness and permanence of the solutions of the generalized
Ginzburg-Landau equations. The discussion in this section is under assumptions (A1) and (A2) given below. Recall that
a(t) is irreducible, if the system of equations vQ = 0, Z?;lvi = 1 has a unique solution v = (vq, ..., vy) with each v; > 0.
The v is termed the stationary distribution, and is used throughout the rest of the paper.

(A2) The Markov chain «(t) given in (2.1) is irreducible.

For notational simplicity in the following discussion, we use

h(i):= inf h(t, i),
R t€[0,+00)
h(i) .= sup h(t,1i),
te[0,400)
where h(t, i) can be any of the a(-, -), b(-, -), or o (-, -). To proceed, we define the stochastic boundedness and permanence in
what follows.

Definition 3.1. For each positive initial condition, the solution X(t) of (2.1) is called stochastically ultimately upper bounded,
if for any ¢ € (0, 1), there exists a positive constant H = H(¢) such that the solution of (2.1) satisfies

limsup P{X(t) > H} < e.

t—+o00

Definition 3.2. For each positive initial condition, the solution X(t) of (2.1) is called stochastically ultimately lower bounded,
if for any ¢ € (0, 1), there exists a positive constant § = §(¢) such that the solution of (2.1) satisfies that

limsup P{X(t) < 8} < &.

t—+o00
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Definition 3.3. Eq. (2.1) or its solution is said to be stochastically permanent if for any ¢ € (0, 1), there exist positive
constants H = H(e) and § = §(¢) such that

liminfP{X(t) <H} >1—e¢, liminfP{X(t)>4}>1—c¢,
t—-+400 t—+00
where X(t) is the solution of (2.1) with any positive initial value.

It is clear that a stochastic equation is stochastically permanent if and only if its solution is both stochastically ultimately
upper bounded and lower bounded. To continue, we obtain a number of lemmas.

Lemma 3.4. Let Y(t) = log X(t), and Z(t) be the solution of the SDE

2
dzZ(t) = (a(t, a(t)) — b(t, a(t)) — w — kb(t, a(t))Z(t))dt + o (t, a(t))dW(t). (3.1)

If Y(0) = Z(0), then Y(t) < Z(t) a.s.

Proof. By the generalized It6 formula [11, pp.29-30],

2
dy(t) = (a(t, a(t)) — w — b(t, a(t))eO)dt + o (t, a(t))dW(t).
Since e¥ > 1+ ky forany y € R, we get
2
dy(t) < [a(t, a(t)) — b(t, ce(t)) — w — kb(t, a(t))Y(£)]dt + o (t, a(t))dW(t).

Thus by the differential form of Gronwall’s inequality, Y(t) < Z(t)a.s. O
Consider the system of linear equations
Qc =n, where ¢ € R™ and n € R™. (3.2)

Lemma 3.5 ([11, Lemma A.12]). The following assertions hold.

e Eq.(3.2) has a solution if and if only v = 0.

e Suppose that € and € are two solutions of (3.2). Then© — € = y,d for some yy € R, where 1 is a column vector with all
components being 1.

e Any solution of (3.2) can be written as

¢ = yol + ho,
where yy € R is an arbitrary constant and hg € R™ is the unique solution of (3.2) satisfying vhg = 0.
Lemma 3.6. Assume vf := Y 1 viB(i) :== Y1 vib(i) > 0. There is a positive constant 6 such that
limsupE|Z(t)*?? <K, (3.3)
t—+o00
where Z(t) is the solution of (3.1) and K is a constant defined in (3.10).

Proof. Since
v[—p +(vp)d] =0,

it follows from Lemma 3.5 that the equation

Q=—-p+0pN

has a solution ¢ = (¢q, ¢2, . .., ¢u)T € R™. Therefore,

m
b(i)+ ) gicj=vB >0, ie M. (3.4)
j=1
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From (3.4), we have

m

1
GUT Z%’j(l — o)

(Z qiiC; + Z qUCj) (3.5)
~(vB ~ b+ - Eec,-e Z ).

j=1

Choose a small constant 6 € (0, %) such that

1
5<1—Ci0<2,i€/\/l (3.6)
and
9 m
vﬁ—i—l_ ezqijcj>0,ie/\/l. (3.7)
i=
Now, choose a sufficiently small positive number n such that
- 1
1 .
ici——>0,1ie M. 3.8
1—co ;q” 17 (38)

For Z(t) given by (3.1), define the function V(-, -, -) : [0, +00) X R x M by
V(t,z,i) = (1—co)1+z%).

