FREE HILBERT TRANSFORMS

TAO MEI and ERIC RICARD

Abstract

We study Fourier multipliers of Hilbert transform type on free groups. We prove that
they are completely bounded on noncommutative LP-spaces associated with the free
group von Neumann algebras for all 1 < p < oo. This implies that the decomposi-
tion of the free group F, into reduced words starting with distinct free generators
is completely unconditional in L?. We study the case of Voiculescu’s amalgamated
free products of von Neumann algebras as well. As by-products, we obtain a posi-
tive answer to a compactness problem posed by Ozawa, a length-independent esti-
mate for Junge—Parcet—Xu’s free Rosenthal’s inequality, a Littlewood—Paley—Stein-
type inequality for geodesic paths of free groups, and a length reduction formula for
L?-norms of free group von Neumann algebras.

1. Introduction

The Hilbert transform is a fundamental and influential object in mathematical anal-
ysis and signal processing. It was originally defined for periodic functions. Given a
trigonometric polynomial f(z) = Z,ICVZ_ N arzk, let Py f= Z,ICV:O arz* be its ana-
lytic part, and let P— f = Z,:i Na « 2% be its antianalytic part. The Hilbert transform
is formally defined as

H=—iPy+iP_

and clearly extends to a unitary on L2(T). The case of L?, 1 < p < 00, is more subtle.
Riesz first proved that H extends to a bounded operator on LZ?(T) forall 1 < p < oo.
It is also well known that H is unbounded on L?(T) at the endpoint p = 1, 0o but
is of weak type (1, 1). In modern harmonic analysis, the Hilbert transform is con-
sidered a basic example of Calderon—Zygmund singular integrals. Its analogues have
been studied in much more general situations with connections to L?-approximation,
Hardy/BMO spaces, and more applied subjects.

The Hilbert transform appears also as the key tool to define conjugate func-
tions in abstract settings such as for Dirichlet algebras. In operator algebras, it shows
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up through Arveson’s concept of maximal subdiagonal algebra of a von Neumann
algebra M. Its L?-boundedness is well known (see [12]) and the weak-type (1, 1)-
estimate was obtained by Randrianantoanina in [13].

This article describes a natural analogue of the Hilbert transform in the context of
amalgamated free products of von Neumann algebras. The study is from a different
viewpoint to Arveson’s and is motivated by questions in the theory of L?-Herz—Schur
multipliers on free groups.

Our model case is the von Neumann algebra (£(Fo), 7) of free group with a
countable set of generators g1, g2.. ... The associated L?-space L?(Foo) is a non-
commutative analogue of L” (i) = LP(T). Let £¢,, £ g be the subsets of Foo of

reduced words starting, respectively, with g;, g;~ 1. One can naturally associate to them
projections; given a finitely supported function £ on Foo, £ =} g dgdg.ae €C,
define

Lgx = Z aglg

géefgi

and L, —1 X similarly. In fact, all of them will obviously extend to norm 1 projections

on £,(Fso) = L2?(Fo). Natural questions are whether these projections are bounded
on L?(Fu) and whether the decomposition Fo, = {e} Uiene=+1 Lge is uncondi-
tional in Lp(f?oo). In this sense, we define a free analogue of the classical Hilbert
transform as the following map

He=e1Lg +e 1Lyt +e2Llg +e oL+ (1)

for &; = 1. We are interested in the (complete) boundedness of H, on L? (ﬁ'oo) as
well as possible connections to semigroup Hardy/BMO spaces and the L7-
approximation property in the noncommutative setting.

The question of the L? (fToo)—boundedness of H; has been around for some time.
The authors learned from G. Pisier that P. Biane had raised and discussed this ques-
tion with him during their participation in a research semester at the Institut Henri
Poincaré in 2000. Ozawa indicated that the L4(f?oo)-boundedness of H, would pro-
vide a positive answer to the problem he posed at the end of [8]. Junge, Parcet, and
Xu [5] obtained a length-dependent estimate for a related question in their work on
Rosenthal’s inequality for amalgamated free products.

The first result of the present article (Theorem 3.5) is a positive answer to the
L?-boundedness question of H, in the general case of Voiculescu’s amalgamated
free products, which includes the free group as a particular case (see Theorem 4.1).

One can also consider two similar Hilbert transforms. One is

H =Py + Z enLp
h.|hl=d
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with P, the projection onto the reduced words with length at most d, and with Lj’s
the projections onto the reduced words starting with /. Another is

HD =e,Pg 1+ Y &gl
glgl=1

with Léd)’s the projections onto reduced words having g as their dth letter. Their
(complete) boundedness on L? (l:’n) can be easily deduced from that of H, with con-
stants depending on d. The main result of the present article (Theorem 4.7) says that
H s are completely bounded on L? (Foo) for any d > 1. While H Ld>g are bounded
forall 1 < p < oo but not completely bounded on L? (f‘w), forany p #£2,d > 2.The
authors also prove a length-reduction formula to compute L?-norms and a Rosenthal-
type inequality with length-independent constants.

A classical argument used in proving the L?-boundedness of the Hilbert trans-
form H is Cotlar’s identity

|H(H[>=1fP+H(fHf + Hf f), )

which allows one to get the result for L2? from that of L? and implies optimal esti-
mates. This identity holds in a general setting, if one can identify a suitable “ana-
Iytic” algebra and define the corresponding Hilbert transform as the difference of the
two projections on this algebra and its adjoint. This is the case of noncommutative
Hilbert transforms associated with Arveson’s maximal subdiagonal algebras (see [12,
Lemma 8.5])." After obtaining an initial proof of Theorem 4.1, we observed that a free
version of Cotlar’s identity (see (5)) holds in the context of amalgamated free prod-
ucts for H, with |ex| < 1.2 We were slightly surprised when this observation came
out, given that H,, defined in (1), is associated to subsets instead of subalgebras. On
the other hand, finding a proof of (5) was not hard once we started to feel it. It is odd
that this identity was not noticed earlier.

We introduce notation and necessary preliminaries in Section 2. Theorem 3.5
and a Cotlar-type formula for amalgamated free products are proved in Section 3.1.
Section 3.2 includes a few immediate consequences. Section 3.3 obtains a length-
independent Rosenthal-type inequality, which was initially proved by Junge, Parcet,
and Xu [5, Theorem A] restricted to a fixed length. Section 4.1 proves our main result
Theorem 4.7. Corollary 4.6 of that section gives a length reduction formula and gener-
alizes the main result of [9]. Corollary 4.10(iii) gives a positive answer to the problem
that Ozawa posed at the end of [8]. Section 4.3 studies Littlewood—Paley—Stein-type

! Arveson’s “analytic” subalgebras do not seem available for amalgamated free products of von Neumann alge-
bras in general. They are available for free group von Neumann algebras, but the corresponding Hilbert trans-
forms are different from ours and their formulations as Herz—Schur multipliers are difficult to determine.

