PALINDROMIC SUBSHIFTS AND SIMPLE PERIODIC GROUPS
OF INTERMEDIATE GROWTH

VOLODYMYR NEKRASHEVYCH

ABSTRACT. We describe a new class of groups of Burnside type, by giving a
procedure transforming an arbitrary non-free minimal action of the dihedral
group on a Cantor set into an orbit-equivalent action of an infinite finitely
generated periodic group. We show that if the associated Schreier graphs are
linearly repetitive, then the group is of intermediate growth. In particular,
this gives first examples of simple groups of intermediate growth.

1. INTRODUCTION

Let a be a homeomorphism of period two (an involution) of a Cantor set X.
Choose a finite group A of homeomorphisms of X such that for all h € A, ( € X
we have h(¢) = ¢ or h(¢) = a({), and for every ¢ € X there exists h € A such that
h(¢) = a(¢). We say that A is a fragmentation of a.

Suppose that we have a minimal action on the Cantor set of the infinite dihedral
group Do, generated by two involutions a,b. (An action is said to be minimal if all
its orbits are dense.) Let A and B be fragmentations of a and b. We are interested
in the group (A U B) generated by A and B.

Examples of such groups are the first Grigorchuk group [Gri80] and every group
from the family of Grigorchuk groups defined in [Gri85]. They are all obtained by
fragmenting one particular minimal action of the dihedral group (associated with
the binary Gray code, see Example below).

We show that under rather general conditions on the fragmentation, the group
G = (AUB) possesses interesting properties, pertinent to three classical problems of
group theory (Burnside’s problem on periodic groups, Day’s problem on amenable
groups, and Milnor’s problem on intermediate growth). For example, every non-free
minimal action of Dy, can be fragmented to produce a finitely generated infinite
periodic group. Moreover, if the action of D, is expansive, then one can fragment
it (in uncountably many different ways) to get a simple group. Actions of low
complexity (for example coming from palindromic minimal substitutional subshifts)
can be fragmented to produce groups of intermediate growth, including simple ones.

Namely, we prove the following (see Theorem [4.1J).

Theorem 1.1. Suppose that € is a fired point of a, and that for every h € A such
that h(§) = &, the interior of the set of fized points of h accumulates on . Then
the group (AU B) is periodic and infinite.

If the action of Dy, = {(a,b) is expansive, then the topological full group of G =
(AUB) contains an infinite finitely generated simple subgroup A(G, X), see [Nek15].
The group A(G,X) is a subgroup of a (possibly bigger than G) fragmentation
(A7 U By) to which Theorem is also applicable, so that the group A(G, X) is
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periodic. For a definition of the topological full group and the group A(G, X), see
Subsection 2.21

Here a group G is said to be periodic (or torsion) if for every g € G there exists n
such that ¢g" is the identity. The question of existence of finitely generated infinite
periodic groups (groups of Burnside type) is the classical Burnside problem [Bur02].
A harder version (bounded Burnside problem) asks for a group with bounded order
n of elements. The general problem (without a bound on the order of elements)
was solved by E. Golod and I. Shafarevich [Gol64] in 1964. The bounded Burnside
problem was solved by S. Adyan and P. Novikov [NAGS] in 1968. The restricted
Burnside problem (the bounded Burnside problem in the class of residually finite
groups) was solved (in the negative) in 1989 by E. Zelmanov [Zel90]. For a survey
of the Burnside problem and related topics, see [GL02].

Previously known examples of infinite periodic finitely generated groups can
be split into three classes. One class consists of solutions of the bounded Burn-
side problem. They are constructed using some versions of the small cancellation
theory: combinatorial as in the original Adyan-Novikov proof (see [Adi79]), geo-
metrical due to A. Olshanskii (see |O1'91) Iva94l [Lys96]) and E. Rips [Rip82], and
via M. Gromov’s theory of hyperbolic groups (see [Gro87, 01'93]).

The second class are the Golod-Shafarevich groups. The third class are groups
generated by automata and groups defined by their action on rooted trees. The
first examples in this class were constructed by S. Aleshin [Ale72], V. Sushchan-
skii [Sus79], R. Grigorchuk [Gri80], and N. Gupta and S. Sidki [GS83]. Related
constructions (self-similar groups, branch groups, etc.) became a very active area
of research, see [BGS03, [Gri05, Nek05]. But periodic groups in this class remain to
be more or less isolated examples.

Note that the groups in the latter two classes are necessarily residually finite. In
fact, most methods of study of these groups heavily rely on their residual finiteness
(e.g., on their action on a rooted tree). The groups in the first class may be simple,
e.g., the Olshanskii-Tarski monsters [O1'82].

Theorem [I.1] produces a new large class of groups of Burnside type. It includes
the Grigorchuk group, so it intersects with the above mentioned third class of
periodic groups, but it also contains many new groups. For instance, we produce
the first example of a group of Burnside type generated by piecewise isometries of
a polygon (with a finite number of pieces), and examples of simple groups.

Any non-free (i.e., such that some non-trivial elements have fixed points) action
of D, can be fragmented so that it satisfies the conditions of Theorem (1.1} For
example, if S C X% is a minimal palindromic subshift (such that the elements of S
contain arbitrarily long palindromes), then the transformations

a(w)(n) = w(=n),  bw)(n) =w(l-n),

for w € S generate a minimal action of Do, such that a or b (depending on the
parity of the lengths of arbitrarily long palindromes) has a fixed point. Then it is
easy to fragment the corresponding generators so that the conditions of Theorem [I1]
are satisfied. Then, after passing to the group A(G,S), we get a finitely generated
simple periodic group.

Minimal palindromic shifts are classical objects in Dynamics, see, for exam-
ple [BG13| Sections 4.3—4] and references therein. See also [GLN15], where spectral
properties of a substitutional system associated with the Grigorchuk group are
studied.
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Answers to the Burnside problem were important examples for the theory of
amenable groups. Amenability was defined by J. von Neumann [vN29] in his
analysis of the Banach-Tarski paradox. He noted that a group containing a non-
commutative free group is non-amenable, and showed that amenability is preserved
under some group-theoretic operations (extensions, direct limits, passing to a sub-
group and to a quotient). So, there are “obviously non-amenable” groups (groups
containing a free subgroup), and “obviously amenable” groups (groups that can be
constructed from finite and commutative groups using the above operations). The
“obviously amenable” groups are called elementary amenable. More on amenability,
see [Wag94] [Pat88|, [Gre69].

Groups of Burnside type are never obviously non-amenable, since they do not
contain free subgroups. They are also never elementary amenable, see [Cho80L
Theorem 2.3]. The fact that the class of groups without free subgroups and the
class of elementary amenable groups are distinct is proved in [Cho80] precisely using
the existence of groups of Burnside type.

Groups of Burnside type were the first examples to show that neither class
(groups without free subgroups and elementary amenable groups) coincides with
the class of amenable groups.

They were the first examples of non-amenable groups without free subgroups
(free Burnside groups and Tarski monsters, see [O1'80,[Ady82]). All known examples
of finitely generated infinite groups of bounded exponent are non-amenable.

The groups in the second class (the Golod-Shafarevich groups) are all non-
amenable by a result of M. Ershov [ErslI].

Groups of Burnside type (the Grigorchuk groups [Gri83, [Gri85]) were also the
first examples of non-elementary amenable groups. In fact, for a long time the only
known examples of non-elementary amenable groups were based on the Grigorchuk
groups. Later, other examples were constructed [BV05, BKN10, [AAV13], but all
of them where defined by their actions on rooted trees, so, in particular, they were
residually finite. For a long time the question if there exist infinite finitely generated
simple amenable groups was open. It was answered by K. Juschenko and N. Monod
in [JMI3]. They showed that the topological full group of a minimal homeomor-
phism of the Cantor set is amenable (confirming a conjecture of R. Grigorchuk and
K. Medynets). Here the topological full group of a (cyclic in this case) group G
acting on a Cantor set X is the group of all homeomorphisms h : X — X such
that for every ¢ € X there exists a neighborhood U of ¢ and an element g € G such
that g|ly = h|y. In other words, it is obtained by “fragmenting” a minimal action
of Z in a way similar to our definition of a fragmentation of D.,. Our definition
is different, however, as we do not require the sets where the action of an element
h € A coincides with the action of a to be open.

It was proved earlier in [Mat06] and [BMO§| that if 7 is a minimal homeomor-
phism of the Cantor set, then the topological full group of (r) has simple derived
subgroup, and if the homeomorphism is expansive (i.e., is conjugate to a subshift),
then the derived subgroup is finitely generated. See also [CIN16], where a simi-
lar result is proved for Z"-actions. H. Matui proved in [Matl3] that the derived
subgroups of the full groups of minimal subshifts are of exponential growth.

The methods of [JMI3| were generalized in [JNdIS16] to cover a wide (including
almost all known examples) class of non-elementary amenable groups.
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For arbitrary fragmentations A, B of the generators a, b of a minimal action of the
dihedral group, the group (AUB) can be embedded into the topological full group of
a minimal subshift. This was observed for the first time (for the Grigorchuk group)
by N. Matte Bon in [MBT5]. Tt follows that all groups generated by fragmenting a
minimal dihedral group are amenable. Theorem produces, therefore, the first
examples of simple amenable groups of Burnside type. The only previously known
simple groups of Burnside type were of bounded exponent and non-amenable (e.g.,
Olshanskii-Tarski monsters |O1'82)).

If G is a group generated by a finite set S, then its growth function vy(n) is the
number of elements of G that can be written as products of at most n elements
of SUS~L J. Milnor asked in [Mil68] whether there exists a group with growth
function eventually bigger than any polynomial and eventually smaller than any
exponential function. Such groups are called groups of intermediate growth, and
the first example of such a group is the Grigorchuk group from [Gri80} [Gri83].
Amenability of the Grigorchuk group follows from its intermediate growth.

Recently, L. Bartholdi and A. Erschler developed a technique of inverted orbits,
and used it to construct a great variety of groups with a prescribed intermediate
growth, see [BE12] [BE14al [BE14b] and [Barlj].

Until now all constructions of groups of intermediate growth used as a start-
ing point the groups from the family of Grigorchuk groups defined in [Gri85], or
groups close to them (see [BSOl, BP06, [Ers06, [KP13], Bril4]). This imposes some
restrictions on the type of groups that can be obtained this way. In particular,
the following problem, asked by R. Grigorchuk in 1984 (see Problem 9.8 in the
“Kourovka notebook” [MK15|]) remained to be open.

Problem. Does there exist a finitely generated simple group of intermediate growth?

See also [Manl12l page 132], [MK15| Problem 15.17], [Gril4l Problem 2], and [BMOT,
BE14Db]. In fact, it was even an open question for a long time whether all groups of
intermediate growth are residually finite (see [Gri91] 8.4]). Note that it follows from
M. Gromov’s Theorem [Gro81] that groups of polynomial growth are residually fi-
nite. The first examples of groups of intermediate growth that are not residually
finite were constructed by A. Erschler in [Ers04]. L. Bartholdi and A. Erschler
showed in [BE14b] that every countable group not containing a group of exponen-
tial growth can be embedded into a group of intermediate growth. In particular,
one can embed, using their result, any locally finite simple group into a group of
intermediate growth.

Let G = (AU B) be a group satistfying the conditions of Theorem Let (e X
be a generic point of the Cantor set. Denote by I'¢ its orbital graph. Its set of
vertices is the G-orbit of (. For every vertex n and every generator s € AU B we
have an edge connecting n with s(n), labeled by s. Since the generators s € AU B
act on each point either trivially or as one of the homeomorphisms a, b, the graph
I'¢ is just a “decorated” version of the orbital graph of ¢ for the dihedral group
D, = {a,b). The latter is a bi-infinite chain, whose edges are alternatively labeled
by a and b. The orbital graph I'¢ is obtained from it by replacing every edge labeled
by a or b by a collection of edges labeled by some elements of A or B, respectively,
and adding loops labeled by elements of A U B. Therefore, the graphs I'¢c are
naturally represented by bi-infinite sequences w¢ = ...x_12921 ... over some finite
alphabet.
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Minimality of the action implies that the graphs I'c (equivalently, the sequences
we) are repetitive for a generic ¢: for every finite subgraph ¥ of I'c there exists
Rs € N such that for every vertex n of I'¢ there exists an isomorphic copy (as a
labeled graph) of ¥ at distance not more than Ry from 7 in I'¢.

We say that G has linearly repetitive orbits if there exists a constant C' such that
Ry is bounded from above by C' times the diameter of 3. We prove the following

(see Theorem [6.6)).

Theorem 1.2. Let (AU B) be a group satisfying the conditions of Theorem . If
it has linearly repetitive orbits of generic points, then it is of intermediate growth.
If the action of the dihedral group D, is expansive, then the corresponding group
A({AU B), X) is finitely generated, simple, periodic, and has intermediate growth.

Thus the answer to Problem [I] is positive. For properties of linearly repetitive
(also called linearly recurrent) dynamical systems and quasi-crystals, and applica-
tions to spectral theory of Schrodinger operators, see [KLS15, Chapters 6 and 9]
and [DLO6]. Linear repetitiveness is closely related to the so called Boshernitzan
condition, see [Bos92).