That is, V is independent of t. Then direct calculation reveals that

LV(t. 2, )
=0(1 — o)1 +z2)"—2{( 2kb(t, i) o gqu(l 0z
+ 2(a(t, i) — %az(t, i) — b(t, i))z>
+[(29—1)02( )= 2K )+ s un ]
+2(a(t, i) — %az(t, i) — b(t, i)z + o?(t, i) un }

This leads to
L£(e™V(t,z, 1)

1 - %
=0(1— c0)(1 +2°) e | (=2Kkb(t, 1) + ——— Y " gy(1 —¢0) + = )z*
{ 0(1 - ch) 0

+ 2(a(t, i) — %Uz(t, i) — b(t, )23

2t ; 2 v, 217
+[(29—1)0’ (f,l)—zkb(t,l)-’-m;qu(] 9)“{‘ 9 ]
+2(a(t, i) — %a (t, i) — b(t, )z + o2(t, i) o un 7}
- (3.9)
<001 — o)1+ 22) e | [k~ DB+ v + uncj ]
+ 2(a(t, 1) — %oz(t i) — b(t, i))z>
+ [(20 — 1o, 1) = 20k — DB — 208 — 2 unq ]
2alt. ) — o (t. 1)~ bt Dz +o(t. 1) Z o0+ 5]
~|—a,l—2cr ,1) — 1 o q,]
1
< —uket,
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where

1
K = jﬁ{ sup { [(21<— 1b(0) + vB + -
2 (£,2,1)€[0,+00) xR x M

qu *]

1 ) .
+ 2(a(t, i) — 502(t, i) — b(t, i))z*
(3.10)

+ [(29 — Dot ) = 2k — Db(D) — 208 — 2

qu ]

+2(alt, i) — %az(t, i) — b(t, )z + o 2(t, i o) un }v 1}

Let £o be a sufficiently large integer such that Z(0) € [—£q, £o]. Defme the stopping time p, = inf{t > 0 : |Z(t)| > ¢} for
each ¢ > {£y. It can be seen that p, is monotonically increasing. Since the linear SDE (3.1) has no finite explosion time, we
have poo := limy_, ;o p¢ = 400 a.s. By the generalized Itd formula,

M(t) == e"'V(t, Z(t), a(t)) — V(0, Z(0), a(0)) — / L£(e"V(s, Z(s), a(s)))ds
0

is a local martingale, which implies that EM(t A p,) = 0. So
tApe
E[e" OV (E A pr, Z(t A po). a(t A pe))] = EV(0, Z(0), (0)) + E f £ V(s, Z(s), a(s)))ds.
0

By the definition of p,, e("*)(1 + Z2(t A p,))’ is monotonically increasing. It follows from ps, = 400 a.s. that

lim Z(t A pg) = Z(t) a.s.,
£—+00

and
lim e (1 + Z2(t A pp)) = e (1 +Z%(1)).

{—+00

From (3.6) and the definition of V(-, -, -),

e PV(E A pe, Z(E A pe), et A pe)) < 2eM(1+Z%(0)). (3.11)
By (3.9), (3.11) and the dominated convergence theorem,
Jim E[eH POV (e A pe, Z(E A po), et A pe))] = EL“V(E Z(E), o(t))],
—400

and
tApe t
lim E/ L™V (s, Z(s),a(s)))ds:E/ L(e™V(s, Z(s), a(s)))ds.
{—+00 0 0
Therefore

E[e"V(t, Z(t), a(t))] = EV(0, Z(0), «(0)) + E / t £(e"V (s, Z(s), a(s)))ds,
which leads to '

%E[e‘”(l +Z22(t))] < 2(1 4+ Z%(0)) + %Ke‘“.
Then

limsupE[(1 + Z*(1))'] < K,

t—o00

which implies (3.3). O

Theorem 3.7. Assume v > 0. Then the solution of (2.1) is stochastically ultimately upper bounded.

1
Proof. From Lemma 3.6, there is a constant 6 such that (3.3) holds. For e € (0, 1),letH = elke™H20 By Chebyshev’s inequality
and Lemma 3.4,
E|Z(t)*

P{X(t) > H} = P{logX(t) > logH} < P{Z(t) > logH} < P{|Z(t)| > logH} < TocH
0g

Then the desired assertion is obtained from (3.3). O
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Lemma 3.8. Assume
m

W—Z)MI =y w(di) -

i=1

G2(i)) > 0.

