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Yawing wind turbines has emerged as an appealing method for wake deflection. How-
ever, the associated flow properties, including the magnitude of the transverse velocity
associated with yawed turbines, are not fully understood. In this paper, we view a yawed
turbine as a lifting surface with an elliptic distribution of transverse lift. Prandtl’s lifting
line theory provides predictions for the transverse velocity and magnitude of the shed
counter-rotating vortex pair known to form downstream. The streamwise velocity deficit
behind the turbine can then be obtained using classical momentum theory. This new
model for the near-disk inviscid region of the flow is compared to numerical simulations
and found to yield more accurate predictions of the initial transverse velocity and wake
skewness angle than existing models. We use these predictions as initial conditions in
a wake model of the downstream evolution of the turbulent wake flow and compare
predicted wake deflection with wind tunnel experiments.
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1. Introduction

Yawing of wind turbines has the potential to increase wind farm power production by
deflecting wakes away from downstream turbines (Fleming et al. 2015; Bastankhah &
Porté-Agel 2016; Branlard & Gaunaa 2016; Howland et al. 2016). Dynamic yawing can
also be used to regulate wind farm power production for improved integration in power
systems (Aho et al. 2012; Shapiro et al. 2017). Despite these promising emerging appli-
cations, a practical, yet accurate, aerodynamic theory is missing. Specifically, accurately
predicting, from first principles, the magnitude of transverse velocity and axial velocity
deficit, circulation of the shed counter-rotating vortex pair (Bastankhah & Porté-Agel
2016; Howland et al. 2016), and skewness of the wake downstream remains a challenge.
Inviscid models of the region near the rotor of un-yawed turbines have played an

important role in wind turbine modelling. Axial momentum theory and the vortex
cylinder model have been used to derive the celebrated Betz limit and predict the initial
wake velocity deficit (Glauert 1935; Burton et al. 2011). Blade element momentum theory
(Burton et al. 2011; Hansen 2008) and vortex system models (Glauert 1935; Branlard &
Gaunaa 2015) have been used to predict the distribution of loads and velocity deficits in
the wake. Such inviscid results are often used as initial conditions for models describing
the turbulent wake downstream of the turbine (Jensen 1983; Frandsen et al. 2006).
In contrast, the arguments used in models of un-yawed turbines cannot always be
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Figure 1. (a) An actuator disk with radius R yawed at an angle γ. (b) Sketch of two regions
downstream of the rotor: the inviscid region of streamwise velocity deficit, shown in blue, with
a counter-rotating vortex pair with circulation ±Γ0, superimposed in green, and the expanding
turbulent wake region, shown as dashed lines, developing downstream of the inviscid near-disk
region.

straightforwardly applied to derive accurate predictions for yawed turbines. For example,
the low pressure within the cores of the counter-rotating vortices results in a non-
vanishing transverse pressure force on the streamtube. As a result, momentum balance
arguments (Burton et al. 2011; Jiménez et al. 2010), Glauert’s (1926) proposed equation
for the axial induced velocity through the rotor, and the skewed elliptic vortex cylinder
model (Coleman et al. 1945; Branlard & Gaunaa 2016) lead to conflicting results and
do not always agree with simulations. Resolving the significant differences among these
models is vital for properly setting the initial conditions for models of the turbulent wake.
In §2, a model for the predominantly inviscid region near the rotor of a yawed actuator

disk is proposed that agrees with measurements from numerical simulations. A key
insight of this approach is to regard a yawed actuator disk as a lifting surface with an
elliptic distribution of transverse lift. Then, Prandtl’s lifting line theory (Milne-Thomson
1973) is used to predict the initial constant transverse velocity and the strength of the
counter-rotating vortex pair. The transverse velocity is then combined with streamwise
momentum theory to predict the induced velocity through the rotor and the initial
streamwise velocity deficit. In §3 these results are used as initial conditions in a model
for the evolution of a turbulent wake far downstream.