Linear repetitivity is a stronger condition than linear complerity. An infinite
sequence w has linear complexity if the number of different subwords of length n of
the sequence w is bounded from above by Cn for some n. If a group G generated
by a fragmentation of a minimal action of the dihedral group has orbital graphs of
linear complexity, then G is Liouville, by a theorem of N. Matte Bon [MB14] (which
is applicable to a more general type of groups and with a weaker condition on the
sequences). The Liouville condition (absence of non-constant bounded harmonic
functions) is stronger than amenability, but weaker than subexponential growth.

Our method of proving periodicity and intermediate growth is substantially dif-
ferent from the original proofs of periodicity and intermediate growth of the Grig-
orchuk group, since we can not use an action on a rooted tree. All previous proofs
of intermediate growth of a group used “length reduction” of automorphisms of
rooted trees, as in the original paper of R. Grigorchuk, or used intermediate growth
of the Grigorchuk groups.

We study how points travel inside the orbital graphs I'c under the action of
positive powers of one element (to prove periodicity) or under the action of a long
product of generators (to prove intermediate growth). In both cases we use one-
dimensional structure of the orbit, i.e., the fact that a trajectory starting in one
vertex and ending in another has to pass through all the vertices between them.
Small neighborhoods of the special point ¢ from Theorem act as “reflectors”:
trajectories approaching them often “bounce” and change their direction. This is
used in Theorem to prove that a sequence g*(¢), k > 1, must eventually come
back to (, thus getting periodicity of g. A similar idea shows that in the case when
I'¢ is linearly repetitive, the trajectory ¢, g1(¢), g291(¢), ..., gn - - - g291(C) of a vertex
¢ under a long product g, -- - g2g1 of generators of G tends to change its direction
often, so that it rarely goes far away. This gives, using the techniques of inverted

n
exp(Ca2+/log n)) on
the total number of elements g, - - - g2g1 € G, thus proving Theorem

It is interesting to note that the proof of the main result of [JM13], as analyzed
in [JNAIST6] and [JMMGAIS], is also using a similar idea: trajectories of a random
walk on the orbital graph I'c eventually return back to ¢ with probability one. This,

orbits of [BEI2|, a subexponential estimate of the form Cj exp
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together with the one-dimensional structure of the graph implies amenability of the
group. Here we do not need the “reflectors” produced by a special point of X', since
we need only a probabilistic result to prove amenability.

Orbital graphs of the Grigorchuk groups were studied in great detail by Y. Voro-
bets in [Vorl2|; an important part of our construction is based on his results.

Section [2] contains preliminary general facts on groups acting on topological
spaces, orbital graphs, graphs of germs, and minimal actions of the dihedral group.
In Section [3] we define fragmentations of dihedral groups, and study their orbital
graphs and graphs of germs. Section [d] contains the proof of Theorem Theo-
rem is proved in Section [6} The last Section [§] describes in detail one particular
example: a fragmentation of the substitutional Fibonacci shift. We include it here
to give an explicit example of a finitely generated simple periodic group of interme-
diate growth, without relying on the somewhat indirect proof of finite generation
of A(G, X) in [Nek15].

The author is very grateful to Laurent Bartholdi, Justin Cantu, Yves de Cor-
nulier, Rostislav Grigorchuk, Mikhail Hlushchanka, Kate Juschenko, Rostislav Kravchenko,
Nicolas Matte Bon, Mark Sapir, Said Sidki, and the referees for remarks and sug-
gestions.

The paper is based upon work supported by the National Science Foundation
under Grant DMS-1709480.

2. PRELIMINARIES ON GROUP ACTIONS

We use left actions, so in a product ajas the transformation as is performed
before a;. We denote the identity transformation and the identity element of a
group by e (except for Z/27Z, where the trivial element is naturally denoted 0).
The symmetric and the alternating group acting on a set A are denoted S(A) and
A(A), respectively.

For a finite alphabet X, we denote by X“ the space of infinite one-sided se-
quences T3 ... of elements of X, and by X% the space of two-sided sequences
...T_9x_1 . xox1.... Both spaces are endowed with the direct product topology,
where X is discrete. We denote by X* the set of all finite words over the alphabet
X, i.e., the free monoid generated by X.

2.1. Graphs of actions. All graphs in this section are oriented, loops and multi-
ple edges are allowed. Their edges are labeled. Distances between vertices in such
graphs are measured ignoring the orientation. Similarly, connectedness and con-
nected components are also defined ignoring the orientation. Isomorphisms must
preserve orientation and labeling. A graph is called rooted if one vertex, called the
root, is marked. Every morphism of rooted graphs must map the root to the root.

We denote a ball of radius r with center in a vertex v of a graph I' by B, (r).
It is considered to be a rooted graph (with the root v). Its set of edges is the set
of all edges of I' connecting the vertices of B,(r). The orientation and labeling are
inherited from T'.

Let G be a group generated by a finite set S and acting by homeomorphisms on
a compact metrizable space X.

For ( € X, the orbital graph I'¢ is the graph with the set of vertices equal to the
orbit G(¢ of ¢, in which for every n € G¢ and every s € S there is an arrow from 7
to s(n) labeled by s.



PALINDROMIC SUBSHIFTS AND SIMPLE GROUPS OF INTERMEDIATE GROWTH 7

The graph I'¢ is naturally isomorphic to the Schreier graph of the group G
modulo the stabilizer G¢. The Schreier graph of G modulo a subgroup H is, by
definition, the graph with the set of vertices equal to the set of cosets gH, g € G,
in which for every coset gH and every generator s € S there is an arrow from gH
to sgH labeled by s.

Denote by G ¢y the subgroup of elements of GG acting trivially on a neighborhood
of ¢, i.e., the subgroup of all elements g € G such that ( is an interior point of the set
of fixed points of g. The graph of germs fg is the Schreier graph of G' modulo G ).
Note that G(¢) is a normal subgroup of G¢, hence the map hG ) — hG¢ induces

a Galois covering of graphs fg — I'c with the group of deck transformations
G¢/Gey. We call G¢/G ¢y the group of germs of the point (.

The vertices of I'¢ are identified with germs of elements of G at (. Here a germ is
an equivalence class of a pair (g, ¢), where two pairs (g1, () and (g2, ) are equivalent
if there exists a neighborhood U of ¢ such that ¢1|y = g2|u-

If g2(¢2) = ¢1, then the composition (g1, ¢1)(g2,C2) is well defined and is equal
to (g192,(2). The inverse of the germ (g,() is the germ (g71,g(¢)). The set of
all germs of an action is a groupoid with respect to these operations, i.e., a small
category of isomorphisms. It has a natural topology with the basis consisting of
the sets of the form Uy v = {(9,¢) : ( € U}, where g € G and U is an open subset
of X.

Definition 2.1. A point ¢ € X is said to be G-regular if its group of germs is
trivial, i.e., if every element g € G fixing ¢ acts identically on a neighborhood of (.
If ¢ is not G-regular, then we say that it is singular.

Note that for every g € G the set of points ¢ € X' such that g(¢) = { but g ¢ G,
is equal to the boundary of the set of fixed points of g. It follows that this set is
closed and nowhere dense. Consequently, if G is countable (in particular, if G is
finitely generated), then the set of G-regular points is co-meager (residual).

Note also that gGcg™" = Gy and gG (197" = Gy(¢)) for all ( € X and g € G,
which implies that the set of G-regular points is G-invariant.

Depending on the separation conditions for the elements of the group of germs
G¢/G(¢) with respect to the natural topology on the groupoid of germs, singular
points can be classified in the following way.

Definition 2.2. Suppose that ( € X is a singular point.

We say that ¢ is a Hausdorff singularity if for every g € G¢ \ G () the interior
of the set of fixed points of g does not accumulate on (. Otherwise, ¢ is a non-
Hausdorff singularity.

We say that ¢ is a purely non-Hausdorff singularity if for every g € G¢ the
interior of the set of fixed points of g accumulates on (.

Let (T'1,v1), (T'2,v2) be connected rooted labeled graphs, where v; are the roots.
Define the distance d((T'1,v1), (T'2,v2)) between them as 2~ B+ where R is the
maximal integer such that the balls B,, (R) C I'; and B,,(R) C I'y of radius R with
centers in v; and ve are isomorphic as rooted graphs. Fix a finite set of labels S
and a positive integer k. Let Gg 1 be the set of all isomorphism classes of connected
oriented rooted graphs edge-labeled by elements of S and such that every vertex
is adjacent to at most k edges. Then the metric d defines a compact topology on

Gs.k-
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Proposition 2.3. The set of points of continuity of the map ¢ — (I'¢,() from X
to the space of labeled rooted graphs is equal to the set of reqular points.

The set of points of continuity of the map ¢ — (fC,C) is equal to the union of
the set of regular points and the set of Hausdorff singularities.

The statement about the regular points was proved in [Vorl2].

Proof. The ball B¢(r) in I'c can be described by a finite system of equations and
inequalities of the form ¢1(¢) = g2(¢) or g1(¢) # g2((), for pairs of elements g1, g2 €
G of length at most r. If the point ( is regular, then every such an equality or
inequality holds for all points of some neighborhood of (. It follows that there
exists a neighborhood N of ¢ such that for every n € N the balls B¢(r) and B, (r)
of the corresponding orbital graphs are isomorphic as rooted labeled graphs. This
implies that the map n — (I';),n) is continuous at 7.

Conversely, suppose that n — (I',,n) is continuous at ¢, and let g be an element
of G¢. Write it as a product of generators and their inverses. This product will
correspond to a path in (I'¢, ¢) starting and ending in ¢. By continuity of the map
n + (I'y,n), and the definition of the topology on the space of rooted graphs, there
exists a neighborhood N of ¢ such that for every n € N an isomorphic path starting
and ending in 7 appears in I',. This implies that g(n) = n for all n € N, and hence
( is regular. B

The proof of the statement about the map ¢ — (I'¢, () is similar. One has just
to use the fact that ¢ belongs to the union of the set of regular points and the set
of Hausdorff singularities if and only if for every ¢ € G such that (g,{) = (¢,()
and every h € G there exists a neighborhood U of ¢ such that either h|y = g|y or

(hym) # (g,n) for alln € U. O

Definition 2.4. The action of G on X is said to be minimal if all G-orbits are
dense in X.

Proposition 2.5. Suppose that the action of G on X is minimal. Then for every
r > 0 there exists R(r) > 0 such that for every G-regular point { € X and for every
n € X there exists a vertex ' of I'y such that d(n,n') < R(r) and the rooted balls
B¢(r) C T¢ and B,y (r) C Ty, are isomorphic.

Proof. By Proposition 2.3} if ¢ is G-regular, then for every r > 0 there exists a
neighborhood N of ¢ such that for every n’ € N the balls B¢(r) and B, (r) of the
corresponding orbital graphs are isomorphic as rooted labeled graphs.

For every point n € X there exists an element g € G such that g(n) € N.
The set of sets of the form g=!(IN) cover X, and, by compactness, there exists a
finite subcover g7 *(N), g5 *(N),..., g, (N). Let R be the maximal length of the
elements g; with respect to the generating set S. Then for every n € X there
exists g; such that g;(n) € N, and hence the balls B¢(r) and B,,(r) are isomorphic
for o’ = g;(n). Distance from n to 7’ is not more than R. Since the number of
isomorphism classes of balls of radius r in the orbital graphs of G is finite, we can
find an estimate R(r) independent of (. O

Definition 2.6. We say that the action of G on X is linearly repetitive if there
exists K > 1 such that the function R(r) from Proposition [2.5|satisfies R(r) < Kr
for all » > 1.
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2.2. Topological full groups. Let G be a group acting on a Cantor set X'. The
topological full group F(G,X) of the action is the group of all homeomorphisms
h : X — X such that for every ( € X there exists a neighborhood U of ¢ and
an element g € G such that hly = g|y. Topological full groups were introduced
in [GPS99] (see also [Kri80], where an earlier particular example has appeared).
See the papers [Mat06, Mat13, Mat15l [Mat12] and the survey [dC14] for various
properties of topological full groups of group actions and étale groupoids.

Let U C X be a non-empty clopen set, and let g1,¢gs,...,9, € G be such that
the sets Uy = g1(U), Uz = g2(U),...,Up = gn(U) are pairwise disjoint. Then for
every permutation « € S, = S({1,2,...,n}) we get the corresponding element h,,
of the topological full group acting by the rule:

ho(C) = { 959, '(¢) i C € Ui and a(i) = j;
¢ if¢¢ Ui, Ui
The map o — hy, is a monomorphism from S,, to F(G). Denote by A(G, X)) the
subgroup generated by the images of the alternating subgroups A, < S,, for all
such monomorphisms.
The following is proved in [Nek15].

Theorem 2.7. If the action of G on X is minimal, then A(G, X) is simple and is
contained in every non-trivial normal subgroup of F(G,X). If the action of G on
X is expansive and every G-orbit has cardinality ot least 5, then A(G, X) is finitely
generated.

