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a b s t r a c t 

A detailed comparison of the accuracy of several popular micromechanical schemes utilized for prediction 

of the effective elastic properties of materials with parallel cracks is presented. In particular, the non- 

interaction, Mori–Tanaka, differential and self-consistent schemes are compared against the direct finite 

element simulations. The latter are performed on the periodic representative volume elements containing 

30 strongly oblate spheroids representing the penny-shaped cracks. This work extends the existent results 

to a more general class of matrix materials – orthotropic materials, which requires the ability to calculate 

the Eshelby tensor for an ellipsoid in non-isotropic matrix. In addition to the implementation of the 

integration procedure used for the Eshelby tensor calculation, this work also presents a variation of the 

Random Sequential Adsorption algorithm modified for periodic structures. 

Analysis of the results indicates that in the case of parallel nearly flat cracks (strongly oblate 

spheroids) the overall out-of-plane moduli are best predicted by the differential scheme. On the other 

hand, Mori–Tanaka scheme should be used for estimation of the in-plane moduli. It also appears that as 

the cracks are inflated from strongly oblate spheroids to slightly deformed spheres, the best choice of the 

micromechanical scheme for the out-of-plane properties gradually shifts towards Mori–Tanaka. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Micromechanical schemes, based on certain simplifying as-

sumptions with respect to interaction of inhomogeneities, provide

an efficient tool to predict the overall (effective) elastic properties

of materials with inhomogeneities ( Mori and Tanaka, 1973; Ben-

veniste, 1987; Kröner, 1958; Hill, 1965; Budiansky, 1965; McLaugh-

lin, 1977; Salganik, 1973; Eroshkin and Tsukrov, 2005 ). They are

particularly suited for parametric studies focusing on evaluation of

the effects of inhomogeneities shapes, concentration, and stiffness

or compliance on the overall response. For such parametric studies,

direct numerical simulations of a large number of the representa-

tive volume elements (RVE) of the materials with inhomogeneities

would require significant computational resources and are not al-

ways feasible. Note that the third popular micromechanical ap-

proach involving establishing exact variational bounds on the over-

all elastic properties ( Hashin and Shtrikman, 1963 ) may result in

the bounds that are too wide in the case of large contrast in the
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lastic properties of matrix and inhomogeneities, e.g. pores and

racks. 

In this paper we investigate the accuracy of several popular mi-

romechanical schemes for isotropic and orthotropic solids with

arallel penny-shaped cracks. This is done by comparing the an-

lytical micromechanical modeling results with direct finite ele-

ent (FE) simulations conducted on the RVEs of the cracked solids.

e also consider how the accuracy of the schemes changes if the

racks in the solids are “inflated” to become the oblate spheroidal

ores. 

Evaluation of contribution of cracks to the effective elastic prop-

rties of cracked solids is one of the classical and well devel-

ped topics in the mechanics of solids, as reviewed, for exam-

le, in Kachanov (1993) . However, certain controversy exists in

he choice of the best micromechanical modeling approach to this

roblem, in particular, Mori–Tanaka (MT) ( Mori and Tanaka, 1973;

enveniste, 1987 ) or differential (DIFF) scheme ( Salganik, 1973;

cLaughlin, 1977; Zimmerman, 1985 ). Note that in the case of

racks the predictions of Mori–Tanaka approach coincide with the

on-interaction (NI) approximation, see Kachanov (1993) . A num-

er publications argue in favor of NI (and hence MT) scheme,

ee Kachanov (1993), Kachanov et al., (1994) and Grechka and

achanov (2006) . Their conclusions are based on comparison with
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umerical results utilizing the “transmission factors” approach

f Kachanov (1987) or finite element simulations. On the other

and, in studies of several other research groups ( Dahm and

ecker, 1998; Orlowsky et al., 2003; Saenger et al., 2006 ) the

ifferential scheme was found to be closer to numerical results.

aenger (2007) claimed that the results of Grechka (2007) favor

he non-interaction approximation over differential scheme due

o unjustified constraints on the location of cracks within RVE.

eelig et al. (20 0 0) implemented the “transmission factor” ap-

roach of Kachanov (1987) in combination with the boundary ele-

ent method. Their numerical results for random and parallel 2D

racks are located between the NI and DIFF predictions. 

All of the above publications deal with cracks in isotropic matri-

es. For anisotropic solids with cracks, Gottesman et al. (1980) con-

idered influence of parallel cracks on a fibrous composite mate-

ial on the basis of variational techniques and also in the self-

onsistent scheme framework. Laws et al. (1983) presented re-

ults for transversely isotropic material with parallel cracks in-

nitely long in the direction of transverse isotropy axis (plane

train formulation). The cracks were modeled as elliptical cylin-

ers; the results were obtained using self-consistent method.

ashin (1988) considered isotropic material with randomly ori-

nted cracks and 2D case of orthotropic material with parallel

racks utilizing differential and self-consistent methods. Deng and

emat-Nasser (1992) considered anisotropic material with paral-

el cracks in 2D using dilute distribution, differential and self-

onsistent methods. Mauge and Kachanov (1994) performed nu-

erical simulations on sample arrays of parallel and randomly ori-

nted interacting cracks in 2D materials with random anisotropy

nd compared the calculated values of Young’s moduli with pre-

ictions given by non-interaction, self-consistent and differential

chemes. Their simulations were limited by the requirement that

eighboring cracks were not closer than 0.2 of crack lengths to

ave convergence in the utilized numerical procedure. 