The classical Cotlar formula fails for H = —iP1 + ¢iP_ if e # £1.
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inequalities. Corollary 4.15 shows that the projection onto a geodesic path of the
free group is completely bounded on L? for 1 < p < co. Theorem 4.19 is a dyadic
Littlewood—Paley—Stein inequality for geodesic paths of free groups.

2. Notation and preliminaries

We refer the reader to [15] and [5] for the definition of amalgamated free products
and to [12] and the references therein for formal definitions and basic properties of
noncommutative L?-spaces. For simplicity, we will restrict to the case of finite von
Neumann algebras, but it should be possible to adapt all the arguments to type III
algebras with normal faithful states.

About noncommutative L”-spaces associated to a finite von Neumann algebra
(A, 7), we will mainly need duality, interpolation, and the noncommutative Khint-
chine inequality (see [6], [7]) in L?(A) as well as p-row and p-column spaces.
For simplicity, we denote by ex; = ex,; and e1x = ek, exx = ek k the canonical
basis of the column and the row and diagonal subspaces of the Schatten p-class
Sp(L2(N).

We will use the duality (x,y)rr s = t(xy) to identify L7(+A) with L?(A)*
isometrically for 1 < p < oco. At the operator space level, this gives a complete isom-
etry LP(A)* = L1(A)°P (see [10]).

As 4 = L*®(A) is finite, the obvious embedding L*®°(#) C L'(#4) makes
(L>°(#), L'(4)) a compatible couple of Banach spaces. For 1 < p < oo, the com-
plex interpolation space between # and L!(#4) with index % is isometric to
LP(A):

(L®(A), L' (A)) 1 = LP(A). 3)

N =

For a sequence (xi) in L?(A), we use the classical notation

0l = (2 )] I e = (3wir)

and

Nl—

’

max{ | (o)l o 4,60+ || Lo gy} if2< p<co,

[0 liriasn =1, |
ED Ninfyt o= 10O Lroaeg) +1ED I Lragy 0 <p<2.

We may often drop the reference to A when there is no possibility of confusion.
(We refer readers to [10] for noncommutative vector-valued L”-spaces.) The above
definition is justified by the noncommutative Khintchine inequalities, as follows.
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LEMMA 2.1 ([6, Théorémes 1, 3, 4], [7, Theorem 0.1])
Let (g1) be a sequence of independent Rademacher random variables. Then for 1 <
p < oo,

-1
o, E,

4)

POULE | =100 Lraisr < BrEe |

Zé‘k@xk
k

Here g can also be replaced by other orthonormal sequences of some L2(S2, 1),
for example, 22 on the unit circle or standard Gaussian. For z2* on the unit circle or
standard Gaussian, the best constant 8, is V2 for p=1landis 1 for p > 2 (see [1]).
We have that a is 1 for 1 < p <2 and is of order ,/p as p — co. We note that (4)
was recently pushed further to the case of 0 < p < 1 by Pisier and the second author
in [11].

If (Ak,7x),k > 1 are finite von Neumann algebras with a common sub-von
Neumann algebra (8B, 7o) with conditional expectation E so that 73 E = 10, then we
denote by (A, 7) = *g (A, Tx) the amalgamated free product of (Ag, tx)’s over B.
We will briefly recall the construction to fix notation.

For any x € Ay, we denote X=x—Exand o‘(’:k = {)%; X € Ay }; there is a natural
decomposition A; = B P e;‘,)k.

The space
w=8F @B Ass-esh =P B W
n=1 (iy,...,in)EN" n20 (iy,...,in)EN"
i1 FizFin i1 iz Fin

is a x-algebra using concatenation and centering with respect to 8. The natural
projection E onto B is a conditional expectation, and 7FE is a trace on ‘W still
denoted by 7. Then (s, 7) is the finite von Neumann algebra obtained by the Gelfand—
Naimark-Segal construction from (W, t). Thus ‘W is weak-* dense in +# and dense
in L?(A) for p < oo.

For multi-indices, we write (i1,...,iy) =i 2 j = (j1,-..,Jm) if m > n and
ir = jxfork <n.Wealsoputi < jifi < jandn <m,and we puti 4 j otherwise.
We extend those relations for nonzero elementary tensors g € W; and hew i, and
wewrite g <hifi <jandg Ahifi 4. -

For k € N, put B B

Le=PW and R =2

k=i

We denote the associated orthogonal projections on ‘W by L and Rj. We use the
convention Ly = E.



2158 MEI and RICARD

Given a sequence of g € 8,k € N, and x € W, we let

Ho(x) =80E(x) + Y exLi(x):  HP® =E(X)eg + Y Re(x)ef.
keN keN

The main theorem says that, for 1 < p < co, H, extends to L? and for any x € L?,
IHex || p =7 X[l .

for any choice of unitaries ¢ € Z(B) in the center of B and 1 < p < oo.

3. Amalgamated free products

3.1. A Cotlar-type formula for free products
We start with very basic observations. Recall that ¥ = x — Ex for x € +.

PROPOSITION 3.1
For g e W, and ¢, &' sequences in B,

i)  Hi(g"= (Ijé’p(g))*,

o
(ii) He(g) = He(g),
(i)  HHJ(g) = H) Ho(g).

Proof
This is clear on elementary tensors. U

We now give the free version of Cotlar’s identity.

PROPOSITION 3.2
For elemenmry tensors g, hew,
[e] o

p—— p——

(v)  He(g"h) = He(g)h if ¢ Ah,
—N— —N—

V) HP(g"h) =g HF(h)ifh Azg.

And for any g,h € ‘W,

o o o

i) He(g")VHJ (h) = He(g" Hy () + H (He(g")h) — HP He (g™ h).

Proof
Letg=g1® - ®gneWiandh=h ®: ®hy € W; withi = (iy,...,i,) and
Jj= (i1,-.., jm), n,m > 0. We start by proving (iv) by induction on n + m.



FREE HILBERT TRANSFORMS 2159

f—-‘o\-\ ’_-lo\_‘
If n+m = 0, then this is clear as H.(g*h) = H.(g*)h = 0. Assume thatn +m >

1 and g 4 h. Note that necessarily n > 1.
First case: If i1 # j; or m = 0, then

h=gi® QGBI O @ ® @ hn
and H.(g*h) = H.(g*)h = ¢;, 8% h.
Second case: If i} = ji, then
% % " /—:M
g hzgn ®"'®g2 ®(g1hl)®h2®"'®hm
+ (g @ ®83).(Egih)hy ® -+ ® h).

