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Abstract— Power tracking is an emerging application for
wind farm control designs that allows farms to participate in a
wider range of grid services, such as secondary frequency regu-
lation. Control designs that enable large wind farms to follow a
time-varying power trajectory are complicated by aerodynamic
interactions that make it impossible to decouple upstream wind
turbine control actions from downstream power production.
This coupling is particularly important in applications where
the reference trajectory is changing faster than, or at a similar
rate as, the propagation of turbine wakes through the farm. In
this work we overcome these difficulties by using a dynamic
wake model that accounts for wake expansion, advection,
and multi-wake interactions within a model-based receding
horizon controller for coordinated control of a large multi-
turbine wind farm. An ensemble Kalman filter is employed for
state estimation and error correction at the turbine level. We
implement the controller in high-fidelity numerical simulations
of a wind farm with 84 turbines and then test the controlled
farm’s ability to track a power reference signal. The results
demonstrate the ability of the control algorithm to track two
types of power reference signals used by a US independent
system operator.

I. INTRODUCTION

The recent worldwide growth of installed wind capacity

has significant implications for wind plant design and con-

trol. When operating as a niche energy source, regulators

often treat wind energy as a “must take” resource, which

has led wind plants to prioritize maximizing power produc-

tion. With growing grid penetration, however, regulators are

starting to require wind plants to participate in grid services

that maintain grid stability [1], [2]. As a result, wind plants of

the future may be required to provide vital grid services for

power balancing, such as secondary frequency regulation, in

which participating generators track power reference signals

sent by the grid operator.

Wind turbine power production can be changed through

a variety of aerodynamic actions, such as thrust modulation

via blade pitch angle and tip speed ratio [3], yawing [4],

or tilting [5]. Coordinated aerodynamic control of wind

farms to track a power signal, however, is complicated by
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wind turbine wakes, which are generated as wind turbines

extract kinetic energy from the incoming wind. These wakes

move downstream and therefore interact with subsequent

turbines. All the while, turbulence causes the wakes to

meander, diffuse, and decrease in strength [6]. Through these

phenomena, aerodynamic changes at upstream turbines—

which can alter the location, intensity, and recovery rate

of wakes—are coupled with downstream power production.

Since this coupling is produced by the movement of wakes

downstream, control actions at an upstream row of turbines

only affect downstream rows at a later time based on the

wake advection speed.

Following a power reference signal that changes at speeds

commensurate with the travel time of wakes, which in typical

farms is approximately 1–3 minutes from one turbine row to

the next, therefore requires an understanding of important

aerodynamic effects. A number of approaches to modeling

wake interactions, ranging from high fidelity simulations

of the underlying flow physics [6], [7], [8] to engineer-

ing models [9], [10], [11], have been considered. While

the former are not suitable for real-time control because

of computational complexity [12], past engineering models

do not capture all of the dynamic phenomena needed for

power tracking controllers. Many wake models—such as

static wake models [9], [13], [14], wind turbine atmospheric

boundary layer models [7], [10], and the coupled wake

boundary layer model [11]—were developed to capture wake

recovery in a time-averaged sense. While these models

are useful for designing wind farms, they do not include

dynamic wake interactions. As a result, controllers based on

these models may fail to provide acceptable power tracking

performance [15]. Only recently have dynamic approaches—

such as the dynamic wake meandering model [16], reduced-

order linear models [17], and dynamic extensions of static

wake models [3], [18]—been considered for power tracking

control.

In this work we discuss a unified control framework for

power tracking with wind farms through thrust modulation.

This approach relies on a new dynamic wake model [19],

which represents each turbine wake as a one-dimension

partial differential equation (PDE) and includes the dynamic

effect of thrust modulation through wake advection. An

ensemble Kalman filter (EnKF) is used to provide state

and parameter estimation for the dynamic wake model.

Finally, a model-based receding horizon controller allows

the wind farm to track a time-varying power trajectory [19].

Moreover, high-fidelity large eddy simulations (LES) are

used as “model wind farms” to test the controller and state
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estimation.

Previous results demonstrated the good tracking perfor-

mance in many tests of this approach without state and

parameter estimation [19], [20]. Incorporating state and pa-

rameter estimation allows online estimation of wake model

parameters that were fit from pre-control measurements in

prior work. This improves the robustness of the control

method by allowing the controller to be run continuously

without recalculating wake parameters. Another notable im-

provement over prior work is the inclusion of explicit bounds

on the control variables and the introduction of an auxiliary

control variable to impose limits on the rate of change of the

control.