N\»—‘

Then there is a positive constant 6 such that

limsup EX*(t) < K,

t—+00
where K is a constant defined in (3.20).
Proof. Define
Y(t)=X"%t)ont > 0.
Then

ay(t) = kY(t)[—a(t, alt)) + b(t, a(t)Xk + %(k + 1)o(t, a(t))]dt — ko (t, a(t)Y(£)dW(t)

1
- {ky(t)[—a(t,a( )+ 5(k+ 1o (t,oz(t))] + kb(t,oz(t))}dt
—ko(t, a(t)Y(£)dW(t)
From Lemma 3.5,
Qd = —ky + k(vy)d
has a solutiond = (dq, d, - - - , dw)T € R™. Therefore,
ky(i)+ > gyd; = kvy > 0, i e M.
j=1
From (3.15), we have

1—d9 un 0) = —kvy + ky(i) dez% -

Pick out a constant 6 € (0, 5) such that

1
5<1—d,~9<2,i€./\/l

and

1,5 ..
kvy—ikzeaz(l)—}- 1—d9 und >0,ieM.

Now, choose a sufficiently small positive number w such that

1, o,
kvy — Ekzeaz(z) d9 qu 250 ieM.

For Y(t), define the function V(-, -,+): [0, +00) X R x M by
V(t.y,i)=(1—do)1+y).
That is, V is independent of t. It can be seen that
Lv(t,y, )= 0(1—d)1+y)?
. 1 2 . 1 2 2 .
x{[—k(a(t, )= S0t D) + S0, D)

1 m
Y g1 = d)|y?
+9(1 —d0) ;‘b( dﬂ)]y

[—ka(t i)+1k(k+1) 2(¢, i) + kb(t, i)

1—d9 Zq’f ]y+kb(“ 1—d9)zq”

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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and
£(eMv(t,y, 1)
— . Lt 0—2 E
= 0(1— dif)e" (1 + y) {kb(tl e un +4
+ [—ka(r D)+ ~k(k+ 1ot i) + Kbit, i) + # un —dif) + 2—“]y
2 ’ A1 —dib) = ! ! )
+[—k(a(t i) — 1oz(t i)+ 1kzeaz(t i)+ ; iq--(l —dig) + E]yz}
’ 20 2 ’ 1—df) I ! 6
— d.0)eMt 0—2 20 _
= 001 — dele ' (1+y) *{[ ~koy + 3 Tiea 1_d02qud+ ]
+ | —ka(t, i) + 1k(k+1) 2(t, i)+ kb(t, 1) un(l Ky
d(9
,u
kb(t, ad
(L, ) 1—d9)2q” 9]
1
— K Ht’
< ke
where
K = 2#‘1[ sup 6(1 — di6)

(t,y,i)e[O +00)x Rx M

X {[—kvy + —k’05°

m
T g Zq” i ]
1 2 i 20
. 2 . .
u
T kb(t, i)+ 1_d9 qu 9}”]'
Let £, be a sufficiently large integer such that Y(0) = X~%(0) [%, £o]. Define the stopping time p, = inf{t > 0 : Y(t) ¢

[7, €]} for each £ > .
By the generalized It6 formula,

(3.20)

M(t) == e"'V(t, Y(t), a(t)) — V(0, Y(0), «(0)) — / L£(e"V(s, Y(s), a(s)))ds
0

is a local martingale, which implies that EM(t A pg) = 0.
Using similar method as in the proof of Lemma 3.6 and the dominated convergence theorem, it follows that

E[e™V(t, Y(t), a(t))] = EV(0, Y(0), «(0)) +Ef L(e"V(s, Y(s), a(s)))ds
0
which leads to
%E[e“t(l +Y(6)’1 < 2(1+Y(0)Y + %Ke’“.

Then
limsup E[(1 + Y(t))’] <K,

t—o00

which implies (3.12). O
Theorem 3.9. Assume vy > 0. Then the solution of (2.1) is stochastically ultimately lower bounded.

Proof. From Lemma 3.8,

EX7X(t)

o = 0 EXT(0).