2. The yawed actuator disk as an elliptically loaded lifting line

In actuator disk theories, wind turbines can be treated as porous disks that exert
a thrust force perpendicular to the rotor area on the flow field. Figure 1(a) defines the
coordinate system x = (x, y, z) with the unit vectors i, j, and k aligned with the incoming
flow velocity U∞ = U∞i. The coordinate system x′ = (x′, y′, z′) is aligned with the unit
normal of the actuator disk n = cos γ i + sin γ j, where γ is the angle between U∞ and
n. The actuator disk forcing per unit volume f(x) = T R(x)n equally distributes the
total thrust force T in the direction n, where the area fraction function is defined as
R(x) = π−1R−2δ(x′)H(R− |r′|), δ(x) is the Dirac delta function, H(x) is the Heaviside
(unit step) function, r′ 2 = y′ 2 + z′ 2, and R = D/2 is the radius of the disk. The area
fraction function is non-zero only within a disk of infinitesimal thickness that encloses
the rotor swept area. The velocity field is denoted by u(x), and the fluid density is ρ. The
total thrust force can be written in terms of the inflow velocity U∞ and thrust coefficient
CT or the disk-averaged velocity normal to the disk

ud =

∫
u(x) · nR(x) d3x (2.1)
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Figure 2. (a) The lifting line segment through the origin between z = −R and z = R has a
lift force per unit span of l(z). At z = 0 the lift is l0 and the circulation is Γ0. (b) The inviscid
streamtube in the near-rotor region of a yawed actuator disk. The rotor region, assumed to be
an elliptic cylinder, is between the dotted lines.

and local thrust coefficient C ′
T (Calaf et al. 2010) as follows

T = −1

2
ρπR2CTU

2
∞ cos2 γ = −1

2
ρπR2C ′

Tu
2
d. (2.2)

As in models of the flow around un-yawed actuator disks, we divide the flow into two
regions, as shown in figure 1(b). We first consider the predominantly inviscid region near
the disk. The description of this region can then be used as an initial condition for models
of the wake, where turbulent mixing dominates, as discussed in §3. In the inviscid region,
we first employ the vorticity equation to avoid dealing with pressure fields. In the present
context, vorticity transport is equivalent to considering the fate of circulation.
The appropriate framework is the Prandtl lifting line theory (Milne-Thomson 1973),

which can be used to predict the transverse velocity, shed circulation, and strength of
the counter-rotating vortex pair. To facilitate the use of the Prandtl lifting line theory,
we decompose the thrust force into a streamwise force along the x-axis and a transverse
force along the y-axis, which we refer to as the “transverse lift”. The yawed actuator disk
can be viewed as an inclined lift-generating surface, akin to an airfoil, with a total span
of 2R and a chord length c(z) that varies along the vertical direction z. Geometrically,
the chord length c(z) is the length of the line segment between the two outer points
of the disk at a point z, expressed mathematically as [c(z)/2]2 + z2 = R2. To apply
lifting line theory, the associated lift force can be thought to be distributed along a line
segment through the origin between z = −R and z = R, as shown in figure 2(a). The
lift distribution imposed by the fluid on the actuator disk is assumed to be uniformly
distributed over the disk area as

L R(x) j = −T sin γR(x) j, (2.3)

where L is the total lift force and R(x) is the area fraction function described above.
Therefore, the lift per unit span l(z) = (L/πR2)c(z) is equal to the lift per unit area
times the chord length. Using the geometric relationship [c(z)/2]2+z2 = R2, the resulting
distribution of circulation along the span Γ (z), which is related to the lift by l(z) =
−ρU∞Γ (z), has an elliptic distribution

Γ 2(z)

Γ 2
0

+
z2

R2
= 1, (2.4)

with a maximum circulation magnitude at z = 0. At z = 0 the chord length is c0 = 2R,
the lift is l0 = 2L/(πR) = −2T sin γ/(πR), and the circulation is