The remainder of this paper is organized as follows.

Section II discusses the problem setup and notation. The

controller, state estimation, and underlying dynamic wake

model are discussed in Section III. Numerical results are

presented and discussed in Section IV. Conclusions are

provided in Section V.

II. PROBLEM SETUP

The control problem addressed in this work is to track

a given power reference signal Pref(t) using the vector

of local thrust coefficients [8] C′
T (t) as control variables.

These control variables can suitably parameterize changes in

typical wind turbine actuators, such as blade pitch angle and

generator torque [21]. The power production of each turbine

is the only assumed measurements available to the controller

and state estimator, and all other modeling parameters are

unknown a priori.
In the current work, we consider regularly arranged wind

farms composed of N rows of M turbines aligned with

the prevailing wind direction, as shown in Figure 1. The

coordinate aligned with the wind (streamwise) direction is

denoted as x. The other horizontal (spanwise) direction is

denoted as y. The streamwise and spanwise extents of the

farm are denoted by Lx and Ly , respectively. Each turbine

row is located at x = sn, and each turbine column is located

at y = ym.

x

y

Wind direction

Fig. 1. Diagram of an aligned with farm with N = 4 rows and M = 3
columns.

Italicized letters and symbols denote scalars and scalar-

valued functions, while boldface indicates matrices, vectors,

and vector-valued functions. We denote elements of a vector

a as scalars an and the scalar-valued elements of a vector-

valued function f(x) as fn(x). Each continuous function

includes its argument. An ensemble of vectors is indexed

using superscripts placed within parentheses. For example,

the vector v(i) is the vector v belonging to the i-th ensemble

member.

III. MODELING AND CONTROLLER DESIGN

We propose a closed-loop model-based receding horizon

wind farm controller with state estimation. A block diagram

of the controlled wind farm system is shown in Figure 2.

Each of the control blocks are described in the following

sections.

Controller Wind farm

State Estimation

Pref(t)
C′

T (t)

P(t)

β(x, t)

Fig. 2. Controlled wind farm system block diagram showing the model-
based receding horizon controller, state estimation, and wind farm. Pref(t)
is the power reference signal, C′

T (t) is the vector of local thrust coefficients
at each turbine, P(t) is the vector of measured power signals, and β(x, t)
are model parameters and states.

A. Wake Model

We now describe the time-varying wake model, first

proposed and validated in [19], which is used in both

the control and state estimation blocks of Figure 2. This

model draws from several elements of the Jensen model ap-

proach [9], which assumes linear wake expansion and square-

superposition of wake deficits to estimate the velocity field in

the farm. Each row of turbines is considered collectively such

that the only important spatial coordinate is the streamwise

direction x.

First, a wake velocity deficit δun(x, t) for the n-th row is

computed as if it were subjected to the same freestream ve-

locity U∞ as all other rows. Taking the Lagrangian derivative

of the wake as it travels downstream results in the following

one-dimensional PDE governing the wake velocity deficit

δun(x, t)

∂δun

∂t
+ U∞

∂δun

∂x
= −wn(x)δun(x, t) + fn(x, t). (1)

The wake decay function

wn(x) = 2
U∞
dn(x)

d

dx
dn(x) (2)

is specified through the normalized wake diameter function

(the wake diameter of the n-th row normalized by the rotor

diameter D)

dn(x) = 1 + kn ln

[
1 + exp

(
x− sn −D

D/2

)]
(3)

that exhibits a linear growth rate of kn behind the turbine.

The forcing function

fn(x, t) =
2U2

∞
d2n(x)

C ′
Tn(t)

4 + C ′
Tn(t)

G(x− sn) (4)



captures the effect of the wind turbines on the flow field;

i.e. it represents the initial velocity deficit imparted by the

turbines onto the flow, or, equivalently, the energy extraction

of the turbine.The function

G(x− sn) =
1

Δ
√
2π

exp

(
− (x− sn)

2

2Δ2

)
(5)

is a normalized Gaussian smoothing function with Δ = D/2.

Again following the Jensen model approach, the squared

deficits [9] are superposed to calculate the streamwise veloc-

ity at position x and time t

u(x, t) = U∞ −
(

N∑
m=1

δu2
m(x, t)

)1/2

. (6)

The estimated velocity at the n-th turbine row ûn is then

found using

ûn(t) =

∫ Lx

0

u(x, t)G(x− sn) dx, (7)

where the Gaussian smoothing function is used as the inte-

gration kernel. This integral transform is needed to guarantee

a smooth forcing term in the adjoint equations used in

Section III-C [19]. The velocity at the turbine is then used

to calculate the estimated power P̂n of the M turbines in the

n-th row as

P̂n(t) = M
1

2
ρ
πD2

4
C ′

Tn(t) û
3
n(t), (8)

where ρ is the air density.