3D results for anisotropic matrix are mostly limited to trans-

ersely isotropic materials with cracks parallel to the plane

f isotropy. Willis (1977) presented expressions for Hashin–

htrikman bounds and self-consistent approach for composite with

nisotropic constituents and illustrated the results by calculating

he effective conductivity of an anisotropic matrix with aligned

pheroidal inhomogeneities. Withers (1989) derived a solution

or elastic fields around an ellipsoidal inclusion in transversely

sotropic matrix using a method analogous to Eshelby (1957) .

ushch and Sevostianov (2004) presented results for effective

lastic properties of composites with spherical inhomogeneities

nd transversely isotropic material properties obtained using an

nalytical approach based on the multipole expansion method.

evostianov et al. (2005) performed a micromechanical modeling

ased on the stiffness and compliance contribution tensors com-

ined with non-interaction and effective field method for com-

osites with spheroidal inhomogeneities and transversely isotropic

hases. 

In this paper we investigate the applicability of several com-

only used micromechanical schemes to prediction of effec-

ive elastic response of orthotropic materials containing paral-

el penny-shaped crack-like pores. The paper is organized as fol-

ows. Section 2 presents our approach to micromechanical mod-

ling based on contribution of a single inhomogeneity to the ef-

ective elastic properties combined with non-interaction, Mori–

anaka, differential and self-consistent schemes. The procedures

or geometry generation, meshing, FE model preparation and pro-

essing of simulation results are described in section 3 . This sec-

ion includes a mesh sensitivity study, in which we compare the

ffect of two mesh refinement techniques (local and global) and

he order of the volumetric finite elements on the elastic mod-

li predictions. Section 4 focuses on the performance of the mi-
romechanical schemes for orthotropic materials containing par-

llel crack-like pores. The section also contains a validation of

he numerical procedure for calculating the Eshelby tensor for or-

hotropic materials which is required for the proposed microme-

hanical modeling. Section 5 presents a study on the accuracy of

he considered micromechanical schemes for isotropic materials

ith oblate spheroidal pores having aspect ratios in the range 0.1–

.8. Final conclusions of this research are formulated in Section 6 . 

. Micromechanical modeling 

The micromechanical approach utilized in this paper is based

n the compliance contribution tensor of inhomogeneities H . This

oncept was first introduced in Horii and Nemat-Nasser (1983) and

hen used in Kachanov et al. (1994) to evaluate contributions of

arious pores in isotropic 2D and 3D materials. The approach is

resented here for materials with inhomogeneities of general type

nd shape following Eroshkin and Tsukrov (2005) . In the case of

ores and cracks the stiffness of the inhomogeneity is equal to

ero. 

In this work we assume that the cracked material is statistically

omogenous and a certain representative volume element (RVE)

an be chosen such that its properties are the same as of the en-

ire heterogeneous material. More detail on the concept of the RVE

an be found in Hill (1963) and Markov (1999) . 

The effective com pliance S of a material with inhomogeneities

s expressed as 

 = S M + H 
RVE , (1) 

here S M 
is the compliance tensor of the matrix material and

 
RVE is the compliance contribution tensor of all inhomogeneities

resent in the RVE. For non-interacting defects tensor H 
RVE can be

ound simply as a sum of contributions of individual defects. The

pproaches to deal with interacting defects are discussed later in

his section. 

In order to obtain contributions of various types of defects, we

eed to solve the so-called “single inclusion problem”. Contribu-

ion of an inhomogeneity to the overall properties of a material is

valuated as follows. The inhomogeneity of volume V I is placed in

n infinite elastic matrix subjected to the remotely applied stress
∞ . The additional average strain in some reference volume ˜ V con-

aining inhomogeneity is proportional to the applied stress: 

ε = H : σ∞ 

here H is the inhomogeneity compliance contribution tensor. 

Most of the micromechanical models are based on the solu-

ion for the ellipsoidal inhomogeneity provided by Eshelby (1957) .

riginally the solution was derived for the isotropic material in

erms of elliptic integrals for a general ellipsoidal inhomogeneity.

ater this solution was expanded to other types of matrix mate-

ial symmetry, see, for example, Sevostianov et al. (2005) . How-

ver, there is still no explicit analytical solution of the Eshelby

roblem for a general anisotropic material. This issue was ad-

ressed by Mura (1987) , who proposed to simplify the elliptic inte-

rals to triple integrals. The idea was implemented numerically by

hahremani (1977) and improved by Gavazzi and Lagoudas (1990) .

