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ABSTRACT

A detailed comparison of the accuracy of several popular micromechanical schemes utilized for prediction
of the effective elastic properties of materials with parallel cracks is presented. In particular, the non-
interaction, Mori-Tanaka, differential and self-consistent schemes are compared against the direct finite
element simulations. The latter are performed on the periodic representative volume elements containing
30 strongly oblate spheroids representing the penny-shaped cracks. This work extends the existent results
to a more general class of matrix materials - orthotropic materials, which requires the ability to calculate
the Eshelby tensor for an ellipsoid in non-isotropic matrix. In addition to the implementation of the
integration procedure used for the Eshelby tensor calculation, this work also presents a variation of the
Random Sequential Adsorption algorithm modified for periodic structures.

Analysis of the results indicates that in the case of parallel nearly flat cracks (strongly oblate
spheroids) the overall out-of-plane moduli are best predicted by the differential scheme. On the other
hand, Mori-Tanaka scheme should be used for estimation of the in-plane moduli. It also appears that as
the cracks are inflated from strongly oblate spheroids to slightly deformed spheres, the best choice of the

micromechanical scheme for the out-of-plane properties gradually shifts towards Mori-Tanaka.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Micromechanical schemes, based on certain simplifying as-
sumptions with respect to interaction of inhomogeneities, provide
an efficient tool to predict the overall (effective) elastic properties
of materials with inhomogeneities (Mori and Tanaka, 1973; Ben-
veniste, 1987; Kroner, 1958; Hill, 1965; Budiansky, 1965; McLaugh-
lin, 1977; Salganik, 1973; Eroshkin and Tsukrov, 2005). They are
particularly suited for parametric studies focusing on evaluation of
the effects of inhomogeneities shapes, concentration, and stiffness
or compliance on the overall response. For such parametric studies,
direct numerical simulations of a large number of the representa-
tive volume elements (RVE) of the materials with inhomogeneities
would require significant computational resources and are not al-
ways feasible. Note that the third popular micromechanical ap-
proach involving establishing exact variational bounds on the over-
all elastic properties (Hashin and Shtrikman, 1963) may result in
the bounds that are too wide in the case of large contrast in the
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elastic properties of matrix and inhomogeneities, e.g. pores and
cracks.

In this paper we investigate the accuracy of several popular mi-
cromechanical schemes for isotropic and orthotropic solids with
parallel penny-shaped cracks. This is done by comparing the an-
alytical micromechanical modeling results with direct finite ele-
ment (FE) simulations conducted on the RVEs of the cracked solids.
We also consider how the accuracy of the schemes changes if the
cracks in the solids are “inflated” to become the oblate spheroidal
pores.

Evaluation of contribution of cracks to the effective elastic prop-
erties of cracked solids is one of the classical and well devel-
oped topics in the mechanics of solids, as reviewed, for exam-
ple, in Kachanov (1993). However, certain controversy exists in
the choice of the best micromechanical modeling approach to this
problem, in particular, Mori-Tanaka (MT) (Mori and Tanaka, 1973;
Benveniste, 1987) or differential (DIFF) scheme (Salganik, 1973;
McLaughlin, 1977; Zimmerman, 1985). Note that in the case of
cracks the predictions of Mori-Tanaka approach coincide with the
non-interaction (NI) approximation, see Kachanov (1993). A num-
ber publications argue in favor of NI (and hence MT) scheme,
see Kachanov (1993), Kachanov et al., (1994) and Grechka and
Kachanov (2006). Their conclusions are based on comparison with


https://doi.org/10.1016/j.ijsolstr.2018.02.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2018.02.038&domain=pdf
mailto:kv1012@wildcats.unh.edu
mailto:borys@nmsu.edu
mailto:igor.tsukrov@unh.edu
https://doi.org/10.1016/j.ijsolstr.2018.02.038

K. Vasylevskyi et al./International Journal of Solids and Structures 144-145 (2018) 46-58 47

numerical results utilizing the “transmission factors” approach
of Kachanov (1987) or finite element simulations. On the other
hand, in studies of several other research groups (Dahm and
Becker, 1998; Orlowsky et al.,, 2003; Saenger et al., 2006) the
differential scheme was found to be closer to numerical results.
Saenger (2007) claimed that the results of Grechka (2007) favor
the non-interaction approximation over differential scheme due
to unjustified constraints on the location of cracks within RVE.
Seelig et al. (2000) implemented the “transmission factor” ap-
proach of Kachanov (1987) in combination with the boundary ele-
ment method. Their numerical results for random and parallel 2D
cracks are located between the NI and DIFF predictions.