Definition 2.8. An action of G on X is said to be expansive if there exists § > 0
such that d(g(¢1),9(¢2)) < ¢ for all g € G implies ¢; = {2 (where d is a metric on
X compatible with the topology).

An action (G, X) on a Cantor set is expansive if and only if there exists a G-
equivariant homeomorphism from X to a closed G-invariant subset of A® for some
finite alphabet A.

2.3. Minimal actions of the dihedral group. When a set of generators S of a
group G consists of elements of order two, then we will consider the orbital graphs
and graphs of germs as non-oriented, so that an edge connecting two vertices vy
and vy labeled by s € S replaces two arrows labeled by s: one from v; to ve and
one from vs to vy (if the edge is not a loop).

Let a,b be homeomorphisms of period two of a Cantor set X' such that the
dihedral group (a, b) acts minimally on X.

Lemma 2.9. The orbital graphs of (a,b) are either one-ended or two-ended infinite
chains. The graphs of germs are two-ended infinite chains.

Proof. The Schreier graphs of the infinite dihedral group D., are either infinite
chains (one-ended or two-ended), or finite chains, or finite cycles. The latter two
cases are impossible, since then we have a finite orbit, which contradicts the mini-
mality.

Suppose that a graph of germs is a one-ended infinite chain. Then the endpoint
of the chain is a fixed point of one of the generators, and there are no other fixed
points of the generators in this orbit. Since this is a graph of germs, it follows
that the generator fixes this point together with every point of a neighborhood.
But then, by minimality, there are other points of the orbit where the germ of the
generator is trivial, which is a contradiction. ([
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Corollary 2.10. If the stabilizer (a,b)¢ is non-trivial, then there exists a unique
point & in the orbit of £ such that (a,b)e is equal either to (a) or to (b).

Let us show how minimality and expansivity conditions for D..- and Z-actions
are related.

Proposition 2.11. Let a and b be homeomorphisms of period two of a Cantor set
X. If the action the dihedral group (a,b) is minimal, then either the action of (ab)
is minimal, or X is split into a disjoint union of two clopen {(ab)-invariant sets
S1,S2 such that the action of (ab) on each of these sets is minimal, and a(Sy) =

b(Sl) = 52, a(Sg) = b(SQ) = Sl.

In particular, if the action of D is non-free (has non-trivial stabilizers of some
points), then the D.-minimality is equivalent to the Z-minimality.

Proof. Suppose that the (a,b)-action is minimal. If A C X is a closed non-empty
(ab)-invariant set, then a(A) is also a closed (ab)-invariant set (since (ab)a(A) =
a(ba)A = a(ab)~(A) = a(A)). It follows that a(A) N A and a(A) U A are closed
and (a, b)-invariant. Consequently, a(4) U A = X, and either a(A) N A = X, or
a(A) N A = (), which finishes the proof. O

Proposition 2.12. Let a and b be homeomorphisms of period two of a Cantor set
X. Suppose that they generate an expansive action of Ds.. Then there exists a
finite alphabet A, a permutation . : A — A such that * = ¢, and a Z-subshift
S C A% such that there exists a homeomorphism X — S conjugating the action
of the generators a and b with the homeomorphisms of S given by the formulas:

a(w)(n) = (w(=n)),  bw)(n)=v(w(l—-n))

for every w € S and n € Z.
Recall, that a subshift is a closed Z-invariant subset of AZ.

Proof. There exists a partition U = {Uy,Us,...,U,} of X into clopen sets such
that every point ( € X is uniquely determined by its itinerary, which is defined as
the map I : Do — U given by the condition I:(g) 3 g(¢). We may assume that
U is a-invariant, i.e., that for every U € U the set a(U) belongs to U. Otherwise,
we can replace U by the partition induced by U and a(U): two points (3, (2 belong
to one piece of the induced partition if and only if they belong to one piece of U
and to one piece of a(U).

Then for every ( € X and g € Do we have I¢:(g) = a(I¢(ag)), so that I, and
hence ¢, are uniquely determined by the sequence I¢((ab)™), n € Z. Let us denote
Je(n) = Ic((ab)").

The set of sequences of the form J:(n) is obviously a closed shift-invariant subset
of the full shift 4.

Let us describe the action of a and b on the sequences J¢(n). We have J,(¢)(n) =
I¢((ab)"a) = I¢(a(ba)") = a(I¢((ba)")) = a(Je(—n)) and Jy¢)(n) = Ic((ab)"b) =
Ie(a(ba)™™ ) = a(I:((ba)" ') = a(J:(1 — n)). We can therefore define the permu-
tation ¢ of U equal to the action of a on . O

If the permutation ¢ in Proposition [2.12]is identical, then the transformations a
and b are “central symmetries” of the infinite sequences from the subshift A. The
transformation a flips the sequences around the zeroth letter, while b flips them
around the space between the zeroth and first letters. The subshift S has to be
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invariant under a (and then it will be invariant under b). Such subshifts are called
palindromic. A minimal subshift is palindromic if and only if a sequence w € S
contains arbitrarily long palindromes as subwords. So, every palindromic minimal
subshift is associated with a natural minimal expansive action of D..

Example 2.13. Let 7 be the substitution (i.e., an endomorphism of the free monoid
{0, 1}*) given by:

0w 01, 1 10.
The words 77(0) converge to an infinite sequence 0110100110010110 ... called the
Thue-Morse sequence. Let S be the set of all bi-infinite sequences w = ...z _1x9x7 ...

such that every subword of w is a subword of lim,, o, 7*(0). It is known that S is
a minimal subshift (see [AS03, Example 10.9.3]).
Note that the words 72(0) and 72(1) are palindromes:

2(0) = 0110,  73(1) = 1001.

It follows by induction that 72"(0) and 72"(1) are palindromes for all n > 1.
Consequently, the shift S is palindromic, and the central symmetries a and b around
the position number 0 and the space between positions number 0 and 1 generate a
minimal expansive action of D..

Example 2.14. Consider the alphabet X = {1, 1%, 2, 2%}, the involution ¢ : z >
x*, v € {1,2}, and the substitution

Tl 2, 1"— 2% 2w 172", 2%~ 21.

We have t o7 =701 on X*, where t(z122 ... 2,) = t(xp)e(Tpn_1) ... t(x1).
Let S € XZ be the subshift generated by 7, similarly to the previous example.
Since ¢ commutes with 7, all words 77(2*2) are ¢-invariant:

2|12, 21|172%, 1%2*2|2*21,
It follows that the shift S is invariant under the transformations a and b defined
as in Proposition [2.12]

2.4. Odometer actions. In some sense the opposite condition to expansiveness is
residual finiteness of the action. We say that an action of a group G on a Cantor
set X is residually finite if the G-orbit of every clopen subset of X is finite. An
action is residually finite if and only if there exists a homeomorphism ¢ : X — 9T
of X with the boundary of a locally finite rooted tree T' and an action of G on T
by automorphisms such that ® is G-equivariant (with respect to the action of G on
OT induced by the action on T'), see [GNS00, Proposition 6.4].

Every minimal residually finite action of Z on a Cantor set is topologically con-
jugate to an odometer, i.e., the transformation « :  — x+ 1 on the projective limit
Z of a sequence Z/(dyds . .. d,)Z of finite cyclic groups.

Proposition 2.15. Consider a non-free minimal residually finite action of the
dihedral group Dy on a Cantor set X. Then there exists a homeomorphism of X
with a projective limit 7 of finite cyclic groups conjugating the action of Dso with
the action generated by the homeomorphisms

a(z) =1-—zx, b(z) = —x.

Proof. Let a and b be the generators of Do, of order 2. By Corollary one of
the generators a,b has a fixed point, and by Proposition the action of ab is
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FI1GURE 1. The Gray code action of D,

minimal. Then the homeomorphism « = ab is an odometer, i.e., is conjugate to the
action of  — x + 1 on some projective limit Z of finite cyclic groups.

We have bab = a~'. If by, by are order two homeomorphisms of the Cantor set
such that b;ab; = o', then by by commutes with a. By continuity and minimality of
the action of & on Z, the homeomorphism b1bs commutes with every transformation
of the form x + z+ h for h € Z. It follows that b1ba(h) = b1ba(h+0) = h+b1b2(0)
for every h € Z, i.e., that bybs is of the form z +— 2 + g for some g € Z.

The transformation by(x) = —x satisfies bpaby = o~ L. It follows that b is of the
form b(x) = —x + g for some g € Z. Then a = ab is given by a(r) = -z + g+ 1.

If all cyclic groups dids - - - d,Z in the projective limit have odd order, then the
equation 2z = g has a solution in Z for every g € Z. Otherwise, either the equation
2z = g, or the equation 2z = g + 1 has a solution. It follows that in the odd case
both involutions a, b have a fixed point, while in the even case exactly one of them
has a fixed point.

Let us assume that b has a fixed point & € Z. Then, conjugating everything
by the shift x — =z — &, we may assume that { = 0. Then a : x — —z + 1 and
b:x— —zx. O

For example, if X is the ring of dyadic integers, i.e., the projective limit of the
cyclic groups Z/2"Z, then the corresponding actionof a :  — 1—z and b: z — —x
is conjugate to the following action on the space {0, 1}* of right-infinite binary
sequences:

a(0w) = 1w, a(1w) = Ow,
b(0w) = Oa(w), b(1w) = 1b(w).

Figure |1| shows the corresponding action on the binary rooted tree.

This particular realization corresponds to the Gray code (see [Wil89, Chapter 1]).
It is also the standard self-similar action of the iterated monodromy group of the
Chebyshev polynomial Ty = 222 — 1. The iterated monodromy group of the degree
d Chebyshev polynomial is conjugate to the natural action of Dy, on the ring
lim, Z/d"Z of d-adic integers. For their standard self-similar actions, see [Nek05]
Proposition 6.12.6].

3. FRAGMENTATIONS OF DIHEDRAL GROUPS

Definition 3.1. Let a be a homeomorphism of period two of a Cantor set X. A
fragmentation of a is a finite group A of homeomorphisms of X such that for every
h € A and ¢ € X we have h(¢) = ¢ or h(¢) = a(¢), and for every { € X there exists
h € A such that h(¢) = a(¢).
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Note that if h is an element of a fragmentation A, then the sets Ej, . = {¢ €
Xt h(C)=C(tand B, ={( € X : h({) = a(()} are closed, a-invariant, their
intersection is the set of fixed point of a, and we have Ej . U E}, , = X. If the set
of fixed points of a has empty interior (e.g., if it is an element of a generating set
of a minimal action of D), then the interiors of E}, . and E}, , are disjoint.
Suppose that the set of fixed points of a has empty interior. Choose for every
h € A a set @ either equal to the interior of E} . or to the interior of Ej 4, and
consider the intersection of the chosen sets. Let P be the set of all intersections
that can be obtained this way. The set P has the following properties:
(1) P is finite;

(2) the elements of P are a-invariant, open, and pairwise disjoint;

(3) Upep P = ; o

(4) for all P, P, € P such that P; # P the set P; N P consists of fixed points
of a.

We call the elements of P the pieces of the fragmentation A. Every piece P € P
defines an epimorphism 7p : A — Z/27 by the rule:

{0 iPCE,.,
me(h) = { 1 if P C By,

In other words, mp(h) = 1if h acts on P as a, and wp(h) = 0 if h acts on P as the
identity. The map (7p)pep defines an embedding of A into (Z/2Z)7.

Conversely, suppose that a collection P satisfies conditions (1)—(4). Then for
any 7 € (Z/27) the map a, defined by

_falQ) f¢ePePandn(P)=1,
ax(¢) = ¢ if¢ePe?Pandn(P)=0,

is a homeomorphism, and the map m ~ a, is an isomorphism of (Z/2Z)% with a
fragmentation of a.

The group (Z/2Z)7 is, therefore, the maximal fragmentation of a with the set
of pieces P. Any subgroup A < (Z/27Z)" such that all homomorphisms 7p : A —
Z,/2Z are surjective is a fragmentation with the set of pieces P.

Our main subject are fragmentations with purely non-Hausdorff singularities,
see Definition Every non-free minimal action of D, can be fragmented so that
we get a purely non-Hausdorff singularity in the following way.

Lemma 3.2. Suppose that a has a fixed point . Then for everyn > 1 there exists a
partition of X\ {¢} into a disjoint union of open a-invariant subsets Py, Py, ..., Py,
such that each set P; accumulates on &.

Proof. Let Uy, k > 0, be a descending sequence of clopen neighborhoods of £ such
that Uy = & and ()~ Ur = {£}

Then Vi, = Ui N a(U %) is a descending sequence of clopen a-invariant neighbor-
hoods of & such that (,~; Vi = {£{}. Remove all repetitions, so that Vj, # Vi1 for
every k. -

Choose an arbitrary partition of the set of non-negative integers into n disjoint
infinite subsets Iy, Io, ..., I,, and define P; = Ukeli Vie \ Vies1- |

Suppose that P = {Py, P,,...,P,} is asin Lemma and suppose that the set
of fixed points of a has empty interior. Choose a subgroup A < (Z/2Z)" such that
each homomorphism 7p, : A — Z/27Z is surjective, but there is no element h € A
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F1GURE 2. The Grigorchuk group

such that wp,(h) = 1 for all P;. Then A is a fragmentation of a such that £ is a purely
non-Hausdorff singularity. It is always possible to choose such A if n > 3. For ex-
ample, for n = 3 such a subgroup of (Z/27)3 is {(0,0,0), (1,1,0), (1,0,1), (0,1,1)}.