The expression for the compliance contribution tensor of an el-

ipsoidal inclusion H in terms of the compliance tensors of the ma-

rix S M 
and the inhomogeneity S I and Eshelby tensor s can be writ-

en as (see Sevostianov and Kachanov, 2002 ) 

 = 

V I 
˜ V 

[
( S I − S M ) 

−1 + S −1 
M 

: ( I − s ) 
]
. (2) 

It is extremely difficult to analytically solve the elasticity prob-

em for multiple interacting inhomogeneities. So, the interaction

etween defects is taken into account utilizing various simpli-

ying micromechanical models (or schemes). Depending on how
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Fig. 1. RVE containing parallel cracks and meshed with 3D elements; crack density 

(as defined by formula (8) ) is ρ = 0.7. 
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we treat the interaction between the inhomogeneities various mi-

cromechanical models are distinguished. 

2.1. Non-interaction micromechanical model 

This scheme is based on the assumption that separate inhomo-

geneities do not interact with each other. In this case, the com-

bined compliance contribution tensor of the entire RVE is calcu-

lated as a sum of the individual inhomogeneities’ contributions 

H 
NI = 

∑ H 
, S = S M + H 

NI (3)

where H 
NI is the H 

RVE for the non-interacting inhomogeneities 

2.2. Mori–Tanaka micromechanical model 

This model assumes that inhomogeneity is subjected to

the remotely applied stress σM 
which is equal to the aver-

age stress within the matrix phase of the RVE, see Mori and

Tanaka (1973) and Benveniste (1987) . Mathematically it can be

written as 

H 
MT = H 

NI : 
[
f M ( S I − S M ) + H 

NI 
]−1 

: ( S I − S M ) , (4)

S = S M + H 
NI , 

where f M 
is the volume fraction of the matrix material. 

2.3. Self-consistent micromechanical model 

This approximation is based on the assumption that each inho-

mogeneity is subjected to the remotely applied stress and placed

into the matrix material with the properties equivalent to the

overall effective properties of the inhomogeneous material ( Kröner,

1958; Hill, 1965; Budiansky, 1965 ). The effective compliance tensor

of this material is found from the transcendent equation: 

S = S M + ( S I − S M ) : ( S I − S ) 
−1 : H 

NI ( S , S I ) , (5)

where H 
NI ( S,S I ) is the non-interaction H -tensor of the RVE calcu-

lated for the matrix material having the effective compliance. In

general case, Eq. (5) doesn’t have an analytical solution and can

only be solved numerically. 

2.4. Differential micromechanical model 

The idea of this model is in incrementally increasing the vol-

ume fraction of the inhomogeneities until the desired value is

reached. At each iteration the non-interaction inhomogeneity prob-

lem is solved for the matrix having the compliance of the ho-

mogenized material ( Salganik, 1973; McLaughlin, 1977 ). Mathemat-

ically, this model is represented as the following ordinary differen-

tial equation 

dS 

dt 
= 

1 

f I ( 1 − t ) 
H 

NI ( S ( t ) , S I ) , S ( 0 ) = S M (6)

or 

d H 
DIFF 

dt 
= 

1 

f I ( 1 − t ) 
H 

NI 
(
S M + H 

DIFF , S I 
)
, H 

DIFF ( 0 ) = 0 , (7)

where t is the integration variable which changes in the range [0,

f ], where f is the volume fraction of inhomogeneities. 
I I 
. Numerical simulations 

.1. Generation of the RVE 

Numerical predictions of effective elastic properties of a cracked

olid were obtained by finite element analysis of periodic RVEs

ith multiple cracks. Each RVE contained 30 identical randomly

istributed parallel cracks that were approximated by penny-

haped (spheroidal) pores having semi-axes a 1 = a 2 = R, a 3 = αR ,

here α is the spheroid’s aspect ratio defining the thickness

opening) of the crack. Note that the overall elastic response of the

racked solid is less sensitive to the crack thickness than the stress

oncentrations (in the limiting case, stress intensity) near the crack

ip. That is why the choice of α was mostly dictated by FE meshing

onvenience. In our simulations we assume α = 0.01 (compare with

= 0.08 in Grechka, 2007 ). The RVEs were subjected to prescribed

isplacements with the corresponding periodicity constraints. The

ffective stiffness was determined by relating the average stress in

he RVE to the prescribed strain. 

The following requirements had to be satisfied during genera-

ion of RVEs for this numerical study: 

• the RVE must be suitable for the FE discretization, 

• the RVE must be periodic (opposite faces of the unit cell are

identical), 

• the pores in the RVE have to be randomly distributed. 

In the simulation, the RVE was assumed to be of a cubic shape

nd unit volume. The radii and aspect ratios of the pores were cho-

en based on the desired pore volume fraction (or crack density).

o make the unit cell suitable for the finite element discretization,

he distance between the neighboring pores had to be sufficient

o avoid distorted finite elements. We constrained the distance be-

ween the neighboring pores to exceed 1/10th of the pore radius. 