5 /—:O“ - R N
Put ¢ = hig1 ® - Q@& h=h, @ - Qhy and g =22 Q@ - Q g, h =

(Egthi))h, ® -+ ® hyy (if n =1, g = 1). Note that g Ah(org=0)and g 745 and
that the sum of their length is strictly smaller than n + m. We can apply the formula

f—o% /_% ~ —T N
of (iv) to them to get Ho(g*h) = He(§")h = &;,&*h and H.(&*h) = H:.(§*)h =
/—:; f—oM

&i, £*h (this holds if n = 1 because thenm = 1 and g*h = 0). Finally,

o ° o o

—— ~ — —~— —_——
He(g*h) =€;,(§"h + &"h )=¢i, g"h = H:(g")h.
This completes the proof of (iv). Assertion (v) follows from (iv) by taking adjoints
because of (i).
To get (vi) it suffices to do it for elementary tensors by linearity. Assume first that
g # h. Then obviously g A H_} (h), so by (iv)

o o o o

. - P e P e
Hy(¢"H (h)) = He(g")H (), He(g")h = He(g"h).

Since the centering operation commutes with H ;’/p by Proposition 3.1, we get (vi).
If g < h,then h £ g, and we can use (v) and Proposition 3.1(ii) as above and (iii)
to get (vi) as

H(Hs(g*)h) = Ho(g*)H, (h). H)  He(g*h)

= H.HJ (g"h) = He(g"H (h)). O
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Remark 3.3
By removing the centering, we obtain a Cotlar-type formula for x = ), gi,y =
> ;hj.gi hj €W as follows:

Hex(He )™ — E[(Hex — e0x)(Hery — £47)*]
= H (xH (y*)) + H) (He(x)y*) — H Ho(xy™). (5)

Note that the justified Cotlar identity (5) holds for all ||eg|| < 1, while in the commu-
tative setting the Cotlar formula (2) holds for ¢ = %1 only.

PROPOSITION 3.4
Forany x € W, and any p > 1, and ¢, € Z(B), |lex|| <1

max{ | E (Hex (Hex)*) |

po | E(He(xHP D))

| E(H? (He(x)x7)) |

p |E(HP Ho(xxM) |} < [Ex™) ],

Proof

Write x = ) ; g; with g; € W;. Then, by orthogonality of the W; over 8, all four ele-
ments on the left-hand side are of the form ¥, a; E (g;. g/ )b} with a;,b; € {1,¢;,} C
Z(B). But 3, a; E(gig})b} = 3, yiaib}yi with yi = E(gig})"/? so that the
inequality follows by the Holder inequality as > vE = E(xx*). B O

We can now prove the main result.

THEOREM 3.5
For 1 < p <00, there is a constant ¢, so that for gy € Z(8B),

erll <1, and x € W
[Hex|lp < cplixllp, I HPx|lp <cpllx|l p. (6)

Moreover, the equivalence holds with constant c¢p, in both directions if the e ’s are
further assumed to be unitaries.

Proof

Assume here that || Hg|| 12 ()17 (4) < Cp. We will now show that || Hex|l2p < (cp+
V262 + 4)|x||2p forall x € W, and similarly for H;® by using the *-operation. Once
this is proved, we get the upper desired estimate for all p = 2",n € N, by induction
and the fact that | H.x |2 = || H:"x||2 < ||x|l2. Applying interpolation and duality,
we then get the result for all 1 < p < oo (note that the adjoint of H, is H_x). The
equivalence holds for unitary ¢ since H, H,+ = id 4 in this case. In fact, the Cotlar-
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type formula (5) implies that, for x,y € ‘W,

Hex(Hyy)* = He(xH (y*)) + H) (He(x)y*) — H Ho(xy™). (7)

Applying Holder’s inequality and Proposition 3.4 to this identity for x = y,e = ¢/,
we get

1Hex (13, < 2¢plx2pll Hex ll2p + 4+ c))Ix]3,-

Thatis, || Hex[|2p < (cp + 1/2¢2 + 9)[|x |25 =
Remark 3.6

1+,/2+4/c3, : n
AsTTh2, 71+ﬁ/62 < 00, one gets that for p > 2, c, < Cp? with y = %

Remark 3.7
By the usual trick to replace 8, A; by B ® M,, and A; ® M, one gets that the maps
H, are completely bounded on L? for 1 < p < oo.

Remark 3.8

We can use a slightly more general definition for H, by taking ¢; € 8 ® M, where
M is a finite von Neumann algebra. Then E(x) and L (x) have to be understood
as E(x) ® 1 and Li(x) ® 1. Theorem 3.5 remains valid with the assumption that

e e Z(B)® M.

3.2. Corollaries
In this section, we derive a few direct consequences of Theorem 3.5.
For any ko € N, let e, , = —1 and g = 1 for k # ko. Then Ly, = @.
COROLLARY 3.9
Forany 1 < p < oo,

COROLLARY 3.10
We have

¢y 1xlp < [ (Le)Ro | o ery = V2enl1x11 . ®)

forl < p<2and
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-1
(V2ep) T xllp = [(Lan)fZoll Logegry = collxlp- )

for 2 < p < oco. Similar inequalities hold for (Rj x).

Proof
Leteg = sz, and let E, be the expectation. By Theorem 3.5, for any x € L?,

Xk:Skka”p'

We then have, by the noncommutative Khintchine inequality (4), that

1
ZES ” Hs(x)“p <|xll, = CpEs”Hs(x) ”p =cpkEe

(apcp)_l [xlp < H (Lix)eZo ”Lp(ggf) < Bpcplxllp- (10)

This implies (8) since B, < v2,a, =1 for 1 < p < 2. Using the identity tx*y =
Ty reo(Lkx)*Liy, an additional duality argument implies that

(Baca) " 1xllp = | (Le)iZoll gy (11)

forl < p,q <oo,%+$: 1. We then get (9) since ¢, =cg and B, =1for2 < p <
oo (see the comment after Lemma 2.1). A similar argument works for (Rgx). O

Remark 3.11
We will prove a variant of Corollary 3.10 in Section 3.3 as Theorem 3.17.