Example 3.3. Counsider the space {0, 1}* of right-infinite sequences x5 ... over
the binary alphabet {0, 1}. Consider the Gray code transformations a and b, as
defined in 2.4

The homeomorphism b has a unique fixed point & = 111 .... The sets W,, =
11...10{0,1}* of sequences starting with exactly n ones form a partition of

n times

{0, 1}*\ {¢} into open b-invariant subsets.

Consider the partition Py = Jpe o Wak, Pt = Upe o Wak41, Po = Upe g Wak2 of
{0, 1}* \ {¢}, and the subgroup B = {b1,ba, b3,c}, where by acts as b on Py U Py,
bo acts as b on Py U Py, and b3 acts as b on P; U P,. The group generated by a and
B is the first Grigorchuk group, introduced in [Gri80|]. Its generators a, by, b, b3
are usually denoted a,b, ¢, d. See Figure [2| for a description of their action on the
binary tree, where the boundary is naturally identified with the space {0, 1 }*.

Choosing different sets Py, Pi, P, equal to unions of the sets Wy, we get all
groups from the family of Grigorchuk groups G,, studied in [Gri85]. If we choose
other number of pieces in a partition P, then we get groups defined and studied by
Z. Sunié¢ in [Sun07).

3.1. Orbital graphs of fragmented dihedral groups.

Definition 3.4. Let a and b be homeomorphisms of period two of a Cantor set X.
A fragmentation of the dihedral group (a,b) is the group generated by AU B, where
A and B are fragmentations of the homeomorphisms a and b, respectively.

Let G = (AU B) be a fragmentation of a minimal action of a dihedral group
(a,b). Denote by P4 and Pp the sets of pieces of the fragmentations A and B.

For every ( € X and a’ € A we have a’({) = a(¢) or d/(¢) = (. For every ( € X
there exists a’ € A such that a’(¢) = a({). The same is true for B and b. It follows
that the orbital graphs of G are just “decorated” versions of the orbital graphs of
Do = {a,b).

Namely, if (1, (2 are two different vertices of an orbital graph of (a,b) connected
by an edge labeled by a, then (1,({s belong to one piece P € P4. These vertices
are connected in the orbital graph of G by edges labeled by all elements h € A
such that 7p(h) = 1. We will sometimes represent such a multiple edge by £
The analogous statement is true for the edges labeled by b. Thus, we replace the
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FicURE 3. The orbital graphs of the Grigorchuk group and the
dihedral group

labels a and b of the orbital graph of the dihedral group by pieces of the respective
fragmentation. Note that all loops of an orbital graph can be reconstructed from
the edges that are not loops.

See Figure[3]where an orbital graph of the Grigorchuk group and the correspond-
ing orbital graph of the dihedral group are shown. Note that the edges labeled by
b are replaced by multiple edges labeled by {b1, b2}, {b3,b1}, or {ba, b3} (completed
by the necessary loops). These sets of labels correspond to the pieces Py, P, and
P5, respectively, see Example |3.3]

A segment X is a finite connected subgraph of an orbital graph I'¢ such that if
vy, V2 are adjacent vertices of 3, then all edges of I'- connecting v, and v2 belong to
3. We do not, however, include the loops of the endpoints of ¥ into the segment,
for a technical reason.

We will sometimes arbitrarily choose a direction (left/right) on a graph I'¢.
Orientation of subsegments of I'c will be induced from the orientation of I'¢c. If
¥ is an oriented segment, then we denote by ! the segment with the opposite
orientation. We denote by || the length of 3, i.e., the number of its vertices minus
one.

By Corollary every non-trivial stabilizer (a, b). of a point { € X is conjugate
to a stabilizer equal to (a) or (b). It follows that every stabilizer G¢ of a singular
point is conjugate to the stabilizer of a fixed point of a or b.

Lemma 3.5. Suppose that § € X is a fived point of a. The group of germs G¢ /G ¢)
is naturally isomorphic to the quotient He = A/A) of A by the subgroup of el-
ements acting trivially on a neighborhood of €. In other words the epimorphism
Ge — G¢/Gg) restricts to an epimorphism A — G¢/G¢).

Proof. Consider a germ (g,&). We can write g as a product byajbsas - - - bpa,, where
a; € A, b; € B, and a;, b; are all non-trivial except maybe for by or a,. There are
no fixed points of b in the orbit of &, and the only fixed point of a in the orbit of
¢ is the point ¢ itself. It follows that the germs (b, an(£)), (an-1,bnan(§)), ...,
(b1,a1bzas - - - bpan(§)) are equal either to germs of the identity, or to the germs of
the respective elements a or b. (We use the fact that points on the boundary of the
pieces of A or B are fixed points of a or b, respectively.) Consequently, the germ
(g,€) is equal to a germ of the form (ha,,§), where h € {(a,b). In particular, the
germ of an element of the stabilizer of £ is equal to the germ of an element of A.
This finishes the proof of the lemma. O

For the rest of the section, £ is a fixed point of a. Consider the graph = with the
set of vertices equal to the direct product of H¢ with the set of vertices of I'c. T'wo
vertices (h1,v1) and (hg,vs) of Z are connected by an edge labeled by h € AU B
if hy = ho and v; and v, are vertices of I'c connected by an edge labeled by h, or
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FIGURE 4. The graphs fg, A;, and I'¢

if v1 = vo = £ and the image of h under the epimorphism A — H is equal to
hihs. Informally speaking, we take |H¢| copies of I'e and connect their roots £ by
the Cayley graph of He.

Proposition 3.6. The graph of germs fg is naturally isomorphic to =. The action

of the group of deck transformations G¢/G ¢y = He of the covering fg — I'¢
coincides with the natural action of He on =.

Proof. We know (see the proof of Lemma that every germ (g,£) is equal to a
germ of the form (¢g'h, &), where ¢’ € {b, ab,bab, abab, ...} and h € A. Identify the
germ (g'h, €) with the vertex (h,v) € Z, where v = ¢/(€) = g(¢) and h is the image
of hin H¢. It is easy to check that this identification is an isomorphism of graphs.
The statement about the action by deck transformations also follows directly from
the description of the germs (g, ). O

Let Py, Py, ..., P, € P4 be all pieces of the fragmentation A that accumulate on
€. Then the maps mp, : A — Z/2Z are naturally factored into the composition of
epimorphisms A — H, and He — Z/27Z. We will denote the latter epimorphism
also by mp,. Then (wp,)i; : He — (Z/2Z)™ is an isomorphic embedding, since an
element h € A is trivial in He if and only if 7p,(h) =0foralli=1,2,...,n

Denote by A; the quotient of fg by the action of ker mp,. It follows from Propo-
sition [3.6| that A; is the graph obtained by taking two copies {0} x ' and {1} x T'¢
of T'¢ and connecting the endpoints (0,¢) and (1,£) by L

Denote by A; : fg — A; the natural covering map. In terms of = and A;, it is
given by the rule \;(h,v) = (wp,(h),v).

See Figure W] where the graphs f‘g, A;, and I'¢ for the Grigorchuk group are
shown. The corresponding covering maps A; : fg — A; and A; — I'¢ map a
vertex on one graph to the vertex of the graph below on the same vertical line. The
graph A; corresponds to the piece P; on which b3 acts identically, and b1, by as the
corresponding generator of the dihedral group (in this case b).
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Proposition 3.7. If {, € P;, n > 1, is a sequence converging to £, then the rooted
orbital graphs I'¢, converge to A; in the space of rooted labeled graphs.

For the definition of the space of rooted graphs, see Subsection 2.1}

Proof. For a given positive integer 7 consider the ball B ¢ (r) of radius 7 in the

graph of germs fg. It is given by a set of equalities and inequalities of germs of the
form (g1,&) = (g2,€) or (¢1,&) # (g2,€) for elements g1, g2 € G of length at most
r. If (g1,€) = (g2,€), then g1(¢) = g2(¢) for all ¢ belonging to a neighborhood of
& If g1(8) # g2(§), then we also have ¢1(¢) # ¢2(¢) for all ¢ in a neighborhood
of {. Suppose that (g1,£) # (g2,§) but g1(§) = g2(§). Then (g1,¢) = (gh1,§)
and (g2,&) = (ghe, &) for some g € {a,b) and hy,he € A. If wp,(hihy) = 0, then
hi|p, = ha|p,, hence ¢1(¢) = g2(¢) for all ( € NN P; for some neighborhood N of &.
If mp, (h1he) = 1, then g1 (¢) # g2(¢) for all points ( € NN P; for some neighborhood
N of &, since hihs|p, = a|p,.

We see that for all points ( € NNP;, where N is a sufficiently small neighborhood
of &, the ball B¢(r) of the orbital graph I'c is equal to the quotient of the ball

B(e,e)(r) C I'¢ by the action of the kernel of the projection 7p,. |

Corollary 3.8. Fvery segment of an orbital graph of G is isomorphic to a segment
of the orbital graph of a regular point. In particular, for every segment ¥ of an
orbital graph of G an isomorphic copy of ¥ is contained in every orbital graph of
G at some bounded distance R(X) from every vertex of the orbital graph.

Proof. Take an arbitrary limit A; = lim,,_, I'¢, of orbital graphs of regular points,
where (,, converges to £&. We have shown that A; is obtained by taking two copies
of I'¢ and joining the copies of £ by an edge (note that this will change the set of
loops at &). It follows that every segment of I'¢ is isomorphic to a segment of A;
(recall that segments do not contain the loops at the endpoints, by the definition
of segments). Consequently, it is isomorphic to a segment of the orbital graph I'¢,
for all sufficiently big n. O

Corollary 3.9. For every oriented segment 3 of an orbital graph of G there exist
isomorphic copies of ¥ and ¥~ in every oriented orbital graph.

Proof. A copy ¢(X) of the segment ¥ is contained in I'¢. It follows that every A;
contains the copies {0} x ¢(X) and {1} x ¢(X) of X. They have opposite orientation,
and are contained in a segment ¥’ of A;. A copy of the segment ¥’ is contained in
every orbital graph, and inside it we have two copies of ¥ in opposite orientations.

O

4. PERIODICITY

Theorem 4.1. Let G be a fragmentation of a minimal dihedral group action on a
Cantor set X. If there exists a purely non-Hausdorff singularity & € X, then G is
periodic.

Proof. We may assume that £ is a fixed point of a. Let g € G. Let m be the length
of g as a product of elements of AUB. Then for every ¢ € X the image g(¢) belongs
to the ball B¢(m) in the orbital graph I'¢, and is uniquely determined by the labels
of the edges of B¢(m).
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Lemma 4.2. Let A and ¥ be subsegments of an orbital graph of G such that A
has length m, and X contains the m-neighborhood of A. Then for every vertex v of
A there exists an embedding ¢ of X2 into an orbital graph of a regular point and an
integer k > 1 such that g*(p(v)) € p(A).

Proof. Suppose that it is not true for some X, A, v € A, i.e., that for every orbital
graph I of a regular point and every embedding ¢ : ¥ — I" the sequence g*(¢(v)),
k > 1, does not come back to ¢(A). Since for every vertex u the distance from u to
g(u) is not more than m, the sequence g*(¢(v)), k > 1, always stays in one of the
two connected components of I' \ ¢(A). It follows that g*(p(v)) converges to one
of the two ends of the graph I'. This end is on the same side of p(A) as g(p(v)).

There exist embeddings ¥ — TI'¢, in both orientations. In particular, there
exists an embedding ¢ : ¥ — T'¢ such that ¢(g(v)) is on the same side of p(A) as
€.

Consider the corresponding copy ¢g : ¥ — {e} x I'¢ of ¥ in the ray {e} x I'¢ of
the graph of germs fg ==

Consider the image A; 0 ¢o(X) of ¢o(X) in any A;. It belongs to the ray {0} x I'¢
of A;. Since g(g(v)) is closer to (g, &) than ¢o(A), the sequence g¥(\; o o(v)) will
converge to the infinite end of the ray {1} x I'¢ of A;.

It follows that the sequence g*(po(v)) will converge in fg to an end {h} x I'¢
different from {e} x T.

Since & is a purely non-Hausdorff singularity, there exists a projection \; :
Te — A; such that A\;({h} x T¢) = A;({e} x T¢) = {0} x Te. Then the se-
quence \;(g"(¢o(w))) will move from one connected component of A; \ A;(po(A)
to another, which is a contradiction, as A; is a limit of orbital graphs of regular

points. See Figure [5| where projections of fg onto A; and A; are shown. ([

Let ¥ and A be as in Lemma[£:2] and let vg, v1, ..., vy, be the list of the vertices
of A. According to the lemma, there exists a copy of A in an orbital graph T" of
a regular point such that g*o(vy) € A for some ky > 1. Let ¥y be a sufficiently
big segment of I' containing A such that the (m 4+ 1)-neighborhood of the sequence
g"(vo) for k =0,1,..., ko belongs to 3. Then g¥°(vy) € A in every copy of ¥y in
every orbital graph.

