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Fig. 1. By encouraging discrete developability, a given mesh evolves toward a shape comprised of flattenable pieces separated by highly regular seam curves.

Developable surfaces are those that can be made by smoothly bending flat
pieces without stretching or shearing. We introduce a definition of devel-
opability for triangle meshes which exactly captures two key properties of
smooth developable surfaces, namely flattenability and presence of straight
ruling lines. This definition provides a starting point for algorithms in de-
velopable surface modeling—we consider a variational approach that drives
a given mesh toward developable pieces separated by regular seam curves.
Computation amounts to gradient descent on an energy with support in the
vertex star, without the need to explicitly cluster patches or identify seams.
We briefly explore applications to developable design and manufacturing.

CCS Concepts: « Mathematics of computing — Discretization; « Com-
puting methodologies — Mesh geometry models;

Additional Key Words and Phrases: developable surface modeling, discrete
differential geometry, digital geometry processing

ACM Reference Format:

Oded Stein, Eitan Grinspun, and Keenan Crane. 2018. Developability of
Triangle Meshes. ACM Trans. Graph. 37, 4, Article 77 (August 2018), 14 pages.
https://doi.org/10.1145/3197517.3201303

1 INTRODUCTION

Fabrication from developable pieces provides an enticing paradigm
for manufacturing: flat sheet materials such as plywood or sheet
metal are easy to cut, ship, and store; surfaces comprised of de-
velopable pieces also reduce cost and improve quality in computer
controlled milling [Harik et al. 2013]. To date, however, there are few
tools for automatic conversion of curved surfaces into developable
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pieces—most industrial applications still rely on manual interaction
and designer expertise [Chang 2015].

The goal of this paper is to develop mathematical and computa-
tional foundations for developability in the simplicial setting, and
show how this perspective inspires new approaches to developable
design. Our starting point is a new definition of developability for
triangle meshes (Section 3). This definition is motivated by the be-
havior of developable surfaces that are twice differentiable rather
than those that are merely continuous: instead of just asking for
flattenability, we also seek a definition that naturally leads to well-
defined ruling lines. Moreover, unlike existing notions of discrete
developability, it applies to general triangulated surfaces, with no
special conditions on combinatorics.

These features make our definition a natural starting point for
algorithms that seek to design developable surfaces. In this paper,
we investigate a global variational approach that encourages the
discrete developability of each vertex (Section 4.1). An interesting
observation is that this local optimization naturally tends toward
surfaces that are piecewise developable: in practice, curvature con-
centrates onto a sparse collection of seam curves (Section 4.1.3)
which are themselves highly regular (Section 4.2).

Fig. 2. How should one approximate a perfect sphere by developable pieces?
Due to symmetry, there is no canonical “best” answer. Instead, we guide the
surface toward a desired design by choosing an initial tessellation (shown
at top) that breaks this symmetry.
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In general, there is no “best” approximation of a given smooth
surface, since one can find successively closer approximations by
smaller and smaller developable pieces, akin to a wrinkled shirt or
a crumpled piece of paper. In our method, the final design is largely
guided by the input tessellation (Figure 2) as well as how we choose
to penalize non-developability (Figure 10). The final algorithms are
straightforward to implement (Section 4.3); we explore how they
can be used for developable design in Section 5.

2 RELATED WORK
2.1 Discrete Developability

Recently there has been an interest
in mimetic notions of developability
that exactly preserve key properties of
developable surfaces even on coarse
meshes, in the spirit of discrete differ-
ential geometry [Bobenko 2008; Crane
and Wardetzky 2017]. For triangle Fig. 5. Like triangulations
meshes, a seemingly natural definition  with zero angle defect, dis-
is the vanishing of angle defect, but this  crete geodesic nets d la Ra-
definition allows highly irregular ge- binovich et al. [2018] can be
ometry devoid of ruling lines, as dis- highly crumpled—blue lines
cussed in Section 3.2. Other notions of ~ indicate local vertex rulings.

discrete developability are based primarily on regular quadrilateral
nets rather than triangulations, requiring a global quad layout that
cannot easily adapt to changes in geometry. For instance, planar
quadrilateral (PQ) strips provide a natural analogue of developable
surfaces, since they can be isometrically flattened and have well-
defined ruling lines [Liu et al. 2006; Sauer 1970]; Pottmann et al.
[2008] consider semi-discrete developability, based on this same per-
spective. Solomon et al. [2012] present a framework where ruling
directions are freely variable, but the global mesh layout must still
be determined a priori. Recently, Rabinovich et al. [2018] propose
a definition based on orthogonal geodesics, also requiring a global
quad layout. Like the angle defect condition, meshes that exactly
satisfy this definition can still be highly “crumpled”; ruling lines are
defined locally at each vertex, but are not in general globally coher-
ent (Figure 5). To provide editing of regular developable surfaces,
this definition can be augmented with an auxiliary smoothness term.
Our notion of discrete developability (Definition 3.1) is simultane-
ously compatible with both the zero angle defect notion (ensuring
locally flattenability) as well as the PQ definition (providing global
ruling lines); it also places no conditions on mesh combinatorics,
making it suitable for general-purpose developable design.

Fig. 3. A variety of methods have been developed to approximate a given
surface by easily flattenable pieces. Left to right: Julius et al. [2005], Mitani
and Suzuki [2004], Shatz et al. [2006], Tang et al. [2016] (which requires
manual editing), and our method.
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Fig. 4. Flattenability alone is not enough to ensure that a surface is easy
to fabricate. For instance, both the crumpled piece of paper (top left) and
noisy triangle mesh (bottom left) can be exactly flattened into the plane,
but would be difficult to actually assemble from stiff material. In contrast,
the smooth piece of paper (top right) and triangle mesh (bottom right) are
both exactly flattenable and have straight ruling lines passing through each
point. We seek surfaces of the latter kind.

2.2 Developable Design

Several methods approximate a given mesh by (near-)developable
pieces. Wang and Tang [2004] directly optimize angle defect, which
yields the crumpling behavior discussed in Section 3.2. Mitani and
Suzuki [2004] generate triangle strips which can be trivially unfolded
into the plane but lack clear ruling lines; Shatz et al. [2006] instead
fit strictly conical regions which can have interior cone points;
Decaudin et al. [2006] iteratively perform local fitting and projection.
Massarwi et al. [2007] partition surfaces into ruled pieces, which
become developable only upon triangulation. Rather than augment
the geometry, Julius et al. [2005] find regions that can be flattened
with low distortion. All of these methods apply some sequence
of mesh processing operations (clustering, fitting, remeshing, etc.)
involving parameters that can be difficult to understand and control;
moreover, they are not suitable for the type of coarse form finding
we explore in Section 5.2, and most do not provide clear ruling
directions (which help facilitate manufacturing).