P{X(t) < 8} = P{X¥(t) > 6%} <
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Foranye > 0,let§ = (K”s)ﬁThen

limsup P{X(t) < 8} < &.

t—+o00

The proof is therefore complete. [

Theorem 3.10. Assume vy’ := Zl wiy'() = ZI Jviati) — %6 ) < 0. Then the solution X(t) of (2.1) is not stochastically
ultimately lower bounded.
Proof. Let
V(t,x,i) =logx. (3.21)
Then for (t, x, i) € [0, +00) X Ry X M,
1
LV(t, x, i) = a(t, i) — 5(;Z(r, i) — b(t, i)x". (3.22)

Eq. (3.22) together with the generalized It6 formula leads to
log X(t) — log xg
t

1, K t (323)
= | la(s, a(s)) — 59 (s, a(s)) — b(s, a(s))X"(s)lds + [ o (s, a(s))dW(s).
0 0
Therefore,
log X(t) — log xo
t t
1,
< als, a(s)) — =o“(s, a(s))]ds + s, a(s))dW(s
_/0[(a()) 26(01())] /06( o(s))dW(s) (324)
t -l t
5/ [ala(s)) — Eéz(a(S))]der/ o (s, ae(s))dW(s).
0 0
Let
t
M(©) = [ ot ats)awcs)
0
which is a martingale. The quadratic variation of M(t) is
t
(M, M), :/ o?(a(s))ds < Kt.
0
By the strong law of numbers for local martingales [12],
M(t
lim L =0, a.s. (3.25)
t—>+oo
Thus
log X(t)
lim sup ——= 0gX(t) < limsup — / [a(a(s)) — fa (a(s)))ds = vy’ < 0.
t—o00 t t—o00
It follows that
lim X(t) =0, a.s.
t—+o00

which implies the desired assertion. O

The next Theorem 3.11 follows directly from Theorem 3.7 and Theorem 3.9.

Theorem 3.11. Assume vf > 0and vy > 0. Then (2.1) is stochastically permanent.

4. Two-time-scale models

In many applications, we encounter the case that the Markov chain is fast varying or it displays certain two-time-scale
behavior. The two time scales include the usual running time and a fast or stretched time. The distinction is represented by
introducing a small parameter ¢ > 0 in the generator of the Markov chain. The original system is Ginzburg-Landau with
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random switching, whereas when the ¢ is sufficiently small, the system is close to a limit or “reduced” diffusion without
switching. The closeness is demonstrated by the weak convergence of probability measures. The implication is that for all
practical consideration, one can essentially replace the complex original Ginzburg-Landau equations with switching by a
Ginzburg-Landau diffusion equation without switching. The coefficients of the reduced diffusion equation are averages of
the original system with respect to the stationary distribution of the fast changing part of the Markov chain. This shows a
substantial reduction of complexity.

To proceed, assume that the Markov chain «?(t) is generated by

=210 (4.1)

where 0 < ¢ < 1, Q is irreducible, and Qy is a generator of another continuous-time Markov chain. Then (2.1) becomes
X (6) = [alt, a(EDX(6) = (e, @ (DXE(0)Jde + o e, @ (DX (AW (). (42)

Our study is for reduction of complexity. The rationale is as follows. The switching process «.(-) is fast varying. Thus it acts as
a noise process. As ¢ is getting smaller and smaller, the noise is averaged out and the complex process (4.2) can be reduced
to a limit Ginzburg-Landau equation without switching, which is much simpler than the process with switching. Then using
the limit as a guide, we may study further properties of the process given in (4.2). To obtain the limit result, we replace (A1)
by a slightly stronger condition.

(AT’) Foreachie M,a(t, i), b(t,i)and o(t, i) are continuous functions defined on [0, +00) and b(t, i) > 0.

Before proceeding further, let us recall the definition of weak convergence first. Let Y, and Y be R"-valued random
variables, with r > 1 being a positive integer. We say that Y;, converges weakly to Y if and only if for any bounded and
continuous function g(-), Eg(Y,) — Eg(Y)asn — oo.The sequence {Y,} is said to be tight if for each n > 0, there is a compact
set K, such that P(Y, € K;;) > 1 — 5 for all n. The definitions of weak convergence and tightness extend to random variables
in a metric space. The notion of weak convergence is a substantial generalization of convergence in distribution. It implies
much more than just convergence in distribution since g(-) can be chosen in many interesting ways. On a complete separable
metric space, the notion of tightness is equivalent to sequential compactness, which is known as Prohorov’s Theorem. Due
to this theorem, we are able to extract convergent subsequences once tightness is verified. Let D' [0, oco) denote the space of
R"-valued functions that are right continuous and have left-hand limits, endowed with the Skorohod topology. For various
notions and terms in weak convergence theory such as Skorohod topology, Skorohod representation etc., we refer to [13,
Chapter 7] and the references therein.