The inputs of the wake model are the local thrust co-

efficients C ′
Tn(t). The outputs are the vector of estimated

row power production P̂n(t). Acknowledging that the wake

expansion rates and freestream velocity may change in time,

we now allow these parameters to be time-dependent, and

denote the wake model states and parameters as βn(x, t) =
[δun(x, t), kn(t), U∞(t)].

B. State estimation

The wake model discussed above includes important as-

pects of wake advection, expansion, and interaction that have

significant effects on the total wind farm power production.

However, the model makes a number of simplifying assump-

tions and neglects natural variations in power production due

to turbulence within the wind farm. There is also uncertainty

in the model parameters, specifically the freestream velocity

U∞ and the wake expansion coefficients kn in (3).

In this section we discuss the use of power measurements

at the turbine rows Pn(t) for error correction and estimation

of the wake model states and parameters βn(x, t), all of

which are now allowed to vary in time. The freestream

velocity U∞(t) is estimated using a low-pass filter on the

power at the first row, while the wake expansion parameters

kn(t) and wake velocity deficits δun(x, t) are estimated

using an ensemble Kalman filter [22]. The resulting state

estimation block diagram is shown in Figure 3.

This approach makes assumptions about the time scales

associated with the wake model states and parameters. Since

Freestream velocity filter

EnKF

State Estimation

P(t)

U∞(t)

β(x, t)
C′

T (t)
δu(x, t),k(t)

Fig. 3. State estimation block diagram showing ensemble Kalman filter
and freestream velocity filter.

the freestream velocity U∞(t) uniformly affects all turbines

within the farm, we assume that it represents mesoscale

phenomena that change over relatively long time scales com-

pared to the advective scale of the wind farm. In other words,

the incoming wind speed changes more slowly than the travel

time of the wind through the farm. The other parameters and

states, however, do not have the same uniform effect and are

allowed to vary over shorter time scales. As a result, the

slowly-varying freestream velocity is estimated using a first-

order relaxation of measurements of the power at the first

turbine P1(t) with a time constant γ

γ
dU∞
dt

=
4 + C ′

T1(t)

4

(
8P1(t)

MρπD2C ′
T1(t)

) 1
3

− U∞(t). (9)

Since the wake expansion parameters kn(t) and velocity

deficits δun(x, t) vary over shorter time scales, they are esti-

mated using an EnKF [22]. This technique is well suited for

state and parameter estimation with the proposed wake model

because it does not require the derivation of the tangent linear

operator and is computationally efficient for a discretized

system of PDEs with a large number of states [22].

In order to apply the EnKF to the dynamic wake model, we

must first reformulate the continuous problem as a discrete

update equation and select a noise model to approximate

modeling errors. For simplicity, we consider an explicit first-

order temporal and spatial discretization of the wake model

with Nx grid points in the streamwise direction. Using this

discretization, the EnKF states—composed of discretizations

of the velocity deficit fields δu(x) and the wake expan-

sion coefficient vector k(t)—become the following finite-

dimensional column vector

ψ =
[
δu1

T , . . . , δuN
T , k1, . . . , kN

]T ∈ R
Ns , (10)

where Ns = (Nx+1)N . Each vector δun is a column vector

representing the spatial discretization of δun(x). Similarly,

the column vector consisting of the measured power output

of each row of turbines is denoted ξ ∈ R
N .

The resulting modeled wind farm system is governed by



the discrete update equations

ψk+1 = f(ψk,C
′
Tk) +Bχk, (11)

ξk = h(ψk,C
′
Tk) + εk (12)

where ψk+1 = f(ψk,C
′
Tk) and ξk = h(ψk,C

′
Tk) are

temporal and spatial discretizations of (1)–(4) and (6)–(8),

respectively. Measurement and modeling errors are repre-

sented by the white noise processes ε ∈ R
N and χ ∈ R

2N ,

respectively. All measurement noise has zero mean and equal

variance σ2
P . The process noise is subdivided into two vectors

χ = [χT
δu,χ

T
k ]

T ∈ R
2N , where χδu ∈ R

N has variance σ2
δu

with zero mean and χk ∈ R
N has variance σ2

k with zero

mean.

