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Abstract
We study Fourier multipliers of Hilbert transform type on free groups. We prove that
they are completely bounded on noncommutative Lp-spaces associated with the free
group von Neumann algebras for all 1 < p < 1. This implies that the decomposi-
tion of the free group F1 into reduced words starting with distinct free generators
is completely unconditional in Lp . We study the case of Voiculescu’s amalgamated
free products of von Neumann algebras as well. As by-products, we obtain a posi-
tive answer to a compactness problem posed by Ozawa, a length-independent esti-
mate for Junge–Parcet–Xu’s free Rosenthal’s inequality, a Littlewood–Paley–Stein-
type inequality for geodesic paths of free groups, and a length reduction formula for
Lp-norms of free group von Neumann algebras.

1. Introduction
The Hilbert transform is a fundamental and influential object in mathematical anal-
ysis and signal processing. It was originally defined for periodic functions. Given a
trigonometric polynomial f .z/ D

PN
kD�N akzk , let PCf D

PN
kD0 akzk be its ana-

lytic part, and let P�f D
P�1

kD�N akzk be its antianalytic part. The Hilbert transform
is formally defined as

H D �iPC C iP�

and clearly extends to a unitary on L2.T/. The case of Lp , 1 < p < 1, is more subtle.
Riesz first proved that H extends to a bounded operator on Lp.T/ for all 1 < p < 1.
It is also well known that H is unbounded on Lp.T/ at the endpoint p D 1;1 but
is of weak type .1; 1/. In modern harmonic analysis, the Hilbert transform is con-
sidered a basic example of Calderón–Zygmund singular integrals. Its analogues have
been studied in much more general situations with connections to Lp-approximation,
Hardy/BMO spaces, and more applied subjects.

The Hilbert transform appears also as the key tool to define conjugate func-
tions in abstract settings such as for Dirichlet algebras. In operator algebras, it shows
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up through Arveson’s concept of maximal subdiagonal algebra of a von Neumann
algebra M. Its Lp-boundedness is well known (see [12]) and the weak-type .1; 1/-
estimate was obtained by Randrianantoanina in [13].

This article describes a natural analogue of the Hilbert transform in the context of
amalgamated free products of von Neumann algebras. The study is from a different
viewpoint to Arveson’s and is motivated by questions in the theory of Lp-Herz–Schur
multipliers on free groups.

Our model case is the von Neumann algebra .L.F1/; �/ of free group with a
countable set of generators g1; g2; : : : . The associated Lp-space Lp. OF1/ is a non-
commutative analogue of Lp. OZ/ D Lp.T/. Let Lgi

;Lg�1
i

be the subsets of F1 of

reduced words starting, respectively, with gi ; g
�1
i . One can naturally associate to them

projections; given a finitely supported function Ox on F1, Ox D
P

g2F1
agıg ; ag 2 C,

define

Lgi
Ox D

X
g2Lgi

agıg

and Lg�1
i

Ox similarly. In fact, all of them will obviously extend to norm 1 projections

on `2.F1/ D L2. OF1/. Natural questions are whether these projections are bounded
on Lp. OF1/ and whether the decomposition F1 D ¹eº

S
i2N;"D˙1 Lg"

i
is uncondi-

tional in Lp. OF1/. In this sense, we define a free analogue of the classical Hilbert
transform as the following map

H" D "1Lg1
C "�1Lg�1

1
C "2Lg2

C "�2Lg�1
2

C � � � (1)

for "i D ˙1. We are interested in the (complete) boundedness of H" on Lp. OF1/ as
well as possible connections to semigroup Hardy/BMO spaces and the Lp-
approximation property in the noncommutative setting.

The question of the Lp. OF1/-boundedness of H" has been around for some time.
The authors learned from G. Pisier that P. Biane had raised and discussed this ques-
tion with him during their participation in a research semester at the Institut Henri
Poincaré in 2000. Ozawa indicated that the L4. OF1/-boundedness of H" would pro-
vide a positive answer to the problem he posed at the end of [8]. Junge, Parcet, and
Xu [5] obtained a length-dependent estimate for a related question in their work on
Rosenthal’s inequality for amalgamated free products.

The first result of the present article (Theorem 3.5) is a positive answer to the
Lp-boundedness question of H" in the general case of Voiculescu’s amalgamated
free products, which includes the free group as a particular case (see Theorem 4.1).

One can also consider two similar Hilbert transforms. One is

H Ld
" D "ePd�1 C

X
h;jhjDd

"hLh
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with Pd the projection onto the reduced words with length at most d , and with Lh’s
the projections onto the reduced words starting with h. Another is

H .d/
" D "ePd�1 C

X
g;jgjD1

"gL.d/
g

with L
.d/
g ’s the projections onto reduced words having g as their d th letter. Their

(complete) boundedness on Lp. OFn/ can be easily deduced from that of H" with con-
stants depending on d . The main result of the present article (Theorem 4.7) says that
H

.d/
" ’s are completely bounded on Lp. OF1/ for any d � 1. While H Ld

" ’s are bounded
for all 1 < p < 1 but not completely bounded on Lp. OF1/, for any p ¤ 2;d � 2. The
authors also prove a length-reduction formula to compute Lp-norms and a Rosenthal-
type inequality with length-independent constants.

A classical argument used in proving the Lp-boundedness of the Hilbert trans-
form H is Cotlar’s identityˇ̌

H.f /
ˇ̌2

D jf j2 C H. Nf Hf C Hf f /; (2)

which allows one to get the result for L2p from that of Lp and implies optimal esti-
mates. This identity holds in a general setting, if one can identify a suitable “ana-
lytic” algebra and define the corresponding Hilbert transform as the difference of the
two projections on this algebra and its adjoint. This is the case of noncommutative
Hilbert transforms associated with Arveson’s maximal subdiagonal algebras (see [12,
Lemma 8.5]).1 After obtaining an initial proof of Theorem 4.1, we observed that a free
version of Cotlar’s identity (see (5)) holds in the context of amalgamated free prod-
ucts for H" with j"kj � 1.2 We were slightly surprised when this observation came
out, given that H", defined in (1), is associated to subsets instead of subalgebras. On
the other hand, finding a proof of (5) was not hard once we started to feel it. It is odd
that this identity was not noticed earlier.

We introduce notation and necessary preliminaries in Section 2. Theorem 3.5
and a Cotlar-type formula for amalgamated free products are proved in Section 3.1.
Section 3.2 includes a few immediate consequences. Section 3.3 obtains a length-
independent Rosenthal-type inequality, which was initially proved by Junge, Parcet,
and Xu [5, Theorem A] restricted to a fixed length. Section 4.1 proves our main result
Theorem 4.7. Corollary 4.6 of that section gives a length reduction formula and gener-
alizes the main result of [9]. Corollary 4.10(iii) gives a positive answer to the problem
that Ozawa posed at the end of [8]. Section 4.3 studies Littlewood–Paley–Stein-type

1Arveson’s “analytic” subalgebras do not seem available for amalgamated free products of von Neumann alge-
bras in general. They are available for free group von Neumann algebras, but the corresponding Hilbert trans-
forms are different from ours and their formulations as Herz–Schur multipliers are difficult to determine.
2The classical Cotlar formula fails for H D �iPC C "iP� if " ¤ ˙1.
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inequalities. Corollary 4.15 shows that the projection onto a geodesic path of the
free group is completely bounded on Lp for 1 < p < 1. Theorem 4.19 is a dyadic
Littlewood–Paley–Stein inequality for geodesic paths of free groups.

2. Notation and preliminaries
We refer the reader to [15] and [5] for the definition of amalgamated free products
and to [12] and the references therein for formal definitions and basic properties of
noncommutative Lp-spaces. For simplicity, we will restrict to the case of finite von
Neumann algebras, but it should be possible to adapt all the arguments to type III
algebras with normal faithful states.

About noncommutative Lp-spaces associated to a finite von Neumann algebra
.A; �/, we will mainly need duality, interpolation, and the noncommutative Khint-
chine inequality (see [6], [7]) in Lp.A/ as well as p-row and p-column spaces.
For simplicity, we denote by ek1 D ek;1 and e1k D e1;k , ekk D ek;k the canonical
basis of the column and the row and diagonal subspaces of the Schatten p-class
Sp.`2.N//.