Other methods focus on user-guided design rather than automatic
approximation—for instance, Kilian et al. [2008] explore curved
folding, Tang et al. [2016] consider user-driven spline networks,
and Rose et al. [2007] interpolate sketched boundaries; methods
for simulating thin sheets [Narain et al. 2013; Schreck et al. 2015]
might also be used for design exploration. In terms of output quality,
there are no universally accepted criteria for what makes a “good”
developable design; we show the results of several algorithms in
Figure 3. On the whole, our approach produces models that are at
least comparable in quality to previous work, and exhibit some nice
features not exhibited by other methods such as (i) no requirement to
partition the surface into disk-like pieces, (ii) automatic smoothing
of feature lines, and (iii) natural emergence of ruling directions.
These features arise naturally from our variational approach, i.e.,
minimization of an energy supported in the star of each vertex.
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Fig. 6. Merely requiring a surface to have ruling lines does not ensure it can
be flattened, such as the hyperboloid of revolution (left) which has negative
Gaussian curvature. Conversely, a flattenable surface is not automatically
ruled unless it is sufficiently regular—consider the C° Miura-ori origami
pattern (center), or the isometric embedding of the flat torus (right) which
is highly wrinkled even though it exhibits C! continuity. We seek a dis-
cretization that captures both local flattenability and regularity. (Images
from Dudte et al. [2016] and Borrelli et al. [2012], used with permission).

3 DISCRETE DEVELOPABILITY

To develop our discrete definition, we first recall

some basic facts about developable surfaces. For

clarity we distinguish between a flattenable sur-

face, which is locally isometric to the Euclidean

plane, and a developable surface, which is also a

twice differentiable (C?) immersion. Equivalently, p

a developable surface is a C? immersion with zero

Gaussian curvature (K = 0). The additional regular-

ity of developable surfaces precludes pathological

behavior that can occur when a surface is merely

flattenable. For instance, a flattenable surface can

look like a crumpled piece of paper or a corrugated piece of origami,
whereas a developable surface must be a nice, smooth surface like a
cone or cylinder, with a straight ruling line passing through each
point (Figure 4). Under the Gauss map N, a developable surface
therefore degenerates to a network of curves meeting at extrinsi-
cally flat regions where k1 = k2 = 0 (see inset). Note that not every
ruled surface is developable (Figure 6, left), and flattenable surfaces
that are C! but not C? may not be ruled (Figure 6, right).

Taking a cue from these definitions, our notion of discrete de-
velopability deviates from the usual notion that a triangle mesh
is developable so long as it can be isometrically unfolded into the
plane, instead demanding that it also have discrete ruling lines. This
condition provides additional regularity, helping to mitigate the
“crumpling” behavior discussed above. This definition provides the
starting point for our variational formulation in Section 4.

3.1 Background and Notation

. Throughout we use V, E, F to denote
b St(i) the vertices, edges, and faces of a sim-

plicial surface M (i.e., a manifold tri-
k angle mesh). An oriented simplex is
expressed as an ordered list of ver-
tex indices—for instance, ijk denotes
a face with vertices i, j, k € V, and ori-
ented edges ij, jk, ki along its boundary. Expressions of the form
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uj = Yjee vij mean that a quantity u; associated with vertex i
is obtained by summing a quantity v;; over all edges containing i.
We use St(i) to denote the star of a vertex i, i.e., the collection of
simplices containing i. The geometry is given by a simplicial map
f + M — R3 interpolating coordinates f; fs

at each vertex i € V. Such a map is non- fa AN f3
degenerate if all triangles have nonzero
area; it is a simplicial immersion if it
is locally injective, or equivalently, if ev-
ery vertex star is embedded, i.e., triangles
intersect only at shared edges [Cervone
1996, Lemma 2.2]. The latter condition
is stronger than the former: consider for instance the inset figure
where the map f is not injective at 0, even though no triangle is
degenerate. For any nondegenerate trlangulatlon we use Njji to de-
note the unit normal of triangle ijk, and 9’ for the interior angle at
corner i of triangle ijk. The angle defect ofa vertex i € V is the sum
Q; =271 — YijkeF 9{ , corresponding to the integral of Gaussian
curvature over a small neighborhood around i.

3.2 Developability of Triangle Meshes

What does it mean for a triangle mesh to be developable? As in the
smooth case, a natural idea is to require zero Gaussian curvature:

Definition. A nondegenerate simplicial map f : M — R3 is dis-
crete flattenable if the angle defect Q; at every vertexi € V is zero.

This condition ensures that the mesh can be locally flattened in
the plane, since the angles around each vertex make a full 27. Yet
flattenability alone is not sufficient to characterize surfaces that are
easily manufactured—consider for instance Figure 4, (bottom left),
which, despite its noisy appearance, has exactly zero angle defect at
each vertex. This surface could in principle be constructed from an
idealized flat sheet, but perhaps not from real physical materials like
sheet metal. Moreover, flattenability alone does not ensure normal
convergence: as shown by Thibert et al. [2005], a flattenable mesh
may exhibit undesirable behavior even when inscribed in a smooth
developable surface (such as poor approximation of surface area).

These observations motivate the need for a stronger condition,
namely that (as in the smooth setting) a developable surface should
not merely be flattenable, but also come with some kind of regularity
that avoids degenerate or pathological behavior. In the smooth
setting regularity is provided by C? differentiability; in the discrete
setting (where we have at most one weak derivative) we replace
this analytical condition with a geometric one. In particular:

Fig. 7. Denoising a developable sheet (left) by simply minimizing angle
defect leads to a flattenable but noisy surface (center), whereas encouraging
discrete developability yields a smoother ruled surface (right).
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Fig. 8. A vertex is discrete developable if it looks like a HINGE or is FLAT.