In many applications, independent process noise enters all

states, i.e. the identify matrix would be chosen for B. In

this application, we wish to only supply one error correction

term to each wake deficit equation. Therefore the error terms

have a lower dimension and are distributed to each wake

deficit field independently. This distribution is implemented

by selecting

B =

[
Bδu

IN×N

]
∈ R

Ns×2N , (13)

where IN×N is the identity and the matrix Bδu distributes

the process noise χδu to the wake deficits δu. We assume

the wake deficit uncertainties are independent, such that Bδu

is the block diagonal matrix

Bδu =

⎡
⎢⎢⎢⎣
G1

G2

. . .

GN

⎤
⎥⎥⎥⎦ ∈ R

NxN×N (14)

where each column vector Gn ∈ R
Nx is a spatial discretiza-

tion of G(x − sn). The resulting noise is therefore only

distributed about each turbine and there is no input coupling

between turbine rows.

The EnKF represents the error statistics of the model using

an ensemble of Ne wake models. Each ensemble member

is forced with statistically independent noise, i.e. χ and ε
in (11)–(12). This ensemble is described by the matrix [22]

Ψ =
[
ψ(1),ψ(2), . . . ,ψ(Ne)

]
∈ R

Ns×Ne . (15)

A corresponding ensemble of perturbed measurements is also

generated. Each perturbed measurement is generated using

the measurements from the true system

ξ(i) = P+ ε(i), (16)

leading to an ensemble of perturbed measurements

Ξ =
[
ξ(1), . . . , ξ(Ne)

]
∈ R

N×Ne , (17)

and an ensemble of measurement perturbations

E =
[
ε(1), . . . , ε(Ne)

]
∈ R

N×Ne . (18)

The corresponding nonlinear outputs from the wake model

ensemble are

Ψ̂ =
[
h(ψ1), . . . ,h(ψNe)

]
∈ R

N×Ne . (19)

The mean of the ensemble states and outputs make up the

columns of the matrices

Ψ̄ = Ψ1Ne
∈ R

Ns×Ne (20)

¯̂
Ψ = Ψ̂1Ne

∈ R
N×Ne , (21)

respectively, where 1Ne
∈ R

Ne×Ne is a full matrix whose

elements are all equal to 1/Ne. The corresponding ensemble

state perturbation matrix Ψ′ is

Ψ′ = Ψ− Ψ̄ ∈ R
Ns×Ne , (22)

and the ensemble output perturbation matrix is Ψ̂
′

Ψ̂
′
= Ψ̂− ¯̂

Ψ ∈ R
N×Ne . (23)

The EnKF replaces the update equations (11)–(12) with

two matrix update equations [22] for the EnKF wake states.

This process consists of an intermediate forecast step, de-

noted as step k+, and a measurement analysis step. The

ensemble matrix is forecasted using (11)

Ψk+ =
[
f
(
ψ

(1)
k ,C

′(1)
Tk

)
+Bχ

(1)
k , . . . ,

f
(
ψ

(Ne)
k ,C

′(Ne)
Tk

)
+Bχ

(Ne)
k

]
.

(24)

The subsequent measurement analysis step is

Ψk+1 =Ψk+ +Ψ′
k+Ψ̂

′T
k+

(
Ψ̂

′
k+Ψ̂

′T
k++

Ek+1E
T
k+1

)−1
(
Ξk+1 − Ψ̂k+

)
.

(25)

Following this procedure, the estimated wake model states

and parameters are contained in the columns of the ensemble

mean matrix Ψ̄.

C. Receding horizon controller

The state estimation is now used to augment the model-

based receding horizon control approach used in prior

work [19], [20]. The receding horizon method is an iterative

approach [12], [23], where over every time period TA a

control trajectory is calculated for a longer time horizon T
by minimizing a cost functional. In this implementation we

choose a time horizon of T = 10 min, which is longer than

the time it takes for the wind to travel across the seven-

row wind farm considered here, and an advancement time

of TA ≈ 1 s. We use a cost functional that represents the

power tracking problem by penalizing deviations from the

reference power Pref(t)

J =

∫ t0+T

t0

(
N∑

n=1

P̂n(t)− Pref(t)

)2

dt, (26)

where t0 is the current time.