Periodic unit cells with 30 pores were generated using the

andom Sequential Adsorption (RSA) algorithm (see Rintoul and

orquato, 1997 ). In the beginning, a single pore is inserted into the

VE and the coordinates of its center are stored, then it is checked

f this pore intersects the faces of the RVE. If there is an inter-

ection, the algorithm calculates the coordinates of the additional

ores intersecting the opposite faces of the unit cell to keep it pe-
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Fig. 2. Predictions of the effective E 3 , G 23 and v 31 as functions of number of elements. Symbol “�” denotes the result for the uniform mesh with 6 million elements. 

Fig. 3. Predictions of the effective E 2 , v 21 and v 23 as functions of number of elements. Symbol “�” denotes the result for the uniform mesh with 6 million elements. 

Fig. 4. General type ellipsoidal inhomogeneity in an orthotropic material with ma- 

terial symmetry axes X 1 , X 2 , X 3. . 
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iodic. The number and locations of the additional pores depend

n the number of faces of the unit cell intersected by the initial

ore. After the additional pores are added (if required), the coordi-

ates of the next pore are produced by a random number genera-

or following the uniform distribution. Then the algorithm checks

f the newly added pore intersects the faces of the RVE cube; if

t does then the corresponding additional pores required for peri-

dicity are created. Next the algorithm checks if any of the newly
dded pores intersect the existing ones. In case of interpenetra-

ion, the newly generated pore (and the corresponding additional

ores) are discarded. If there is no interpenetration then the co-

rdinates of the centers of the new pores are stored and the pro-

ess is continued until the desired porosity (or crack density) is

chieved. 

Once the final pore distribution is generated, the pore cen-

ers are imported into Abaqus software (see https://www.3ds.com/

roducts-services/simulia/products/abaqus/ ) for generation of the

eometric entities based on the data from the RSA algorithm

nd meshing of the unit cell. A custom Python (see https://www.

ython.org/ ) script was developed for the purpose of creating the

eometric entities within the unit cube from an external file con-

aining pore centers and dimensions. 

When the geometry is generated, the surfaces of the pores

re meshed with triangular surface finite elements. Note that the

eshes on the opposite sides of the cube must be “congruent” (the

esh patterns must be identical) to make application of the peri-

dic boundary conditions possible. For this purpose, the meshes

rom three orthogonal faces of the cube are duplicated to the op-

osite ones. The 3D mesh consisting of tetrahedral elements is

enerated based on the surface mesh using the “tri-to-tet” Abaqus

eshing procedure. When the mesh is completed it is exported as

 Marc Mentat (see http://www.mscsoftware.com/product/marc/ )

nput file for further FEA analysis. An example of the mesh for the

VE with parallel cracks having crack density ρ = 0.7 is shown in

https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.python.org/
http://www.mscsoftware.com/product/marc/
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Fig. 5. Out-of-plane Young’s modulus for orthotropic material with parallel cracks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

s  

y  

s  

t  

t  

D  

l  

e  

v  

D  

c

3

 

e  

t  

m  

(  

s  

p  

v

 

o  

(  

d  

s  

D  

m  

t  

e

 

o  

m  

t  

2  

t  

t  

l  

t  

t  

r  
Fig. 1 , where crack density ρ is defined as 

ρ = 

∑ n 
i =1 R 

3 
i 

V RV E 
. (8)

Note that predictions of effective elastic properties of materials

with pores and cracks are traditionally presented either as func-

tions of crack density ρ or pore volume fraction (porosity) 

p = 

∑ n 
i =1 V i 

V RV E 
, (9)

where R i and V i are the radii and volumes of individual pores and

n is the number of pores in RVE. For oblate spheroidal pores with

semi-axes a 1 = a 2 = R, a 3 = α• R , these two measures of defect den-

sity are related by a scalar multiplier: ρ = 
3 

4 πα p. The results for

the ideal flat penny-shaped crack are obtained when α→ 0. 

3.2. Model preparation and post-processing of results 

The effective stiffness or compliance tensors of a heteroge-

neous material represent sets of proportionality coefficients re-

lating macroscopic averages of stress and strain within the con-

sidered RVE. It was shown that, for RVEs containing finite num-

ber of inhomogeneities, homogenization based on prescribing uni-

form strains on the boundaries overestimates the overall stiffness

while prescribing uniform stresses results in underestimation of

it, see discussion in Suquet (1987), Huet (1990) and Hazanov and

Huet (1994) . Suquet (1987) also proved that application of periodic

boundary conditions results in effective stiffness predictions which

are bounded by the properties obtained based on prescribing the

uniform stresses and the uniform strains. For the microstructures

considered in Suquet (1987) , the numerical results obtained using

periodic boundary conditions were in better agreement with ex-

perimental results than the uniform ones. 