Apply now Lemma [£.2] for ¥ = ¥, and for the vertex v; of A. We will find
an orbital graph with a copy of ¥ in which both sequences g*(vy) and g*(v;)
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eventually return back to A. Therefore there exists a segment 3; containing A
such that ¢g¥(vg) and ¢¥(vy) return to A in every orbital graph containing ¥;.
Continuing this way we will find a segment ¥,,, such that every vertex of A returns
inside X, back to A under some positive power of g. It follows that the orbit of
every vertex of A C X, is finite and contained in X,,.

Let I' be an orbital graph of a regular point. By Proposition there exists
R > 0 such that for every vertex u of I' there exists a copy of ¥, on both sides of
u at distances at most R. Let M be the number of vertices of 3,,,. Then for every
vertex u of I' either the sequence g¥(u) includes a point of one of the neighboring
copies of A, or always stays between them. In the first case the length of the orbit
is not more than M, in the second case it is less than 2R + 2M. It follows that the
lengths of all g-orbits of vertices of I' are uniformly bounded, hence there exists n
such that ¢g” acts trivially on the vertices of I'. But the set of vertices of I is dense
in X, so g" = ¢, which finishes the proof of the theorem. O

5. AMENABILITY AND SIMPLICITY

Proposition 5.1. Let G be a fragmentation of a minimal action of the dihedral
group. Then G can be embedded into the topological full group of a minimal action
of Z on a Cantor set, and hence it is amenable.

Proof. We repeat the argument of [MB15]. Let I'¢c be the orbital graph of a regular
point { € X. It is a bi-infinite chain. Choose an arbitrary identification of the edges
of the chain with integers such that adjacent edges are identified with integers n, m
such that [n—m| = 1. Let w¢ = (an)nez be the corresponding sequence of elements
of P4 UPp describing the connections between the adjacent vertices, see (3.1

Let W be the set of all sequences w such that every finite subword of w is a
subword of w¢. The set W is obviously a closed shift-invariant set. Note that for
every finite subword u of w¢ there exists R > 0 such that for every i € Z there exists
J € Zsuch that |i —j| < Rand ajajiy ... a4y -1 = u, see Proposition This in
turn implies that the action of the shift on W is minimal. Denote by o : W — W
the shift, which is given by o(w)(n) = w(n + 1).

The action of every element s € AU DB on a vertex 7 of I'¢ is uniquely determined
by the labels of the two edges adjacent to 1. This defines a natural action of s on
W given by the rule

(’LU) if Ww(o)(s) = 1;
(w if Ww(,l)(s) = 1;
w otherwise.

s(w)y=¢ o7t

If w describes the orbital graph I'¢, then s(w) represents the orbital graph of I'y().

It is easy to see that the action of s on W is by an element of the full group
F({o), W), so that we get an isomorphic embedding of G into F({c), W). The result
of K. Juschenko and N. Monod from [JM13] implies now amenability of G. O

Proposition 5.2. Suppose that the action of {a,b) on X is expansive. Let G be a
fragmentation of the dihedral group. Then the action of G on X is also expansive,
and the group A(G, X) is simple and finitely generated.

Note that if A(G, X) is finitely generated, then it is a subgroup of a fragmentation
of the dihedral group with the same groups of germs of points as for G. In particular,
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if there is a purely non-Hausdorff singularity £ € X, then A(G, X) is periodic by
Theorem and amenable by Proposition [5.1

Proof. Let § > 0 be such that d(g(¢),g(n)) < ¢ for all g € (a,b) implies ¢ = 7.

Consider an arbitrary pair P;, P» of pieces of the fragmentation A. There exist
a; € A such that a;|p, = a|p,. Either a1|p, = a|p,, or a1|p, = €|p,. We also have
that either az|p, = a|p, or az|p, = ¢€|p,. It follows that for some a’ € {a1,az, araz}
we have a’|p,up, = a|p,up,- We have then d'|5 5 = a5 7

It follows that for every two points (,n € X there exists a’ € A such that
a'(¢) = a(¢) and a’(n) = a(n). Similarly, there exists b’ € B such that &' (¢) = b(¢)
and V(1) = b(n).

Consequently, for every g € {(a, b) there exists ¢’ € G such that ¢'(¢) = ¢g(¢) and
g'(n) = g(n).

Suppose that d(g(¢),g(n)) < ¢ for all ¢ € G. Then, by the above, we have
d(g(€),g(n)) < d for all g € (a,b), which implies, by expansivity of ({(a,b), X), that
¢ = n. Thus, (G,X) is also expansive. Properties of A(G,X) follow now from
Theorem (I

6. INTERMEDIATE GROWTH

6.1. Inverted orbits. Let S be a finite symmetric generating set of a group G
acting on a set X'. Choose a point £ € X.

Let g =g192-.-9n, gi € S, be a word over S (i.e., an element of the free monoid
S*). Following [BE12], we define the inverted orbit O¢(g) as the set

O¢c(9) = {91(£), 9192(£), 919293(€) - - -, 9192 - - gn (&) },
where the corresponding products of g; are considered to be elements of G.
Definition 6.1. Let g = g1g2 - - - gn be an element of S*. We say that a pair (i, j)
of indices 1 <i < j <mnisa first return of § in the word ¢ if g;11g;42---g;(§) =&

and ggt1---9;(§) # € for all i < k < j. The number j — ¢ is called the length of
the first return.

For example, if g;(§) = &, then (i — 1,4) is a first return of length 1. Note that
we do not include the cases g1 g2 . ..g;(§) = § as first returns.

Lemma 6.2. The number of first returns of £ in g = gi1g2 -+ gn s equal to n —

0c(9)]-
Proof. Denote

=018, &=0g192(8), -, & =0192-.-9n(&).
A pair (4,7) is a first return if and only if § = §; and & # §; for i < k < j. It
follows that if &, = &, = ... = &, is the list of all instances of a given element
of O¢(g), and i1 < ig < ...%p, then (i1,42), (i2,43), ..., (dm—1,%m) are first returns,

and that every first return appears in this way exactly once. Note that the number
of the first returns in this list is equal to m — 1. It follows that the total number of
first the returns is equal to n — |O¢(g)]. O

Denote

) s

The function v¢(n) is obviously non-decreasing.

Oc(9)l-
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Lemma 6.3. For all m,n > 0 we have
ve(m +n) < ve(m) + ve(n).
Proof. Consider a word g192 - - - gn+m € S™ of length n + m. Then

Oc(9192* gntm) = 191(8),9192(§), - - -, 9192 - - gm.(§) JU
9192 - gm ({gm+1(§)vgm+29m+1(§)a sy ImA19m2 gm+n(§)}) =
Oc(9192 - gm) U 9192+ g (Oe(gm+19m+2 ** * Gmtn))-
It follows that

(1) [Ocg1 - gnsm)| <10¢(g1- - gm)| +1O0¢(gmt1 - - Gmin)| < ve(n) + ve(m)
for every word g192 - - - gm4n, hence ve(m +n) < ve(m) + ve(n). O

We will also need the following general fact.

Lemma 6.4. Suppose that a function f : N — N is non-decreasing and satisfies

f(n+m) < f(n)+ f(m) for all m,n € N.
Then for all n > m, we have @ < @
Proof. Then there exist ¢ € [0,n/m|NNandr € 0,1,..., m—1such that n = gm-+r.

Then
f(n) = flgm+7) < qf(m)+ f(r),

hence
fn) _ af(m) +f(r) _
nf(m)/waLf(m) _ f:?) L f(;n) _
fm) (14 my < 200

O

6.2. Inverted orbits of linearly repetitive actions. Let G = (AU B) be a
fragmentation of a minimal action of the dihedral group (a, b).

Proposition 6.5. If the action of G is linearly repetitive and there exists a purely
non-Hausdorff singularity & € X, then there exist positive constants Ci,Cy such
that

ve(n) < Cyne~C2Viosn

forall(e X andn > 1.

Proof. We may assume that the purely non-Hausdorff singularity £ is a fixed point
of one of the generators a,b (see Corollary 2.10). Let it be a. We orient T'¢ so that
the vertex £ is on the left, and I'¢ is infinite to the right. If 3 is a segment or a
ray infinite to the right, then a left subsegment of ¥ is a subsegment Y’ such that
the left end of ¥’ coincides with the left end of X. In a similar way the notion of a
right subsegment is defined.

Let {Py, P1,...,Ps—1} the set of all pieces of the fragmentation A that accu-

mulate on £. Let A; be the limit of the orbital graphs I'¢, for regular points ¢,
P;

converging to £ inside P;. Then A; is isomorphic to Fgl T'¢, see Proposi-
tion For a natural number n, we denote by P, the label P; for i = n (mod d).
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§ o o o—oo ¢

FIGURE 6. Definition of segments Z,

Take an arbitrary left subsegment Zy of I'¢, and define inductively segments Z,,
in the following way.
Suppose that we have defined Z,, and let N be the length of Z,. Then there

exists a copy L, of Z;! Do Zy in I'¢ such that the right end of L,, is at distance
at most KN from & for some fixed constant K (coming from the estimate of lin-
ear repetitivity of orbital graphs). Define Z,41 to be the smallest segment of T'¢
containing ¢ and L,,, see Figure [0}

The length of Z, 1 is between 2N and KN. It follows that length of Z, is
between 2"|Zy| and K"|Zp|.

For every n there exists a regular point (,, such that Z, is isomorphic to a
segment I of I'¢, such that the right end of I is equal to ¢,. Passing to a convergent
subsequence of (, as n — oo, and using the fact that Z,, is a right subsegment of
Znt1, we will find a point £’ € X such that for every n there is an isomorphic copy
of Z-1 L2~ 7. in T with the right end equal to &'.

Take an arbitrary n > 1, and let ko > 0 be such that |Zj,_1] < n < |Zy,|. Then
2Fo=1| Zo| < n < K*0|Zy|, hence there exists positive constants cy, ¢z not depending
on n such that ¢y logn < kg < cylogn for all n > 1.

Denote by S the generating set AU B, and let S* be the free monoid generated
by S.

Let M,n > 1, and consider an arbitrary word gigs---gmn € S*. Let ¢ and
rer be the numbers of first returns of length at most n of £ and ¢’, respectively, in
the word g1g2 ... gmn, and let Re, R be the respective numbers of first returns of
length more than n. We have

|O¢(g192 -~ grmn)| = Mn —1e — Re,  |Oer(g192 - gun)| = Mn —rer — R

by Lemma [6.2]
We also have, for every s = 0,1,..., M~—1, that the number |O¢(gsni1 - g(s+1)n)l

is equal to n minus the number of first returns of § in the word gsn11gsnt2** g(s+1)n-
Every such a first return is a first return of € in the word g19- - - - gprn and its length
is not more than n. Since the words gsn419sn+t2 " g(s+1)n do not overlap, we get
Mn —1re <
[0¢(g1 - gn)| + |Oc(gnt1 - g2n)| + -+ + 10 (g —1)n+1 -+ Gran)
hence
‘05(9192 o gmn)| < |O£(91 o '9n)|+|05(9n+1 e Gan) |+ '+|O€(9(M71)n+1 T 9Mn)|—R£,

and the same inequality holds for &'.
Denote by v(n) the maximum of |Og(hy - - - hy)| + |Ogr(hy - - - hy,)| for all words
hy---hy, € S* of length n. We have then

(2) 0e(9192 - - garn)| + |0 (9192 - - garn)| < Mv(n) — (Re + Rer).



PALINDROMIC SUBSHIFTS AND SIMPLE GROUPS OF INTERMEDIATE GROWTH 23

Note also that it follows from the inequality (1)) in the proof of Lemma [6.3] that the
function v is subadditive. -,
There exist isomorphic copies of Zk_ol-s-d —o Zyy+a in T'g (resp., in I'g/) that are

contained in the Kjn-neighborhood of £ (resp., &), where K is a fixed constant.

P
Note that if I'¢s is bi-infinite, we can find two copies of Zk_Oler —o Zko+d ON

both sides of & and both inside the Kjn-neighborhood of £’. Let us denote the

P
copy of Zk_Oler — Zpora in D¢ by A,

The inverted orbit O¢(g192 - - - gmn) contains at least

|O¢(9192 - - gnrn)| — Kan

elements outside the Kin-neighborhood of &.