Using this cost function, we solve the following minimiza-

tion problem

minimize
ϕ(t),q(x,t)

J (q(x, t)) (27)

subject to W(q(x, t)) = 0 (28)

dC ′
Tn

dt
=

1

τ
[ϕn(t)− C ′

Tn(t)] (29)

0 ≤ ϕn(t) ≤ 2. (30)

where q(x, t) = [δu(x, t), û(t),C′
T (t)], ϕ(t) are auxiliary

control variables, and W(q(x, t)) = 0 represents the wake

model discussed above. The auxiliary control variables ϕ(t),
whose rate of change is unconstrained, are used to prevent

high-frequency oscillations of the local thrust coefficient. By

specifying C′
T (t) through a first-order relaxation of ϕ(t)

with a time constant τ , the rate of change of C′
T (t) is

implicitly limited. Furthermore, we select bounds on the

control variables of ϕn(t) ∈ [0, 2] to prevent the local thrust

coefficient from becoming negative or exceeding the Betz

limit of C ′
T = 2 [24].

Instead of directly minimizing the constrained cost func-

tional, the tracking problem is solved by minimizing the

modified unconstrained reduced cost function J̃ (ϕ). Min-

imization is performed using the limited-memory bound-

constrained quasi-Newton method L-BFGS-B [25]. Gra-

dients are evaluated using backward simulations of the

analytically-derived adjoint equations to the constraints (28)

and (29). The adjoint equations are discussed in more detail

in [19].

With the time horizon and advancement time parameters

that are employed in this implementation, each minimization

problem is solved in a fraction of the advancement time on

a single processor. This speed is accomplished by using the

adjoint equations to compute the gradient, limiting the num-

ber of iterations of the minimization algorithm, and using

the optimization solution over the previous time horizon as

an initial guess for the next time horizon. As a result, this

control algorithm can be implemented in real time.

IV. NUMERICAL RESULTS

In this section we test the state estimation and the closed-

loop controlled wind farm using a high fidelity simulation

as the wind farm plant. In particular, we use LES of a wind

farm, in which the filtered Navier-Stokes equations are solved

using JHU’s LESGO code with wind turbines represented

using actuator disks [7], [5], [26]. The simulations use

periodic spanwise boundary conditions with pseudo-spectral

discretization for the streamwise and spanwise directions

and second-order finite differencing for the vertical direction.

Time integration is performed using the explicit second-order

Adams-Bashforth method.

In all simulations, an 84-turbine wind farm with 7 rows of

12 aligned turbines is considered. The wind farm simulation

domain is 9 km × 6 km × 1 km in length, width and

height, respectively, with 384×256×192 grid points in each

direction. We employ the concurrent-precursor method [26],

Fig. 4. Instantaneous color contour plot of the velocity field in a sample
wind farm LES. The prevailing (streamwise) wind direction is from left
to right. The precursor domain at the beginning of the figure shows the
high fidelity representation of atmospheric boundary layer turbulence. Wind
turbines are shown in black at the end of the domain, and low speed regions
(wakes) are apparent behind each turbine. (Adapted from [20].)

which uses a separate fully-developed atmospheric bound-

ary layer simulation with identical geometry, but without

turbines, to generate the inlet conditions. An instantaneous

color contour plot of the combined precursor and wind farm

domains for one of these simulations is shown in Figure 4.

A. State estimation

The state and parameter estimation of the wake velocity

deficits δun(x, t), wake expansion coefficients kn(t), and

freestream velocity U∞(t), discussed in Section III-B, is

tested using measurements from three LES with independent

initial conditions. For each test, the wake expansion coeffi-

cients are all set to the same initial value of kn = 0.05. The

standard deviation of the state and output perturbations—

σk = 0.0001, σδu = 0.05 m/s, and σP = 0.29 MW—are

tuned to provide good estimation performance. An ensemble

of 250 members is generated by forcing with random noise

terms. Each noise term is a normally-distributed number

proportional to the standard deviation times the square-root

of the step size [22]. The initial error distributions are formed

by integrating each member forward in time [22] for one

advective time scale of the entire farm.