We will use the duality hx;yiLp ;Lq D �.xy/ to identify Lq.A/ with Lp.A/�

isometrically for 1 � p < 1. At the operator space level, this gives a complete isom-
etry Lp.A/� D Lq.A/op (see [10]).

As A D L1.A/ is finite, the obvious embedding L1.A/ � L1.A/ makes
.L1.A/;L1.A// a compatible couple of Banach spaces. For 1 < p < 1, the com-
plex interpolation space between A and L1.A/ with index 1

p
is isometric to

Lp.A/: �
L1.A/;L1.A/

�
1
p

D Lp.A/: (3)

For a sequence .xk/ in Lp.A/, we use the classical notation

��.xk/
��

Lp.A;`c
2

/
D

����X
k

jxkj2
� 1

2
���

p
;

��.xk/
��

Lp.A;`r
2

/
D

����X
k

jx�
k j2

� 1
2
���

p
;

and

��.xk/
��

Lp.A;`cr
2

/
D

´
max¹k.xk/kLp.A;`c

2
/;k.x�

k
/kLp.A;`c

2
/º if 2 � p � 1;

infykCzkDxk
k.yk/kLp.A;`c

2
/ C k.z�

k
/kLp.A;`c

2
/ if 0 < p < 2:

We may often drop the reference to A when there is no possibility of confusion.
(We refer readers to [10] for noncommutative vector-valued Lp-spaces.) The above
definition is justified by the noncommutative Khintchine inequalities, as follows.
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LEMMA 2.1 ([6, Théorèmes 1, 3, 4], [7, Theorem 0.1])
Let ."k/ be a sequence of independent Rademacher random variables. Then for 1 �

p < 1,

˛�1
p E"

���X
k

"k ˝ xk

���
p

�
��.xk/

��
Lp.A;`cr

2
/
� ˇpE"

���X
k

"k ˝ xk

���
p

: (4)

Here "k can also be replaced by other orthonormal sequences of some L2.�;�/,
for example, z2k

on the unit circle or standard Gaussian. For z2k
on the unit circle or

standard Gaussian, the best constant ˇp is
p

2 for p D 1 and is 1 for p � 2 (see [1]).
We have that ˛p is 1 for 1 � p � 2 and is of order

p
p as p ! 1. We note that (4)

was recently pushed further to the case of 0 < p < 1 by Pisier and the second author
in [11].

If .Ak; �k/; k � 1 are finite von Neumann algebras with a common sub–von
Neumann algebra .B; �0/ with conditional expectation E so that �kE D �0, then we
denote by .A; �/ D �B.Ak; �k/ the amalgamated free product of .Ak; �k/’s over B.
We will briefly recall the construction to fix notation.

For any x 2 Ak , we denote Vx D x �Ex and VAk D ¹ VxIx 2 Akº; there is a natural

decomposition Ak D B ˚ VAk .
The space

W D B
M
n�1

M
.i1;:::;in/2Nn

i1¤i2���¤in

VAi1 ˝B � � � ˝B
VAin D

M
n�0

M
.i1;:::;in/2Nn

i1¤i2���¤in

Wi

is a �-algebra using concatenation and centering with respect to B. The natural
projection E onto B is a conditional expectation, and �E is a trace on W still
denoted by � . Then .A; �/ is the finite von Neumann algebra obtained by the Gelfand–
Naimark–Segal construction from .W ; �/. Thus W is weak-� dense in A and dense
in Lp.A/ for p < 1.

For multi-indices, we write .i1; : : : ; in/ D i � j D .j1; : : : ; jm/ if m � n and
ik D jk for k � n. We also put i 	 j if i � j and n < m, and we put i ⊀ j otherwise.
We extend those relations for nonzero elementary tensors g 2 Wi and h 2 Wj , and
we write g 	 h if i 	 j and g ⊀ h if i ⊀ j .

For k 2 N, put

Lk D
M
k�i

Wi and Rk D L�
k :

We denote the associated orthogonal projections on W by Lk and Rk . We use the
convention L0 D E .
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Given a sequence of "k 2 B; k 2 N, and x 2 W , we let

H".x/ D "0E.x/ C
X
k2N

"kLk.x/I H op
" D E.x/"�

0 C
X
k2N

Rk.x/"�
k :

The main theorem says that, for 1 < p < 1, H" extends to Lp and for any x 2 Lp ,

kH"xkp 'cp kxkp;

for any choice of unitaries "k 2 Z.B/ in the center of B and 1 < p < 1.

3. Amalgamated free products

3.1. A Cotlar-type formula for free products
We start with very basic observations. Recall that Vx D x � Ex for x 2 A.

PROPOSITION 3.1
For g 2 W , and "; "0 sequences in B,
(i) H".g

�/ D .H
op
" .g//�,

(ii) H". Vg/ D

ı‚…„ƒ
H".g/,

(iii) H"H
op
"0 .g/ D H

op
"0 H".g/.

Proof
This is clear on elementary tensors.

We now give the free version of Cotlar’s identity.

PROPOSITION 3.2
For elementary tensors g;h 2 W ,

(iv)

ı‚ …„ ƒ
H".g

�h/ D

ı‚ …„ ƒ
H".g

�/h if g ⊀ h,

(v)

ı‚ …„ ƒ
H op

" .g�h/ D

ı‚ …„ ƒ
g�H op

" .h/ if h ⊀ g.
And for any g;h 2 W ,

(vi)

ı‚ …„ ƒ
H".g

�/H
op
"0 .h/ D

ı‚ …„ ƒ
H".g

�H
op
"0 .h//C

ı‚ …„ ƒ
H

op
"0 .H".g

�/h/�

ı‚ …„ ƒ
H

op
"0 H".g

�h/.

Proof
Let g D g1 ˝ � � � ˝ gn 2 Wi and h D h1 ˝ � � � ˝ hm 2 Wj with i D .i1; : : : ; in/ and
j D .i1; : : : ; jm/, n;m � 0. We start by proving (iv) by induction on n C m.
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If nCm D 0, then this is clear as

ı‚ …„ ƒ
H".g

�h/ D

ı‚ …„ ƒ
H".g

�/h D 0. Assume that nCm �

1 and g ⊀ h. Note that necessarily n � 1.
First case: If i1 ¤ j1 or m D 0, then

g�h D g�
n ˝ � � � ˝ g�

2 ˝ g�
1 ˝ h1 ˝ h2 ˝ � � � ˝ hm

and H".g
�h/ D H".g

�/h D "ing�h.
Second case: If i1 D j1, then

g�h D g�
n ˝ � � � ˝ g�

2 ˝ .

ı‚…„ƒ
g�

1h1 / ˝ h2 ˝ � � � ˝ hm

C .g�
n ˝ � � � ˝ g�

2 /:
�
.Eg�

1h1/h2 ˝ � � � ˝ hm

�
:

Put Qg D

ı‚…„ƒ
h�

1g1 ˝� � � ˝ gn, Qh D h2 ˝ � � � ˝ hm and Og D g2 ˝ � � � ˝ gn, Oh D

.Eg�
1h1/h2 ˝ � � � ˝ hm (if n D 1, Og D 1). Note that Qg ⊀ Qh (or Qg D 0) and Og ⊀ Oh and

that the sum of their length is strictly smaller than n C m. We can apply the formula

of (iv) to them to get

ı‚ …„ ƒ
H". Qg� Qh/ D

ı‚ …„ ƒ
H". Qg�/ Qh D "in Qg� Qh and

ı‚ …„ ƒ
H". Og� Oh/ D

ı‚ …„ ƒ
H". Og�/ Oh D

"in

ı‚…„ƒ
Og� Oh (this holds if n D 1 because then m D 1 and

ı‚…„ƒ
Og� Oh D 0). Finally,

ı‚ …„ ƒ
H".g

�h/ D "in. Qg� Qh C

ı‚…„ƒ
Og� Oh / D "in

ı‚…„ƒ
g�h D

ı‚ …„ ƒ
H".g

�/h :

This completes the proof of (iv). Assertion (v) follows from (iv) by taking adjoints
because of (i).