COROLLARY 3.12
For any 1 < p < oo, any sequences (ix) € NN and (xi) € LP (A, (5), we have

H(g}lLikalz)% PEC;:H(;Z kalz)%‘p, (12)
(G, =l Gl o

Proof
Fix a sequence & = %1, and apply Theorem 3.5 to x = Zj &i;Xj ®ej1 € LP(A®
B(£3)). We have

o0 1
2
HZ‘Q"‘%L"(W) ®e"1Hp SCPHZEU’” ®ej1”p :C””(Z |x’|2) ”,,
.j j /=t
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Now let (g1) be a sequence of Rademacher variables. We have
(e o) % o0
H (Z |Lijxj|2> ) H Ec Y exei, Li(x)) ®ejr Hp =c¢p H (Z |x; |2>
j=1 k.j Jj=1

The proof of the second inequality is similar. U

Nl—=

Remark 3.13

Corollary 3.12 was proved in [5, Lemma 2.5, Corollary 2.9] for the x;’s supported
on reduced words with length equal to d with constants depending on ¢, independent
of p.

3.3. Length-independent estimates for Rosenthal’s inequality

We will apply Theorem 3.5 to obtain a length-free estimate for Rosenthal’s inequality
proved in [5, Theorem A]. In this section, we restrict & € {1}~ and g9 = 0 in the
form of Hy =Y ;en ek Lk and H¢". When there is no chance of confusion, we use
the notation 7 instead of 7' ® Id for its ampliation.

Thanks to the previous results, we can define the following paraproduct for x €
LP(A)® LP(M) (1 < p <oo)and y € L(A) ® LI(M) with 5 + 7 <1 as

xty = EcHo(He(x)y) = ) _ Li((Lix)y).
keN

with E, the expectation with respect to the Haar measure on {£1}N. We also set

xty=xy—xfy—E(xy)=> LOIJ{((LkX)Y)~
k=0

Here Lir =Y ;44 jen Lj forany k > 0.

If x and y are elementary tensors (x ¢ B), xiy collects in the reduced form of
xy all elements whose first letter is in the same algebra as x, while xTy collects the
rest in the reduced form of xy, except the constant terms.

PROPOSITION 3.14
We have the following, for 1 < p < oo, 1 < g < oo with % + é = % <1:
@) NHe(xEW)lr = crepllxllplylle [xTyllr = @+ crep)lxlipllyllg:
(i) He(xty) = He(x)y, xtHP(y) = He (xty).

In particular, xiy € £ if x € Ly and xTy € Ry if y € Ry.

Proof
Inequality (i) simply follows from Theorem 3.5 and the definitions. We now prove
(ii). For 1, this follows from its definition.
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For 7§, we check the following formula from which the identity follows because
of the translation invariance of the Haar measure on {—1, 1}N:

¥ty = Ee (HP (HI (). (14

We first notice that the identity holds if x € 8 as x{y =0 and xty = x(y — E(»))
and similarly holds if y € 8, xiy = (x — E(x))y and xTy = 0. Thus we can assume
that E£(x) = E(y) = 0. Apply the Cotlar identity (5) to H,(x) and H_"(y*), and note
that H2(x) = x and HP?(y*) = y*. We get

xy — Exy = Hy(Hs(x)y) + H (xH (y)) — H) Ho(He (x)H. (1)).

Taking expectations with respect to ¢ and &’ gives (14). One can also verify directly
the identity for § in (ii) by its bilinearity, looking at elementary tensors x, y € ‘W, and
by using Proposition 3.2(iv)—(v). O

Remark 3.15

There are situations for which one can slightly improve those inequalities. For
instance, if r = 2, then [|xTy|, < (1 + cp)|x|pll¥lg. Or in general |xiy|, <
crsup [[He(x)|pllyllg and [xtyllr < (2 + ¢;)sup, [[He(x) [ o[l llg-

LEMMA 3.16
For?2 < p <ooand x € L?(A),

IS Lo, = v Sl P (Siesiz) . as
keN 2 keN 2 keN
X R R, < v SRl (S 1Resls) . a0
keN 2 keN 2 keN

with y, <3c2 for2 < p <dandy, <232(c% +cp) for p =4
2

Proof

Let us assume that p > 4 first. We use the decomposition Ly (x)Lg(x)* —
E(Ly(x)Lxg(x)*) = Lgxt(Lgx)* + Lixt(Lgx)*. By Corollary 3.10 and Propo-
sition 3.14, as L (x)fLg(x)* € £k, we have

HZLk(x)iLk(X)*

keN

ya
2

<2y max[”kz Li(x)iLi(x)* ® ey kX: Li(x)iLg(x)* @ ek
eN eN

1l

p’
2
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Using the bilinearity of §, we have

D L)L) ® e = Y (Li(x) ® en) 3 (Li(X)* ® exx)

keN keN

=E, (Z exLi(x) ® e1k)i(z exLi(x)* ® ekk)
k K

= Es[Hs (Z Li(x) ® €1k>iH§p (Z Li(x)* ® ekk)]-
k k
So we can conclude from Theorem 3.5 and Remark 3.15 that

|20 et @ en

)
keN 2

o Y Lex wen| |1 Y Leor @],
k k

<cpsup

&8’

N =

ZCE
2

Sore @en] (3lLexiz)”. an
P

k k

Similarly, we have

|2 Lk () @ e

keN

B[ (D L) ® e ) (0 Leo)* 94|
% k

1
<ep (P Lexip)”
k

Combining these two estimates, we get

y2
2

2
2

> Li(x) ®en (18)
k

I,

S|

< x/iczg
Z 2

| LetozLee*
keN

Y L ®ew| (X ILexlp)
k k

for p > 4. We can treat the T term similarly since Lixt(Lrx)* € Ry and get

\;Lk(x)®e1kﬂp(;nmn§) .

We then get (15) for p > 4 with constant 2«/5(62% + c§).

To deal with the remaining cases, we will use interpolation by proving a better
bilinear inequality for 2 < p < 4. We have

S

2 < ZCg(Z—I-Cg)

|2 LetoLee
keN
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S TR0, =36 Y Lerwen] (S1rolp)”
keN 2 k k

The spaces consisting of elements of the form ) ", Lxx ® e1x, and ) ; Rxy ® ex are
cp-complemented in L?(4A) ® S, by Theorem 3.5. Hence, the norms on the right-
hand side interpolate for 2 < p < 4 (both with constant ¢ 4(1 2/p ))

We just need to justify the endpoint inequalities. For p = 2, we have by Holder’s

inequality that

HZLk<x>Rk(y)H s2\);Lk(x>®e1kH2H§Rk<y)®ek1H2

D=

- ZHZLk(x) ® elkH (Z ILeyI3)”

For p = 4, by orthogonality and as in (17),

|2 LeotRe| = | X Leire) @]
keN keN

1
= |2 texwen| (S 1RerI2) "
k k

1
Similarly, we get || Y pen L () TRe(W)ll2 = 20 Xk Lix ® enrlla(C [ Rey D)+
Thus, by interpolation we get (15) for 2 < p < 4 with a constant 3c4 (1=2/p) O