Definition 3.1. A vertex star St(i) of a simplicial immersion f :
M — R3 is a hinge if the triangles ijk € St(i) can be partitioned
into two edge-connected regions over which the normals N; ;. are
constant; f is discrete developable if every vertex star is a hinge.
Any vertex that is not a hinge is a seam vertex.

Figure 8 illustrates the prototypical configuration for a HINGE:
two planar regions intersecting in a pair of antiparallel edges. A
special case is a FLAT configuration (all vertices in a common plane),
which admits many partitions into two flat regions. In addition to
being locally flattenable, any non-flat discrete developable surface
is (by Proposition A.2) discrete ruled:

Definition 3.2. A simplicial immersion f : M — R3 is discrete
ruled if every vertex i € V is contained in a path of parallel edges
ioi1, i1i2, . . ., in-1in € E with endpoints ip, i, on IM.

Importantly, however, not all discrete ruled
surfaces are discrete developable: the latter im-
plies that the triangles between two rulings
are all contained in a common plane. Defini-
tion 3.1 is therefore compatible with the stan-
dard notion of discrete developability for quad
meshes [Liu et al. 2006; Sauer 1970]: if edges
with zero dihedral angle are removed, what re-
mains is a collection of planar quad (PQ) strips.
For instance, the inset shows a developable
triangulation where edges shaded according
to their dihedral angle, revealing a PQ mesh
(Figures 14 and 26 are also rendered this way).

Normal Convergence. Normal convergence of a mesh inscribed in
a smooth developable surface ensures convergence of other prop-
erties, such as the development (i.e., unfolding) into the plane—see
[Morvan and Thibert 2006, Theorem 1]. Discrete developability
seems to automatically imply good normal approximation: for in-
stance, if the normals of a sequence of triangulations approach
the normals of an inscribing smooth developable surface (which
approach a small arc on the Gauss map), then the triangulations
will, by Theorem 3.3, approach discrete developability. Conversely,
one might also argue that if a sequence of discrete developable
triangulations are inscribed in a (nowhere flat and sufficiently regu-
lar) smooth developable surface, its ruling lines will eventually be
contained in ruling lines of the smooth surface, ensuring normal
convergence (though more rigorous arguments are needed here).
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3.3 Alternative Characterization

Though geometrically straightforward, the notion of discrete devel-
opability (Definition 3.1) can be difficult to optimize directly. We
therefore consider an alternative characterization:

THEOREM 3.3. An embedded vertex star St(i) forms a hinge if and
only if all its triangle normals N;ji. are contained in a common plane.

Proor. By definition a hinge has at most two distinct normals,
which are always contained in a common plane. Conversely, if all
normals are contained in a plane P, then the cross product of two
distinct normals Nj;r # Nj;; of triangles sharing an edge ij will be
parallel to both the edge vector e;; := fj — f; and the normal v of
P. Hence, if the normal changes across more than two edges, more
than two edges will be parallel to v. But since all edges emanate
from the same vertex i, such a St(i) cannot be embedded. Likewise,
if St(i) has exactly two distinct normals, they can differ across only
two edges; if it has only one normal it is trivially a hinge. O

This result is fairly surprising: merely asking that all normals
lie in a common plane forces them to “bifurcate” into two distinct
directions, corresponding to the two planes of the hinge. The first
condition (embeddability) plays a role in this bifurcation by pre-
venting the kind of degenerate cases illustrated in Figure 9. An easy
corollary of Theorem 3.3 is that a vertex is a hinge if and only if
the minimum width of its Gauss image is zero—a fact that we will
exploit in our variational formulation (Section 4.1).

Corner Cases. Configurations shown in Figure 9 help to further
understand Definition 3.1. The SpiKE, NEEDLE, and FIN approach
configurations where normals are coplanar and yet the vertex star
is not embedded—as in the smooth setting, the condition that f
must be a (simplicial) immersion provides additional regularity. The
DouBLECOVER further motivates the need to be immersed rather
than merely nondegenerate: this configuration has a zero-width
Gauss map but is not locally injective and hence fails to be a hinge.

Fin
Ny N,
v
=
Ny N
a
Ny
N3
—N
Ny
Ny

Fig. 9. As in the smooth setting, the requirement that the surface be im-
mersed avoids degenerate configurations such those pictured above.



Fig. 10. A given surface (left) evolves toward a piecewise developable approx-
imation using the combinatorial energy (center left) or the covariance energy
(center right). Modifying the covariance energy reduces the formation of
sharp spikes (right).

4 DEVELOPABLE APPROXIMATION

The definition of discrete developability (Section 3) can be used as
the starting point for algorithms that seek to design or approxi-
mate developable surfaces. Here we consider a simple variational
approach: formulate an energy that measures the developability
of each vertex, and apply numerical descent. One might also use
this definition as the starting point for other algorithms—some en-
ticing ideas are to use discrete developability as a constraint for
shape space exploration [Yang et al. 2011] or to seek a developable
triangulation that interpolates points sampled from a smooth devel-
opable surface [Peternell 2004; Thibert et al. 2005], though we do
not pursue those directions here.

4.1 Energy

The basic idea behind our variational formulation is to penalize
the width of the Gauss image associated with each vertex star, i.e.,
the polygon on the unit sphere made by consecutive triangle nor-
mals. There is no canonical way to measure this width—our only
hard requirement is that the energy of hinge vertices must be zero.
We therefore consider two possibilities, namely (i) a simple but
computationally expensive combinatorial energy based on a direct
interpretation of Definition 3.1, and (ii) a less expensive energy based
on Theorem 3.3 which measures the covariance of the triangle nor-
mals. Gradient descent on either energy yields an evolution that
exhibits a key property needed for developable design: empirically,
a given triangle mesh tends toward one that is discrete developable

Fig. 11. Minimization of our energy tends to concentrate the Gaussian
curvature of a given smooth surface (left) onto a sparse collection of seam
curves (center). Using a sparsity-inducing L! norm to achieve a similar effect
results in regions that are flat rather than developable (right).
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Fig. 12. Bottom: For a single vertex (left), minimizing the squared angle
defect produces a flat patch (center), whereas our energy (§7) yields a hinge
(right). Top: image of the vertex star under the Gauss map.

away from a sparse collection of seam curves, where all Gaussian
curvature is concentrated (see Figure 22). Interestingly enough, this
behavior does not arise from the use of a sparsity-inducing norm,
but rather from the simple geometric fact that seam curves are not
energetically significant (Section 4.1.3)—in fact, using an L! norm
in this context yields surfaces that are piecewise flat, rather than
piecewise developable, as demonstrated in Figure 11. Finally, we do
not explicitly encourage pairs of edges to be antiparallel, since flat
regions need not be discrete ruled—in fact, flat regions connecting
curved pieces may require a triangulation with no antiparallel pairs.