Theorem 4.1. Assume that (A1’) holds and that Q given by (4.1) is irreducible. Suppose X.(0) = X o converges weakly to

x(0) = xo with X.(0) > 0 a.s. Then as ¢ — 0, X.(-) converges weakly to x(-) such that x(-) is a diffusion process, a solution of the
Ginzburg-Landau equation

() = [(e)x(e) — BEWEH(6)|de + T )W (o), (43)

where

m m
)= a(t,ijv, b(t) =Y b(t, i) and &(t) =
i=1 i=1

Before proceeding to the proof of the theorem, we first state a lemma, which concerns the existence and uniqueness
of solution of (4.3). Thus we omit the details and only mention that the limit diffusion has a unique solution that can be
established similar to that of Theorem 2.1 but only simpler since no switching is involved.

Lemma 4.2. Under the conditions of Theorem 4.1, for any initial condition x(0) = xo > 0, there is a unique positive solution of
(43)ont > 0.

Proof of Theorem 4.1. To prove the desired result, we need to show that {X,(-)} is tight [14, p. 377]. Once the tightness is
established, we characterize the limit process by means of a martingale problem formulation.

Because system (4.2) is highly nonlinear with polynomial growth in x, we first use a truncation device [ 13, p. 284]. Denote
the N-sphere by Sy = {x : |x|] < N} for a fixed but otherwise arbitrary large number N > 0. Let X, y(-) be the process that is
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equal to X.(-) up until the first time exit from Sy. Consider

dXen(6) = [alt, ae(OXen(0) = blE, ae(OXER O] c O n(e))de (44)
ot (e n(0F (Xen(O)AW(D),

where ¢(x) is a truncation function satisfying ¢(x) = 1 for x € Sy, ¢(x) = 0 for x € R, \Sy+1, and ¢(x) is sufficiently smooth
(C? in x). We proceed as follows. We first show that {X, y(-)} is tight. Then we characterize its limit. Finally, we show that
the untruncated process is also convergent.

Step 1: Tightness of {X. n(-)}. Forany t > 0,8 > 0,and 0 < s < §,

Xen(t +8) — Xe n(t)
t+s

= [ ot et — bl AR 0| O,
t+s
+/ o (U, e (U)X N(U)E (Xe n(w))dW (u).

Use E; to denote the conditional expectation conditioned on F; = {X,(0), W(s), a®(s) : s < t}. Using the Holder inequality
to the first term on the right-hand side and It6 isometry on the second term together with the boundedness of the truncated
process, we obtain that there is a random variable B.(t) such that

Ef1Xe n(t +8) = Xen (D) < Ef Be(8):
Taking limsup over ¢ and followed by limit as § — 0, we have

lim lim sup EB,(8) = 0.
=0 -0
Thus {X. n(-)} is tight by virtue of [ 15, Theorem 3, p.47].

Step 2: Characterization of the limit. Owing to the Prohorov theorem, in a complete separable metric space, tightness is
equivalent to sequential compactness [ 13, p. 229]. Because {X; y(-)} is tight, we can extract a weakly convergent subsequence.
For notational simplicity, still denote the subsequence by {X. n(-)} with limit xy(-). We characterize the limit by means of
martingale problem formulation [ 14, p. 378] and [ 13] with operator £y, where

Laflx, t) = Bf(axt, t) @ — B(f)XkH)CN(X)af(a); t)
1o, N0 (X 1) 5 (45)
5o (O ) ——5—, for f(-) € Gy,

(the class of C? functions with compact support).
To proceed, forany t, s > 0, any f(-) € Cg, for each i € M, we shall show

t
flxn(t +5),t+5s)— f(x0,0) — / Lnf (xy(u), u)du is a martingale. (4.6)
0
To verify (4.6), it suffices to verify that for any bounded and continuous function H(-), any integer «, and any t; < t with
| < k, we have
EH(xn(t) = I < i)[f (xn(t +5), t +5) — fxn(2), £)]

t+s
= EH (6 £ 1 < ) f £af (o), w)d). (4.7)

To verify (4.7), we work with the process indexed by ¢. Because X, y(-) converges weakly to xy(-), by virtue of the Skorohod
representation, we may assume with a slight abuse of notation (i.e., without changing notation), X, n(-) — xn(-) in the sense
of convergence w.p.1. It follows that as ¢ — 0,

EHX: n(8) 2 1 < 0)[f (Xen(E +5), £ +5) = f(Xen(E), )]

s EH(xw(t) : 1 < )L (xu(t +5), € +5) — FQen(E), £)]. (4.8)
Expanding the difference, we have
!l_r)% EH(X n(t) 1 1 < €)[f (Xen(t +5), £+ 5) — F(Xen(D), 1)]
(4.9)