THEOREM 3.17
For2 < p <ocoand x € L?(A),

iy el < max{| (S |e o) K
k=0

1
EGex)|3} < eplixl

and

1
3} = callxlp,

S 1
np lxlp < maX{H(Z|RJ(X)*|2)2 o
=0

with np < ~/2¢,(1+yp) Sci

Proof
For the first equivalence, the upper inequality follows from Corollary 3.10. For the
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lower bound, by Lemma 3.16 as E(xx*) = } ;.o E(Lg(x)Lg(x)*) and

o

e e
Lo(x)Lo(x)" =0,

HZLk(x) ®€1kHj] <Y HZLk(X) ® exk HPHZLk(X) ® ek Hp + ||E(xx*)||g~
k>0 keN k>0

1
Hence, || Yo L () ® ricllp < 7pll o L () ® exillp + [ EGex®)]| 3. Butas
p > 2, the map egq — ey is a contraction on L?, so we deduce that

Y ruwee] <w|Y Lmoa| + @]}
k>0 k>0

and we conclude the lower bound by Corollary 3.10 again. The other inequality fol-
lows by taking adjoints. ([

We get the following Rosenthal-type inequality as a direct application.

COROLLARY 3.18
Let2 < p < 0.
(i)  Forx =Y jproXk € LP(A) with xi € Lk, we have

;2 1l = max{| EGe) 3 [ EG0 3. [ Ry 0 @ ey ] |
k,j

2
S Cp”'x”p'
(i)  Forx =Y geo Xk with x; € £ N Ry, we have

i 1
|E(x*x) ||2g, (Z ||xk||§) ,,} < C?,”x”p-
k

1
w2l < max{ | EGex™) 5.

Proof

Apply Theorem 3.17 twice, and note that the (e1; ® eg;)’s generate the canonical
basis of £, in S,. We get (i), and (ii) follows immediately. O
Remark 3.19

We point out that Corollary 3.18(ii) was proved in [5, Theorem A] when the xj’s
are supported on reduced words with a fixed length with constants independent of p
but dependent on the length. Noting that by the Khintchine inequalities from [14],
H, and H;" are bounded on words of length at most d (in L) with a constant that
depends only on d, we see that, by interpolation, the above argument also implies
Corollary 3.18(ii) with constants independent of p but dependent on the length.
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Remark 3.20
All the results of this section also hold in the completely bounded setting.

4. Free groups
We can apply the previous results to the free group as it is naturally a free product. Let
gi, I € N be the set of generators of Fo,. We let £ g; and L g be the set of reduced

words starting by g; and g; ", 1 respectively, and &£ gt = Lg; U L,—1. We denote

by Lg;, L g and Lgi the associated prOJectlons 'We use the notatlon Rg,; and
R g_1 ye for the right analogues We will often use the convention gg =¢,Lg, =7,
gi = 1 fori <Osothat L, -1 = = L, _, forany i € Z*. Finally, S will denote the set

{giii € Z*} Given g, h reduced words of Foo, we write g <h (or h > g) if h = gk
with g,/ k reduced words; that is, |g~'h| = |h| — |g|. We write g £ h otherwise.
More generally, we set

Ly :={g€F:h =g},

and we let Lj, be the associated L2-projection. Let M be a finite von Neumann alge-
bra. We will consider x € L?(£F ® M). When there is no possibility for confusion,
we use the notation x = ) |, agle instead of x =}, A, ® ag,ag € LP(M) for its
ampliation.

Theorem 3.5 immediately gives that, for any 1 < p < oo and sequences of uni-
taries g; € Z(M), |lex || <1,

[ @1+ el ®10)(x) H,, ~2 x|l . (19)

We slightly extend it as follows.

THEOREM 4.1
Let (sg)rez be a sequence in Z(M), ||ex|| < 1. Then for any x € LP(£(Fso) @ M)
and 1 < p < o0,

Jeate o1+ 3 enc, @1)(x)| <epll,.
kez*

The equivalence holds if we assume further that the € ’s are unitaries in Z(M).

Proof

We may assume that g = 1. We consider the following group embedding 7 : Foo —
Foo * Foo defined by m(g;) = gihi, where the (h;)’s are the free generators of the
second copy of Foo. This extends to a complete isometry for L?-spaces, and one
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checks directly that

(Zs kLhi+r+ZskL i)on—no(Zs L —1+T+ZskLgk>

k=0 k=0
The statement follows from the amalgamated version of (19). O
The proof of Lemma 3.16 and Theorem 3.17 can easily be adapted to the free
group, where Hy = e, Lo + ) e €n Ly With [e,| = 1 and the convention L.x = 7x.

We simply give the result as follows.

THEOREM 4.2
For2<p<oo, x€ LP(£(Fx) @ M),

il < max{ | (2 Lo ) K

1
<cp|lx
2} =eolxly

Ihl<1
and
2 5 1
iy el < max{ | (D2 [Rao*?)7 ] 3} = enllxlp.
Ihl<1 ?
Remark 4.3

All results before this section hold for free groups with Ly, Ry replaced by Lg, (resp.,
L g7 Of L i) and Rg, (resp., R g7 Of R ot ). We can strengthen some of them.
These will be recorded in the following.

COROLLARY 4.4
Foranyl < p <oo, h€Fy and x € LP(£(Foo) @ M),

cp+1

ILnxllp < 1l -

Moreover, limjp| o0 || Lpx || p — O.

Proof

Without loss of generality, we may assume that & € R,, and that » = h’g;. Then
Lypx = Ap Lg, (Ap—1x). The L?-bound follows from Theorem 4.1. Note that the L7 -
space is defined as the closure of C.(F), so we get the convergence by the uniform
boundedness of Lj on L?. O
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COROLLARY 4.5
For any 1 < p < 0o, any sequences (hr) € Foo \ {€}, and (xi) € L? (£5), we have

oo 1 oo 1
[(ttnent) ], el (S )],
k=1 k=1

Proof
Let us assume such that /iy € Rgl.k ,ix € Z. Assume that hy = h) g;, . Then

Ly, x = /\% Lgik (Ah;(_l Xk).

So
o0 oo
Dol = Y| Lg, G|
k=1 k=1
We get the result by the free group version of Corollary 3.12. O

4.1. A length reduction formula
In this section, we use standard notation from operator space theory. We denote the p-
row and p-column spaces over some index set I by R, =span{eix} C Sp(B({2(1))
and C, =span{ex;} C S,(B({2(1)). To lighten notation, we set ry = e and ¢x =
ex1- The reader should not be confused with the previous notation as the objects are
of very different nature.

Let ‘W5, be the set of words in Fo, of length greater than or equal to d. Also
denote by W4 the subspace in L? generated by Ay, w € Ws4. For w € Fo, we let
w; denote its [th letter (if it exists) and dw = wl_lw.