Suppose that ¢ = g1g2- - g+(§) is one of them. We will show now how ( “pro-
duces” a long first return of either £ or £/, and use it to prove that there are many
long first returns. Consider the path

v = (& 9:(€); 9t-19: (&), - - -, 9192 - - - 9:(§))

in Te. It starts in & and traverses A. Let s; be the smallest index (i.e., the last
moment) such that gs, gs, +1 - - - g:(€) is the left end of A. Let s5 be the largest index
(i.e., the first moment) such that so < s1 and gs,gs,+1 - - 9:(§) is the right end of
A. Then

Y= (Gs1 - 9:(&), Gs1—19s1 = 9e(&), -+, Gsa Gsot1 - G:(§))

is a path starting in the left end of A, ending in the right end of A, staying all the
time inside A, and touching its endpoints only in the first and the last moments.

Recall that the graph of germs fg is isomorphic to the graph = with the set of
vertices He x T'¢, as it is described in Proposition

Consider the covering \; : = — A;, where i € {0,1,...,d — 1} is the residue
of ky modulo d, and let A be the lift the central part Zk_ol-s-d Lo Ziotd = A of
A; to E (recall that Zg, 14 is a left subsegment of I'¢). Let 4 be the lift of v1 to A
starting in the branch {e} x T'¢ of =.

The end of ¥ belongs to a branch {h} x I'¢ of = for some h € H¢ \ {¢}. There
exists i’ € {0,1,...,d — 1} such that wp, (h) = 0, since ¢ is a purely non-Hausdorff
singularity. Let k' € {ko + 1,ko + 2,..., ko + d} be such that ¥’ =4’ (mod d).

Denote by A’ the central part of A isomorphic to Zk_/1 Lo Zy (it exists, since
Zy is a left subsegment of Z,44). Denote the full preimage of A’ in E by A

The path 5 must enter and exit A’. It enters A’ in the branch {e} x I'c. Consider
the segment 7/ of 7 from the last entering of A’ in the branch {e} x T'¢ to the first
touching the exit from A’ after that. The exit must be in a different branch, since
otherwise 4 must touch the entrance of A’ one more time (again inside the branch
{e} x T¢). The path 7" always stays inside A’ and touches the entrance and the
exit of A precisely once each. The image of 3’ in A is of the form

(91, - 9:(6),  gn—191, - 9:(8), ooy G ge(§)),

for some s9 < Iy < I3 < s1, where the only point in the path equal to the left end
of A’ is g, - -+ g+(&;) and the only point equal to the right end of A’ is gy, - - - g:(&;)-
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FIGURE 7. Finding a first return of &’

Py

We have the covering map Al —s (Z];1

A+ 2 — Ay. Note that the segment of I'zs of the form Z,;l L 7y with the
right end equal to &’ is isomorphic as a labeled graph to the corresponding central
part of A;s. Let ¢ be this isomorphism (from the central part of A; to the segment
of T'¢r). There are two such isomorphisms, and we choose the one mapping the

segment {0} x Zys of A;s to the right half (the one containing &) of the subsegment
Z T 7y of Ter,

If the path 7’ exits A’ for the first time in the branch {h} x I'¢, then its image
under 1) o \;/ is a path starting in &', touching a vertex of the middle edge Py, and

LD 7. The path ¢ o Ay (7) is

Zys) equal to the restriction of

then coming back to £ always staying inside 7,
equal to

(5,7 gl1*1(§/)7 sy Gl "'91171(51) :E/)a
where & is equal only to the first and to the last vertex in the path, see Figure

We get a first return (I — 1,13 — 1) of length at least 2|Zy/| > n. We know that
a1, -+ g+(€) is equal to the right end of A’, hence the right end of A’ and the value
of I uniquely determines (. We see that one such return is produced by at most d
points of the inverted orbit O(g1gs - - - garn)-

If the path 7/ exits A’ for the first time in a branch {W'} x T¢ labeled by h' # h,
then it has to traverse A’ at least one more time. It follows that 4 has a subpath ¥’
starting at (h/,£) € Z, reaching a preimage of the right end of A’, and some time
after that coming back to (h/,&). Take the shortest subpath of this form. Its length
is at least 2|Z/| > n. Then the image of this subpath under )A; in I'¢ produces
a first return (lo — 1,11 — 1) of £ of length at least n, see Figure |8 In the same
way as in the first case, the image under ¢1gs2--- g1,—1 of one of the endpoints of
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FI1GURE 8. Finding a first return of &

PkO

the central edge of A’ = (Z,,' Zyr) is equal to ¢. It follows that at most two
points of O¢, (9192 - - - gmn) can produce the same first return this way.

We see that each ¢ € O¢(9192 - - gmn) outside the Kin-neighborhood of £ pro-
duces either a long first return of £’ or a long first return of ¢, and each such return
is produced by at most d points (.

The same argument shows that each point of Qg (9192 - - - gmn) outside of the
Kin neighborhood of ¢ produces a long first return of £’ or &, and each such first
return is produced by at most 2d points of the inverted orbit (we have to multiply
by 2, since we have to consider both sides of ¢).

It follows that the number R¢ + R¢/ of long first returns satisfies

1
Re+ Ry 2 o <|OE(9192 “gun)| = Kan +|Og (9192 grn)| — 2K1n)'
Consequently, by ,
|Oc(g192 - - gnan)| +1Oer (9192 - - gun)| < Mv(n) — (Re + Rer) <

1
Muv(n) — @0(95(9192 < gmn)| + O (9192 -+ gnn)| — 3K1n),
hence
3d+1

3d
Since g1go - - - gy Was arbitrary, we have

d+1 K
3 3; v(Mn) < Mv(n) + 7111

Let us denote 6(n) = V(:). Multiplying the last inequality by W,
3d Ky
5 22
a1t 3

Ky

(1969192 ga1a)| +10e (g192 -+ gasn)] ) < Mu(n) + —Ln.

we get

0(Mn) <

for K2 = 3K1/(3d+ 1)
Let M = [%W for K3 = 2(3d + 1)K,. Then

3d 1 6d+1
< _— = -
O(Mn) X+ 557 15° = a2

=3d+1 o(n)



26 VOLODYMYR NEKRASHEVYCH

6d+1
6d+2"

Fix ng, and define inductively a sequence ny by the rule ny; = (Kgé(nk)_l] Ng-
Then §(nk+1) < pd(ny) for every k. Choosing a bigger K3 in advance, if necessary,
we may assume that ny is strictly increasing.

We may assume that K3 > 1, then

N+l = [K35(nk)_1-‘ ng < K45(nk)_1 C Nk,
for K4 = K3+ 1, since 6(n) <1 for all n. Then

Denote p = It is only important that 0 < p < 1.

ne < noK¥6(ng) 1o(ny) "t 8(np_y) "t <
K§p"s(n) ™ p 1o (i) ™t - po(ng) TH = K§ PRI 26 (ny )
raising the inequality to the power 1/k, we get

!/ * < Kap  o(ng) ™!

7

hence

S(nk) < Kap™® ng /¥ < Ksphng /",

for py = /p and K5 = Kyp;.

Take an arbitrary n. Let k be such that ny <n < ngyq1. We have
8(ne) < Kophn " < Kom Y < K (KT 0(u)nern) ™" < Ks K (3(minesa) /",
hence

6(n;€)1+1/k < Ken;;i{k < Kgn~V/*,
for Kg = K4K5, so
S(ny) < (Kgn™YF) e < Kgn=t/ (1),
Therefore, using Lemma [6.4] we get
§(n) < 26(ng) < 2Kgn =/ D)
and
5(n) < 26(ng) < 26(ng)p".
Suppose that k& < y/logn. Then
§(n) < 2Kgn— YD) < 9fgn =V (VIOERH) _ 9fc o~ Tivien < JpeKsvIioEn

for some positive constants K and Kg.
Suppose that k > y/logn. Then

d(n) < 25(n0)pk < 2§(n0)pm = 25(n0)610gpvlogn.

We see that in both cases we have
5(n) < Clefc'z\/logn

for C1 = max{K7,20(no)} and Cy = min{Kg, —log p}.
We have v¢(n) < v(n), hence

Vf(n) < 5(71) < Clengx/logn
n
for all n.
Let now (y € X be arbitrary. Let n > 1 be a natural number, and let k£ be such
that |Zk_1| < n < |Zg|. Then for every k the vertex {p of I'¢, is contained in a
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Zy,
FIGURE 9. A uniform estimate on v(n)

segment Y isomorphic to a segment of the form Zk_lle, where |I] < Kin for some
fixed K;. (Recall that | Zg|/|Zk—1]| is bounded.)

We may assume that the distance from (j to the copies of Zj, and Z,;l in ¥ is more
than n. Consider a word g = ¢g192 - -+ gpq for some M > 1. Split g into subwords
h1=g192 - gn, h2 = gnt19n+2- " G2n, - - s = gr—1)n+19(M=1)n+2 " GMn-

Suppose that (1 € O¢(g192---9mn) \ X. Then for some t we have ¢ =
9192+ - gt(Cp). Without loss of generality, let us assume that ¢; is to the right
of Co.

Represent t = gn + r where r € {0,1,...,n — 1}. Then

Cl = h1h2 T hngnJrl t 'quLJrT(CO)'
Denote ¢ = ggn+1 - ggn+r(Co). We have the sequence

(Co> €0 hqlC0)s  hg—1hq(Co)s -y haha---hg(Cp) = 1)
such that the distance between consecutive terms in the sequence is not more than n.
It follows that one of the elements of the sequence belongs to the right subsegment
Zy of X, see Figure [I] Let ¢ = hihigr -~ he($h) = g—1)nt19(-1)n+2 - 9:(Co) be
the first such point. Then (5 = hiyq1---hg(()) is to the left of Zy. Consider the
path

(Cé) gln((é)v gln—lgln(Cé)’ SRR (R DI gln(Cé) = CQ)
It passes through the left end 7 of the subsegment Z, of X. Let gsgst1-- - g+1)n(¢3)
be the last entry of the sequence equal to 7. Note that (I — )n +1 < s <ln.

Then the path

(fa gs—l(g)a sy g-1n+19(0-1)n+2 gs—l(g))a

stays inside Zj. It follows that if we map the copy of Zp C ¥ to the original
place of Zj, (the left end of I'¢), then {» will be moved to a point belonging to
Oc(gi-1yn+190-1)n+2 - Gin) = O¢(hy). It follows that for every value of [ there
are not more than vg(n) possible values of (5.

We have (1 = hihs - -+ hj—1(¢2). Consequently, for each [ there are not more than
ve(n) possible values of ;. It follows that the total number of possible values of (;
is not more than Muvg(n).

We proved that

Ve (Mn) < (Kin + 2| Zg|) + 2Mve(n) < Kon + 2Muve(n),
for arbitrary n and M, where Ko > 0 is fixed. Take n = M. Then
Ve, (nQ) < Kon + 20 n2e~C2Vioen < C’{nze_cé log n?

for some C},C4 > 0.
For every n > 1 there exists k such that k2/4 <n < k2 Then

Ve (n) < ve, (k?) < CikQS*Cé\/logT"‘) < CY'pe=CiViogn

for some positive constants C and C¥, which finishes the proof. O
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6.3. Intermediate growth.

Theorem 6.6. Let G be a fragmentation of a minimal action of a dihedral group on
a Cantor set. Suppose that there exists a purely non-Hausdorff singularity £ € X,
and that the orbital graphs of the action of G on orbits of generic points are linearly
repetitive. Then the growth of G intermediate. It is eventually larger than any

polynomial function, and is bounded from above by exp (Clne*@“(’g") for some

positive constants C1 and Cs.

Proof. Choose a point § € X. Denote by I;, the segment of I'¢, of length k such
that &y is its left end. Let K be a big number that we will choose later.

Choose « such that 1 < a < % Define, for k > 1, ¥y = I} 4|, and denote by
(x the right end of X§. Then

7ak+1 —1 = — aik < |Zk+1| ak+1 = @
ak [Zk] ak—1 1—ak

Let g = g1g2 - - - gn € S* be a word of length n in generators S = AUB. For an ar-
bitrary regular point ¢ € X consider the set W = {(, gn(¢), gn—19n(C), - .-, 9192 - - - gn({) }.
It is a segment of I'¢, since it is the range of a path in I'c. Denote by I¢ its length.
Let WC/ be the subsegment of I'¢ consisting of W, and the two adjacent edges. There
exists an isomorphic copy ¢¢(W/) of W[ in the right half of I'g, such that its left
end is at distance at most Kl from & (if K is big enough).

Let k be the smallest positive integer such that || is larger than the distance
from & to the left end of ¢ (W¢). Then (j is to the right of the left end of ¢ (We).
Suppose that ¢ is to the right of the right end of ¢¢(WW,). Let m be the distance
from &y to the left end of ¢¢(W¢). Then || > m +1, [&*1] <m, and m < KI.
It follows that

a la® | m+1 l 1 K+1

2 il
1—a—k+1>Lak—1J_ m 1+m_1+K K’

which is a contradiction for all k£ bigger than some fixed kq.
It follows that if k is big enough, then the right end (j of 3j belongs to ¢¢(We).
It follows that there exists s such that gs - - - gn(¢¢(¢)) = Ck, or

¢C(<) = gnGn—1-"9s(Ck)-

It follows that ¢¢(¢) € O¢, (gngn—1---91)-

Consider the set L, of all triples (¢¢(W(), ¢¢(C), #¢(9(¢))) for all regular ¢ € X
If we know Ly, then we know g, since for every ( € X' an isomorphic copy ¢¢(W()
of WC/ will appear as the first component of an element of £,, and then the second
and the third components ¢¢(¢) and ¢¢(g(¢)) of that element will determine ¢(¢).