All of the above publications deal with cracks in isotropic matri-
ces. For anisotropic solids with cracks, Gottesman et al. (1980) con-
sidered influence of parallel cracks on a fibrous composite mate-
rial on the basis of variational techniques and also in the self-
consistent scheme framework. Laws et al. (1983) presented re-
sults for transversely isotropic material with parallel cracks in-
finitely long in the direction of transverse isotropy axis (plane
strain formulation). The cracks were modeled as elliptical cylin-
ders; the results were obtained using self-consistent method.
Hashin (1988) considered isotropic material with randomly ori-
ented cracks and 2D case of orthotropic material with parallel
cracks utilizing differential and self-consistent methods. Deng and
Nemat-Nasser (1992) considered anisotropic material with paral-
lel cracks in 2D using dilute distribution, differential and self-
consistent methods. Mauge and Kachanov (1994) performed nu-
merical simulations on sample arrays of parallel and randomly ori-
ented interacting cracks in 2D materials with random anisotropy
and compared the calculated values of Young’s moduli with pre-
dictions given by non-interaction, self-consistent and differential
schemes. Their simulations were limited by the requirement that
neighboring cracks were not closer than 0.2 of crack lengths to
have convergence in the utilized numerical procedure.

3D results for anisotropic matrix are mostly limited to trans-
versely isotropic materials with cracks parallel to the plane
of isotropy. Willis (1977) presented expressions for Hashin-
Shtrikman bounds and self-consistent approach for composite with
anisotropic constituents and illustrated the results by calculating
the effective conductivity of an anisotropic matrix with aligned
spheroidal inhomogeneities. Withers (1989) derived a solution
for elastic fields around an ellipsoidal inclusion in transversely
isotropic matrix using a method analogous to Eshelby (1957).
Kushch and Sevostianov (2004) presented results for effective
elastic properties of composites with spherical inhomogeneities
and transversely isotropic material properties obtained using an
analytical approach based on the multipole expansion method.
Sevostianov et al. (2005) performed a micromechanical modeling
based on the stiffness and compliance contribution tensors com-
bined with non-interaction and effective field method for com-
posites with spheroidal inhomogeneities and transversely isotropic
phases.

In this paper we investigate the applicability of several com-
monly used micromechanical schemes to prediction of effec-
tive elastic response of orthotropic materials containing paral-
lel penny-shaped crack-like pores. The paper is organized as fol-
lows. Section 2 presents our approach to micromechanical mod-
eling based on contribution of a single inhomogeneity to the ef-
fective elastic properties combined with non-interaction, Mori-
Tanaka, differential and self-consistent schemes. The procedures
for geometry generation, meshing, FE model preparation and pro-
cessing of simulation results are described in section 3. This sec-
tion includes a mesh sensitivity study, in which we compare the
effect of two mesh refinement techniques (local and global) and
the order of the volumetric finite elements on the elastic mod-
uli predictions. Section 4 focuses on the performance of the mi-

cromechanical schemes for orthotropic materials containing par-
allel crack-like pores. The section also contains a validation of
the numerical procedure for calculating the Eshelby tensor for or-
thotropic materials which is required for the proposed microme-
chanical modeling. Section 5 presents a study on the accuracy of
the considered micromechanical schemes for isotropic materials
with oblate spheroidal pores having aspect ratios in the range 0.1-
0.8. Final conclusions of this research are formulated in Section 6.

2. Micromechanical modeling

The micromechanical approach utilized in this paper is based
on the compliance contribution tensor of inhomogeneities H. This
concept was first introduced in Horii and Nemat-Nasser (1983) and
then used in Kachanov et al. (1994) to evaluate contributions of
various pores in isotropic 2D and 3D materials. The approach is
presented here for materials with inhomogeneities of general type
and shape following Eroshkin and Tsukrov (2005). In the case of
pores and cracks the stiffness of the inhomogeneity is equal to
zero.

In this work we assume that the cracked material is statistically
homogenous and a certain representative volume element (RVE)
can be chosen such that its properties are the same as of the en-
tire heterogeneous material. More detail on the concept of the RVE
can be found in Hill (1963) and Markov (1999).

The effective compliance S of a material with inhomogeneities
is expressed as

S =Sw +H", (1)

where Sy, is the compliance tensor of the matrix material and
HRVE js the compliance contribution tensor of all inhomogeneities
present in the RVE. For non-interacting defects tensor HRVE can be
found simply as a sum of contributions of individual defects. The
approaches to deal with interacting defects are discussed later in
this section.