Take any x = ZwE'W>1 XwhAw € W>1. We have

[(Sil)’], =]  wrvecn],=] T winoe],

heS we'Wzl we’WZ1

At the operator space level, Theorem 4.2 means that the map ¢ : Wy — Cp, ®
Wsa-1 ® R, given by t(Ay) = Ayy ® cy, D 1y is a complete isomorphism. By
iterating, we obtain a complete isomorphism for 2 < p < oo

L Weg = C84 Q@ LP(Foo) ®CE ' @R, @ ®Cp ® Rp ® R,
. Aw = Cwl,...,wd ®A3dw ®Cw1,...,wd_1 ®r(')d—lu) D--- @Cwl ®r8w D Try.

Let us state this as a corollary, which generalizes the result of [9].
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COROLLARY 4.6 (Length reduction formula)
For any d > 1, 14 extends to a completely bounded isomorphism such that for x €
Wsg, 2 < p <00,

—d d
M 1xlp < leaxll < cplixllp,

forall x € Lp(ﬁ'oo).

Fix some d € N, and let P; be the projection onto Wle € L?(Fo). Recall that

by [14] or [5], P4 is completely bounded on L7 (this also follows from Theorem 4.2).
For any reduced word w = w -+ wy, in the generators, we define

heS

for any choice of ¢j, || <1 with |e;| < 1. Note that

1 2 d
lea—s HAYHE) - HQ x|l = | Hegayt Ho@—nyt -+ tHoyx .

We immediately get the following.

THEOREM 4.7
Foranyd > 1 and x € LP(Foo) @ LP(M),1 < p < 00,

1) ;@ (@) C
”Hs(l)He(z)"'Hg(d)x”p > x|

. 1o _ dod—1 )
with Cp g < 297 1nd=1 < c3d=4 gng ||H£(d)x||p ~p"p |\ x|, for any choice of

lek| = 1.

We give a faster argument for the boundedness of H, s(d). Consider g5 = £1 for
h eFy. Let

Ld Rd
H " =¢g.Py_1 + Z enLp, H " =¢e,Pg_1 + Z ep—1Ry.
heFoo |hl=d heFoo |h|=d

Recall that Lj, (resp., Ry,) is defined as the projection onto the set of all reduced words
starting (resp., ending) with z. We get Ha(d) from H, sLd if &5, depends only on the dth
letter of A.

COROLLARY 4.8
Forany 1 < p < o0, we have for any x € L? (Fo),

lxllp = 1 HExNp = | (Lndipi=a | oo esr). @1
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Proof
Note that a similar identity to (5) holds for free groups with H SLd and any g, h with
|g7'h| >2d — 1. We then have
Pig o[ Hx(HF"x)"]
= Pag o[ HI (xHF () + HE(HE (0)x%) = HETHE (xx)]. - (22)

Let cp 4, p > 2 be the best constant ¢ so that |HE x|, < c|lx| - Recall that by the
Haagerup inequality, the L'- and L?-norms are equivalent on the range of P»4_»:

| Praca[HEx (0], < @d = 1277 [ HF x|

p
2

< @d - 177 |x]3,
| Paa—a[ HE (xHEL )], = 2d =)' P I HE (xHE ()]
<@d-1)"7cy |13,
for any p > 2. Therefore,
Gt S22 =177 420202 =)' 77 + 20420 +
We then have
C2pd <(2d — 1)1—% +cpa + ﬁ(cp,d +302d — ])1—%)‘

. In(1++/2) . 1-2 .
Asymptotically, ¢, g > p~ w2 ford givenand ¢, 4 > d "~ 7 for p given. So

Ld
IH;“x|p <cpallxllp

Since H SLd H SLd = id, we get the equivalence. The 1 < p < 2 case follows by duality.
O

Remark 4.9

A straightforward completely bounded version of Corollary 4.8 is false for Fo, (true
for F,,, although with a constant depending on 7). This is because the operator-valued
Haagerup inequality is an equivalence between the L?-norm and the more compli-
cated norm given by Corollary 4.6. For instance, it yields that the set {A(g;g;)} is not
completely unconditional; this would be a direct consequence of Corollary 4.8.

For any x € £(F,),n < oo, and any choice of signs, H,x can be viewed as
an unbounded operator on L2(F,) with domain C.(F,). As usual, K stands for the
compact operators. Ozawa [8] asked whether the commutator [Rj, x| sends the unit
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ball of £(F},) into a compact set of Lz(ﬁ‘n) forany h € F;, and x € £(F,) and pointed
out that the L?-boundedness of Ry implies a positive answer. We record a general
result in the following corollary.

COROLLARY 4.10

We have for d € N and any choice of signs ¢ that

(i) [HR4 x] e B(L%(F,)) ifx = x1 +H€17dx2f0rs0me le'| < 1,x1,x € £(Fy);

(ii) [Hst,x] € K(Lz(ﬁ‘n)) for all x = x1 + HsL,dxz for some |&'| < 1,x1,x3 €
C}T (Fn);

(iii) [HSRd , X| maps the closed unit ball of £(F,) into a compact subset osz(IA?n)
ifx € Lp(ﬁ'n)for some p > 2 (in particular, if x € L(Fy)).

Proof
Similar to (22), we have
P3qo[(H7 ) (HSy)]
= Py o[HEF (x(HRy)) + HR (HSx)y) — HFCHE (x)].
So, up to a finite-rank perturbation, for y € Lz(f?n),
[HR? HEx)y = —HE (x(HRy)) + HEY HEY (xy) = HE4 ((HR  x]y).
Therefore, for x = x; + H SL,dxz, up to a finite-rank perturbation
[HR x] = [HR x) + HE ([HRY, x,)).

This implies (i). Note that [Rj,, A¢] is finite rank for each &, g. We have [HE?, x] e
K(£2(Fy,)) for all x € C;(Fy). So (ii) is true. For (iii), following the argument of
Ozawa, we have, by Holder’s inequality and Theorem 4.1,

HE X1 2@y S 1X Loy 190 Lo,y

for any y € L4(F,,), é + % = % By density of C}*(F) in L?(F,). p < 0o and since
£(F,) C L?(F,) contractively, we get the desired result. O

Remark 4.11

When n = 1, the space of functions x in Corollary 4.10(i) (resp., (ii)) is called BMO
(resp. VMO). It characterizes the class of x such that the commutator [H, x] is
bounded (resp., compact).