To get (vi) it suffices to do it for elementary tensors by linearity. Assume first that
g ⊀ h. Then obviously g ⊀ H

op
"0 .h/, so by (iv)

ı‚ …„ ƒ
H"

�
g�H

op
"0 .h/

�
D

ı‚ …„ ƒ
H".g

�/H
op
"0 .h/;

ı‚ …„ ƒ
H".g

�/h D

ı‚ …„ ƒ
H".g

�h/ :

Since the centering operation commutes with H
op
"0 by Proposition 3.1, we get (vi).

If g 	 h, then h ⊀ g, and we can use (v) and Proposition 3.1(ii) as above and (iii)
to get (vi) as

ı‚ …„ ƒ
H

op
"0

�
H".g

�/h
�

D

ı‚ …„ ƒ
H".g

�/H
op
"0 .h/;

ı‚ …„ ƒ
H

op
"0 H".g

�h/

D

ı‚ …„ ƒ
H"H

op
"0 .g�h/ D

ı‚ …„ ƒ
H"

�
g�H

op
"0 .h/

�
:
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Remark 3.3
By removing the centering, we obtain a Cotlar-type formula for x D

P
i gi ; y DP

j hj ; gi ; hj 2 W as follows:

H"x.H"0y/� � E
�
.H"x � "0x/.H"0y � "0

0y/�
�

D H"

�
xH

op
"0 .y�/

�
C H

op
"0

�
H".x/y�

�
� H

op
"0 H".xy�/: (5)

Note that the justified Cotlar identity (5) holds for all k"kk � 1, while in the commu-
tative setting the Cotlar formula (2) holds for "k D ˙1 only.

PROPOSITION 3.4
For any x 2 W , and any p � 1, and "k 2 Z.B/;k"kk � 1

max
®��E

�
H"x.H"x/�

���
p

;
��E

�
H"

�
xH op

" .x�/
����

p
;��E

�
H op

"

�
H".x/x�

����
p

;
��E

�
H op

" H".xx�/
���

p

¯
�

��E.xx�/
��

p
:

Proof
Write x D

P
i gi with gi 2 Wi . Then, by orthogonality of the Wi over B, all four ele-

ments on the left-hand side are of the form
P

i aiE.gig
�
i /b�

i with ai ; bi 2 ¹1; "inº �

Z.B/. But
P

i ai E.gig
�
i /b�

i D
P

i yiaib
�
i yi with yi D E.gig

�
i /1=2 so that the

inequality follows by the Hölder inequality as
P

i y2
i D E.xx�/.

We can now prove the main result.

THEOREM 3.5
For 1 < p < 1, there is a constant cp so that for "k 2 Z.B/;k"kk � 1, and x 2 W

kH"xkp � cpkxkp; kH op
" xkp � cpkxkp: (6)

Moreover, the equivalence holds with constant cp in both directions if the "k’s are
further assumed to be unitaries.

Proof
Assume here that kH"kLp.A/!Lp.A/ � cp . We will now show that kH"xk2p � .cp Cq

2c2
p C 4/kxk2p for all x 2 W , and similarly for H

op
" by using the �-operation. Once

this is proved, we get the upper desired estimate for all p D 2n; n 2 N, by induction
and the fact that kH"xk2 D kH

op
" xk2 � kxk2. Applying interpolation and duality,

we then get the result for all 1 < p < 1 (note that the adjoint of H" is H
op
"� ). The

equivalence holds for unitary " since H"H"� D idA in this case. In fact, the Cotlar-
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type formula (5) implies that, for x;y 2 W ,

ı‚ …„ ƒ
H"x.H"0y/� D

ı‚ …„ ƒ
H"

�
xH

op
"0 .y�/

�
C

ı‚ …„ ƒ
H

op
"0

�
H".x/y�

�
�

ı‚ …„ ƒ
H

op
"0 H".xy�/ : (7)

Applying Hölder’s inequality and Proposition 3.4 to this identity for x D y; " D "0,
we get

kH"xk2
2p � 2cpkxk2pkH"xk2p C .4 C c2

p/kxk2
2p:

That is, kH"xk2p � .cp C
q

2c2
p C 4/kxk2p .

Remark 3.6

As
Q1

nD0

1C
q

2C4=c2
2n

1C
p

2
< 1, one gets that for p � 2, cp � Cp� with � D ln.1C

p
2/

ln 2
.

Remark 3.7
By the usual trick to replace B;Ak by B ˝Mn and Ak ˝Mn, one gets that the maps
H" are completely bounded on Lp for 1 < p < 1.

Remark 3.8
We can use a slightly more general definition for H" by taking "k 2 B ˝ M, where
M is a finite von Neumann algebra. Then E.x/ and Lk.x/ have to be understood
as E.x/ ˝ 1 and Lk.x/ ˝ 1. Theorem 3.5 remains valid with the assumption that
" 2 Z.B/ ˝ M.

3.2. Corollaries
In this section, we derive a few direct consequences of Theorem 3.5.

For any k0 2 N, let "k0
D �1 and "k D 1 for k ¤ k0. Then Lk0

D
idA�H"

2
.

COROLLARY 3.9
For any 1 < p < 1,

kLkxkp �
1 C cp

2
kxkp:

COROLLARY 3.10
We have

c�1
p kxkp �

��.Lkx/1
kD0

��
Lp.`cr

2
/
�

p
2cpkxkp; (8)

for 1 < p < 2 and
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.
p

2cp/�1kxkp �
��.Lkx/1

kD0

��
Lp.`cr

2
/
� cpkxkp; (9)

for 2 � p < 1. Similar inequalities hold for .Rkx/.

Proof
Let "k D z2k

, and let E" be the expectation. By Theorem 3.5, for any x 2 Lp ,

1

cp

E"

��H".x/
��

p
� kxkp � cpE"

��H".x/
��

p
D cpE"

���X
k

"kLkx
���

p
:

We then have, by the noncommutative Khintchine inequality (4), that

.˛pcp/�1kxkp �
��.Lkx/1

kD0

��
Lp.`cr

2
/
� ˇpcpkxkp: (10)

This implies (8) since ˇp �
p

2;˛p D 1 for 1 < p < 2. Using the identity �x�y D

�
P1

kD0.Lkx/�Lky, an additional duality argument implies that

.ˇqcq/�1kxkp �
��.Lkx/1

kD0

��
Lp.`cr

2
/
; (11)

for 1 < p;q < 1; 1
p

C 1
q

D 1. We then get (9) since cp D cq and ˇp D 1 for 2 � p <

1 (see the comment after Lemma 2.1). A similar argument works for .Rkx/.

Remark 3.11
We will prove a variant of Corollary 3.10 in Section 3.3 as Theorem 3.17.

COROLLARY 3.12
For any 1 < p < 1, any sequences .ik/ 2 NN and .xk/ 2 Lp.A; `c

2/, we have

���� 1X
kD1

jLik xkj2
� 1

2
���

p
� cp

���� 1X
kD1

jxkj2
� 1

2
���

p
; (12)

���� 1X
kD1

jRik xkj2
� 1

2
���

p
� cp

���� 1X
kD1

jxkj2
� 1

2
���

p
: (13)

Proof
Fix a sequence "k D ˙1, and apply Theorem 3.5 to x D

P
j "ij xj ˝ ej1 2 Lp.A ˝

B.`2//. We have

���X
k;j

"k"ij Lk.xj / ˝ ej1

���
p

� cp

���X
j

"ij xj ˝ ej1

���
p

D cp

���� 1X
j D1

jxj j2
� 1

2
���

p
:
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Now let ."k/ be a sequence of Rademacher variables. We have���� 1X
j D1

jLij xj j2
� 1

2
���

p
D

���E"

X
k;j

"k"ij Lk.xj / ˝ ej1

���
p

� cp

���� 1X
j D1

jxj j2
� 1

2
���

p
:

The proof of the second inequality is similar.

Remark 3.13
Corollary 3.12 was proved in [5, Lemma 2.5, Corollary 2.9] for the xk’s supported
on reduced words with length equal to d with constants depending on d , independent
of p.