4.1.1 Combinatorial Width. Suppose we partition the faces of a
given vertex star St(i) into two edge-connected regions Fi, F; C F
of cardinality ny, ny (resp.). Letting Np = % YijkeF, Nijk be the
average of the triangle normals Nj;; in region Fp, the degree to
which the partition P := {Fj, F2} looks like a hinge can be quantified
by the deviation of the normals in each region from their mean:

n(P) = 2p=1,2 ﬁ ZO'GFP IN —Np|2 )
1

_ 1 2
= 2p=12 Z 2oy,00¢F, INoy = N |°.

Here N, denotes the unit normal of a triangle o € F. Vertex i is
then a hinge if and only if there is a bipartition P for which 7z (P) is
zero. Letting P; denote the set of all edge-connected bipartitions of
St(i), we therefore define a local energy

&y = }172171)11_ 7(P). (2)
The combinatorial energy & is then the sum of 8? over all vertices.
This energy is expensive to evaluate, since for a vertex of valence k
we must sum O(k?) terms for each of O(k?) partitions. Nonetheless,
it is a piecewise differentiable function of the vertex positions f;,
and can hence be optimized via standard subgradient methods as
described in Section 4.3.

4.1.2 Covariance. Alternatively, consider the characterization
given in Theorem 3.3, which says that an embedded vertex star St(i)
forms a hinge if and only if all of its triangle normals are contained
in a common plane. To quantify how hinge-like a vertex is, we can
therefore measure the average alignment of the normals with the
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Fig. 13. For a discrete developable triangulation inscribed in a piecewise de-
velopable surface, energy is nonzero only at seam vertices, where the Gauss
map is nondegenerate. This energy goes to zero under regular refinement.

unit normal u € R3 of the best-fit plane:

A; = min Z 9{k<u,Nijk)2. 3)
ul=1 s
Angle weights ensure that the energy does not change if we consider
a different tessellation of the same piecewise linear surface; note
that this quantity is also scale invariant. Since Equation 3 is just the
variational form of an eigenvalue problem, A; can also be expressed
as the smallest eigenvalue of the 3 X 3 normal covariance matrix

Aj = Z H{kNijkNijjﬂ.k. (4)
ijkeF
The normal covariance matrix also arises in the context of sur-
face descriptors [Berkmann and Caelli 1994] and quadric-based
mesh simplification [Garland and Heckbert 1997], where it can be
shown that its eigenvalues are related to the squares of the principal
curvatures—see for instance [Garland 1999, Section 4.4]. This fact
provides some intuition for the behavior of this energy: for instance,
it makes less aggressive changes to the shape of the vertex star than
penalizing the discrete Gaussian curvature Q;, since on the Gauss
sphere it corresponds to penalizing smallest width rather than area
(see Figure 12).
The developability of the whole mesh is measured via

Fig. 14. Minimizing our covariance energy naturally pushes the input (left)
toward a piecewise developable surface, but ruling lines may branch into
“V” shapes along seams (center). Replacing summation with maximization
yields straight ruling lines (right).
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As with the energy &%, the only degrees of freedom are the vertex
positions f;. Away from repeated eigenvalues this energy is smooth
and can be minimized using standard techniques; the main cost
is computing the eigenvalues 1; and their associated eigenvectors
(see Section 4.3 for details). It may however encourage SPIKE-like
vertices, whose normals approach a common plane (Figure 9). A
simple remedy is to measure the same energy intrinsically via the
exponential map on the sphere—see Appendix B.5 for details.

4.1.3 Piecewise Developable Surfaces.
An interesting behavior of the energies & \/\\’ I~

and &7 is that they tend to encourage not oL g >
only globally developable surfaces, but also -
piecewise developable surfaces. This behav- v X\é

ior can be understood by considering the
regular refinement sequence depicted in
Figure 13, where a mesh is inscribed in a
pair of developable pieces meeting along a
non-developable seam. Since these meshes
are discrete developable away from the

seam, energy is nonzero only at seam vertices. However, since It
and &4 effectively measure the square of the smallest width of poly-
gons on the Gauss sphere, the energy contributed by such a seam
goes to zero under regular subdivision—consider that the sum of
squared widths is a vanishingly small fraction of the sum of widths,
which is roughly constant. As a result, surfaces made of many de-
velopable pieces (inset, top) can approach zero energy in the limit
of refinement, though energy will still be nonzero at points where
several seams meet (inset, bottom).

4.1.4 Branching. At seams where two developable pieces meet,
both energies can produce ruling lines that branch into two (Fig-
ure 14, center). A simple example is shown in Figure 15, where a
branched configuration (left) and a perfectly ruled configuration
(right) yield Gauss images of equal minimum width. However, the
branched configuration will have lower energy, since both &4 and
&% take a sum of terms, thereby providing an average notion of
polygon width. We can avoid this behavior by simply replacing
summation with maximization, i.e., 7(P) from Equation 1 becomes

AP%(P) := max max  (Ny — Np)?, ©)

Fy€P Ny, N, €Fy

Fig. 15. Measuring the average deviation from planarity can result in
“branching” behavior at seam vertices where two developable pieces meet
(left); minimizing the worst alignment with any normal encourages straight
rulings (right).



Fig. 16. Valence-3 vertices occur at points where three seams meet; in order
to be hinge-like such vertices must be flat, causing rounding of features like
corners of the cube (left). We therefore omit the contribution of valence-3
vertices from the overall energy, enabling for instance a noisy cube (center)
to become a piecewise developable cuboid (right).

and the objective in Equation 3 becomes instead

max

78X := min max(u,Nijk)z. (6)

lul=1ijkeF

(Angle weights can be omitted since we no longer consider a sum.)
In the case of Figure 15, the two configurations for the seam vertices
now have identical energy, and the remaining vertices in the mesh
can freely evolve toward clean ruling lines. Though more expensive
to optimize, this strategy can be used to produce cleaner ruling lines,
as demonstrated in Figure 14, right.