Γ0 = − l0
ρU∞

= −RCTU∞ cos2 γ sin γ. (2.5)
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Figure 3. Simulation results for C′
T = 1.33 and yaw angle γ = 30◦ in a domain Lx/D = 11.52

and Ly/D = Lz/D = 5.76. Shown are colour contours of (top) streamwise velocity, (middle)
transverse velocity, and (bottom) pressure at downstream locations x/D = 1, 2, and 3. Top
panels include streamlines in the y-z plane. The transverse velocity and pressure plots show the
outline of the wake, defined by the streamtube that passes the rotor at a radius of r′ = 0.9R.

According to lifting line theory (Milne-Thomson 1973), vortex filaments with a strength
per unit span dΓ/dz are shed and roll up into counter-rotating trailing vortices at the
top and bottom of the disk with strength

Γbottom = −Γtop =

∫ 0

−R

dΓ

dz
dz = Γ0. (2.6)

An elliptic lift distribution is special because it induces a constant transverse velocity
(downwash) given by (Milne-Thomson 1973)

δv0 = − Γ0

4R
=

1

4
CTU∞ cos2 γ sin γ. (2.7)

Equations (2.5) and (2.7) thus define the transverse behaviour of the inviscid region.
In order to provide data to test predictions based on the proposed model in (2.4)–

(2.7), numerical simulations of flow around a yawed actuator disk under uniform, laminar
inflow are carried out using the pseudo-spectral code LESGO, which was validated in
prior works (e.g. Calaf et al. 2010; Stevens et al. 2018). A yawed actuator disk of diameter
D is placed in a domain of length Lx = 11.52D and cross-section size Ly = Lz = 5.76D
using a total of 384× 192× 192 grid points. The centre of the actuator disk is placed in
the centre of a y-z plane 3.6D downstream of the domain inlet. A uniform inflow velocity
U∞ is applied using a fringe region forcing (Stevens et al. 2014). Molecular viscosity is
neglected and the Smagorinsky model with Cs = 0.16 is used for numerical stability.
Since the flow in the bulk of the near-disk region of interest remains laminar and inviscid
and the effect of the subgrid model is confined to the thin shear layer at the boundary
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Figure 4. Comparisons of (a) the measured circulation around the actuator disk (symbols) and

the expected distribution from the elliptic lifting line (1 − z2/R2
∗)

1/2 (grey line), (b) the shed
circulation of counter-rotating vortices measured at x = R (symbols) and predicted by lifting
line theory (lines), and (c) the maximum y-z planar-averaged transverse velocity measured in the
streamtube (symbols) and transverse velocity predicted by lifting line theory (lines). Simulations
are conducted with γ = 10◦ (black), 20◦ (red), 30◦ (green), and 40◦ (blue) and C′

T = 0.8 (�),
1.0 (×), and 1.33 (+). The theoretical values for γ = 30◦ and 40◦ overlap in (b) and (c).

of the wake, which is not included in the subsequent analysis, the details of the subgrid
modelling are not important for present purposes. Various yaw angles γ are considered.
LESGO uses the local formulation of the thrust force with a local thrust coefficient
C ′

T (Calaf et al. 2010). The force is applied using the area fraction function filtered by a
three-dimensional Gaussian with a filter width σR = 1.5h/

√
12 proportional to the grid

size h = (Δx2 +Δy2 +Δz2)1/2, where Δx, Δy, and Δz are the grid spacings.
Representative results at downstream distances x/D = 1, 2, and 3 are shown in figure 3

for C ′
T = 1.33 and γ = 30◦. A wake that stays laminar for a large portion of the domain

is generated by the actuator disk forcing. At x/D = 1 near the actuator disk, the wake
forms an ellipse with uniform streamwise and transverse velocity components inside of the
wake. The transverse component of the force generates the well known counter-rotating
vortex pair (Howland et al. 2016; Bastankhah & Porté-Agel 2016), which curls the wake
as it moves downstream, shown schematically in figure 1(b).
Further simulations are performed at yaw angles γ = 10◦, 20◦, 30◦, and 40◦ and

local thrust coefficients C ′
T = 0.8, 1.0, and 1.33. From these simulations, the spanwise

circulation distribution Γ (z) is evaluated numerically via integration along rectangular
contours running from the inlet of the domain to x = R and spanning the entire width of
the domain. The circulation of each shed vortex Γ0 is calculated at x = R by averaging
the circulation around two rectangular circuits spanning |y| � 3R and |z| � 3R.