In order to obtain contributions of various types of defects, we
need to solve the so-called “single inclusion problem”. Contribu-
tion of an inhomogeneity to the overall properties of a material is
evaluated as follows. The inhomogeneity of volume V; is placed in
an infinite elastic matrix subjected to the remotely applied stress
0. The additional average strain in some reference volume V con-
taining inhomogeneity is proportional to the applied stress:

Ae=H: 0>

where H is the inhomogeneity compliance contribution tensor.

Most of the micromechanical models are based on the solu-
tion for the ellipsoidal inhomogeneity provided by Eshelby (1957).
Originally the solution was derived for the isotropic material in
terms of elliptic integrals for a general ellipsoidal inhomogeneity.
Later this solution was expanded to other types of matrix mate-
rial symmetry, see, for example, Sevostianov et al. (2005). How-
ever, there is still no explicit analytical solution of the Eshelby
problem for a general anisotropic material. This issue was ad-
dressed by Mura (1987), who proposed to simplify the elliptic inte-
grals to triple integrals. The idea was implemented numerically by
Ghahremani (1977) and improved by Gavazzi and Lagoudas (1990).

The expression for the compliance contribution tensor of an el-
lipsoidal inclusion H in terms of the compliance tensors of the ma-
trix Sy, and the inhomogeneity S; and Eshelby tensor s can be writ-
ten as (see Sevostianov and Kachanov, 2002)

H= %[(SI—SM)*l +8 1 (-9)] (2)

It is extremely difficult to analytically solve the elasticity prob-
lem for multiple interacting inhomogeneities. So, the interaction
between defects is taken into account utilizing various simpli-
fying micromechanical models (or schemes). Depending on how
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we treat the interaction between the inhomogeneities various mi-
cromechanical models are distinguished.

2.1. Non-interaction micromechanical model

This scheme is based on the assumption that separate inhomo-
geneities do not interact with each other. In this case, the com-
bined compliance contribution tensor of the entire RVE is calcu-
lated as a sum of the individual inhomogeneities’ contributions

HY =Y s =5+ HY 3)

where HV' is the HRVE for the non-interacting inhomogeneities

2.2. Mori-Tanaka micromechanical model

This model assumes that inhomogeneity is subjected to
the remotely applied stress o), which is equal to the aver-
age stress within the matrix phase of the RVE, see Mori and
Tanaka (1973) and Benveniste (1987). Mathematically it can be
written as

HMT = BV [ (St — Sw) + H“‘]"1 2 (S1—Sm). (4)

S:SM+HNI,

where fy; is the volume fraction of the matrix material.

2.3. Self-consistent micromechanical model

This approximation is based on the assumption that each inho-
mogeneity is subjected to the remotely applied stress and placed
into the matrix material with the properties equivalent to the
overall effective properties of the inhomogeneous material (Kroner,
1958; Hill, 1965; Budiansky, 1965). The effective compliance tensor
of this material is found from the transcendent equation:

S=Sy+ (S —Sm): (S-S ' :HV(S,S), (5)

where HV(S,S;) is the non-interaction H-tensor of the RVE calcu-
lated for the matrix material having the effective compliance. In
general case, Eq. (5) doesn’t have an analytical solution and can
only be solved numerically.

2.4. Differential micromechanical model

The idea of this model is in incrementally increasing the vol-
ume fraction of the inhomogeneities until the desired value is
reached. At each iteration the non-interaction inhomogeneity prob-
lem is solved for the matrix having the compliance of the ho-
mogenized material (Salganik, 1973; McLaughlin, 1977). Mathemat-
ically, this model is represented as the following ordinary differen-
tial equation

s 1y _

@ =~ fa—pm S©.8). S0)=Su (6)
or

dHP'F 1 NI DIFF DIFF

& “fa-pH (Sm +HP'.s;), HP'FF(0) =0, (7

where t is the integration variable which changes in the range [0,
fil, where f; is the volume fraction of inhomogeneities.

Fig. 1. RVE containing parallel cracks and meshed with 3D elements; crack density
(as defined by formula (8)) is p=0.7.