Note that since the length of W is not more than n, the left end of ¢(W¢) is at the
distance at most Kn from &y, hence k is bounded above by log(Kn)/log a < logn.

It follows that the cardinality of L, is not greater than Cinlog ne=C2vIogn for
some positive constants Cy and Csq, by Proposition [6.5)

Let us estimate now the number of possible sets £, for all words g € S* of length
n. Each element of £, consists of a point of I(x1),, a segment of length at most
n containing this point, and a point in this segment. It follows that the number of
possibilities for each element of £, is bounded above by Cn* for some constant C.
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Consequently, the number of possible sets L, is less than

—Co\Togn
(Cn4)01nlog ne _

exp (Cln log ne~“2vIoe " (41og n + log C)) <
exp (C’{n(log n)%*@@) = exp (C{n(emoglog”*@m))

< exp (Cine‘c§m>
for some C7,C% > 0 and all n big enough, since % — 0 as n — oco. As the
element g is uniquely determined by L,, this gives the necessary subexponential
estimate of the growth of G. The group G can not be of polynomial growth, since
it is finitely generated, infinite, and periodic, which excludes the possibility of a
polynomial growth, by M. Gromov’s Theorem [Gro81]. O

7. EXAMPLES

7.1. Substitutional systems. Let X be a finite alphabet, and let 7 : X* — X*
be an endomorphism of the free monoid X*. It is uniquely determined by the
restriction 7 : X — X*, which is usually called a substitution. The associated
subshift X, C XZ is the set of all bi-infinite sequences w such that for every finite
subword v of w there exists n > 0 and € X such that v is a subword of 7" (z). It
is non-empty if and only if there exists € X such that the length of 77 (x) goes to
infinity as n — oo.

D. Damanik and D. Lenz in [DL06] proved that a substitutional shift is linearly
repetitive if and only if it is minimal and gave a criterion of minimality in terms of
the substitution.

Let us illustrate how substitutional dynamical systems can be used to construct
periodic simple groups of intermediate growth on the example of the Thue-Morse
substitution.

Consider the action of the dihedral group from Example 2:I3] It acts on the
shift S generated by the substitution

7(0)=01, 7(1)=10.
Let us introduce new symbols ¢, B, C, D and modify the substitution 72:
7(0)=0t1D1t0, 7'(1)=1t0D0t1,
7(D)=C, 7(C)=B, 7 (B)=D, 7'(t)=t.
Let S’ be the set of sequences in the shift generated by 7/ that have the letters
1,2 on the even positions, and letters B, C, D,t on the odd positions. We have a
natural map k : 8’ — S erasing the letters B, C, D. One can show that for every

w € S the set kK~ !(w) consists of a single element, except for w equal to a shift of
one of the two infinite palindromes

... 10010110 . 01101001 ...

and
...01101001 . 10010110 ...,

when k~!(w) has three elements that differ from each other only by the central
letter B,C, or D.
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S P,

FIGURE 10. A periodic group acting on a hexagon

Let a be the transformation of S’ flipping a sequence around the letter on the
zeroth position, and let b, ¢, d, and ¢, respectively, be the transformations flipping a
sequence around the letter on the first position if it is C' or D, B or D, B or C, and
t, respectively, and acting trivially otherwise. Then the action of a,b,c,d,t on S’
lifts by x to an action on S in a unique way. The sequences from S’ are naturally
interpreted as the orbital graphs of regular points, and the limits A; of regular
orbital graphs in the case of a singular point of the action of G = (a,b,c,d,t) on
S. The group A(G,S) is a finitely generated simple periodic group of intermediate
growth.

7.2. Groups of polygon rearrangements. A nice class of examples illustrating
Theorem was suggested to the author by Yves de Cornulier. Consider the torus
R?/Z? and two central symmetries a : * — —x + v and b : & — —x for some
v € R?/Z% Suppose that v is represented by (z,y) € R?, such that 1,x,y are
linearly independent over Q. Then, by the classical Kronecker’s theorem [Kro84],
the action of Z generated by the composition & — x + v of the two symmetries is
minimal on the torus.

Let us split the torus into three b-invariant parts Py, Py, P53 (e.g., each equal to a
union of some polygons) such that the fixed point 0 of b belongs to the boundary of
each of the parts. Consider then the transformations by, ba, by (defined up to a set
of measure zero) of the torus acting trivially on Py, Py, P3, respectively, and acting
as b on their complements. We may also cut the torus open, and represent it as a
polygon, so that then a, by, bs, b3 act on the polygon by piecewise isometries. We
can lift this action to an action by homeomorphisms of the Cantor set satisfying
the conditions of Theorem one has to double all points lying on the sides of
the polygons (except for 0, which has to remain common to all three pieces P;),
and then propagate this doubling by the action of the group.

For example, we can consider the group generated by piecewise isometries of the
regular hexagon, shown on Figure The first transformation a rotates each of the
four shown polygons by 180 degrees. The remaining three transformation rotate
the shaded areas by 180 degrees around the center of the hexagon and fix the white
areas. Theorem implies that this group is periodic, provided the first generator
is sufficiently generic (i.e., such that its composition with the 180 degree rotation
around the center of the hexagon acts minimally on the torus).

8. FRAGMENTING THE GOLDEN MEAN DIHEDRAL GROUP

8.1. The construction. Let us describe an explicit example of a finitely generated
simple periodic group of intermediate growth.
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Denote by ¢ the golden mean # Let T; and T be the transformations
Ty (x) = ¢ 'a, To(x)=1—¢p %z

of [0,1]. The ranges of T, and Ty are the intervals [0, ¢ — 1] and [p — 1, 1], respec-
tively. They do not overlap and cover the circle R/Z.

For every infinite sequence w = z125 ... € X¥ over the alphabet X = {1, 2}, the
intersection of the ranges of T, 0 Ty, o--- 0T} is a single point.

Denote by a and b the transformations of the circle R/Z given by

a(z) = ¢ —x, b(x) =1-—=.

Then ba is the rotation x — x + ¢ of the circle. We get a minimal action of the
dihedral group (a,b) on the circle.
Direct computations show that

aoTi(z) = T;ob(x),
aoTg(x) = Tgob(x),
and
boT;o0Ti(x) = To(x),

)
bOTg(.’lﬁ) = T] OTI(J}),
boT;0Tg(x) = T;oTsob(x),
for all = € [0, 1], where a acts on [0, ¢
T -
We get the following associated action on the sequences zizs ... € X¥:
a(lw) = 1b(w), a(2w) = 2b(w),
b(11w) = 2w, b(2w)= 11w, b(12w)= 12b(w).

—1]byxz—¢e—x—1and on [p —1,1] by

More formally, we have the natural map « : X¥ — R/Z mapping a sequence
2122 ... to the unique intersection point of the ranges of T,;, 0T, 0--- 0T, . Then
the map k is a semiconjugacy of the transformations a,b acting on X* with the
transformations a, b acting on R/Z.

As usual, we will identify X* with the boundary of the rooted tree X*. However,
it is more natural to change the metric on the tree in the following way. The weight
of the letter 1 is equal to 1, the weight of the letter 2 is equal to 2. The weight of
a word v € X* is equal to the sum of the weights of its letters.

Denote by L,, the set of words of weight n. We denote by L,v for v € X* the
set of words of the form wv for v € L,. Similarly, if A is a subset of X*, then we
denote by AX“ the set of all sequences w € X such that a beginning of w belongs
to A.

We obviously have

(3) Ly =Lp11UL, 22,

and Lo = {@}, L1 = {1}, so that |L,|, forn =0,1,2,..., is the Fibonacci sequence
1,1,2,3,5,. ...

The transformation b has one fixed point (12)“ (encoding the point 1/2; the
point 0 has two encodings, which are interchanged by b). The transformation a
has two fixed points 1(12)¥ and 2(12)% (encoding the points ¢/2 and (¢ + 1)/2
of the circle). Let W, for n > 0, be the set of sequences starting by (12)"2 or
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ag bo Co do x1 T2

SANEAN

Zo

FIGURE 11. The generators of F'

by (12)™11. Define P; = Jyoo Wskti, for i = 0,1,2. The sets P; form an open
partition of X“ \ {(12)“}.

Define, similarly to the Grigorchuk group, the homeomorphisms bg, ¢g, dg of X¥
acting trivially on P, P1, Py, respectively, and as b on their complements. Let
ag be the homeomorphism interchanging 11X“ with 2X¥. More explicitly, the
homeomorphisms ag, by, cg, dy are given by

ap(11w) = 2w, ap(2w) = 11w, ag(12w) =1
bo(11w) = 2w,  bo(2w) = 11w, bo(12w) =1
co(11w) = 2w, co(2w) = 11w, co(12w) = 12dp(w),
do(11w) = 11w, do(2w) = 2w, do(12w) =1

Note that ag belongs to the full topological group of (bg).

Let us also fragment the homeomorphism @ around its fixed points 1(12)“ and
2(12)%, in the same way as we fragmented the transformation b around (12)“.
Namely, define, for every letter x € {a,b,c,d}:

z1(1w) = 1zo(w), z1(2w) = 2w,
z2(1w) = 1w, x2(2w) = 2go(w).

See Figure [T1] for a description of the action of the generators on the boundary of
the tree X*.

The homeomorphisms b;, ¢;, d; are examples of homeomorphisms defined by finite
asynchronous automata, see [GNOQ, [GNSQ0Q].

Let F' be the group generated by a;, b;, c;,d;, i = 0,1,2. The goal of this section
is to prove the following.
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Theorem 8.1. The group F coincides with its topological full group F(F,X¥). It is
periodic and of intermediate growth. Its derived subgroup [F, F| is simple and has
finite index in F.

Periodicity follows from Theorem Note that the set {bg, co,dp,e} is a group
isomorphic to (Z/2Z)?. The element ag commutes with this subgroup, hence
the elements ag, by, co, do generate a group isomorphic to (Z/2Z)3. The elements
ay, by, c1,dy,ag, b, o, ds pairwise commute and generate a subgroup isomorphic to
(Z/27)°. In particular, F is a quotient of the free product (Z/27Z)% % (Z/27)°. 1t
follows that F'/[F, F] is a quotient of (Z/2Z)?, hence is finite. In fact, one can show
that the abelianization epimorphism F — F/[F, F] is induced by the epimorphism
(Z)272)) x (2.)27)% — (Z)27)°, so that F/[F, F] = (Z/2Z)°, but we do not need
it here.

Consequently, it is enough to prove subexponential growth, the equality F' =
F(F,X¥), and that [F, F] = A(F, X¥).

8.2. Locally finite groups S, and A,,.

Lemma 8.2. For every n > 1 we have
XY =L, XY UL,_12X%.

Proof. Tt is true for n = 1: we have Ly = {1} and Lo = {@} and X¥ = 1X¥ L 2X¥.
Suppose it is true for n. Then we have

X(.d == Lnxw u Lnflgxw =
LpIXY UL, 2XY UL, 12X =
(L1 U Lp_12)X% U Lp2X% = Ly 1X® U L, 2X¥.
(|

We say that two finite words vy, vo are incomparable if neither of them is a begin-
ning of the other. For a set A of pairwise incomparable words, we denote by S(A)
(resp. A(A)) the group of all (resp. even) permutations of A seen as homeomor-
phisms of X¥. If « is a permutation of A, then the corresponding homeomorphism
of X¥ acts by the rule a(vw) = a(v)w for v € A, and a(w) = w for w ¢ AX¥.

The groups S(L,t), t € {1, 2}, are naturally isomorphic to S(L,), where the
isomorphism is induced by the bijection v +— wvt.

By Lemma the groups S(L,) and S(L,_12) act on disjoint subsets of X*,
hence they commute. Denote S(L,,) ®S(Ln_12) = (S(L,)US(L,—12)). The group
A(Ly) & A(Lp—12) is defined the same way.

Note that

S(Lp) ®S(Lyp—12) < S(Lpt1) ®S(L,2),
where S(L,,) is embedded diagonally into the direct sum by the homomorphism
induced by the natural maps

v—=vl:L,— L,1 CLy4
and
v—wv2:L, — L,2,
and S(L,—12) is embedded isomorphically to the factor S(L,+1) by the natural
inclusion L,,—12 C Ly41. The same is true for the embedding
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Denote by S, and A,, the unions of the groups S(L,,) ® S(L,—12) and A(L,,) @
A(L,-12), respectively, i.e., the direct limit of the described embeddings.

Proposition 8.3. The quotient S,,/A,, is isomorphic to (Z/27)* and is equal to
the set of images of ag, a1, aso,1.