We seek to compare the measured results to (2.4) and (2.5), for which the disk radius
is an important parameter. The footprint of the applied force in the simulations extends
slightly from the geometrically prescribed disk dimensions, owing to the use of a filtered
area fraction function. To correct for the filtered geometric representation of the disk,
the width of an equivalent top-hat filter (Pope 2000)

√
12σR = 1.5h (h << R is the

grid size) is added to the diameter of the disk in (2.4) when applying the inviscid model.
The resulting effective radius is R∗ = R + 0.75h so that, e.g., the predicted maximum
circulation is given by Γ0 = −(R + 0.75h)CTU∞ cos2 γ sin γ. The thrust coefficient is
obtained from CT = C ′

Tu
2
d/(U∞ cos γ)2, where the disk-averaged velocity ud is measured

in the simulations. As seen in the comparison shown in figures 4(a–b), the predicted
circulation distribution and simulation results collapse for all γ and C ′

T values tested.
Next we compare the transverse velocity magnitude δv0 with the model. To measure

this value from simulations we take the maximum y-z planar-averaged transverse velocity
in the wake. The wake is defined as the streamtube passing through the disk at r′ = 0.9R
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to avoid including the thin shear layer near the actuator disk perimeter (results are
quite insensitive to this choice). The downstream position of maximum transverse wake
velocity occurs very near the disk, at x ≈ R. Using the thrust coefficient obtained
from CT = C ′

Tu
2
d/(U∞ cos γ)2, we compare δv0 = 1

4CTU∞ cos2 γ sin γ to simulation
measurements in figure 4(c). Again, excellent agreement is observed for various γ and
C ′

T combinations, with a slight underestimate at large γ.
In addition to the transverse velocity derived, additional expressions are needed to fully

describe the inviscid region near the yawed actuator disk. The induced velocity through
the disk, as well as the streamwise velocity deficit in the wake, are derived using an
approach similar to the un-yawed momentum theory (Glauert 1935; Burton et al. 2011).
The streamtube through the rotor is used as a control volume and the velocity is assumed
to be uniform across every cross section, as shown in figure 2(b). The velocities upstream
of the rotor and at the end of the inviscid region (beginning of the wake) are denoted
by U∞ and Uw, respectively. Also, at those locations we consider flow through vertical
sections with area vectors, A∞ = A∞ i and Aw = Aw i, defined in figure 2(b). The
disk-averaged velocity ud through the disk area Ad = πR2 and mass conservation yields
udAd = U∞ ·A∞ = Uw ·Aw. The wake velocity is written as Uw = (U∞− δu0)i− δv0 j,
where δu0 is the streamwise velocity deficit and δv0 is the transverse velocity magnitude
specified by the lifting line theory in (2.7).
The region of the streamtube cut by the actuator disk is treated as an elliptic cylinder

with a cross sectional area of Ad cos γ. Inside this volume, the upstream and downstream
pressure are assumed to be constant at p+ and p−, respectively. The upstream and
downstream velocities are respectively u+ = ud cos

−1 γ i and u− = ud cos
−1 γi− δv0 j.