Triple Points. In a piecewise developable surface, seams generi-
cally meet at a triple point—this observation fits together well with
the fact that valence-3 hinge vertices must be flat (Proposition A.3).
Rather than force such vertices to be developable, we simply omit
their contribution to the energy, allowing them to serve as triple
points. Figure 16 shows one example.

4.2 Regularity

In the limit of refinement, seams con-
tribute nothing to the energy (Sec- —
tion 4.1.3). For any finite mesh, how-

ever, seam vertices have nonzero energy—
minimization of this energy provides a natural smoothing of seam
curves, even though we do nothing to explicitly detect or extract
these curves (see Figure 17). Since the magnitude of energy shrinks

000

flow time ——

Fig. 17. Minimizing our energy automatically smooths out seam curves. To
compare with planar curvature flow, we construct a surface mesh around
a given planar curve (left). On this mesh we obtain an evolution (bottom)
nearly identical to standard elastic curve flow in the plane (top).

Developability of Triangle Meshes « 77:7

as the seam area goes to zero, we can use length scale of the mesh to
control the degree of regularization: first, we minimize the energy
on an initial coarse mesh to get the basic shape. Once the norm
of the energy gradient is below a given threshold (or the overall
design is simply satisfactory) we apply regular 4-1 subdivision to
all triangles (see inset) and continue minimizing in order to refine
seams and improve developability. In practice we tend to start with
fairly coarse meshes, and use no more than two or three rounds of
subdivision. In Figure 1 for instance we start with a mesh of about
1k triangles and subdivide twice; notice the natural smoothing of
contours in the face.

4.3 Numerical Optimization

Energy minimization can be performed via any standard numerical
technique for nonsmooth optimization; explicit expressions for gra-
dients are given in Appendix B. We experimented with a variety of
methods and found that L-BFGS using the line search of Lewis and
Overton [2013] yields the best results; to get a basic implementation

up and running, one can also

use standard (sub)gradient descent

with Armijo-Wolfe line search [No-

cedal and Wright 2006, Chapter .4 ¥

3.1]. In practice we also found

that small interior angles can ad-

versely affect the performance of
line search—for triangles with two
small angles we therefore perform bility we flip (left) or collapse
edge flips; for triangles with a sin- (right) triangles with small angles;
gle small angle we simply perform  otherwise, we do not perform any

an edge collapse (see inset). Oth- special remeshing to encourage
erwise, we do not perform any developability.

Fig. 18. To improve numerical sta-

remeshing. All calculations were performed in double precision;
for the energy &% we found that an accurate 3x3 eigensolver [Kopp
2008] is needed to achieve convergence.
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Fig. 19. Since we do not partition surfaces into patches, they can often be
cut and flattened into a single contiguous piece (top left), though global
overlaps may need to be resolved by cutting into additional pieces (top right).
Bottom: gluing together tiny “cracks” yields even nicer layouts. (Mostly white
coloring indicates that flattening yields virtually zero metric distortion.)
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4.4 Cutting and Flattening

During minimization, we need not identify which vertices are devel-
opable and which are seams. For fabrication or subsequent process-
ing, one may however wish to cut the model into explicit developable
pieces (as in Figure 19). We use a simple, automatic strategy: first
identify vertices with energy above a user-specified tolerance ¢ > 0,
then compute a cut passing through all such vertices via the method
of Erickson and Har-Peled [2004] (for surfaces with spherical topol-
ogy, just a minimal spanning tree). The tolerance can be viewed
as a very rough proxy for material stiffness: materials with strong
membrane stiffness (like paper) require one to cut more aggressively
through non-flat vertices than materials that stretch more easily
(like leather).

To get aesthetically pleasing cuts we setedge LSCM ABF
weights to a linear combination of (i) length = - “\*:i
and (ii) the dot product between the edge di- SN : L8
rection and the smaller eigenvector of the ma-
trix A; at each endpoint (Equation 4), thereby
encouraging cuts to align with principal di-
rections (though such weights are not strictly
required for flattening). Since the cut surface
has almost no Gaussian curvature, a confor-
mal flattening should in principle produce a
near-isometric map to the plane. In practice, 2™,
however, methods such as least-squares con- “ BFF
formal maps (LSCM) or angle based flattening (ABF) yield large
area distortion (see inset), since pieces connected by thin regions
can be scaled independently with little penalty. We instead use the
boundary first flattening (BFF) algorithm [Sawhney and Crane 2017],
which allows one to enforce isometry along the boundary. Figure 20
illustrates the effect of the tolerance ¢ on the cut, and shows that we
obtain simpler cuts over time. In all figures, we quantify scale distor-
tion via the log conformal factor of the flattening, indicated by the
red-blue scale. In practice, we glue together small “cracks” in param-
eter space (which have little effect on the final layout), and repeat
the flattening (see Figure 19, bottom). Global overlaps are avoided
by segmenting the flattening by hand (as in Figure 19, top right),
though automatic tools could of course be used instead [Sorkine
et al. 2002]. An interesting question for future work is whether we
can automatically avoid global overlap, perhaps using recent ideas
about automatic texture chartification [Poranne et al. 2017].
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4.5 Discussion

Empirically, different choices of energy, surface tessellation, or even
numerical descent strategy have an effect on the resulting piecewise
developable approximation, as shown in Figure 10. This fact is not at
all surprising in light of the ill-posed nature of the problem itself: in
general, there is not one clear “best” way to approximate a smooth
surface by developable pieces. As illustrated in Figure 2, the effect
is particularly pronounced in near-spherical regions (k1 close to k2),
where there is no clear preferred direction for ruling lines. Especially
in the intial stage, the choice of mesh and energy therefore has a
pronounced effect on the final design; at finer levels of tessellation,
all energies tend to have very similar behavior.

ACM Trans. Graph., Vol. 37, No. 4, Article 77. Publication date: August 2018.

cut tolerance decreasing

flow time increasing——

Fig. 20. Top row: Increasing the cut tolerance ¢ accommodates progres-
sively stiffer materials; here setting ¢ = .01, .005, .002, .001 results in a
progressively lower average scale distortion of 2.4, .09, .006, .0004, resp. (also
indicated by the checkerboard pattern). Bottom row: for a fixed tolerance ¢,
we obtain shorter and shorter cuts over time.