3.3. Length-independent estimates for Rosenthal’s inequality
We will apply Theorem 3.5 to obtain a length-free estimate for Rosenthal’s inequality
proved in [5, Theorem A]. In this section, we restrict " 2 ¹˙1ºN and "0 D 0 in the
form of H" D

P
k2N "kLk and H

op
" . When there is no chance of confusion, we use

the notation T instead of T ˝ Id for its ampliation.
Thanks to the previous results, we can define the following paraproduct for x 2

Lp.A/ ˝ Lp.M/ (1 < p < 1) and y 2 Lq.A/ ˝ Lq.M/ with 1
p

C 1
q

< 1 as

x�y D E"H"

�
H".x/y

�
D

X
k2N

Lk

�
.Lkx/y

�
;

with E" the expectation with respect to the Haar measure on ¹˙1ºN. We also set

x�y D xy � x�y � E.xy/ D

1X
kD0

VL?
k

�
.Lkx/y

�
:

Here VL?
k

D
P

j ¤k;j 2N Lj for any k � 0.
If x and y are elementary tensors (x … B), x�y collects in the reduced form of

xy all elements whose first letter is in the same algebra as x, while x�y collects the
rest in the reduced form of xy, except the constant terms.

PROPOSITION 3.14
We have the following, for 1 < p < 1, 1 < q � 1 with 1

p
C 1

q
D 1

r
< 1:

(i) kH".x�y/kr � crcpkxkpkykq , kx�ykr � .2 C crcp/kxkpkykq;
(ii) H".x�y/ D H".x/�y, x�H

op
" .y/ D H

op
" .x�y/.

In particular, x�y 2 Lk if x 2 Lk and x�y 2 Rk if y 2 Rk .

Proof
Inequality (i) simply follows from Theorem 3.5 and the definitions. We now prove
(ii). For �, this follows from its definition.
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For �, we check the following formula from which the identity follows because
of the translation invariance of the Haar measure on ¹�1; 1ºN:

x�y D E"0

�
H

op
"0

�
x�H

op
"0 .y/

��
: (14)

We first notice that the identity holds if x 2 B as x�y D 0 and x�y D x.y � E.y//

and similarly holds if y 2 B, x�y D .x � E.x//y and x�y D 0. Thus we can assume
that E.x/ D E.y/ D 0. Apply the Cotlar identity (5) to H".x/ and H

op
"0 .y�/, and note

that H 2
" .x/ D x and H

op2

"0 .y�/ D y�. We get

xy � Exy D H"

�
H".x/y

�
C H

op
"0

�
xH

op
"0 .y/

�
� H

op
"0 H"

�
H".x/H

op
"0 .y/

�
:

Taking expectations with respect to " and "0 gives (14). One can also verify directly
the identity for � in (ii) by its bilinearity, looking at elementary tensors x;y 2 W , and
by using Proposition 3.2(iv)–(v).

Remark 3.15
There are situations for which one can slightly improve those inequalities. For
instance, if r D 2, then kx�ykr � .1 C cp/kxkpkykq . Or in general kx�ykr �

cr sup" kH".x/kpkykq and kx�ykr � .2 C cr/ sup" kH".x/kpkykq .

LEMMA 3.16
For 2 � p < 1 and x 2 Lp.A/,

���X
k2N

ı‚ …„ ƒ
Lk.x/Lk.x/�

���
p
2

� �p

���X
k2N

ˇ̌
.Lkx/�

ˇ̌2
��� 1

2

p
2

�X
k2N

kLkxkp
p

� 1
p

; (15)

���X
k2N

ı‚ …„ ƒ
Rk.x/�Rk.x/

���
p
2

� �p

���X
k2N

ˇ̌
Rk.x/

ˇ̌2
��� 1

2

p
2

�X
k2N

kRkxkp
p

� 1
p

; (16)

with �p � 3c2
4 for 2 < p � 4 and �p � 2

p
2.c2

p
2

C c p
2

/ for p � 4.

Proof
Let us assume that p � 4 first. We use the decomposition Lk.x/Lk.x/� �

E.Lk.x/Lk.x/�/ D Lkx�.Lkx/� C Lkx�.Lkx/�. By Corollary 3.10 and Propo-
sition 3.14, as Lk.x/�Lk.x/� 2 Lk , we have���X

k2N

Lk.x/�Lk.x/�
���

p
2

�
p

2c p
2

max
h���X

k2N

Lk.x/�Lk.x/� ˝ ek1

���
p
2

;
���X

k2N

Lk.x/�Lk.x/� ˝ e1k

���
p
2

i
:
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Using the bilinearity of �, we haveX
k2N

Lk.x/�Lk.x/� ˝ e1k D
X
k2N

�
Lk.x/ ˝ e1k

�
�
�
Lk.x/� ˝ ekk

�
D E"

�X
k

"kLk.x/ ˝ e1k

�
�
�X

k

"kLk.x/� ˝ ekk

�

D E"

h
H"

�X
k

Lk.x/ ˝ e1k

�
�H op

"

�X
k

Lk.x/� ˝ ekk

�i
:

So we can conclude from Theorem 3.5 and Remark 3.15 that���X
k2N

Lk.x/�Lk.x/� ˝ e1k

���
p
2

� c p
2

sup
";"0

���H"0

X
k

Lkx ˝ e1k

���
p

���H op
"

X
k

Lk.x/� ˝ ekk

���
p

D c p
2

���X
k

Lk.x/ ˝ e1k

���
p

�X
k

kLkxkp
p

� 1
p

: (17)

Similarly, we have���X
k2N

Lk.x/�Lk.x/� ˝ ek1

���
p
2

D
���E"

h
H"

�X
k

Lk.x/ ˝ ekk

�
�H op

"

�X
k

Lk.x/� ˝ ek1

�i���
p
2

� c p
2

�X
k

kLkxkp
p

� 1
p

���X
k

Lk.x/ ˝ e1k

���
p

: (18)

Combining these two estimates, we get

���X
k2N

Lk.x/�Lk.x/�
���

p
2

�
p

2c2
p
2

���X
k

Lk.x/ ˝ e1k

���
p

�X
k

kLkxkp
p

� 1
p

for p � 4. We can treat the � term similarly since Lkx�.Lkx/� 2 Rk and get

���X
k2N

Lk.x/�Lk.x/�
���

p
2

�
p

2c p
2

.2 C c p
2

/
���X

k

Lk.x/ ˝ e1k

���
p

�X
k

kLkxkp
p

� 1
p

:

We then get (15) for p � 4 with constant 2
p

2.c2
p
2

C c p
2

/.

To deal with the remaining cases, we will use interpolation by proving a better
bilinear inequality for 2 � p � 4. We have
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���X
k2N

ı‚ …„ ƒ
Lk.x/Rk.y/

���
p
2

� 3c2
4

���X
k

Lkx ˝ e1k

���
p

�X
k

kRkykp
p

� 1
p

:

The spaces consisting of elements of the form
P

k Lkx ˝e1k , and
P

k Rky ˝ekk are
cp-complemented in Lp.A/ ˝ Sp by Theorem 3.5. Hence, the norms on the right-
hand side interpolate for 2 � p � 4 (both with constant c

2.1�2=p/
4 ).

We just need to justify the endpoint inequalities. For p D 2, we have by Hölder’s
inequality that

���X
k2N

ı‚ …„ ƒ
Lk.x/Rk.y/

���
1

� 2
���X

k

Lk.x/ ˝ e1k

���
2

���X
k

Rk.y/ ˝ ek1

���
2

D 2
���X

k

Lk.x/ ˝ e1k

���
2

�X
k

kLkyk2
2

� 1
2

:

For p D 4, by orthogonality and as in (17),���X
k2N

Lk.x/�Rk.y/
���

2
D

���X
k2N

Lk.x/�Rk.y/ ˝ e1k

���
2

�
���X

k

Lkx ˝ e1k

���
4

�X
k

kRkyk4
4

� 1
4

:

Similarly, we get k
P

k2N Lk.x/�Rk.y/k2 � 2k
P

k Lkx ˝ e1kk4.
P

k kRkyk4
4/

1
4 .

Thus, by interpolation we get (15) for 2 < p < 4 with a constant 3c
4.1�2=p/
4 .

THEOREM 3.17
For 2 � p < 1 and x 2 Lp.A/,

��1
p kxkp � max

°���� 1X
kD0

ˇ̌
Lk.x/

ˇ̌2
� 1

2
���

p
;
��E.xx�/

�� 1
2
p
2

±
� cpkxkp

and

��1
p kxkp � max

°���� 1X
j D0

ˇ̌
Rj .x/�

ˇ̌2
� 1

2
���

p
;
��E.x�x/

�� 1
2
p
2

±
� cpkxkp;

with �p �
p

2cp.1 C �p/ � c3
p .