The streamwise velocity through this region is assumed to be constant and is determined
using mass conservation. The transverse velocity has a discontinuity at the disk, jumping
from zero to the downwash −δv0 behind the rotor region.
Assuming that the streamwise pressure force vanishes over the streamtube’s surface,

as in the un-yawed case (Glauert 1935), the streamwise momentum equation is

−ρU∞ ·A∞ U∞ + ρUw ·Aw (U∞ − δu0) = T cos γ. (2.8)

The Bernoulli equation is then applied from far upstream to where p = p+ and from where
p = p− to further downstream of the turbine where p recovers and the turbulent wake
begins, as shown in figure 2(b). Assuming that δv0 remains constant in the downstream
part of the inviscid region, we write

1

2
U2
∞ =

1

2

(
ud

cos γ

)2

+
p+

ρ
,

1

2

(
ud

cos γ

)2

+
1

2
δv20 +

p−

ρ
=

1

2
(U∞ − δu0)

2 +
1

2
δv20 . (2.9)

Subtracting these two equations, and noting that the pressure force opposes the stream-
wise thrust force (drag) (p+ − p−)Ad = −T , we obtain

1

2
U2
∞ − 1

2
(U∞ − δu0)

2 = − T

ρAd
. (2.10)

Substituting the thrust force (2.2) and mass flow rate into (2.8) and (2.10) yields two
equations for the unknown disk-averaged velocity and streamwise velocity deficit

2
ud

U∞
δu0

U∞
= CT cos3 γ

δu0

U∞

(
2− δu0

U∞

)
= CT cos2 γ. (2.11)

Written in terms of the induction factor a, the solution is

ud/U∞ = cos γ(1− a) δu0/U∞ = 2a, (2.12)
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Figure 5. Comparison of (a) transverse velocity δv0/U∞, (b) disk-averaged velocity ud/U∞,
(c) streamwise velocity 1 − δu0/U∞, and (d) skewness angle α measured in simulations with
C′

T = 1.0 (squares) with present theory (black line) and prior models (other lines).

where the thrust coefficient is related to the induction factor by CT cos2 γ = 4a(1 − a).
The induction factor can subsequently be written in terms of both the standard and local
thrust coefficients using the identity CTU

2
∞ cos2 γ = C ′

Tu
2
d according to

a =
C ′

T cos2 γ

4 + C ′
T cos2 γ

=
1

2

(
1−

√
1− CT cos2 γ

)
. (2.13)

The initial skewness angle is obtained from tanα = −δv0/(U∞ − δu0).
The disk-averaged velocity, streamwise velocity deficit, transverse velocity, and skew-

ness angle of the initial wake obtained from numerical simulations, the present model,
and prior models are compared in figure 5. The velocity deficit δu0 at the end of the
inviscid region is obtained from the simulations as the maximum y-z planar-averaged
streamwise velocity deficit in the wake, which occurs at x ≈ 4D. The maximum for
δu0 is further downstream than the maximum for δv0 because δu0 is strongly affected by
streamwise pressure gradients. The transverse velocity prediction (2.7) is expressed using
the thrust coefficient CT = 16C ′

T /(4 + C ′
T cos2 γ)2 obtained from the induction factor

equation (2.13). Predictions for several of the features of the inviscid region are provided
by earlier models. Momentum theory (Burton et al. 2011) provides estimates for all
quantities. Glauert’s (1926) equation for the disk-averaged velocity was used by Coleman
et al. (1945; Burton et al. 2011) to predict the skewness angle of the wake. Bastankhah
& Porté-Agel (2016) recently used momentum conservation, the Bernoulli equation, and
approximations to Glauert’s and Coleman’s equations to predict the streamwise and
transverse velocities behind the disk. Jiménez et al. (2010) used momentum balance
arguments to predict the initial wake deflection angle.
Figure 5 shows that the present inviscid region model accurately predicts the quantities

measured in simulations. In contrast, other models show significant disagreement in
the skewness angle and transverse velocities. Momentum theory and Jiménez’s equation
overestimate the skewness angle and transverse velocity magnitudes. The skewness angle
magnitude predicted by Coleman et al. (1945), and by extension the transverse velocity
magnitude predicted by Bastankhah & Porté-Agel (2016), are approximately half as large
as those obtained in the simulations. While Coleman’s (1945) prediction may improve
downstream as the wake is transformed by the counter-rotating vortex pair, this skewed
elliptic vortex cylinder argument becomes less valid as a result of the curling.