4
= lim EH(X. () : | < K)[ngg,j(r +5.0)],
j:
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where

T fn(Xen (1), u)
u

geo(t +s, t)_f du

ax

gt +s,t)= ftﬂ Ofi(Xe n{(W), u)(a(u, )Xe n(u) — b(u, l)X"“( NENXe n(u))vidu

m

-lt+5
t+s,t)= =
gatt+s0=; >

m

t+s
gt 5.0 | Zaf” e 1), X, () — Bat, DX )6 (Xe ()

2
waz(u, DX2 ()N (Xe w(u)vidu
. (4.10)

X U{ag(u)} — vildu

1[5 2 (Xen(u), 1) .
gealt +5,0) = / > *az(u, DXy (W)on (Xe n (U)) e (uy — vild.

i=1
By virtue of the weak convergence and the Skorohod representation, we have that as ¢ — 0,
EH(X n(t1) 0 | < K)ge ot +5, 1)
S 3f(xn(u), u
— EH(xx(t) : 1 < K)[f Mdu],
¢ au
EH(XE,N(tl) 1 =< K)gs,l(t + S, t)

O of (xn(u), u) (4.11)
— BHO (1) 1< )] f S S @ () — Bl () o ()
t
EH(Xe n(t1) 1 | < k)ge 2t +5, 1)
1 t+s 82 ,
=5l / Wﬁz(mxﬁ(u)m(m(u»du].
Next we show that g, ;(t+s, t) forj = 3, 4 do not contribute anything to the limit process Tothisend,let0 < A < 1,take
a partition of the interval [t, t +s] by using N5 = |s//?=4], and denote the partitionas t§' =t <t <--- < tAA =t+s.

Note that without loss of generality, we have assumed that tN coincides with t +s. The modlﬁcatlon if this does not hold is
straightforward. Now define

i L9 ), t7
g83t+st)_Z/A ZfN ])
x(a ( e sN(t ) ( ,z)Xiﬁ“(t,-A))§N(X5,N(tf‘))[1{as<u» — vildu (4.12)
thy m t2), t2
Bt +5.0)= Z (9> a( R DR )
t i=1

X[I(ag u)} — v,]du
Then by using the continuity of a(-, i), b(-, i), and o (-, i), it can be shown that as e — 0,

EH(XSN(n) I <k)ges(t+5,t)—Zs(t+s,t)]— 0
EH(X, < K)[gealt +5,8) — st +5,£)] — 0.

(t)
To show that g; ;(t + s, t) for j = 3, 4 lead to the zero limit, we note for example,
EH(Xen(t) : l</<)[g;4(t+s t)]

(4.13)

mazng ’tjA)ZA-ZA A
— EH(X. n(t) : 1<K[ ZZ T 2 o2, DX (o (K (62))

j=0 i=1
tA
. it
xE 4 Uieeuyy — Vi]du]
] tjA

In the above, we have used the measurability of X, N(tA) W.I.L. }‘5 Using an argument as in [ 14, Theorem 5.25], it can be
shown that

. G 2
E[.A[ y o uy — vi]du] = 0(e).
i

J
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Thus,

EH(Xen(t) : | < K)[E.a(t +5, )] — 0.
Likewise,

EH(Xo.n(ty) : | < «)[8e3(t +5,t)] — 0.

Combining the estimates we obtained thus far, we have X, y(-) converges weakly to xy(-) that is the solution of the martingale
problem with operator Ly.

Finally, we prove the untruncated process {X.(-)} also converges to the desire limit x(-). This process is similar to that
of [15, p. 46]. The details are thus omitted. O

5. Further remarks

This paper developed a class of generalized Ginzburg-Landau equations with random switching. In addition to obtaining
explicit solutions, certain boundedness properties as well permanence are obtained. We also examined a two-time-scale
formulation and established a weak convergence result leading reduction of computational complexity.

Because we focus on Ginzburg-Landau equations in this paper, we chose to use k > 2 in (2.1). It should be pointed out
that if k > 0, our results still hold. It can also be seen that when k = 1, (2.1) is a generalized logistic equation with random
switching, which is an important ecological mathematical model.

In subsequent study, further asymptotic properties such as moment bounds, stability in distribution, and recurrence
deserve careful consideration. Moreover, systems with delay may also be considered in the subsequent study.
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