Proof
For the first equivalence, the upper inequality follows from Corollary 3.10. For the
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lower bound, by Lemma 3.16 as E.xx�/ D
P

k�0 E.Lk.x/Lk.x/�/ and
ı‚ …„ ƒ

L0.x/L0.x/� D 0,���X
k�0

Lk.x/ ˝ e1k

���2

p
� �p

���X
k2N

Lk.x/ ˝ ekk

���
p

���X
k�0

Lk.x/ ˝ e1k

���
p

C
��E.xx�/

��
p
2

:

Hence, k
P

k�0 Lk.x/ ˝ e1kkp � �pk
P

k�0 Lk.x/ ˝ ekkkp C kE.xx�/k
1
2
p
2

. But as

p � 2, the map ek1 7! ekk is a contraction on Lp , so we deduce that���X
k�0

Lk.x/ ˝ e1k

���
p

� �p

���X
k�0

Lk.x/ ˝ ek1

���
p

C
��E.xx�/

�� 1
2
p
2

;

and we conclude the lower bound by Corollary 3.10 again. The other inequality fol-
lows by taking adjoints.

We get the following Rosenthal-type inequality as a direct application.

COROLLARY 3.18
Let 2 < p < 1.
(i) For x D

P1
kD0 xk 2 Lp.A/ with xk 2 Lk , we have

��2
p kxkp � max

°��E.xx�/
�� 1

2
p
2

;
��E.x�x/

�� 1
2
p
2

;
���X

k;j

Rj .xk/ ˝ ekj

���
p

±

� c2
pkxkp:

(ii) For x D
P1

kD0 xk with xk 2 Lk \ Rk , we have

��2
p kxkp � max

°��E.xx�/
�� 1

2
p
2

;
��E.x�x/

�� 1
2
p
2

;
�X

k

kxkkp
p

� 1
p

±
� c2

pkxkp:

Proof
Apply Theorem 3.17 twice, and note that the .e1k ˝ ek1/’s generate the canonical
basis of `p in Sp . We get (i), and (ii) follows immediately.

Remark 3.19
We point out that Corollary 3.18(ii) was proved in [5, Theorem A] when the xk’s
are supported on reduced words with a fixed length with constants independent of p

but dependent on the length. Noting that by the Khintchine inequalities from [14],
H" and H

op
" are bounded on words of length at most d (in L1) with a constant that

depends only on d , we see that, by interpolation, the above argument also implies
Corollary 3.18(ii) with constants independent of p but dependent on the length.
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Remark 3.20
All the results of this section also hold in the completely bounded setting.

4. Free groups
We can apply the previous results to the free group as it is naturally a free product. Let
gi , i 2 N be the set of generators of F1. We let Lgi

and Lg�1
i

be the set of reduced

words starting by gi and g�1
i , respectively, and L

g˙
i

D Lgi
[ Lg�1

i
. We denote

by Lgi
, Lg�1

i
, and L

g˙
i

the associated projections. We use the notation Rgi
and

Rg�1
i

; : : : for the right analogues. We will often use the convention g0 D e;Lg0
D � ,

gi D g�1
�i for i < 0 so that Lg�1

i
D Lg�i

for any i 2 Z�. Finally, S will denote the set

¹gi I i 2 Z�º. Given g;h reduced words of F1, we write g � h (or h � g) if h D gk

with g;h; k reduced words; that is, jg�1hj D jhj � jgj. We write g � h otherwise.
More generally, we set

Lh WD ¹g 2 F1Ih � gº;

and we let Lh be the associated L2-projection. Let M be a finite von Neumann alge-
bra. We will consider x 2 Lp.LF ˝ M/. When there is no possibility for confusion,
we use the notation x D

P
g ag	g instead of x D

P
g 	g ˝ ag ; ag 2 Lp.M/ for its

ampliation.
Theorem 3.5 immediately gives that, for any 1 < p < 1 and sequences of uni-

taries "i 2 Z.M/;k"kk � 1,���.� ˝ Id/x C
X

i

"i .Lg˙
i

˝ Id/.x/
���

p
'cp kxkp: (19)

We slightly extend it as follows.

THEOREM 4.1
Let ."k/k2Z be a sequence in Z.M/;k"kk � 1. Then for any x 2 Lp.L.F1/ ˝ M/

and 1 < p < 1,

���"0.� ˝ Id/x C

1X
k2Z�

"k.Lgk
˝ Id/.x/

���
p

� cpkxkp:

The equivalence holds if we assume further that the "k’s are unitaries in Z.M/.

Proof
We may assume that "0 D 1. We consider the following group embedding 
 W F1 !

F1 � F1 defined by 
.gi / D gihi , where the .hi /’s are the free generators of the
second copy of F1. This extends to a complete isometry for Lp-spaces, and one



FREE HILBERT TRANSFORMS 2169

checks directly that

� 1X
kD0

"�kL
h˙

k

C � C

1X
kD0

"kL
g˙

k

�
ı 
 D 
 ı

� 1X
kD0

"�kLg�1
k

C � C

1X
kD0

"kLgk

�
:

The statement follows from the amalgamated version of (19).

The proof of Lemma 3.16 and Theorem 3.17 can easily be adapted to the free
group, where H" D "eLe C

P
h2S "hLh with j"hj D 1 and the convention Lex D �x.

We simply give the result as follows.

THEOREM 4.2
For 2 < p < 1, x 2 Lp.L.F1/ ˝ M/,

��1
p kxkp � max

°���� X
jhj�1

ˇ̌
Lh.x/

ˇ̌2
� 1

2
���

p
;
��.� ˝ Id/.xx�//

�� 1
2
p
2

±
� cpkxkp

and

��1
p kxkp � max

°���� X
jhj�1

ˇ̌
Rh.x/�

ˇ̌2
� 1

2
���

p
;
��.� ˝ Id/.x�x/

�� 1
2
p
2

±
� cpkxkp:

Remark 4.3
All results before this section hold for free groups with Lk ;Rk replaced by Lgk

(resp.,
Lg�1

k
or L

g˙
k

) and Rgk
(resp., Rg�1

k
or R

g˙
k

). We can strengthen some of them.

These will be recorded in the following.

COROLLARY 4.4
For any 1 < p < 1, h 2 F1 and x 2 Lp.L.F1/ ˝ M/,

kLhxkp �
cp C 1

2
kxkp:

Moreover, limjhj!1 kLhxkp ! 0.

Proof
Without loss of generality, we may assume that h 2 Rg1

and that h D h0g1. Then
Lhx D 	h0Lg1

.	h0�1x/. The Lp-bound follows from Theorem 4.1. Note that the Lp-
space is defined as the closure of Cc.F1/, so we get the convergence by the uniform
boundedness of Lh on Lp .
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COROLLARY 4.5
For any 1 < p < 1, any sequences .hk/ 2 F1 n ¹eº, and .xk/ 2 Lp.`c

2/, we have

���� 1X
kD1

jLhk
xkj2

� 1
2
���

p
� cp

���� 1X
kD1

jxkj2
� 1

2
���

p
: (20)

Proof
Let us assume such that hk 2 Rgik

; ik 2 Z. Assume that hk D h0
k
gik . Then

Lhk
xk D 	h0

k
Lgik

.	h0�1
k

xk/:

So

1X
kD1

jLhk
xkj2 D

1X
kD1

ˇ̌
Lgik

.	h0�1
k

xk/
ˇ̌2

:

We get the result by the free group version of Corollary 3.12.

4.1. A length reduction formula
In this section, we use standard notation from operator space theory. We denote the p-
row and p-column spaces over some index set I by Rp D span¹e1kº � Sp.B.`2.I //

and Cp D span¹ek1º � Sp.B.`2.I //. To lighten notation, we set rk D e1k and ck D

ek1. The reader should not be confused with the previous notation as the objects are
of very different nature.