In this work, we utilize periodic RVEs subjected to periodic

boundary conditions implemented in displacements. Formulation

of the boundary conditions can be found in Xia et al. (2003) and

Segurado and Llorca (2002) ; the numerical implementation of the

these conditions in MSC Marc Mentat is described in Drach et al.

(2014 , 2016) and Trofimov et al. (2017) . 

Simulations for six loadcases are performed on each RVE. Each

loadcase consists of a set of boundary conditions in displacements

corresponding to either a uniaxial tension in one of the directions

of the global coordinate system or a simple shear. Based on the
atrix material properties and distribution of the pores, the re-

ulting material is orthotropic. Processing of the simulation results

ields three Young’s moduli along the global coordinate axes, three

hear moduli and three Poisson’s ratios. All FEA model prepara-

ion steps are automated via a custom script which assigns ma-

erial properties, boundary conditions and creates load cases (see

rach et al., 2016 for details). The average strains applied in each

oad case are chosen to be small so the initial volumes of the finite

lements are not changed significantly and remain suitable for the

olume averaging procedure. A custom Python script described in

rach et al. (2016) is used to calculate the effective stiffness tensor

omponents of the RVEs. 

.3. Mesh parameters’ studies 

The RVEs used in this research are meshed with tetrahedral el-

ments. The effects of element types and mesh density are inves-

igated for representative implementation of the RVE with cracks

odeled as strongly oblate spheroids with aspect ratio α = 0.01

penny-shaped cracks) and crack density ρ = 0.35. The parametric

tudies were performed for orthotropic material with the following

arameters: E 1 = 1, E 2 = 2, E 3 = 5, G 12 = 1.3, G 23 = 2.5, G 13 = 4, v 12 = 0.2,

 23 = 0.14, v 13 = 0.05. 

To evaluate the effect of mesh type, we compared predictions

btained for the RVE meshed with 1,960,638 linear tetrahedral

tetra4, Marc ID# 134) and the same number of quadratic tetrahe-

ral (tetra10, Marc ID# 127) elements. In this test model, the ob-

erved percentage difference did not exceeded 1.81%, see Table 1 .

ue to the small difference between linear and quadratic element

esh predictions and considerably higher computational cost of

he simulations using quadratic elements, the linear tetrahedral el-

ments were utilized in all subsequent simulations. 

A parametric study was conducted to evaluate the accuracy

f the model as a function of the number of elements. Two

esh refinement strategies were utilized: uniform reduction of

he element size and mesh refinement at the crack tips. Figs.

 and 3 show how the predictions of effective elastic proper-

ies converge with refinement of the mesh at the crack tips to

he values obtained with approximately uniform mesh of 6 mil-

ion elements. The solid line is obtained by quadratic interpola-

ion of the data points (denoted by “× ”) produced by utilizing

he mesh refinement at the crack tips. Table 2 shows that the

elative difference for all material constants (MC) calculated as
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Fig. 6. Out-of-plane shear moduli (a) G 13 and (b) G 23 for orthotropic material with parallel cracks. 

Table 1 

Comparison of elastic moduli predictions obtained using two element types: linear and quadratic. The relative difference 

is calculated as δ = 
linear −quadratic 

uncracked 
· 100% . 

E 2 /E 2M E 3 /E 3M E 1 /E 1M G 23 /G 23M G 13 /G 13M G 12 /G 12M v 23 /v 23M v 31 /v 31M v 21 /v 21M 

Linear 0.9853 0.2417 0.9854 0.3587 0.2560 0.9852 1.0268 0.2588 0.9998 

Quadratic 0.9853 0.2235 0.9854 0.3434 0.2442 0.9852 1.0305 0.2408 0.9998 

δ, % 0 1.81 0 1.53 1.18 0 0.37 1.79 0 

Table 2 

Percentage difference between effective elastic constants (MC) predicted by FE 

model with 2 and 6 million finite elements. 

MC E2 E3 E1 G23 G13 G12 v23 v31 v21 

δ, % 0.01 3.44 0.01 2.04 1.99 0.01 0.18 3.15 0 

δ  

a

4

m

 

(  

i  

p  

p  

i  

T  
= 
M C ( 2 mln. ) −M C ( 6 mln. ) 

M C ( 6 mln. ) 100% does not exceed 3.44%. The RVEs with

pproximately 2 mln. are used in the subsequent simulations. 
. Prediction of effective elastic properties for orthotropic 

aterials with cracks 

A significant number of natural (rocks, wood) and man-made

ceramic coatings, laminated and woven) composites are not

sotropic. In this section, we consider an orthotropic material with

arallel penny-shaped crack-like pores. We assume the pores to be

arallel to one of the material orthotropy planes, but the approach

s readily applicable to any orientation of pores in the material.

o perform comparison of the micromechanical schemes with the
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Fig. 7. Poisson’s ratio v 13 for orthotropic material with parallel cracks. 

Fig. 8. In-plane Young’s moduli (a) E 1 and (b) E 2 for orthotropic material with parallel cracks. 