3. Numerical simulations
3.1. Generation of the RVE

Numerical predictions of effective elastic properties of a cracked
solid were obtained by finite element analysis of periodic RVEs
with multiple cracks. Each RVE contained 30 identical randomly
distributed parallel cracks that were approximated by penny-
shaped (spheroidal) pores having semi-axes a; =a; =R, az3=aR,
where « is the spheroid’s aspect ratio defining the thickness
(opening) of the crack. Note that the overall elastic response of the
cracked solid is less sensitive to the crack thickness than the stress
concentrations (in the limiting case, stress intensity) near the crack
tip. That is why the choice of « was mostly dictated by FE meshing
convenience. In our simulations we assume « =0.01 (compare with
o =0.08 in Grechka, 2007). The RVEs were subjected to prescribed
displacements with the corresponding periodicity constraints. The
effective stiffness was determined by relating the average stress in
the RVE to the prescribed strain.

The following requirements had to be satisfied during genera-
tion of RVEs for this numerical study:

« the RVE must be suitable for the FE discretization,

« the RVE must be periodic (opposite faces of the unit cell are
identical),

« the pores in the RVE have to be randomly distributed.

In the simulation, the RVE was assumed to be of a cubic shape
and unit volume. The radii and aspect ratios of the pores were cho-
sen based on the desired pore volume fraction (or crack density).
To make the unit cell suitable for the finite element discretization,
the distance between the neighboring pores had to be sufficient
to avoid distorted finite elements. We constrained the distance be-
tween the neighboring pores to exceed 1/10th of the pore radius.

Periodic unit cells with 30 pores were generated using the
Random Sequential Adsorption (RSA) algorithm (see Rintoul and
Torquato, 1997). In the beginning, a single pore is inserted into the
RVE and the coordinates of its center are stored, then it is checked
if this pore intersects the faces of the RVE. If there is an inter-
section, the algorithm calculates the coordinates of the additional
pores intersecting the opposite faces of the unit cell to keep it pe-
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Fig. 3. Predictions of the effective E;, v5; and v,3 as functions of number of elements. Symbol “B” denotes the result for the uniform mesh with 6 million elements.

A X3

Fig. 4. General type ellipsoidal inhomogeneity in an orthotropic material with ma-
terial symmetry axes X1, X, X3..

riodic. The number and locations of the additional pores depend
on the number of faces of the unit cell intersected by the initial
pore. After the additional pores are added (if required), the coordi-
nates of the next pore are produced by a random number genera-
tor following the uniform distribution. Then the algorithm checks
if the newly added pore intersects the faces of the RVE cube; if
it does then the corresponding additional pores required for peri-
odicity are created. Next the algorithm checks if any of the newly

added pores intersect the existing ones. In case of interpenetra-
tion, the newly generated pore (and the corresponding additional
pores) are discarded. If there is no interpenetration then the co-
ordinates of the centers of the new pores are stored and the pro-
cess is continued until the desired porosity (or crack density) is
achieved.

Once the final pore distribution is generated, the pore cen-
ters are imported into Abaqus software (see https://www.3ds.com/
products-services/simulia/products/abaqus/) for generation of the
geometric entities based on the data from the RSA algorithm
and meshing of the unit cell. A custom Python (see https://www.
python.org/) script was developed for the purpose of creating the
geometric entities within the unit cube from an external file con-
taining pore centers and dimensions.

When the geometry is generated, the surfaces of the pores
are meshed with triangular surface finite elements. Note that the
meshes on the opposite sides of the cube must be “congruent” (the
mesh patterns must be identical) to make application of the peri-
odic boundary conditions possible. For this purpose, the meshes
from three orthogonal faces of the cube are duplicated to the op-
posite ones. The 3D mesh consisting of tetrahedral elements is
generated based on the surface mesh using the “tri-to-tet” Abaqus
meshing procedure. When the mesh is completed it is exported as
a Marc Mentat (see http://[www.mscsoftware.com/product/marc/)
input file for further FEA analysis. An example of the mesh for the
RVE with parallel cracks having crack density p=0.7 is shown in
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Fig. 5. Out-of-plane Young’s modulus for orthotropic material with parallel cracks.

Fig. 1, where crack density p is defined as

LR
p= ‘}R\I/El : (8)

Note that predictions of effective elastic properties of materials
with pores and cracks are traditionally presented either as func-
tions of crack density o or pore volume fraction (porosity)

n
i Vi
p= S ©)

where R; and V; are the radii and volumes of individual pores and
n is the number of pores in RVE. For oblate spheroidal pores with
semi-axes d; =a; =R, a3 =R, these two measures of defect den-
sity are related by a scalar multiplier: p = % p. The results for
the ideal flat penny-shaped crack are obtained when o—0.