8 C. R. Shapiro, D. F. Gayme and C. Meneveau

3. Wake model for yawed turbines

An important application of the inviscid region theory described in the prior section
is to determine an initial condition for models of the turbulent wake behind yawed
turbines. We demonstrate the utility of the proposed inviscid region model by applying
the predictions to the wake model of Shapiro et al. (2017), which we extend below to
include yaw. As in Shapiro et al. (2017), the derivation includes possible time-dependence
(e.g. the turbine’s local thrust coefficient and yaw angle could change over time). In
this paper, however, we focus solely on the steady-state solution and compare it to the
wind tunnel experiments of Bastankhah & Porté-Agel (2016) that were performed under
steady conditions. After neglecting the viscous terms, linearising the advective term, i.e.
uj

∂
∂xj

= U∞ ∂
∂x , and rewriting in terms of the mean velocity deficit U∞δi1 − ui(x, t), the

Reynolds averaged mean momentum equation becomes

ρ
∂

∂t
(U∞δi1 − ui) + ρU∞

∂

∂x
(U∞δi1 − ui) =

∂p

∂xi
− fi +

∂τij
∂xj

, (3.1)

where p(x, t) is the pressure, fi(x, t) is the turbine thrust force, and τij the Reynolds
stress tensor. The area of the wake downstream of the turbine expands due to turbulent
mixing. If the expansion rate is determined only by the turbulence properties of the
incoming flow, then the effective area of the wake A(x) can be assumed to be a function
of only the streamwise distance x from the turbine. Assuming that this effective area is
known, the mean velocity deficit δu(x, t) = δu i+ δv j is defined as

δui(x, t) =
1

A(x)

∫ ∞

−∞

∫ ∞

−∞
(U∞δi1 − ui(x, y, z, t)) dy dz. (3.2)

Integrating (3.1) in the transverse directions yields

∂

∂t
[ρA(x)δui(x, t)] + U∞

∂

∂x
[ρA(x)δui(x, t)] =

∂p̄

∂x
δi1 − f̄i, (3.3)

where p̄(x, t) and f̄i(x, t) are the transversely averaged pressure and thrust force. Al-
though the divergence of the Reynolds stress does not enter, the effects of turbulence are
encoded in the modelled behaviour of A(x).

Since the thrust force is confined to the rotor disk and the pressure gradient vanishes
away from the turbine (Glauert 1935), the right hand size of (3.3) only has to be
considered in the region near the turbine rotor. The net effect of the pressure gradient
and thrust force is therefore modelled as a source of momentum deficit ∂p̄/∂x δi1 − f̄i =
ρA(x)Si δ(x), where Si may be time dependent in cases of varying turbine thrust.
Substituting into (3.3), expanding the spatial derivatives, and dividing by ρA(x) yields

∂δui

∂t
+ U∞

∂δui

∂x
= −w(x) δui(x, t) + Si δ(x), (3.4)

where w(x) = U∞A−1(x) dA/dx is the wake expansion rate. To model the velocity deficit
field in a smooth manner, the Dirac delta function in (3.4) is replaced by a normalized
Gaussian function with characteristic width Δw = R. Furthermore, the wake area is
written as A(x) = d2w(x)πD