Fig. 9. (a) In-plane shear modulus and (b) in-plane Poisson’s ratio for orthotropic material with parallel cracks. 
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Fig. 10. Young’s moduli E n in principal material directions n = 1,2,3 when cracks are 

normal to those directions. 
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h  
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Table 3 

Matrix representation of the fourth rank Eshelby 

tensor. 

s 1111 s 1122 s 1133 s 1123 s 1131 s 1112 
s 2211 s 2222 s 2233 s 2223 s 2231 s 2212 
s 3311 s 3322 s 3333 s 3323 s 3331 s 3312 
s 2311 s 2322 s 2333 s 2323 s 2331 s 2312 
s 3111 s 3122 s 3133 s 3123 s 3131 s 3112 
s 1211 s 1222 s 1233 s 1223 s 1231 s 1212 

K

s

w

G

a  

C  

o  

a  

n

 

(  

t  

f  

t  

g  

s  

α  

X  

G  

i  

o  

G  

t

 

o  
irect FEA simulations, we need to use the components of the Es-

elby tensor. We start with the discussion of the procedure to eval-

ate the Eshelby tensor components for an ellipsoidal inclusion in

n orthotropic matrix. 

.1. Validation of Gaussian quadrature procedure for components of 

shelby tensor 

The expressions for components of the Eshelby tensor for

pheroidal inclusion were obtained in a closed analytical form up

o the transversely isotropic symmetry of a material ( Kanaun and

evin, 1994; Sevostianov et al., 2005 ). The Eshelby solution for

he material with more general anisotropy is only achievable nu-

erically. The approach utilizing Gaussian quadratures was pro-

osed by Ghahremani (1977) and Gavazzi and Lagoudas (1990) . We

se the expressions for components of Eshelby tensor provided in
Fig. 11. Out-of-plane Young’s modulus for is
irilyuk et al. (2007) for the case of orthotropic material: 

 i jmn 
( α,β,γ ) = 

1 

8 π
C ( 

α,β,γ ) 
pqmn 

1 

∫ 
−1 

2 π
∫ 
0 

(
˜ G 

( α,β,γ ) 
ip jq 

(−→ 

η̄
)

+ 
˜ G 

( α,β,γ ) 
jpiq 

(−→ 

η̄
)
dω 

)
d ξ3 , (10) 

here 

˜ 
 

( α,β,γ ) 
i jkl 

= η̄k ̄ηl 

(
K i j 

(−→ 

η̄
))−1 

η̄i = 

ξi 
a i 

, ξ1 = 

√ 

1 − ξ3 
2 
cos ω, 

ξ2 = 

√ 

1 − ξ3 
2 
sin ω, K ki 

(
� ξ
)

= C ( 
α,β,γ ) 

k jil 
ξ j ξl , 

 i is the length of the i th axis of the ellipsoidal inhomogeneity and

 

( α,β,γ ) 

k jil 
is the stiffness tensor of an orthotropic material in the co-

rdinate system of the ellipsoid. Angles α, β and γ are the Euler’s

ngles for the material symmetry axes X i ( i = 1,2,3) in the coordi-

ate system x i of the ellipsoid, see Fig. 4 . 

In order to check the validity of our numerical evaluation of

10) implemented in the Gaussian quadratures, a comparison be-

ween our results and the available theoretical solutions was per-

ormed. For transversely isotropic matrix material with co-axial

ransversely isotropic inhomogeneities, the theoretical solution is

iven by Sevostianov et al. (2005) . In the comparison, we repre-

ented the crack as a strongly oblate spheroid with aspect ratio

= 0.01 and assumed it to be parallel to the plane of isotropy

 1 -X 2 . The material properties are E 3 = 5, E 1 = 2, v 12 = 0.14, v 13 = 0.3,

 32 = 4. Arranging components of the fourth rank Eshelby tensor s

n the matrix form (as shown in Table 3 ), the analytical predictions

f the components are given in Table 4 . Comparing them with the

aussian quadrature evaluation presented in Table 5 , we observe

hat the largest relative error between the components is 2.75%. 

For orthotropic matrix material, there is no analytical solution

f the Eshelby problem in the three dimensional case. However,
otropic material with parallel cracks. 
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Table 4 

The components of Eshelby tensors obtained analytically using the solution proposed by 

Sevostianov et al. (2005) . 

6.1997E −03 −4.2076E −04 −2.9813E −03 0 0 0 

−4.2076E −04 6.1997E −03 −2.9813E −03 0 0 0 

3.4420E −01 3.4420E −01 9.9647E −01 0 0 0 

0 0 0 4.9613E −01 0 0 

0 0 0 0 4.9613E −01 0 

0 0 0 0 0 3.3102E −03 

Table 5 

The components of Eshelby tensors obtained numerically using Gaussian quadratures. 