Let W�d be the set of words in F1 of length greater than or equal to d . Also
denote by W�d the subspace in Lp generated by 	w ;w 2 W�d . For w 2 F1, we let
wl denote its l th letter (if it exists) and @w D w�1

1 w.
Take any x D

P
w2W�1

xw	w 2 W�1. We have

����X
h2S

ˇ̌
Lh.x/

ˇ̌2
� 1

2
���

p
D

��� X
w2W�1

xw	w ˝ cw1

���
p

D
��� X

w2W�1

xw	@w ˝ cw1

���
p

:

At the operator space level, Theorem 4.2 means that the map � W W�d ! Cp ˝

W�d�1 ˚ Rp given by �.	w/ D 	@w ˝ cw1
˚ rw is a complete isomorphism. By

iterating, we obtain a complete isomorphism for 2 < p < 1

�d W

´
W�d ! C ˝d

p ˝ Lp. OF1/ ˚ C ˝d�1
p ˝ Rp ˚ � � � ˚ Cp ˝ Rp ˚ Rp;

	w 7! cw1;:::;wd
˝ 	@d w ˚ cw1;:::;wd�1

˝ r@d�1w ˚ � � � ˚ cw1
˝ r@w ˚ rw :

Let us state this as a corollary, which generalizes the result of [9].
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COROLLARY 4.6 (Length reduction formula)
For any d � 1, �d extends to a completely bounded isomorphism such that for x 2

W�d , 2 � p < 1,

��d
p kxkp � k�d xk � cd

p kxkp;

for all x 2 Lp. OF1/.

Fix some d 2 N, and let Pd be the projection onto W ?
dC1

2 Lp. OF1/. Recall that
by [14] or [5], Pd is completely bounded on Lp (this also follows from Theorem 4.2).
For any reduced word w D w1 � � �wn in the generators, we define

L
.d/

h
.	w/ D ıwd Dh	w and H .d/

" D "ePd�1 C
X
h2S

"hL
.d/

h
;

for any choice of "h; jhj � 1 with j"hj � 1. Note that

k�d�1H
.1/

".1/
H

.2/

".2/
� � �H

.d/

".d/
xk D kH".d/�H".d�1/� � � � �H".1/xk:

We immediately get the following.

THEOREM 4.7
For any d � 1 and x 2 Lp. OF1/ ˝ Lp.M/; 1 < p < 1,

kH
.1/

".1/
H

.2/

".2/
� � �H

.d/

".d/
xkp 'Cp;d kxkp

with Cp;d � c2d�1
p �d�1

p � c5d�4
p and kH

.d/
" xkp 'cd

p �d�1
p kxkp for any choice of

j"k j D 1.

We give a faster argument for the boundedness of H
.d/
" . Consider "h D ˙1 for

h 2 F1. Let

H Ld
" D "ePd�1 C

X
h2F1;jhjDd

"hLh; H Rd
" D "ePd�1 C

X
h2F1;jhjDd

"h�1Rh:

Recall that Lh (resp., Rh) is defined as the projection onto the set of all reduced words

starting (resp., ending) with h. We get H
.d/
" from H Ld

" if "h depends only on the d th
letter of h.

COROLLARY 4.8
For any 1 < p < 1, we have for any x 2 Lp. OF1/,

kxkp ' kH Ld
" xkp '

��.Lhx/jhjDd

��
Lp. OF1;`cr

2
/:

(21)
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Proof
Note that a similar identity to (5) holds for free groups with H Ld

" and any g;h with
jg�1hj � 2d � 1. We then have

P ?
2d�2

�
H Ld

" x.H Ld
" x/�

�
D P ?

2d�2

�
H Ld

"

�
xH Ld

" .x�/
�

C H Ld
"

�
H Ld

" .x/x�
�

� H Rd
" H Ld

" .xx�/
�
: (22)

Let cp;d ; p � 2 be the best constant c so that kH Ld
" xkp � ckxkp . Recall that by the

Haagerup inequality, the L1- and Lp-norms are equivalent on the range of P2d�2:��P2d�2

�
H Ld

" x.H Ld
" x/�

���
p

� .2d � 1/2� 2
p

��H Ld
" x.H Ld

" x/�
��

1

� .2d � 1/2� 2
p kxk2

2p;��P2d�2

�
H Ld

"

�
xH Ld

" .x�/
����

p
� .2d � 1/1� 2

p kH Ld
"

�
xH Ld

" .x�/
���

2

� .2d � 1/1� 2
p c2p

��xk2
2p

for any p > 2. Therefore,

c2
2p;d � 2.2d � 1/2� 2

p C 2c2p;d .2d � 1/1� 2
p C 2cp;d c2p;d C c2

p;d :

We then have

c2p;d � .2d � 1/1� 2
p C cp;d C

p
2
�
cp;d C 3.2d � 1/1� 1

p
�
:

Asymptotically, cp;d ' p
ln.1C

p
2/

ln 2 for d given and cp;d ' d 1� 2
p for p given. So

kH Ld
" xkp � cp;d kxkp:

Since H Ld
" H Ld

" D id, we get the equivalence. The 1 < p < 2 case follows by duality.

Remark 4.9
A straightforward completely bounded version of Corollary 4.8 is false for F1 (true
for Fn, although with a constant depending on n). This is because the operator-valued
Haagerup inequality is an equivalence between the Lp-norm and the more compli-
cated norm given by Corollary 4.6. For instance, it yields that the set ¹	.gigj /º is not
completely unconditional; this would be a direct consequence of Corollary 4.8.

For any x 2 L.Fn/; n < 1, and any choice of signs, H"x can be viewed as
an unbounded operator on L2. OFn/ with domain Cc.Fn/. As usual, K stands for the
compact operators. Ozawa [8] asked whether the commutator ŒRh; x� sends the unit
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ball of L.Fn/ into a compact set of L2. OFn/ for any h 2 Fn and x 2 L.Fn/ and pointed
out that the Lp-boundedness of Rh implies a positive answer. We record a general
result in the following corollary.

COROLLARY 4.10
We have for d 2 N and any choice of signs " that
(i) ŒH Rd

" ; x� 2 B.L2. OFn// if x D x1 CH Ld
"0 x2 for some j"0j � 1;x1; x2 2 L.Fn/;

(ii) ŒH Rd
" ; x� 2 K.L2. OFn// for all x D x1 C H Ld

"0 x2 for some j"0j � 1;x1; x2 2

C �
�

.Fn/;

(iii) ŒH Rd
" ; x� maps the closed unit ball of L.Fn/ into a compact subset of L2. OFn/

if x 2 Lp. OFn/ for some p > 2 (in particular, if x 2 L.Fn/).

Proof
Similar to (22), we have

P ?
2d�2

�
.H Ld

"0 x/.H Rd
" y/

�
D P ?

2d�2

�
H Ld

"0

�
x.H Rd

" y/
�

C H Rd
"

�
.H Ld

"0 x/y
�

� H Ld
"0 H Rd

" .xy/
�
:

So, up to a finite-rank perturbation, for y 2 L2. OFn/,

ŒH Rd
" ;H Ld

"0 x�y D �H Ld
"0

�
x.H Rd

" y/
�

C H Ld
"0 H Rd

" .xy/ D H Ld
"0

�
ŒH Rd

" ; x�y
�
:

Therefore, for x D x1 C H Ld
"0 x2, up to a finite-rank perturbation

ŒH Rd
" ; x� D ŒH Rd

" ; x1� C H Ld
"0

�
ŒH Rd

" ; x2�
�
:

This implies (i). Note that ŒRh; 	g � is finite rank for each h;g. We have ŒH Rd
" ; x� 2

K.`2.Fn// for all x 2 C �
�

.Fn/. So (ii) is true. For (iii), following the argument of
Ozawa, we have, by Hölder’s inequality and Theorem 4.1,��ŒH Rd

" ; x�y
��

L2. OFn/
� kxkLp. OFn/kykLq. OFn/

for any y 2 Lq. OFn/; 1
q

C 1
p

D 1
2

. By density of C �
�

.Fn/ in Lp. OFn/;p < 1 and since

L.Fn/ � Lp. OFn/ contractively, we get the desired result.

Remark 4.11
When n D 1, the space of functions x in Corollary 4.10(i) (resp., (ii)) is called BMO
(resp. VMO). It characterizes the class of x such that the commutator ŒH;x� is
bounded (resp., compact).