2/4, where dw(x) is the effective diameter of the wake
normalized by turbine diameter D defined by dw(x) = 1 + kw ln(1 + exp[(x− 2Δw)/R]).
dw(x) tends towards the Jensen (1983) model’s linear expansion in the wake with
expansion coefficient kw, but stays above 1 and begins to expand only at x ∼ 2Δw

to prevent wake expansion within the zone of the Gaussian forcing. The velocity deficit
source strength S1 = U∞δu0 and S2 = U∞δv0 is based on the inviscid model, where δu0

and δv0 are given by (2.12) and (2.7). This approach provides a smooth increase of the
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Figure 6. Hub-height colour contour plots of streamwise velocity as (a) measured in
experiments (Bastankhah & Porté-Agel 2016) and (b) predicted using the proposed model.
Measured centrelines of the wake (dotted) are compared to the model of Jiménez et al. (2010)
(solid) and the present model (dashed). Experimental data in (a) adapted from figure 3 of
Bastankhah & Porté-Agel (2016) (permission requested).

streamwise and transverse velocity deficits from zero upstream of the rotor to the desired
‘wake initial condition’ downstream of the rotor region.
The average streamwise velocity deficit δu(x, t) is distributed using a Gaussian pro-

file (Bastankhah & Porté-Agel 2014, 2016), which along z = 0 reads

u(x, y, t) = U∞ − δu(x, t)
D2

8σ2
0

exp

(
− (y − yc(x, t))

2

2σ2(x)

)
, (3.5)

where the width of the Gaussian σ(x) = σ0dw(x) is proportional to the effective
normalized wake diameter with a proportionality constant σ0. The velocity deficits are
found by integrating (3.4), and the wake centreline yc(x, t) is found by integrating the
transverse velocity

∂yc
∂t

+ U∞
∂yc
∂x

= −δv(x, t). (3.6)

The negative sign occurs because δv(x, t) is a deficit in our sign convention. Equation (3.5)
is consistent with (3.2); i.e.

∫∞
0

(U∞ − u)2πξdξ = A(x)δu(x, t), where the distance ξ =
y − yc(x, t) is measured from the wake centreline at yc(x, t)

The steady-state solution of this wake model

δu(x) =
δu0

d2(x)

1

2

[
1 + erf

(
x

Δ
√
2π

)]
(3.7)

δv(x) =
δv0
d2(x)

1

2

[
1 + erf

(
x

Δ
√
2π

)]
(3.8)

yc(x) =

∫ x

−∞

−δv(x′)
U∞

dx′ (3.9)

is compared to wind tunnel experiments by Bastankhah & Porté-Agel (2016). We use the
experimental data for the un-yawed (γ = 0◦) case to fit the two required parameters kw
and σ0, obtaining very reasonable values kw = 0.0834 and σ0/D = 0.235. The measured
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thrust coefficients of the rotating turbine (depending on the yaw angle, as reported in
Bastankhah & Porté-Agel (2016)) are used to set the initial velocity deficits δu0 and
δv0 in the model. Figure 6 compares the streamwise velocity deficit at hub height for
γ = 0◦, −10◦, −20◦, and −30◦. The centrelines of the measurements are compared to
the present model and the model of Jiménez et al. (2010). The proposed model is found to
be in excellent agreement with the experiments, particularly the estimate of the centreline
of the wake.

4. Conclusion

Previous models for the inviscid region near a yawed actuator disk have generated
conflicting predictions for the initial transverse velocity and skewness angle of the wake
that fail to match actuator disk simulations. Accurate models for this inviscid region are
vital for developing useful wake models for engineering design and control applications.
In this paper, we derive a new model of the flow in the inviscid region near the disk.
It treats the yawed actuator disk as an elliptically loaded lifting line and uses Prandtl’s
lifing line theory to determine the initial transverse velocity deficit and magnitude of the
counter-rotating vortex pair shed from the yawed actuator disk. Momentum conservation
and Bernoulli’s equation are then applied to determine the disk-averaged velocity and
streamwise velocity deficit. The predictions are found to agree with numerical simulations
and accurately estimating the initial transverse velocity. We use the inviscid region
predictions as initial conditions for a simple model of the flow field behind a yawed
turbine and compare to experimental data. The newly proposed combined model for the
inviscid and wake regions is remarkable for its simplicity and success at reproducing a
variety of observations.
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