6.1993E −03 −4.0918E −04 −2.9330E −03 0 0 0 

−4.0918E −04 6.1993E −03 −2.9330E −03 0 0 0 

3.4421E −01 3.4421E −01 9.9643E −01 0 0 0 

0 0 0 4.9614E −01 0 0 

0 0 0 0 4.9614E −01 0 

0 0 0 0 0 3.3042E −03 

Table 6 

Comparison of H-tensor components for orthotropic matrix material. 

H 1111 H 1122 H 2222 H 1212 

Analytical 1.0 0 05E + 0 0 −6.8524E −01 9.0555E + 01 1.3153E + 02 

Numerical 1.0129E + 00 −6.8476E −01 9.3398E + 01 1.3231E + 02 

δ, % 1.24 0.07 3.14 0.59 
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the analytical solution in 2D for the elliptic holes can be found in

Tsukrov and Kachanov (20 0 0) . Assuming that the principal mate-

rial axes X 1 -X 2 coincide with the axes of ellipse, they provide ex-

pressions for components of compliance contribution tensor H 1111 ,

H 1122 , H 1212 , and H 2222 . For validation of our numerical procedure

we compare the numerical results for a strongly elongated flat el-

lipsoid having semi axes 1: 0.01: 10 0 0 with the plane strain ana-

lytical solution. The engineering constants of the matrix are E 1 = 1,

E 2 = 2, E 3 = 5, G 12 = 1.3, G 23 = 2.5, G 13 = 4, v 12 = 0.2, v 23 = 0.14, v 13 = 0.05.

Both the 2D elliptic holes and 3D ellipsoidal pores are perpen-

dicular to X 2 direction. In the 3D numerical results, the compli-

ance contribution tensor H is calculated from formula (2) using the

components of Eshelby tensor (10) . 

Table 6 shows the comparison between H -tensor com-

ponents obtained using analytical solution of Tsukrov and

Kachanov (20 0 0) and the numerical solution given by formulas

(2) and (10) and implemented using Gaussian quadratures. The

largest relative error δ = 

| H Analyt. 
i jkl 

−H Numer. 
i jkl 

| 
H 
Analyt. 
i jkl 

, ( i, j, k, l = 1, 2), between

the components is 3.14%. Note that we obtained numerically all

components of H , but present only the data needed for compar-

ison and validation of our Gaussian integration procedure. 

4.2. Evaluation of micromechanical schemes for cracks in an 

orthotropic matrix 

In this section, the effective elastic properties of the orthotropic

material containing parallel crack-like penny-shaped pores are pre-

sented as functions of the crack density ρ . The micromechani-

cal models are implemented using numerically calculated Eshelby

tensor (10) . The differential, Mori–Tanaka, self-consistent and non-

interaction schemes are considered. The orthotropic material is

chosen to have its stiffest direction perpendicular to the cracks. All

cracks within each representative volume element are of the same

shape and size. At least three realizations were considered for each

value of crack density in order to obtain the standard deviation

error bars. The elastic constants and Poisson’s ratios of the con-

sidered material are the same as in the parametric mesh studies

( Section 3 ) E = 1, E = 2, E = 5, G = 1.3, G = 2.5, G = 4, v = 0.2,
1 2 3 12 23 13 12 
 23 = 0.14, v 13 = 0.05, and all of the cracks are parallel to the X 1 -X 2

lane. 

The micromechanical modeling predictions are compared to

he direct FEA simulation results for the values of crack density

= 0.35, 0.47, 0.6, 0.7, see Figs. 5–9 . As seen in the figures, the

verall out-of-plane properties E 3 , G 23 , G 13 v 13 are better predicted

y the differential scheme. Thus, our observations are similar to

hese of Saenger et al. (2006) made for cracks in isotropic matrix.

lso, as discussed in the literature, the non-interaction and Mori–

anaka predictions practically coincide for slightly inflated cracks

they become identical for perfectly flat cracks with α = 0). 

As shown in Figs. 8 and 9 , for the in-plane properties E 1 , E 2 ,

 12 and v 12 , the reduction in stiffness is caused by the fact that

he cracks are presented as strongly oblate spheroids with α = 0.01.

hese small reductions appear to be better reproduced by the

ori–Tanaka scheme. Note that for completely flat penny-shaped

racks with α = 0, there would be no influence on in-plane elastic

oduli. 

The self-consistent micromechanical model seems to signifi-

antly underpredict the effective stiffness of the material as was

reviously noted, for example, in Kachanov et al. (1994) . Accord-

ng to SCS, the material’s stiffness approaches zero when the crack

ensity reaches approximately ρ = 0.4, so it becomes impossible to

alculate the effective properties of a material with a higher crack

ensity utilizing this scheme. This explains why the corresponding

urves interrupt at ρ = 0.4 in Figs. 5–7 . 

Analysis of Fig. 6 shows that there is a difference in the reduc-

ion of the out-of-plane effective shear moduli due to the material

nisotropy. Even though each crack is represented by a spheroid

hich is symmetric in X 1 -X 2 plane, the difference between the

redictions of shear moduli G 13 and G 23 is observed. In particu-

ar, G 13 decreases faster with increase in the crack density than

 23 which can be explained by the fact that the stiffness in the

atrix material’s first direction is lower than in the second. This

bservation indicates that in an orthotropic material, the aligned

xisymmetric defects affect the overall stiffness in different direc-

ions differently due to the anisotropy of the matrix material. 