5 RESULTS

Here we perform numerical experiments and explore preliminary
applications to surface approximation and developable design (Sec-
tion 5.2). We also take a brief forward look toward manufacturing
(Sections 5.3 and 5.4).

5.1 Validation

Several experiments indicate that optimization of discrete devel-
opability exhibits the expected behavior. Figure 22 confirms that
curvature concentrates onto seams, becoming highly flattenable ev-
erywhere else (as seen in Figure 19). Figure 7 confirms that merely
minimizing the squared angle defect Q (i.e., the discrete Gaussian
curvature) yields a surface that is perfectly flattenable yet highly
“crumpled” like a piece of paper—in contrast, we obtain a smoother
surface with clear ruling lines. Figure 17 confirms that seams are
automatically smoothed out, as discussed in Section 4.2. Figure 2
emphasizes that for many surfaces (such as the sphere), there may
be no clear “best” piecewise developable approximation. Instead, one
can guide the solution toward a desired result by picking an initial
triangulation that roughly suggests important geometric features.

Figure 26 shows the effect of tessellation on surfaces that are
already close to developable. Here we minimize the covariance
energy &% no preprocessing is performed, and no constraints or
projections keep the mesh close to the initial surface. For these
simple examples, the tessellation has little effect on the overall
shape, but still encourages a ruling line parameterization. Note
also that the choice of mesh will affect the number of ruling lines:
for instance, the cone at center has far fewer vertices on the top
boundary component than the bottom—since (by Proposition A.2)
ruling lines must have endpoints on the boundary, there cannot be
a discrete developable surface with a ruling line passing through
all bottom boundary vertices. For a similar reason, local adaptivity
provides little value, since not every vertex in the “fine” region can
belong to its own ruling.



Developability of Triangle Meshes « 77:9

Fig. 21. Here we approximate a given shape (leftmost in each image) with a surface that is developable away from seam curves. Unlike methods that partition
the surface into individual pieces, seams can blend organically into the design. Left to right: a swingarm model produced via topological optimization (courtesy
Autodesk); the handle of a drill; and a guitar body, which naturally yields features appearing in real guitar designs (bottom right).

Fig. 22. On the Stanford bunny (top row), Gaussian curvature K concen-
trates onto a sparse collection of curves (bottom row).

5.2 Developable Design

A long-standing challenge in digital manufacturing is automatic
approximation of general curved surfaces by high-quality ruled
developable pieces. Our method represents the first stage in such a
pipeline, taking any unstructured mesh to one or more piecewise
developable designs. A more complete pipeline might entail, e.g.,
conversion into a clean network of developable splines (as con-
sidered in Tang et al. [2016]), which in turn facilitates tool path
planning for cylindrical flank milling [Chu and Chen 2005]. We
ran our method on a variety of models, including those pictured in
Figures 1, 22 and 21.

A top-down description of our algorithm is as follows. The in-
put to our algorithm is most typically a coarse mesh of the target
surface, obtained either via coarsening (as described below) or by
“sketching out” a rough target design, akin to modeling a coarse

subdivision cage. Given this initial mesh, we perform energy min-
imization (Section 4.3) until the gradient is sufficiently small, or
we are satisfied with the rough shape. We then apply regular 4-1
subdivision (Section 4.2) and this process is repeated until we are
satisfied with the quality of the fine mesh. Refinement steps are
currently executed “by hand” based on aesthetic judgements that
are part of the design process; one might also implement automatic
refinement based on the norm of the gradient.

Examples are shown in Figure 23, where each model captures the
basic design intent, but also suggests design possibilities not origi-
nally conceived by the user. Since there are many different piecewise
developable approximations of a given surface, the choice of input
mesh will influence the final result. This effect is most pronounced
for coarse meshes, where different tessellations can have a signif-
icant effect on global geometry (Figure 27); for finer meshes they
effectively act as different parameterizations, and have a less signifi-
cant geometric effect (Figure 26). To obtain coarse input for Figures
3 far right, 10, 21, 22, 23, 25, 24 we ran the freely-available meshing
tool of Jakob et al. [2015], using a field with triangular symmetry
and extrinsic alignment. Since this tool aims for uniform element
size, we also ran Willmore flow [Bergou et al. 2006] on Figure 21
left, to capture the thin handles on the front of the swingarm.

As illustrated in Figure 10, different energies will yield different
solutions; we used the combinatorial energy &P for Figures 1, 2, and
25, and the covariance energy & for Figures 11 center, 7; in Figures
20, 21, and 22 we used the intrinsic version of this energy described
in Appendix B.5.1. In Figures 23 and 24 we used &% in the coarse
phase and & in the fine phase. Though different energies can be
used to tweak the design, we find that in general just using one of
the energies (say, &) will produce reasonable default designs for
most models.

Runtimes for all examples were on the order of seconds to a few
minutes on a 3.4GHz Intel Core i7 laptop with 32GB of RAM; we did
not use multithreading, though gradient calculations could easily
be parallelized. Especially during the initial coarse phase, the mesh
rapidly evolves toward a shape that looks much like the final design;
subsequent refinement takes no more than a few minutes, especially
with L-BFGS and an appropriate line search (Section 4.3).

ACM Trans. Graph., Vol. 37, No. 4, Article 77. Publication date: August 2018.
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Fig. 23. Beyond the traditional task of shape approximation, our method enables developable shape exploration by starting with a coarse mesh and
optimizing/refining toward a piecewise developable surface with organic flowlines. (Input mesh in each figure is shown in wireframe.)

5.3 Paper Craft

As a simple test of physical feasibility we fabricated a piecewise
developable surface using a consumer cutting plotter (Silhouette
CAMEDO), shown in Figure 24. Here additional cuts had to be made
to avoid overlap in the flattened domain. An interesting direction
for future work is to optimize surfaces toward those with curved
folds [Kilian et al. 2008], so that they can be formed from a single
sheet of material; one possibility here is to penalize only the angle
defect Q; along curved folds (rather than E® or 8’1).