Remark 4.12
The content of this remark is from a communication with Ozawa. Let M be a finite
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von Neumann algebra with a finite normal faithful trace 7. Let L?(M),1 < p <ocobe
the associated noncommutative L?-spaces (see [12]). Recall that we set L°(M) =
M. For the operators X € B(L?(M)), p > 2, define a seminorm

1X [l p—2 = sup{| Xy ll2; y € LP (M) C L2 (M), |yl < 1}.

Note that || X||o—2 is just the operator norm || X||. Identify M as subalgebra of
B(L?(M)) by the left multiplication on L2(-M). Then M’ C B(L?(:M)) corresponds
to right multiplications by elements of M on L?(M). We write y’ for the right multi-
plication by y € M on L2(M). For x € M, we have by Holder’s inequality that

X[l p—>2 = 1x"[l p>2 = llxllq
for é + % = % The lemma of [8, Section 3] says that, for X € B(L?(M)),

[ X lloo2 < inf{[|Y [[lx]l2 + [ Z[l|¥ll2} < 4l X lloo—sa2- (23)

Here the infimum is taken over all possible decomposition X = Yx + Zy’ with Y, Z €
B(L?*(M)),x,y € M. One can easily see that an analogue of the first inequality of
(23) holds for all p > 2; that is,

1X Il p—2 <inf{[IY [xllg + 1 Z[l1llg}- (24)

2
1,1 _ 1 -2 > .
for ; + 5 = 3. Since Ixlld < IxI3lx1% = = lxl3]x]1 4, we get the following

Holder-type inequality for X € B(L?(M)):

p—2

= 2
1 X1 p—2 = 41X oo 1 X117 (25)

co—2

Suppose that ¥ € B(L?(M)) satisfies that, for some p > 2,
1Y lloosp = sup{ Y x| s x € LO(M) C LA(M), [|x]|a¢ <1} < 0.

Inequality (25) implies that

p=2 2
XY ooz < [ X [ p—2[lY loosp = 4 X o I X7 1Y Nloo p- (26)

Let Kﬁt € B(L?(M)) be the collection of all operators sending the unit ball of
M into a compact subset of LZ(M). Let Ky = (Kﬁt)* N Kj{ be the associated
C*-algebra. Let M (KK ) be the multiplier algebra of K 4, that is, the algebra of all
operators X € B(L?(-M)) such that both XK 4 and KX still belong to K . The
proposition of [8, Section 2] says that X € K if and only if for every sequence of
finite-rank projections Q, strongly converging to the identity of B(L?(M)), || X —
01 X ||loo—2 — 0. Combining this with (26), we see that Y above belongs to M (K 4().
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This applies to the particular case when Y is the free Hilbert transform H, or H,®
and M is an amalgamated free product. Ozawa promoted the study of the C *-algebra

By ={X € M(Ky);[X,yl € Ky, Yy € M C B(L*(M))}.

Theorem 3.5 and Corollary 4.10(iii) imply that HaRd € Bg(x,). and similarly that
HsLd € Bg/(r,). Here &£'(F,) is the von Neumann algebra generated by the right
regular representation pg’s.

Let F, = F, U dF,, and let C (F,,) be the C*-algebra of continuous functions on
F,,. Note that C(F,,) is isomorphic to the sub-C *-algebra of B(£2(F,)) generated by
pgLnpg—1,8,h € Fy. We then obtain

C(l_:"n) C B;g/(pn).

4.2. Connections to carré du champ
We use the same notation to denote elements of F, and points on its Cayley graph.
The Gromov product for g=1, g’ (on the Cayley graph) is defined as

n_ 1&gl +1g"1—1g¢’]
(.9) = S 88
A closely related object is the so-called carré du champ of Meyer,
A g + Az A(Agr) — A(AgAgr) _

T(Ag.Agr) = >

g—l

, g/)kgflg/

associated to the conditionally negative operator A : Ag > |g|Ag.
The following identity is a key connection to the operator Lj, in previous sections:

M (Mg hg) = D (Li(Ag)) Li(Agr). (27)

heFoo

Let us extend this notation to x = Y_, agAy € L2(Foo) ® L2(M), and we set

AT(x) =) aglg| Ag.
g

C(x,x) = (x,x)= Za;ag/(g_l,g’))tg_lg,.
We then have

2Ec(Hex. Hox) = Y |Lpx|> = A(x™)x + x* A(x) — A(|x[?). (28)

heFoo

The following square function estimate was proved in [4]. One direction of the
inequality has been proved in [2] and [3] in a more general setting.
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LEMMA 4.13 ([4, Theorem A.1, Example (c)])
Forany2 <p <oo,x € L?(Fg) ® L (M),

(1)’ +[( X e

oo

4
1 2R
1Az x| ~ @=n*

p

Remark 4.14
The above equivalence may fail if one replaces Ly (x*) by (Lzx)* on the right-hand
side. Corollary 4.9 of [3] gives constants 2~ p for the < direction.

4.3. Littlewood—Paley inequalities
In the case of the free group, we adapt the definitions of paraproducts studied in
Section 3.3. Assume x = ), aghg € LP,y =3, dprp € L. We then find that

xfy = Z Lgk ((Lgkx)y) = Z agdhkgh7

kez* g—l;{h
xty =Y L ((Lgx)y)= > agdphen.
keZ g l<h

Here Ly, =t and Lz;k =)tk jezr Lg;- Recall that we write g <h (or h > g) if
h = gk with g, h, k reduced words and g < h if g <h and g # h.

We consider a decomposition of F, into disjoint geodesic paths. To get one, first
pick a (randomly decided) geodesic path Py starting at the unit element e. Then for
any length 1 elements not in Py, pick a (randomly decided) geodesic path starting
at each of them. We then go to length 2 elements which are not contained in any of
the previous picked paths, and we pick a (randomly decided) geodesic path starting
at each of them. We repeat this procedure and get countably many disjoint geodesic
paths P, such that | J, P, = Feo.

Let 7,, be the Lz-projection onto the span of P,,. Let &1 (n) be the root of P,,, that
is, the first element in P,,. Let S,, be the projection to the collection of words smaller
than /1 (n) (note that S = 0).

COROLLARY 4.15
For any 1 < p < oo, the maps T, are completely bounded on L? with

1Tl p—p S €5 (29)
Moreover, for any p > 2

|2 01700) + 0007 = [Sw)?

2 2
p Scpllxliy- (30)
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Proof
We write x = ) aghg and Ty, (x) = ), cp, dghg. Then

(T,,(x) Tn(x) — Z|ag| Ae = Z Agaphg—1p + Z Ag@phg—1

g€P, g<heP, h<gePy,

= (Tn(¥)) 4T (%) + (Tn (x)) "+ T (x)) ™.