Remark 4.12
The content of this remark is from a communication with Ozawa. Let M be a finite
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von Neumann algebra with a finite normal faithful trace � . Let Lp.M/; 1 � p < 1 be
the associated noncommutative Lp-spaces (see [12]). Recall that we set L1.M/ D

M. For the operators X 2 B.L2.M//;p � 2, define a seminorm

kXkp!2 D sup
®
kXyk2Iy 2 Lp.M/ � L2.M/;kykp � 1

¯
:

Note that kXk2!2 is just the operator norm kXk. Identify M as subalgebra of
B.L2.M// by the left multiplication on L2.M/. Then M0 � B.L2.M// corresponds
to right multiplications by elements of M on L2.M/. We write y0 for the right multi-
plication by y 2 M on L2.M/. For x 2 M, we have by Hölder’s inequality that

kxkp!2 D kx0kp!2 D kxkq

for 1
q

C 1
p

D 1
2

. The lemma of [8, Section 3] says that, for X 2 B.L2.M//,

kXk1!2 � inf
®
kY kkxk2 C kZkkyk2

¯
� 4kXk1!2: (23)

Here the infimum is taken over all possible decomposition X D YxCZy0 with Y;Z 2

B.L2.M//; x; y 2 M. One can easily see that an analogue of the first inequality of
(23) holds for all p > 2; that is,

kXkp!2 � inf
®
kY kkxkq C kZkkykq

¯
; (24)

for 1
q

C 1
p

D 1
2

. Since kxk
q
q � kxk2

2kxk
q�2

M
D kxk2

2kxk
2
p

M
, we get the following

Hölder-type inequality for X 2 B.L2.M//:

kXkp!2 � 4kXk
p�2

p

1!2kXk
2
p : (25)

Suppose that Y 2 B.L2.M// satisfies that, for some p > 2,

kY k1!p D sup
®
kYxkpIx 2 L1.M/ � L2.M/;kxkM � 1

¯
< 1:

Inequality (25) implies that

kXY k1!2 � kXkp!2kY k1!p � 4kXk
p�2

p

1!2kXk
2
p kY k1!p: (26)

Let KL
M

2 B.L2.M// be the collection of all operators sending the unit ball of
M into a compact subset of L2.M/. Let KM D .KL

M
/� \ KL

M
be the associated

C �-algebra. Let M.KM/ be the multiplier algebra of KM , that is, the algebra of all
operators X 2 B.L2.M// such that both XKM and KMX still belong to KM . The
proposition of [8, Section 2] says that X 2 KM if and only if for every sequence of
finite-rank projections Qn strongly converging to the identity of B.L2.M//, kX �

QnXk1!2 ! 0. Combining this with (26), we see that Y above belongs to M.KM/.
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This applies to the particular case when Y is the free Hilbert transform H" or H
op
"

and M is an amalgamated free product. Ozawa promoted the study of the C �-algebra

BM D
®
X 2 M.KM/I ŒX;y� 2 KM;8y 2 M � B

�
L2.M/

�¯
:

Theorem 3.5 and Corollary 4.10(iii) imply that H Rd
" 2 BL.Fn/, and similarly that

H Ld
" 2 BL0.Fn/. Here L0.Fn/ is the von Neumann algebra generated by the right

regular representation 
g ’s.
Let NFn D Fn [ @Fn, and let C. NFn/ be the C �-algebra of continuous functions on

NFn. Note that C. NFn/ is isomorphic to the sub-C �-algebra of B.`2.Fn// generated by

gLh
g�1 ; g; h 2 Fn. We then obtain

C. NFn/ � BL0.Fn/:

4.2. Connections to carré du champ
We use the same notation to denote elements of F1 and points on its Cayley graph.
The Gromov product for g�1; g0 (on the Cayley graph) is defined as

hg;g0i D
jgj C jg0j � jgg0j

2
:

A closely related object is the so-called carré du champ of Meyer,

�.	g ; 	g0/ D
A.	�

g/	g0 C 	�
gA.	g0/ � A.	�

g	g0/

2
D hg�1; g0i	g�1g0

associated to the conditionally negative operator A W 	g 7! jgj	g .
The following identity is a key connection to the operator Lh in previous sections:

2�.	g ; 	g0/ D
X

h2F1

�
Lh.	g/

��
Lh.	g0/: (27)

Let us extend this notation to x D
P

g ag	g 2 L2. OF1/ ˝ L2.M/, and we set

Ar.x/ D
X

g

ag jgjr	g ;

�.x; x/ D hx;xi D
X

a�
gag0hg�1; g0i	g�1g0 :

We then have

2E"hH"x;H"xi D
X

h2F1

jLhxj2 D A.x�/x C x�A.x/ � A
�
jxj2

�
: (28)

The following square function estimate was proved in [4]. One direction of the
inequality has been proved in [2] and [3] in a more general setting.
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LEMMA 4.13 ([4, Theorem A.1, Example (c)])
For any 2 � p < 1, x 2 Lp. OF1/ ˝ Lp.M/,

kA
1
2 xkp '

p4

.p�1/2

���� X
h2F1

jLhxj2
� 1

2
���

p
C

���� X
h2F1

ˇ̌
Lh.x�/

ˇ̌2
� 1

2
���

p
:

Remark 4.14
The above equivalence may fail if one replaces Lh.x�/ by .Lhx/� on the right-hand
side. Corollary 4.9 of [3] gives constants ' p for the � direction.

4.3. Littlewood–Paley inequalities
In the case of the free group, we adapt the definitions of paraproducts studied in
Section 3.3. Assume x D

P
g ag	g 2 Lp; y D

P
h dh	h 2 Lq . We then find that

x�y D
X

k2Z�

Lgk

�
.Lgk

x/y
�

D
X

g�1�h

agdh	gh;

x�y D
X
k2Z

VL?
gk

�
.Lgk

x/y
�

D
X

g�1<h

agdh	gh:

Here Lg0
D � and VL?

gk
D

P
j ¤k;j 2Z� Lgj

. Recall that we write g � h (or h � g) if
h D gk with g;h; k reduced words and g < h if g � h and g ¤ h.

We consider a decomposition of F1 into disjoint geodesic paths. To get one, first
pick a (randomly decided) geodesic path P0 starting at the unit element e. Then for
any length 1 elements not in P0, pick a (randomly decided) geodesic path starting
at each of them. We then go to length 2 elements which are not contained in any of
the previous picked paths, and we pick a (randomly decided) geodesic path starting
at each of them. We repeat this procedure and get countably many disjoint geodesic
paths Pn such that

S
n Pn D F1.

Let Tn be the L2-projection onto the span of Pn. Let h1.n/ be the root of Pn, that
is, the first element in Pn. Let Sn be the projection to the collection of words smaller
than h1.n/ (note that S0 D 0).

COROLLARY 4.15
For any 1 < p < 1, the maps Tn are completely bounded on Lp with

kTnkp!p � c2
p: (29)

Moreover, for any p > 2���X
n

ˇ̌
Tn.x/ C Sn.x/

ˇ̌2
�

ˇ̌
Sn.x/

ˇ̌2
���

p
2

� c2
pkxk2

p: (30)
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Proof
We write x D

P
ag	g and Tn.x/ D

P
g2Pn

ag	g . Then

�
Tn.x/

��
Tn.x/ �

X
g2Pn

jag j2	e D
X

g<h2Pn

a�
gah	g�1h C

X
h<g2Pn

a�
gah	g�1h

D
�
Tn.x/

��
�Tn.x/ C

��
Tn.x/

��
�Tn.x/

��
:

Since .Tn.x/ C Sn.x//��Tn.x/ D x��Tn.x/, we have�
Tn.x/

��
�Tn.x/ D x��Tn.x/ �

�
Sn.x/

��
Tn.x/:

Therefore,�
Tn.x/

��
Tn.x/ �

X
g2Pn

jag j2	e

D x��Tn.x/ C
�
x��Tn.x/

��
�

�
Sn.x/

��
Tn.x/ �

�
Tn.x/

��
Sn.x/: (31)

In particular, for n D 0, we have actually�
T0.x/

��
T0.x/ �

X
g2P0

jag j2	e D x��T0.x/ C
�
x��T0.x/

��
:

Assume p > 2. By Proposition 3.14, we have��T0.x/
��2

p
� .4 C 2cpc p

2
/kxkp

��T0.x/
��

p
C kxk2

p:

So kT0.x/kp � .5 C 2c p
2

cp/kxkp for p > 2. One concludes that T0 is (completely)
bounded on Lp . One can improve the bound on kT0kp!p when p is close to 2 by
using interpolation. The case p < 2 follows by duality. Thus we have obtained (29)
for an arbitrary P0 starting at e; for general Pn this follows by using translations.