Proof. The quotient (S(L,) ® S(L,-12))/(A(L,) ® A(L,—12) is naturally isomor-
phic to Z/27 © 7/27Z. Tt follows from the description of the embedding S(L,,) @
S(Lp—12) — S(Lpt1) ® S(L,2) that if (x,y) is the image of an element g €
S(L,)®S(Ly—12) in the quotient (S(L,,)®S(Ln-12))/(A(L,)BA(Ly,—12), then the
image of the same element in the quotient (S(Ly+1)®S(Ln2))/(A(Lnt1) DA(L,2))
is (z +y, z).

Note that the map (z,y) — (z +y, 2) is an automorphism of (Z/2Z)?, and that
the orbit of any non-zero element of (Z/2Z)? belongs to the cycle (1,0) — (1,1)
(0,1) — (1,0).

Let g € Su, and n be such that ¢ € S(L,) & S(L,,—12). Consider then the
sequence &, = (t;);>n of the images of g in the quotients (S(L;)®S(L;—12))/(A(L;)®
A(L;—12). Note that the sequence &, is defined only starting from some coordinate.
We identify two sequences if they are equal in all coordinates where both of them
are defined.

Then for every g € S, the sequence &, is either equivalent to the constant zero
sequence, or to one of the three shifts of the sequence

(1,0),(1,1),(0,1),(1,0), (1,1),(0,1), ...

The sequence &, is equivalent to the constant zero sequence if and only if g € A,,.
It follows that S, /A, is isomorphic to group of equivalence classes of the sequences

((0,0),(0,0),(0,0),...),
)yee)s
)yen)s
)y
which is isomorphic to (Z/27Z)2.

The elements ag, a1, as are equal to the permutations (11, 2) € S(Lo), (111,12) €
S(Ls), (211, 22) € S(L4), hence the corresponding sequences &4, ,&q,;Ea, are

* (1,0), (1,1), (0,1), (1,0), (1,1),
*, *, (1,0), (1,1), (0,1)7 (170),
*, *, x, (1,0), (1,1), (0,1), ...,

where asterisk marks the places where the sequence is not defined. We see that the
images of ag, a1, as are all non-trivial elements of S, /A, O

8.3. The action of the elements of F'. Let z be one of the letters a, b, ¢, d, and
let v € X*. We denote then by x, the homeomorphism of X“ defined by the rule

| vzo(u) i w=ovu,
zo(w) = { w if w ¢ vXv.

Denote also, for every non-negative integer k:
T3k = L(12)k; L3k+1 = T1(12)k) T3k+2 = T2(12)k-

Note that this definition agrees with the original definitions of xg, z1, z2.
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We have a,, € S(Lpt2) < S(Lpt2) ® S(Lp+12), and
by, = GnCn+3, Cp = and7z+3; d, = bn+3-

It follows that we have the following equalities:

(4) bi = a;ciy3 = a;0i43dit6 = A;0i43bi19 = ;0 430i49Ci412 = -+,
(5) ¢ = a;diy3 = a;biye = A;0446Ci+9 = A;Qi460;49di412 = -+,
(6) d; = bi+3 = Q;4+3Ci4+6 = ai+3ai+6di+9 = ai+3ai+6bi+12 =y

We will need the following direct corollary of equations f@.

Lemma 8.4. Let n be a positive integer, and let i € {0,1,2} be such that n = i
(mod 3). Lety=bifn—i=6 (mod9),y=cifn—i=3 (mod9), andy =d if
n—1=0 (mod 9).

Then y; = hayn_3dy,, where h € S(L,_4) ® S(L,_52).

We say that two sequences wi,ws € X¥ are cofinal if there exist finite words
v1,v2 € X* of equal weight and an infinite word w € X such that w; = viw and
W = V1W.

Note that no two sequences from the set R = {(12)%, 1(12)“,2(12)“} are cofi-
nal, but every sequence of the form v(12)¥, where v € X*, is cofinal to one of the
sequences from the set R.

It follows directly from the definition of the generators of F' that elements of
F' preserve cofinality classes of sequences. The next description of local action of
elements of F' on X¥ is easy to prove by induction on the length of g.

Proposition 8.5. Let g € F be an arbitrary element.

If u € X¥ is not cofinal to any of the elements of R = {(12)~,1(12)*,2(12)*},
then there exists a finite beginning v1 € X* of u and a word vo € X* of weight equal
to the weight of v1 such that

g(nw) = vow
for all w e X¥.

If u € X¥ is cofinal to an element of R then there exists a finite beginning
vy € X* of u, a word vo € X* of weight equal to the weight of v1, and an element
h € {e, by, co,do} such that

g(v1w) = vah(w)
for all w € X¥.

Corollary 8.6. Let g € F. Then there exist finite sequences

*
V1,02, .., Un, UL, U2,...,Un eX ’
hla h2a ey h’n S {EabOa 007d0}7
such that {v1,va,...,v,} and {u1,us, ..., u,} are mazimal sets of pairwise incom-

parable words, weight of v; is equal to the weight of u;, and for every w € X“ we
have

g(viw) = u;h;(w).

Note that the element g is uniquely described by the sequences vy, vs, ..., vy,
UL, Uy -« oy Un, aNd h1, ho, ... Ay
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8.4. The recursive structure of the orbital graphs of F. The edges of the
orbital graphs of F' belong to one of the following types.

(1211w == (12)F 2w,
1(12) 11w =2 1(12)F 2w,
2(12)F 11w =2 2(12)F 2w,

where w € X“.
The labels e stand for the following labelings by the generators

ai7bi,ci ifk:(),
(7) sy = bi,c; ifk=0 (mod 3)and k > 0,
e bi,d; ifk=1 (mod 3),
¢i,d; ifk=2 (mod 3),

where ¢ = 0,1,2. Thus, for k£ > 3, the label e, is determined by the residue of k
modulo 9.

We will define now graphs I, with the vertex set L. Each of the graphs I}, will
be a chain with a fixed choice of the left/right direction.

For a finite or infinite word v, we denote by I,v the graph obtained from I by
appending v to the name of each vertex of Ij.

The graphs Iy and I; are single vertices @ and 1, respectively. Define inductively
I, by the rule:

Iy =172 =17 1.

Proposition 8.7. For every infinite word w an orbital graph of F' contains I,w,
and every finite segment of every orbital graph of F is contained in I,w for some
n and w. Denote by P, and Q. the left and the right endpoints of the chain I,
respectively. Then

P, =(12)"%, 1(12)"7V3 o 2(12)7V/3,
and

Qn = (21)"3, 1(20)"=V/3 o 11(21)"D/3,
depending on the residue i = 0,1,2 of n modulo 3.

Proof. Induction on n. O

Proposition 8.8. The orbital graphs of F' are linearly repetitive, hence the group
F has subexponential growth.

Proof. Consider the substitution 7 given in Example[2.14] add new letters eg, k > 0,
to the alphabet, and modify 7 as follows:

Tl 2, 17— 2% 2w 1%2%, 2" 2epl, e} epy1.

Compare it to the Thue-Morse example in We extend the involution * to the
new alphabet by setting e} = e;, and to the set of all finite words by (z122...2,)* =
xy ... x5x7. Note that the actions of 7 and * on the set of finite words commute.

Let us prove by induction that the sequence obtained from 7*(1) by deleting all
the letters 1, 1%, 2,2* coincides with the sequence of the edge labels in the segment
I



PALINDROMIC SUBSHIFTS AND SIMPLE GROUPS OF INTERMEDIATE GROWTH 37

The segments I, I; have no edges, and the words 1,7(1) = 2 also have no letters
e;. The segment I is 2 —°— 11, and the word 72(1) is 1*e92*. Suppose that the
statement is true for all segments I; for i < k. We have

TH(1) =72 (1 e02”) = (772 (1) en—a(FF72(2))" = (FF72(1)) en—2 (7571 (1)),

which agrees with the recursive definition of the segments I and finishes the proof
by induction.

Recall that the labels of the orbital graphs of F' corresponding to the symbol ey,
depend only on the residue of £ modulo 9, if kK > 3. It follows that the sequences
describing the labels of bi-infinite orbital graphs of F' belong to a substitutional
shift. It is minimal by Proposition [2.5] Minimality of substitutional shifts is equiv-
alent to their linear repetitivity (see [DLO06]), hence the orbital graphs of regular
points for the action of F' are linearly repetitive. Theorem shows then that F'
has intermediate growth. (]

8.5. The proof of Theorem It follows from Corollary that the topo-
logical full group F(F,X“) is the group of all transformations g that are defined
by the rules of the form g(v;w) = w;h;(w), where vy,...,v,,u1,...,u, € X*, and
hi,ha, ..., hy € {bo,co,do,c}, as in Corollary

Proposition 8.9. The group F coincides with its topological full group.

Proof. Let us prove at first that F' contains A, i.e., that F' contains A(L,) ®
A(Ly,_12) for every n > 1.

The groups A(L,) and A(L,2) are trivial for n = 0,1,2. Let us prove by
induction that A(Lg) @ A(Lk—12) < F. Suppose that it is true for all £ < n, and
let us prove it for n.

Recall that we have

XY = L,X* U L,_12X¥
and
LpX¥ = Ly 11X U Ly_22X%.

By Lemma for one of the letters y € {b,¢,d} and ¢’ € {0,1,2} such that
i’ =i+1 (mod 3), we will have y;; = ha,—od,t1, where h € S(Ly,—3)®S(Lp—42) <
S(Lp—1) ® S(L,,—22X%).

The element a,,_ interchanges the sets P, _22X“ and @,,_1 1 X% and acts trivially
on the complement of their union (where P, and Q,, are as in Proposition, since

Py 22 =1(12)""3B2 Q. 11 =11(21)""3/31 = 1(12)"=3/311,
if i =0,
P, 92 =2(12)""YB2 Q. 11 =(21)""V/31 = 2(12)"Y/317,
if i =1, and
P, 52 =(12)""282 Q.11 =1(21)""231 = (12)""2/311,

if i = 2.

The element d,, 1 preserves each set of the form vX“ forve L,,_11 UL, 22U
L,,_12, acts identically on each of them, except for the set Q,,_22X", since Q,,—22
is one of the sequences (21)"=2/32 = 2(12)("=2/3 1(21)"=3/32 = (12)"/3,
11(21)"=9/82 = 1(12)(n=1/3,
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FIGURE 12. Generation of A(L,) ® A(L,—12)

It follows that
g ALn22)yr = A(Ln-22\ {Pa22D) U{Qu 11}),

see Figure [12

Consequently, the group generated by [A(Ly—1), ¥ A(L,—22)yy] is equal to A(Ly,).

The elements of A(L,_1) < F act on L,,_1I1X¥ U L,_12X*. We have L,_11 C
L,, hence A(L,_12) is contained in the group generated by A(L,_1) and A(L,),
hence it is also contained in F.

This finishes the proof of the inclusion A, < F.

Lemma 8.10. The group F' contains S, and all elements of the form x, for x €
{b,¢,d} and v € X*.

Proof. Tt was shown in Proposition that S, /A, is equal to the set of images of
agp, ay,asz, €. Since a; € F, and A, < F, this implies that S, < F. In particular, all
homeomorphisms a,, belong to F'.

The relations b, 3 = dy, cnt3s = apby, dny3 = anc, imply by induction that all
the homeomorphisms b, ¢,, d,, belong to F.

Let v € X*, and let n be the weight of v. Let o € S(L,) be the transposition
(v,u), where u € L, is the unique sequence of the form (12)* 1(12)*, or 2(12)*

of weight n. Then z, = cx,o. It follows that x, € F. O
Lemma finishes the proof of Proposition (I

The next proposition finishes the proof of Theorem [81]
Proposition 8.11. The derived subgroup [F, F] coincides with A(F,X“).

Proof. By Theorem the group A(F,X%) is simple and is contained in every
non-trivial normal subgroup of F. In particular, A(F,X¥) < [F, F].

Therefore, it is enough to prove that F//A(F,X¥) is commutative, i.e., that the
generators of F' commute modulo A(F, X¥).
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Note that A(F,X“) obviously contains A,. Note that a, = a,+3 modulo A,
for all n > 0. We have b, = @nan+3bnt9, Cn = Annt6Cnt9, dn = Unt3antednto-
It follows that b,, = byt9, ¢ = Cnyo, and d,, = dj49 modulo A(F, X¥). We have
shown that for every = € {a,b,c,d} we have z,, = x,4+9 modulo A(F,X%).

If n > 2, and vy,v2 € Ly, then there exists an element o € A(L,) such that
o(v1) = va. Then, for every letter z € {a,b,c,d}, we have ox,, 07t = x,,. It
follows that x,, = x,, modulo A(L,,).

For arbitrary words v1,vs of sufficiently big weight there exist incomparable
words up,us of the same weights as vy, vy, respectively. Then, for every z,y €
{a,b,c,d} we have x,, = x,, and y,, = Yy, modulo A(F,X¥), and [z, Yu,| = 1,
hence [2y, , Yu,] € A(F, X¥).

Let x;,y; be generators of F, where z,y € {b,c,d}, i,j € {0,1,2}. Then x; =
Tivok, Y; = Yj+or modulo A(F,X*) for all non-negative integers k, hence, by the
above, z; and y; commute in F/A(F,X¥). O
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