Fig. 10 shows contributions of aligned cracks to the effective

oung’s moduli predicted by the differential scheme when the

racks are normal to each of the principal material directions. It

an be seen that the reduction in the effective moduli due to the

resence of the cracks depends on the orientation of the cracks

ith respect to the principal material directions. Cracks perpen-

icular to the stiffer direction produce greater relative reduction

n the effective stiffness compared to cracks perpendicular to the

ofter direction. These results are consistent with the observa-
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Fig. 12. Out-of-plane shear modulus for isotropic material with parallel cracks. 

Fig. 13. Poisson’s ratio for isotropic material with parallel cracks. 

Fig. 14. Variation of (a) out-of-plane and (b) in-plane Young’s moduli with the pore aspect ratio for porosity p = 0.1. 
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Fig. 15. Variation of (a) out-of-plane and (b) in-plane Young’s moduli with the pore aspect ratio for porosity p = 0.2. 

Fig. 16. Variation of (a) out-of-plane and (b) in-plane Young’s moduli with the pore aspect ratio for porosity p = 0.3. 
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tions reported in Mauge and Kachanov (1994) and Tsukrov and

Kachanov (20 0 0) . 

5. Evaluation of micromechanical schemes for inflated cracks 

in isotropic material 

As shown in the previous section, the best predictions for

the effective out-of-plane properties of the orthotropic material

with parallel penny-shaped crack-like pores ( α ≈ 0) is given

by the differential micromechanical scheme. Numerical simula-

tions show that the differential scheme also provides the best

agreement with the direct FEA simulations in the case of the

isotropic matrix, see Figs. 11–13 . However, for spherical ( α = 1)

and spheroidal ( α = 2) pores, the Mori–Tanaka scheme is more ac-

curate, see Drach et al. (2016) . In this section we determine the

value of the aspect ratio α at which predictions for the out-of-

plane moduli by the Mori–Tanaka scheme become closer to the

FEA results than the differential scheme. We compare the FEA re-

sults with micromechanical predictions for Young’s moduli E and
3 
 1 as functions of the aspect ratio α for the porosity levels p = 0.1,

.2, 0.3. The results are presented in Figs. 14–16 . 

As can be seen, the in-plane Young’s modulus is better pre-

icted by Mori–Tanaka scheme for all considered aspect ratios.

owever, the best choice of the micromechanical scheme for the

ut-of-plane Young’s modulus E 3 depends on the pores’ aspect ra-

io. As we go from the crack-like to the inflated pores, the differ-

ntial scheme becomes less accurate than Mori–Tanaka. The tran-

ition happens at α ≈ 0.2 for p = 0.1, and α ≈ 0.4 for p = 0.2 and

.3. 

. Conclusions 

In this paper we employed FEA of periodic RVEs to evaluate the

ccuracy of several popular micromechanical schemes in predicting

he effective elastic properties of solids with randomly distributed

enny-shaped cracks in the orthotropic matrix. The cracks were

epresented as oblate spheroidal pores having aspect ratio α = 0.01.

eriodic RVEs were generated utilizing an efficient implementation
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f the RSA algorithm suitable for numerical analysis. The FE models

ith curvature-dependent conforming finite element meshes were

eveloped. Several realizations of RVEs for each crack density were

nalyzed. 

The considered micromechanical schemes included the non-

nteraction approximation, self-consistent, differential, and Mori–

anaka. They were implemented using the compliance contribution

ensor based on the Eshelby solution. For isotropic and transversely

sotropic matrix, the analytical expressions for the components of

shelby tensors were utilized. In the case of orthotropic matrix, the

omponents were calculated numerically via Gaussian quadratures

f surface integrals. 

For the considered combination of the material symmetry,

efect shape and orientation, the differential micromechanical

cheme was observed to provide the best agreement with the FEA

esults for the out-of-plane properties. This observation is similar

o the predictions of Saenger et al. (2006) for cracks in isotropic

atrix. 

In addition, we investigated the accuracy of the micromechan-

cal schemes as a function of the pore aspect ratio starting with

 penny-shaped crack ( α = 0.01) up to a slightly deformed sphere

 α = 0.8). This study was conducted for parallel oblate spheroids in

he isotropic matrix. A gradual transition from the differential to

ori–Tanaka as the “best” scheme in the case of the out-of-plane

roperties was observed with increasing α. This result is consistent

ith previous publications (see, for example, Drach et al., 2016 ), in

hich it was demonstrated that for mildly prolate spheroidal and

pherical pores, the Mori–Tanaka scheme is in the best agreement

ith direct FEA. The in-plane elastic constants can be predicted

y the Mori–Tanaka scheme for all the considered aspect ratios α
ith good accuracy. 
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