3.2. Model preparation and post-processing of results

The effective stiffness or compliance tensors of a heteroge-
neous material represent sets of proportionality coefficients re-
lating macroscopic averages of stress and strain within the con-
sidered RVE. It was shown that, for RVEs containing finite num-
ber of inhomogeneities, homogenization based on prescribing uni-
form strains on the boundaries overestimates the overall stiffness
while prescribing uniform stresses results in underestimation of
it, see discussion in Suquet (1987), Huet (1990) and Hazanov and
Huet (1994). Suquet (1987) also proved that application of periodic
boundary conditions results in effective stiffness predictions which
are bounded by the properties obtained based on prescribing the
uniform stresses and the uniform strains. For the microstructures
considered in Suquet (1987), the numerical results obtained using
periodic boundary conditions were in better agreement with ex-
perimental results than the uniform ones.

In this work, we utilize periodic RVEs subjected to periodic
boundary conditions implemented in displacements. Formulation
of the boundary conditions can be found in Xia et al. (2003) and
Segurado and Llorca (2002); the numerical implementation of the
these conditions in MSC Marc Mentat is described in Drach et al.
(2014,2016) and Trofimov et al. (2017).

Simulations for six loadcases are performed on each RVE. Each
loadcase consists of a set of boundary conditions in displacements
corresponding to either a uniaxial tension in one of the directions
of the global coordinate system or a simple shear. Based on the

matrix material properties and distribution of the pores, the re-
sulting material is orthotropic. Processing of the simulation results
yields three Young’s moduli along the global coordinate axes, three
shear moduli and three Poisson’s ratios. All FEA model prepara-
tion steps are automated via a custom script which assigns ma-
terial properties, boundary conditions and creates load cases (see
Drach et al., 2016 for details). The average strains applied in each
load case are chosen to be small so the initial volumes of the finite
elements are not changed significantly and remain suitable for the
volume averaging procedure. A custom Python script described in
Drach et al. (2016) is used to calculate the effective stiffness tensor
components of the RVEs.

3.3. Mesh parameters’ studies

The RVEs used in this research are meshed with tetrahedral el-
ements. The effects of element types and mesh density are inves-
tigated for representative implementation of the RVE with cracks
modeled as strongly oblate spheroids with aspect ratio o =0.01
(penny-shaped cracks) and crack density p =0.35. The parametric
studies were performed for orthotropic material with the following
parameters: E]:l, E2=2, E3=5, G]2=1.3, G23=2.5, G]3=4, V12=0.2,
v,3=0.14, v13=0.05.

To evaluate the effect of mesh type, we compared predictions
obtained for the RVE meshed with 1,960,638 linear tetrahedral
(tetra4, Marc ID# 134) and the same number of quadratic tetrahe-
dral (tetral0, Marc ID# 127) elements. In this test model, the ob-
served percentage difference did not exceeded 1.81%, see Table 1.
Due to the small difference between linear and quadratic element
mesh predictions and considerably higher computational cost of
the simulations using quadratic elements, the linear tetrahedral el-
ements were utilized in all subsequent simulations.

A parametric study was conducted to evaluate the accuracy
of the model as a function of the number of elements. Two
mesh refinement strategies were utilized: uniform reduction of
the element size and mesh refinement at the crack tips. Figs.
2 and 3 show how the predictions of effective elastic proper-
ties converge with refinement of the mesh at the crack tips to
the values obtained with approximately uniform mesh of 6 mil-
lion elements. The solid line is obtained by quadratic interpola-
tion of the data points (denoted by “x ") produced by utilizing
the mesh refinement at the crack tips. Table 2 shows that the
relative difference for all material constants (MC) calculated as
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Fig. 6. Out-of-plane shear moduli (a) Gy3 and (b) G5 for orthotropic material with parallel cracks.

Table 1

Comparison of elastic moduli predictions obtained using two element types: linear and quadratic. The relative difference

linear—quadratic 100%,

is calculated as § = uncracked

Ex/Eom  E3/Esm  Ei/Emv G3/Gasm  Gi3/Gism Gi2/Giom  Vas/vasm  V3i/Vaim  Vai/Vaim
Linear 0.9853 0.2417 0.9854 0.3587 0.2560 0.9852 1.0268 0.2588 0.9998
Quadratic 0.9853 0.2235 0.9854 0.3434 0.2442 0.9852 1.0305 0.2408 0.9998
8, % 0 1.81 0 1.53 118 0 0.37 1.79 0

Table 2
Percentage difference between effective elastic constants (MC) predicted by FE
model with 2 and 6 million finite elements.