Since (Ty, (x) + Sp(x)*1Ty(x) = x* 1T, (x), we have
(7)) 1T (x) = X T (x) = (S0 ()" T ().
Therefore,

(T2(0)) T (x) = Y lag*Ae

g€Py

= X" T (%) + (X T (%)) = (Sn (1)) T (%) = (T (%)) " S (x).

In particular, for n = 0, we have actually

(To(x)) " To(x) = Y lagAe = x*$To(x) + (x*1To(x))".

g€Po

Assume p > 2. By Proposition 3.14, we have

| To@)[2 < 4+ 2¢,e2) Ixll, [ To) |, + 112

2177

(3D

So [[To(x)||p < (5+ 2cp cp)|x||p for p > 2. One concludes that Tj is (completely)
bounded on L?. One can improve the bound on |7y || -, when p is close to 2 by
using interpolation. The case p < 2 follows by duality. Thus we have obtained (29)

for an arbitrary Py starting at e; for general IP,, this follows by using translations.

Summing (31) over n, we get

ST ) + Sa )| = [Su ()

n>0

=Y [(T0(0) " Tu(x) + (Su () T (x) + (Tu (x)) " S (x)]

n>0

=Y XMTu(x) + (x*$Ty(x)) +Z|ag| Xe

n>0

= x"fx A+ ()T 4 Tl e.

Then (30) follows from Proposition 3.14.
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We now consider a concrete partition given by geodesic paths. For any hg ¢ R gt
and g € S, let Py o = {hog¥*;k € N}. They form a countable partition of Foo \ {e},
and we may index it with Z* = Z \ {0}. We still denote the root of P, by A1 (n) and
put ho(n) = ho, ky = k if P, = Py, g, . By definition /19(n) € {RJ- if hy(n) € IR

kn

LEMMA 4.16
Let Ty, be the L?*-projection onto P, described above. We have for any p > 2, x €
L?(Fo),

[(ZImer)],

nez*

S epllxllp- (32)

Proof

We may assume that tx = 0. Let Ey be the projection from the group von Neumann
algebra &£ (F ) onto the von Neumann algebra generated by Ag, . We can easily verify
that, for k € Z*,

E|k\|ngX|2=E|k\‘ > Tn(X)r: > T ()],

h](n)Gng hl(n)Eng

because, if h1(n),hi(n) € Rg,, then ho(n).ho(n’) € R;k and hy'(n)ho(n') €
E\k|(Foo) if and only if n = n’. Therefore,

oo
ST = Ee(|Rgx? + [Re_ x1?)
nez* k=1
0o o
=tlx]® + ) Ex (IR x” + [Rg_, X%
k=1

By the free Rosenthal-type inequality ([5, Theorem A] or Corollary 3.18) for length

1 polynomials, we get for p > 4, with X; = Ex(|Rg, x> + |Rg_, x|?),

H(Z!T () ) Selx+ (%nxkng)% + (gnxkn%)
(X ||ngx||§)% +(X ||ngx||i)%

kezZ* kezZ*

12
2)2 Z 2
$1(X 1Rex) ", % vt

keZ*

=
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where we used the obvious facts by interpolation that L?({§) — £#(L?) and
LP(£5) — £4(L*) are contractions. The case of p = 2 is obvious. We then get the
estimate for all 2 < p < oo by interpolation. O

LetP; ={h1(j) <ha(j) <---hg(j) <---} be arbitrary geodesic paths of F.
For x; =) en@kAn, (j) supported on IP;, we consider its dyadic parts

Mpjxj= > arhn)- (33)
2 <f<2ntl

Dealing with F; = Z with the N U {0} and —N as geodesic paths, the classical
Littlewood—Paley theory says that

0 1
2
(32 1M x4+ My 2xP2)
n=1

~7 x|l (34)
p

forall 1 < p <ooand x € C.(Z).

THEOREM 4.17
Suppose that (x;) jen € LP(£(Fo), £5) is a sequence such that every x j is supported
on a geodesic path P ;. We have

oo 1
2
H( ) |Mn,jxj|2) Hp <Cp’c H (Z |x1'|2)
J

n,j=1

Nl

(35)

forall2 < p < oc.

Proof

Asusual, g1, g2, . .. are the free generators of Fo,. We embed F, into the free product
Fo % Fo, and we denote by g/, g5, ... the generators of the second copy of Fo. Let
v = /\g}hl_l(j)xj. The y;’s are supported on disjoint paths ]P”j C Fo * Foo with
roots of distinct generators g’;. Note that |x;|* = |y;|* and |My,x;[> = [Myy;|*. By
considering y; instead, we may assume that P; = {h1(j) < h2(j) <---hg(j) -}
with |hi(j)| =k and Ly, (j)Xm = 0 for j # m.

Let

_n _1 _1
My, ;j=2"% 3" LypAd 2+ > (Vk=vVk=DLy ;A2

oan—l<f<on 2N <f<2n+l

_ntl 1
-2z Y. LnpA
n+1 <k§2”+2

Then My, i (An,(m)) =0 unless m = j and [ € (2"~*,2""2], and one can check that
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Mg, i (An, () = en(DAn, (),

for some ¢, : N — R with x[on pn+1y < @ < Y(2n—1 pn+2y. Note that

_1
Mym),; = Z ar,jLn,(HA™2
2n—1<k§2n+2

with D" a,%’j < c. By the convexity of the operator-valued function | - |2, we have

2 -1 2
Mg, jx;|" <c ) |Lhe(nA™2xj1%,
2n—1<k52n+2

and My, jxm = 0 for m # j. Note that the M, j,M, , ;’s are disjoint for
ln —n'| > 2. Applying Lemma 4.13 to x =}, x; ® ¢;, we obtain

[Esn)'], =l (S, =l ()],

Assume that hon (j) € R, ; hon+1(j) € Rg,, .. We have
At iy Lgt Mg 071 Phon ) Lgn.iAhon_y ()=t MonXj) = Mnxj - (36)

because fyn+14 () Eﬂ? . By (12),

n’ Jj

S s e (5wt ) ], < (i),

forall 2 < p < o0. O

=
=

Remark 4.18
A “smoothed” version of Theorem 4.17 for a fixed path P was proved in [4].

Let P% be the paths described in the paragraph preceding Lemma 4.16. Let Ty be
the L?-projections onto Py. Denote My, xx = M,, x (Tyx) for x € L? (Foo). We obtain
the following corollary from Theorem 4.17 and duality with the fact that || x*||, =

Ixllp-

COROLLARY 4.19
Forall2 < p <oo, and x € L? (Fy),

o[ )

1
(C M) |} =crelelp @D
n,k
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andforall1 < p <2, and x € L?

Il = Coedint{| (X 1Mnes?)” , (Sl i) | x=ytzf.
n.k n,k
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