5.4  Flank Milling

Though our method provides only one small piece in a larger pipeline,
we can still get a glimpse of how our designs might facilitate manu-
facturing via flank milling. As opposed to traditional point milling,
which carves out material using only the tip of a cutting tool, flank
milling sweeps a cylindrical bit along the surface, allowing for faster
cuts and higher-quality surfaces [Harik et al. 2013]. By starting with
a piecewise developable design, one can ensure that material is not
erroneously added nor subtracted to the manufactured piece due
to out-of-plane twisting of the bit along the toolpath. A common
practice is to first cast or 3D print the bulk near net shape (thereby

Fig. 24. Simple test of physical feasibility: an initial mesh of a face (left) is
optimized to obtain a piecewise developable approximation (center), which is
then cut from paper, glued together, and spray painted to obtain a physical
model (right).
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avoiding excess waste), then use flank milling to obtain accurate
mating surfaces, threads, efc., which must come into precise contact.
Figure 25 prototypes such a process starting with our method, fol-
lowed by manual extraction of PQ strips in a polygon mesh editor,
and subsequent toolpath generation in Autodesk Fusion 360. Milling
was performed using via a Pocket NC V1, a USD $5k hobbyist-level
5-axis mill. Though each individual contour is easily machined,
extracting a global spline network, as well as planning a globally
feasible toolpath, remains an interesting challenge for future work.

6 LIMITATIONS AND FUTURE WORK

Though we have laid some of the basic foundations, many questions
still remain. On the theoretical side, there is still the fundamental
question of how to formulate the task of finding the “best” piecewise
developable approximation as a well-posed problem: simply asking
for the closest approximation (e.g., in the Hausdorff sense) is not
meaningful since one can find “crumpled” solutions that are arbi-
trarily close to a given surface. The variational approach provides
an enticing framework for thinking about such questions. In fact,
this work was originally inspired by thinking about a gradient flow
on the smooth energy

E(f) = j]‘wxi“ dA,

which penalizes the smaller (in magnitude) principal curvature kq
of a surface f : M — R3. Exploring the connections between this
smooth energy and our discrete variational formulation is therefore
a natural topic for future work.

At a more practical level, our current optimization strategy does
not produce perfectly straight rulings except on fairly simple meshes;
a better understanding of this issue could lead to meshes with a
cleaner PQ structure (perhaps by incorporating more sophisticated
remeshing). More broadly, our method is only the first step in a
fully automated pipeline for taking a given input surface all the way
through the process of developable approximation, decomposition
into clean developable pieces (such as PQ strips or spline devel-
opables), and final manufacturing via roll bending or flank milling.
For milling, a complete solution would also need to accommodate
mechanical constraints such as collision avoidance, possibly via
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Fig. 25. Prototype of fabrication via flank milling. An originally smooth faucet design (a) evolves into a piecewise developable surface (b) with fairly clear seam
curves and ruling lines (c) which are extracted by hand (d) in a polygon mesh editor and partitioned into PQ strips (e). These strips are then semi-automatically
converted into tool paths (f) via NURBS patches. A contour of the final piece is then flank milled using a hobbyist 5-axis CNC mill (g).
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Fig. 26. Here we examine the effect of the tessellation on surfaces that are developable (far left, center left, center right) or nearly developable (far right). In
each case the middle row shows the input and the bottom row shows the result of optimization; a smooth developable surface is shown at top for reference.
Dark edges indicate large dihedral angles, and white edges indicate zero dihedral angles.

joint optimization of the geometry and the tool path. In general
we are hopeful that a notion of discrete developability for general
triangle meshes, as well as the variational point of view, will pro-
vide fertile soil for future work in developable surface processing,
approximation, and design.
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A PROPERTIES OF DISCRETE DEVELOPABLE
TRIANGULATIONS

As described in Definition 3.1, a vertex i is a hinge if St(i) is embed-
ded and its triangles can be partitioned into two edge-connected
flat regions; it is flat if the normals of all its triangles are parallel.

PRrOPOSITION A.1. If an interior vertex i is a non-flat hinge vertex,
then it is contained in a pair of antiparallel edges ia, ib € St(i).

ProoF. Let Ni, N be the normals of the two flat regions of St(i);
since these regions are edge-connected, there will be exactly two
edges ia, ib that share both normals. Since i is not flat, the normals
must be distinct (N7 # N); since it is embedded, they must not
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be antiparallel (N7 # —N3). Hence, the cross products N; X Ny =
—Njy X Nj yield nonzero vectors parallel to the two edges ia,ib. O

ProrosITION A.2. Consider a discrete developable immersion f
with no flat vertices. Then f is discrete ruled.

Proor. By Proposition A.1, any interior vertex i must have a
pair of antiparallel edges ia, ib; let N1, N2 be the distinct normals
determining the edge directions. Since St(a) and St(b) each share a
pair of triangles with normals Nj, Ny, they will each contain a pair
of antiparallel edges along the same line (or a single edge in the case
of boundary vertices). o

PROPOSITION A.3. Any valence-3 hinge vertex i € V is necessarily

flat.

PRrOOF. Suppose i were not flat. Then by Proposition A.1 it would
have a pair of antiparallel edges va, vb. But since i has valence 3,
va and vb must be edges of the same triangle, i.e, i, a, and b are
collinear. Hence St(i) is not a hinge, since it is not embedded. O

B ENERGY AND GRADIENT EVALUATION

This section provides explicit expressions for evaluating the energies
described in Section 4.1 and their gradients.

B.1 Derivatives of Basic Quantities
Our energies depend only on the triangle areas A; j, triangle nor-

mals N;jr and interior angles 9{ k, which have the following gradi-
ents with respect to vertex positions f:

VA = $Nijre X (fi = fi)s (7)
VN = g (e = )X NN ®
ij
Vol = Nyex (fi= HIfi = f,
VROS = Nigx (- )l - fil, ©)
AR ITARS I

Since these quantities depend only on the positions of vertices i, j,
and k, the gradients with respect to any other vertex are zero.

B.2 Combinatorial Energy

To evaluate the gradient of the combinatorial energy 8? associated
with vertex i, we first identify the partition P minimizing 7 (P)
(Equation 1). The gradient of a single term in this sum with respect
to the position f,, of any vertex p € V can then be expressed via

VfP|N0'1 - N02|2 = 2<Nc71 - Nag,Vﬁ,Ncrl - prNcrz>7

where the normal gradient is given in Equation 8. The energy gra-
dient is then the sum over all such terms. In the case where there
are two or more partitions of equal energy, the gradient of any of
them will be a subgradient of the piecewise smooth energy &7,
which is still suitable for the first-order descent strategy outlined in
Section 4.3. To avoid branching (Section 4.1.4), the gradient of any
maximal term provides a subgradient for Equation 5.
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Fig. 28. The maximal covariance energy is easily evaluated by sampling
the objective at the vertices of a spherical Voronoi diagram (left), which are
simply the unit normals of the triangles formed by three points on the unit
sphere (right).