MC E2 E3 E1l G23 G13 G12 v23 v31 v21

8,% 0.01 344 001 204 199 0.01 018 315 0

5= WIOO% does not exceed 3.44%. The RVEs with

approximately 2 mln. are used in the subsequent simulations.

4. Prediction of effective elastic properties for orthotropic
materials with cracks

A significant number of natural (rocks, wood) and man-made
(ceramic coatings, laminated and woven) composites are not
isotropic. In this section, we consider an orthotropic material with
parallel penny-shaped crack-like pores. We assume the pores to be
parallel to one of the material orthotropy planes, but the approach
is readily applicable to any orientation of pores in the material.
To perform comparison of the micromechanical schemes with the
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direct FEA simulations, we need to use the components of the Es-
helby tensor. We start with the discussion of the procedure to eval-
uate the Eshelby tensor components for an ellipsoidal inclusion in
an orthotropic matrix.

4.1. Validation of Gaussian quadrature procedure for components of
Eshelby tensor

The expressions for components of the Eshelby tensor for
spheroidal inclusion were obtained in a closed analytical form up
to the transversely isotropic symmetry of a material (Kanaun and
Levin, 1994; Sevostianov et al., 2005). The Eshelby solution for
the material with more general anisotropy is only achievable nu-
merically. The approach utilizing Gaussian quadratures was pro-
posed by Ghahremani (1977) and Gavazzi and Lagoudas (1990). We
use the expressions for components of Eshelby tensor provided in

1 T T T T
09 —NI 1
08l sumnn \|T |
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Table 3

Matrix representation of the fourth rank Eshelby

tensor.
Sun S1122 S1133 S1123 S1131 S112
S221 52222 52233 52223 $2231 S2212
S3311 $3322 53333 53323 53331 $3312
S2311 S2322 52333 S$2323 S$2331 S2312
S3111 S3122 $3133 S3123 S$3131 S3112

St2m S1222 S1233 S1223 S1231 S1212

Kirilyuk et al. (2007) for the case of orthotropic material:
@By — @By 1T (@B (F
Sijmn = g Coamn it Gipja 71

+ @b (ﬁ))dw)d&, (10)

where

~ - - d -1 - ;
Gi(ﬁ}ﬁ’y) = nknl<Kij<77 )) ni = % £ =/1-&cosw,
1
§r=4/1- &’ sinw, Ki(§) = C;fﬁ)ﬁ'wéjfl,

qg; is the length of the ith axis of the ellipsoidal inhomogeneity and
Clg‘]’.‘i;ﬂ 7) is the stiffness tensor of an orthotropic material in the co-

ordinate system of the ellipsoid. Angles o, 8 and y are the Euler’s
angles for the material symmetry axes X; (i=1,2,3) in the coordi-
nate system x; of the ellipsoid, see Fig. 4.

In order to check the validity of our numerical evaluation of
(10) implemented in the Gaussian quadratures, a comparison be-
tween our results and the available theoretical solutions was per-
formed. For transversely isotropic matrix material with co-axial
transversely isotropic inhomogeneities, the theoretical solution is
given by Sevostianov et al. (2005). In the comparison, we repre-
sented the crack as a strongly oblate spheroid with aspect ratio
o =0.01 and assumed it to be parallel to the plane of isotropy
X1-X,. The material properties are E3=5, E{=2, v{,=0.14, v{3=0.3,
G3p=4. Arranging components of the fourth rank Eshelby tensor s
in the matrix form (as shown in Table 3), the analytical predictions
of the components are given in Table 4. Comparing them with the
Gaussian quadrature evaluation presented in Table 5, we observe
that the largest relative error between the components is 2.75%.

For orthotropic matrix material, there is no analytical solution
of the Eshelby problem in the three dimensional case. However,

—
\
-,
\[\
L3
\b
\0
\Q
\.\
. 1
\.
\h
S RS | ]
~ T
-
= ~ -.1'~-
— 1 o — pa—

Fig. 11. Out-of-plane Young’s modulus for isotropic material with parallel cracks.
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Table 4

The components of Eshelby tensors obtained analytically using the solution proposed by

Sevostianov et al. (2005).

6.1997E—-03 —4.2076E-04  —2.9813E-03 0 0 0

—42076E-04  6.1997E—03 —29813E-03 0 0 0

3.4420E—01 3.4420E-01 9.9647E—01 0 0 0

0 0 0 49613E-01 0 0

0 0 0 0 49613E-01 0

0 0 0 0 0 3.3102E-03
Table 5

The components of Eshelby tensors obtained numerically using Gaussian quadratures.