Summing (31) over n, we getX
n�0

ˇ̌
Tn.x/ C Sn.x/

ˇ̌2
�

ˇ̌
Sn.x/

ˇ̌2

D
X
n�0

��
Tn.x/

��
Tn.x/ C

�
Sn.x/

��
Tn.x/ C

�
Tn.x/

��
Sn.x/

�
D

X
n�0

x��Tn.x/ C
�
x��Tn.x/

��
C

X
g

jag j2	e

D x��x C .x��x/� C � jxj2	e:

Then (30) follows from Proposition 3.14.
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We now consider a concrete partition given by geodesic paths. For any h0 … Rg˙

and g 2 S , let Ph0;g D ¹h0gkIk 2 Nº. They form a countable partition of F1 n ¹eº,
and we may index it with Z� D Z n ¹0º. We still denote the root of Pn by h1.n/ and
put h0.n/ D h0, kn D k if Pn D Ph0;gk

. By definition h0.n/ 2 R?

g˙
kn

if h1.n/ 2 R˙
gkn

.

LEMMA 4.16
Let Tn be the L2-projection onto Pn described above. We have for any p � 2, x 2

Lp. OF1/,

���� X
n2Z�

ˇ̌
Tn.x/

ˇ̌2
� 1

2
���

p
� cpkxkp: (32)

Proof
We may assume that �x D 0. Let Ek be the projection from the group von Neumann
algebra L.F1/ onto the von Neumann algebra generated by 	gk

. We can easily verify
that, for k 2 Z�,

EjkjjRgk
xj2 D Ejkj

ˇ̌̌ X
h1.n/2Rgk

Tn.x/
ˇ̌̌2

D
X

h1.n/2Rgk

ˇ̌
Tn.x/

ˇ̌2
;

because, if h1.n/; h1.n0/ 2 Rgk
, then h0.n/; h0.n0/ 2 R?

gk
and h�1

0 .n/h0.n0/ 2

Ejkj.F1/ if and only if n D n0. Therefore,

X
n2Z�

ˇ̌
Tn.x/

ˇ̌2
D

1X
kD1

Ek

�
jRgk

xj2 C jRg�k
xj2

�

D � jxj2 C

1X
kD1

ı‚ …„ ƒ
Ek

�
jRgk

xj2 C jRg�k
xj2

�
:

By the free Rosenthal-type inequality ([5, Theorem A] or Corollary 3.18) for length

1 polynomials, we get for p � 4, with Xk D

ı‚ …„ ƒ
Ek.jRgk

xj2 C jRg�k
xj2/,

����X
n

ˇ̌
Tn.x/

ˇ̌2
� 1

2
���2

p
� � jxj2 C

�X
k2N

kXkk
p
2
p
2

� 2
p

C
�X

k2N

kXkk2
2

� 1
2

�
� X

k2Z�

kRgk
xkp

p

� 2
p

C
� X

k2Z�

kRgk
xk4

4

� 1
2

�
���� X

k2Z�

jRgk
xj2

� 1
2
���2

p
�c2

p kxk2
p;



FREE HILBERT TRANSFORMS 2179

where we used the obvious facts by interpolation that Lp.`c
2/ ! `p.Lp/ and

Lp.`c
2/ ! `4.L4/ are contractions. The case of p D 2 is obvious. We then get the

estimate for all 2 � p < 1 by interpolation.

Let Pj D ¹h1.j / < h2.j / < � � �hk.j / < � � � º be arbitrary geodesic paths of F1.
For xj D

P
k2N ak	hk.j / supported on Pj , we consider its dyadic parts

Mn;j xj D
X

2n�k<2nC1

ak	hk.j /: (33)

Dealing with F1 D Z with the N [ ¹0º and �N as geodesic paths, the classical
Littlewood–Paley theory says that���� 1X

nD1

jMn;1xj2 C jMn;2xj2
� 1

2
���

p
'cp kxkp (34)

for all 1 < p < 1 and x 2 Cc.Z/.

THEOREM 4.17
Suppose that .xj /j 2N 2 Lp.L.F1/; `c

2/ is a sequence such that every xj is supported
on a geodesic path Pj . We have

���� 1X
n;j D1

jMn;j xj j2
� 1

2
���

p
� C p2c2

p

����X
j

jxj j2
� 1

2
���

p
(35)

for all 2 � p < 1.

Proof
As usual, g1; g2; : : : are the free generators of F1. We embed F1 into the free product
F1 � F1, and we denote by g0

1; g0
2; : : : the generators of the second copy of F1. Let

yj D 	g0
j

h�1
1

.j /xj . The yj ’s are supported on disjoint paths P0
j � F1 � F1 with

roots of distinct generators g0
j . Note that jxj j2 D jyj j2 and jMnxj j2 D jMnyj j2. By

considering yj instead, we may assume that Pj D ¹h1.j / < h2.j / < � � �hk.j / � � � º

with jhk.j /j D k and Lhk.j /xm D 0 for j ¤ m.
Let

M'n;j D 21� n
2

X
2n�1<k�2n

Lhk.j /A
� 1

2 C
X

2n<k�2nC1

.
p

k �
p

k � 1/Lhk.j /A
� 1

2

� 2� nC1
2

X
2nC1<k�2nC2

Lhk.j /A
� 1

2 :

Then M'n;j .	hl .m// D 0 unless m D j and l 2 .2n�1; 2nC2�, and one can check that
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M'n;j .	hl .j // D 'n.l/	hl .j /;

for some 'n W N ! R with �Œ2n;2nC1/ � 'n � �.2n�1;2nC2/. Note that

M'.n/;j D
X

2n�1<k�2nC2

ak;j Lhk.j /A
� 1

2

with
P

k a2
k;j

� c. By the convexity of the operator-valued function j � j2, we have

jM'n;j xj j2 � c
X

2n�1<k�2nC2

jLhk.j /A
� 1

2 xj j2;

and M'n;j xm D 0 for m ¤ j . Note that the M'n;j ;M'n0 ;j ’s are disjoint for
jn � n0j � 2. Applying Lemma 4.13 to x D

P
j xj ˝ cj , we obtain

���� 1X
nD0

jM'n;j xj j2
� 1

2
���

p
� c

����X
k;j

jLhk.j /A
� 1

2 xj j2
� 1

2
���

p
� cp2

����X
j

jxj j2
� 1

2
���

p
:

Assume that h2n.j / 2 Rgn;j
; h2nC1.j / 2 Rgn0;j

. We have

	h
2nC1.j /

Lg�1
n0;j

	h
2nC1 .j /�1.	h2n�1.j /Lgn;j 	h2n�1.j /�1M'n

xj / D Mnxj (36)

because h2nC1C1.j / 2 R?

g�1
n0;j

. By (12),

���� 1X
nD1

jMn;j xj j2
� 1

2
���

p
� cc2

p

���� 1X
nD1

jM'n;j xj j2
� 1

2
���

p
� cp2c2

p

����X
j

jxj j2
� 1

2
���

p

for all 2 � p < 1.

Remark 4.18
A “smoothed” version of Theorem 4.17 for a fixed path P was proved in [4].

Let Pk be the paths described in the paragraph preceding Lemma 4.16. Let Tk be
the L2-projections onto Pk . Denote Mn;kx D Mn;k.Tkx/ for x 2 Lp. OF1/. We obtain
the following corollary from Theorem 4.17 and duality with the fact that kx�kp D

kxkp .

COROLLARY 4.19
For all 2 � p < 1, and x 2 Lp. OF1/,

max
°����X

n;k

jMn;kxj2
� 1

2
���

p
;
����X

n;k

ˇ̌
Mn;k.x�/

ˇ̌2
� 1

2
���

p

±
� Cp2c3

pkxkp; (37)
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and for all 1 � p < 2, and x 2 Lp

kxkp � Cp02c3
p0 inf

°����X
n;k

jMn;kyj2
� 1

2
���

p
C

����X
n;k

ˇ̌
Mn;k.z�/

ˇ̌2
� 1

2
���

p
Ix D y C z

±
:
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