B.3 Covariance Energy
At any vertex i € V, let A be an eigenvalue of the matrix A; =
2ijkeF 9{ kN,- jkNiTj x with associated eigenvector x. Then the gradi-

ent of A with respect to the position f,, € R3 of any vertex p € V
is

ik ik
Ve A= Z (XTNijk)ZVfPQ{ +20] (xTNijk)(Vﬁ,Nijk)TX, (10)
ijkeF
where we have simply applied the chain rule and the identity V44 =
xxT . Expressions for prNijk and V]}, G{k are given in Equations 8
and 9, resp.

B.4 Maximal Covariance

Energy. To evaluate the energy given by Equation 6, let
u) := max{u, N;; Z
¢( ) ijk€F< zjk>

This function is piecewise smooth over spherical Voronoi cells asso-
ciated with the unit normals Nj;; and their antipodes —N; ;. (see
Figure 28, left). Its minimum is therefore found at a vertex of the
spherical Voronoi diagram, which will be the spherical centroid of
some triple of sites. Since ¢ achieves a minimum at a Voronoi vertex,
minimizing ¢ over all triples necessarily yields the optimal value
AT From the perspective of performance and numerical stability,
simply evaluating ¢ for all triples is more attractive than explic-
itly building the Voronoi diagram, especially since the number of
distinct triples is typically very small. To compute the spherical cen-
troid of three unit vectors a, b, c, note that the geodesic circumcenter
of a spherical triangle coincides with the unit normal of the plane
containing the triangle’s vertices (Figure 28, right). The location of
the site is therefore just w = (b — a) X (¢ — a)/|(b — a) X (¢ — a)|. To
avoid a zero denominator we simply omit redundant sites.

Subgradient. Since ¢ is a maximum over a collection of convex
differentiable functions, the gradient of any maximizing term pro-
vides a subgradient that can be used for optimization (Section 4.3).
In particular, let v be the unit vector minimizing ¢, let M be the max-
imizing normal, and let a, b, ¢ € F be the triple of triangles whose
normals define v. Then the subgradient V¢, A7** with respect to
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Fig. 29. For vertex stars with a large Gauss image (such as a SPIKE) one can
quantify the width of the spherical polygon as the width of a 2D polygon

whose vertices v’. are taken to the triangle normals Nz]k by the exponential
map exp at the vertex normal Nj.

the position f, of a vertex p € V can be expressed as

<v €p ><M>

AN 2An M+ Z

o€la,b,c}

<v, exlp X N5> (eg X v, M)
4AgpcAc

2(v, M)

o

where Ny is the unit normal of triangle o € F, Ays and A, are the
areas of triangles with normals M and p (resp.), A ;p is the Euclidean
area of a triangle with vertices a, b, c, ep € R3 is the edge vector
opposite vertex p in the triangle with normal M (or zero if p is not
contained in this triangle), and e, |, is the edge across from vertex
p in triangle o.

B.5 Intrinsic Width

Energy. The energy &* (Section 4.1) quantifies the width of a
polygon on the sphere via the covariance of extrinsic unit vectors
Nij € R3, which can lead to artifacts (e.g., SpikEs) for large poly-
gons. An intrinsic notion of width is obtained by instead expressing
this polygon in terms of the exponential map at the center of the
polygon (Figure 29). In particular, if N; is the area-weighted ver-
tex normal at a vertex i € V (i.e., the unit vector in the direction
Yijker AjjkNijk) and (p?k is the angle from N; to some triangle nor-
mal Njj in St(i), then the triangle normal itself can be expressed
as

ik jk
Nijk = expy, (¢} V")
for some unit tangent vector v, where exp,, denotes the exponential

map at a point p on the 2-sphere S? (see Figure 29). More explicitly,
this vector can be obtained by simply projecting Nj i onto the plane
of N; and normalizing:

Sk
V}k

Nl ik — <Nz]k’Nl>Nl,
AN

ACM Trans. Graph., Vol. 37, No. 4, Article 77. Publication date: August 2018.

bl

Letting NJ i (/77 k v} % the width of the spherical polygon can then
be quantlﬁed via the smallest eigenvalue of the 2 X 2 matrix

ht ik X7k ik

A= ) 0NN,

ijkeF
mirroring Equation 4.
Gradient. Let Nj be the area weighted normal at vertex i € V, let

V}k = N1><Nl]k, let y; = v’ XNj, and let B = v’ ><N,Jk, where
uXv = u X v/|u x| denotes the normalized cross product. Then

the gradient of 1\7{ k with respect to the position f;, of a vertex p € V
can be expressed as

= jk Pijk  jk, jk\T
v, N =(ﬂiu} e v’ 5T )prNijk
15}
(11)
Pijk ik\T
_(l-’il—’}""/)ijkNilliT'*'—l] PG )V N;
tangoijk

The gradients for N; and Njj; can be expressed via the expressions
from Appendix B.1; the gradient of the overall energy can then be

expressed by substituting ]:]lj ¥ for Njjk in Equation 10.

B.5.1 Branching.

Energy. In the intrinsic case, one can avoid the branching artifacts
described in Section 4.1.4 by penalizing the minimum width of the
convex hull of the n points N € R2. This width can be computed
via the method of rotating calipers in O(nlogn) time, including
construction of the convex hull. However, since n is always quite
small (about six on average) a simpler implementation is to just
minimize the energy

min max <ﬁ{k - ﬁfq, u)z
|ul=11ijk,ipqeSt(i)
=y
by enumerating all distinct pairs of
vectors xg = iﬁ{k,xb = iqu. The 0
minimizing vector u, for any such
4 (xq,u)

pair will be the vector pointing along
the altitude of the triangle (0, x4, xp)
(see inset), and one can easily show
that the minimum width of the convex hull is then the value of ¥/
among all such vectors u”, . The subgradient is found by simply

(xb_,u) Xq Xp

taking the gradient of the term maximizing y—here the only new

expression is the gradient of the unit altitude uj; p> 8iven by
1 T
anu:;b :—W(NiXW)W ,

where w := x}, — x4 (and likewise for xp).
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