6.1993E-03 —4.0918E-04  —2.9330E-03 0 0 0

—4.0918E-04  6.1993E—03 —2.9330E-03 0 0 0

3.4421E-01 3.4421E-01 9.9643E-01 0 0 0

0 0 0 49614E-01 0 0

0 0 0 0 49614E-01 0

0 0 0 0 0 3.3042E—03
Table 6 v23=0.14, v3=0.05, and all of the cracks are parallel to the X;-X;
Comparison of H-tensor components for orthotropic matrix material. plane

Hin Hiz Ha22 SIS The micromechanical modeling predictions are compared to
Analytical  1.0005E+00  —6.8524E-01  9.0555E+01  1.3153E+02 the direct FEA simulation re;ults for the value.s of crack density
Numerical ~ 1.0129E+00  —6.8476E—01  9.3398E+01  1.3231E+02 p=0.35, 047, 0.6, 0.7, see Figs. 5-9. As seen in the figures, the
8% 124 0.07 314 0.59 overall out-of-plane properties E3, Gy3, Gy3 v¢3 are better predicted

the analytical solution in 2D for the elliptic holes can be found in
Tsukrov and Kachanov (2000). Assuming that the principal mate-
rial axes X;-X, coincide with the axes of ellipse, they provide ex-
pressions for components of compliance contribution tensor Hqyq1,
Hi122, Hi212, and Hyyy,. For validation of our numerical procedure
we compare the numerical results for a strongly elongated flat el-
lipsoid having semi axes 1: 0.01: 1000 with the plane strain ana-
lytical solution. The engineering constants of the matrix are E;=1,
E2=2, E3:5, 61221.3, 623:2.5, G]3=4, V]2=0.2, V23:0.14, V]3=0.05.
Both the 2D elliptic holes and 3D ellipsoidal pores are perpen-
dicular to X, direction. In the 3D numerical results, the compli-
ance contribution tensor H is calculated from formula (2) using the
components of Eshelby tensor (10).

Table 6 shows the comparison between H-tensor com-
ponents obtained using analytical solution of Tsukrov and
Kachanov (2000) and the numerical solution given by formulas

(2) and (10) and implemented using Gaussian quadratures. The
| A”ﬂ’yf»_HNumer.l
ijkl ijkl
HA_r’:?lyt,

ij
the components is 3.14%. Note that we obtained numerically all
components of H, but present only the data needed for compar-

ison and validation of our Gaussian integration procedure.

largest relative error § = , (i, j, k, 1=1, 2), between

4.2. Evaluation of micromechanical schemes for cracks in an
orthotropic matrix

In this section, the effective elastic properties of the orthotropic
material containing parallel crack-like penny-shaped pores are pre-
sented as functions of the crack density p. The micromechani-
cal models are implemented using numerically calculated Eshelby
tensor (10). The differential, Mori-Tanaka, self-consistent and non-
interaction schemes are considered. The orthotropic material is
chosen to have its stiffest direction perpendicular to the cracks. All
cracks within each representative volume element are of the same
shape and size. At least three realizations were considered for each
value of crack density in order to obtain the standard deviation
error bars. The elastic constants and Poisson’s ratios of the con-
sidered material are the same as in the parametric mesh studies
(Section 3) E1=1, E;=2, E3=5, G3=1.3, Gy3=2.5, Gi3=4, v1=0.2,

by the differential scheme. Thus, our observations are similar to
these of Saenger et al. (2006) made for cracks in isotropic matrix.
Also, as discussed in the literature, the non-interaction and Mori-
Tanaka predictions practically coincide for slightly inflated cracks
(they become identical for perfectly flat cracks with o =0).

As shown in Figs. 8 and 9, for the in-plane properties E;, Ej,
Gip and vqy, the reduction in stiffness is caused by the fact that
the cracks are presented as strongly oblate spheroids with o =0.01.
These small reductions appear to be better reproduced by the
Mori-Tanaka scheme. Note that for completely flat penny-shaped
cracks with o =0, there would be no influence on in-plane elastic
moduli.

The self-consistent micromechanical model seems to signifi-
cantly underpredict the effective stiffness of the material as was
previously noted, for example, in Kachanov et al. (1994). Accord-
ing to SCS, the material’s stiffness approaches zero when the crack
density reaches approximately o = 0.4, so it becomes impossible to
calculate the effective properties of a material with a higher crack
density utilizing this scheme. This explains why the corresponding
curves interrupt at p =04 in Figs. 5-7.

Analysis of Fig. 6 shows that there is a difference in the reduc-
tion of the out-of-plane effective shear moduli due to the material
anisotropy. Even though each crack is represented by a spheroid
which is symmetric in X;-X, plane, the difference between the
predictions of shear moduli Gy3 and G,3 is observed. In particu-
lar, Gy3 decreases faster with increase in the crack density than
G,3 which can be explained by the fact that the stiffness in the
matrix material’s first direction is lower than in the second. This
observation indicates that in an orthotropic material, the aligned
axisymmetric defects affect the overall stiffness in different direc-
tions differently due to the anisotropy of the matrix material.

Fig. 10 shows contributions of aligned cracks to the effective
Young’s moduli predicted by the differential scheme when the
cracks are normal to each of the principal material directions. It
can be seen that the reduction in the effective moduli due to the
presence of the cracks depends on the orientation of the cracks
with respect to the principal material directions. Cracks perpen-
dicular to the stiffer direction produce greater relative reduction
in the effective stiffness compared to cracks perpendicular to the
softer direction. These results are consistent with the observa-
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tions reported in Mauge and Kachanov (1994) and Tsukrov and
Kachanov (2000).

5. Evaluation of micromechanical schemes for inflated cracks
in isotropic material

As shown in the previous section, the best predictions for
the effective out-of-plane properties of the orthotropic material
with parallel penny-shaped crack-like pores (¢ ~ 0) is given
by the differential micromechanical scheme. Numerical simula-
tions show that the differential scheme also provides the best
agreement with the direct FEA simulations in the case of the
isotropic matrix, see Figs. 11-13. However, for spherical (¢ =1)
and spheroidal (o =2) pores, the Mori-Tanaka scheme is more ac-
curate, see Drach et al. (2016). In this section we determine the
value of the aspect ratio o at which predictions for the out-of-
plane moduli by the Mori-Tanaka scheme become closer to the
FEA results than the differential scheme. We compare the FEA re-
sults with micromechanical predictions for Young’s moduli Es and

E; as functions of the aspect ratio « for the porosity levels p=0.1,
0.2, 0.3. The results are presented in Figs. 14-16.

As can be seen, the in-plane Young’s modulus is better pre-
dicted by Mori-Tanaka scheme for all considered aspect ratios.
However, the best choice of the micromechanical scheme for the
out-of-plane Young’s modulus E; depends on the pores’ aspect ra-
tio. As we go from the crack-like to the inflated pores, the differ-
ential scheme becomes less accurate than Mori-Tanaka. The tran-
sition happens at « ~ 0.2 for p=0.1, and « ~ 0.4 for p=0.2 and
0.3.

6. Conclusions

In this paper we employed FEA of periodic RVEs to evaluate the
accuracy of several popular micromechanical schemes in predicting
the effective elastic properties of solids with randomly distributed
penny-shaped cracks in the orthotropic matrix. The cracks were
represented as oblate spheroidal pores having aspect ratio o =0.01.
Periodic RVEs were generated utilizing an efficient implementation
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of the RSA algorithm suitable for numerical analysis. The FE models
with curvature-dependent conforming finite element meshes were
developed. Several realizations of RVEs for each crack density were
analyzed.

The considered micromechanical schemes included the non-
interaction approximation, self-consistent, differential, and Mori-
Tanaka. They were implemented using the compliance contribution
tensor based on the Eshelby solution. For isotropic and transversely
isotropic matrix, the analytical expressions for the components of
Eshelby tensors were utilized. In the case of orthotropic matrix, the
components were calculated numerically via Gaussian quadratures
of surface integrals.

For the considered combination of the material symmetry,
defect shape and orientation, the differential micromechanical
scheme was observed to provide the best agreement with the FEA
results for the out-of-plane properties. This observation is similar
to the predictions of Saenger et al. (2006) for cracks in isotropic
matrix.

In addition, we investigated the accuracy of the micromechan-
ical schemes as a function of the pore aspect ratio starting with
a penny-shaped crack (o =0.01) up to a slightly deformed sphere
(o =0.8). This study was conducted for parallel oblate spheroids in
the isotropic matrix. A gradual transition from the differential to
Mori-Tanaka as the “best” scheme in the case of the out-of-plane
properties was observed with increasing «. This result is consistent
with previous publications (see, for example, Drach et al., 2016), in
which it was demonstrated that for mildly prolate spheroidal and
spherical pores, the Mori-Tanaka scheme is in the best agreement
with direct FEA. The in-plane elastic constants can be predicted
by the Mori-Tanaka scheme for all the considered aspect ratios «
with good accuracy.
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