TABLE I

AVERAGE RELATIVE ESTIMATION ERROR OF POWER

1
T

∫ T
0 |P̂n − Pn|/Pn dt (%) BY ROW n.

n 1 2 3 4 5 6 7
Test 1 0.26 1.23 0.39 0.46 0.37 0.33 0.41
Test 2 0.22 0.80 0.41 0.42 0.39 0.35 0.35
Test 3 0.23 0.68 0.41 0.47 0.38 0.37 0.37

To examine the error in power estimation, we use the

average relative estimation error measure 1
T

∫ T

0
|P̂n(t) −

Pn(t)|/Pn(t) dt for each row, where Pn(t) is the measured

power in LES and P̂n(t) is the estimated power. Table I

shows the average relative estimation error for all initial

conditions. Instantaneous plots of the measured power from

LES, the estimated power, and the relative error by row are

shown in Figure 5. Taken together, these results demonstrate
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Fig. 5. Power generation of wind farm rows in LES (left) and the EnKF (center), as well as the instantaneous relative error of the wake model estimation
for each row (right).
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Fig. 6. Comparison of wake expansion coefficients by row as calculated using EnKF (——) and ex post facto best fit of mean power generation using the
wake model (– – –). Each panel shows a different initial condition. Two of the three panels capture the substantial difference between the wake expansion
rates of the first row and subsequent rows.
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Fig. 7. Instantaneous row-averaged velocity profile from LES (——), as
defined in (31) and the EnKF wake model estimate (——), as defined in (6)
and (25). Each tick mark denotes a turbine row location.

that the instantaneous relative error does not exceed 4% and

the average relative estimation is always less than 1.25%.

The estimated values of the wake expansion coefficients

are shown in Figure 6. For each initial condition, the wake

expansion coefficients are compared to a best-fit estimate

of these coefficients from the average power of each row

over the entire validation window. This best-fit is performed

after the simulation and assumes a constant wake expansion

rate for each turbine row for the entire window. For each

initial condition, these best-fit coefficients demonstrate that

the wake expansion rate is lower k1 ≈ 0.03 for the first

row than subsequent rows kn ≈ 0.05. For the last two

initial conditions, we see that the estimated wake expansion

coefficients approach the distribution of wake expansion

coefficients expected from the best fit. The first initial con-

dition, however, does not approach the expected distribution,

and more exploration is needed to study this case.

The wake model’s streamwise velocity field u(x, t)
defined in (6) is compared to the LES velocity field

ũ(x, y, zh, t) at the height of the turbine rotor zh. In order to

compare the modeled streamwise velocity along each turbine

row, the row-averaged LES velocity field is computed using

〈ũ〉(x, t) = 1

DM

∫ Ly

0

[
M∑

m=1

H

(
D

2
− |y − ym|

)]

ũ(x, y, zh, t) dy,

(31)

where H(y) is the Heaviside function and ym is the location

of the m-th column of turbines. Figure 7 compares a modeled
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Fig. 8. Controlled wind farm power output (——) compared to reference signal (——) and uncontrolled wind farm power output(——). All twelve
simulations are shown and denoted by the signal type (RegA or RegD), the initial conditions (IC1–IC3), and derate (D4 for 4% and D6 for 6%).

streamwise velocity field using the EnKF u(x, t) to a row-

averaged streamwise velocity profile from LES 〈ũ〉(x, t).
This velocity field comparison demonstrates good correspon-

dence between the measured and estimated velocity field

near the location of each turbine and captures the changing

wake expansion rates and advection of the velocity deficits.

As expected, the errors increase downstream of each turbine

where measurements are not available.

B. Controlled wind farm

The controlled wind farm is tested in twelve total sim-

ulations. We refer to the five-minute pre-control average

power as Pbase. The regulation signal can then be defined as

Pref(t) = [1−α+βr(t)]Pbase. In order to track the signal, the

wind farm power set point must be reduced by some fraction

α, which is referred to as the derate. The signal r(t) ∈ [−1, 1]
is the reference signal sent by the grid operator that is scaled

as a fraction β of the pre-control power Pbase.

In these tests we use a reference signal with β = 0.08 and

derates α = 0.04 and 0.06. The signal r(t) is taken from

PJM, an independent system operator in the US. Test signals

from PJM’s published traditional RegA and fast-acting RegD

markets are used [27], [28]. Furthermore, each derate and

signal type combination is tested using all three ending states

of the EnKF test cases.

The performance of the controlled wind farm is shown

for all twelve simulations in Figure 8. Each panel shows the

reference signal as described above, the controlled power

output, and the uncontrolled power output if the pre-control

thrust coefficient C ′
Tn = 1.33 were continued from t = 0

using the same wind farm state. The performance of the

controlled wind farm under the first two initial conditions

demonstrate good tracking performance for the the slowly-

varying RegA signals as well as the fast-acting RegD signal.

The rate-limiting of the control actuation filter results in

noticeable fluctuations around the requested power reference

signal and some overshoot at the beginning of the control

period. However, the controlled farm power has noticeably

smaller fluctuations than the turbulent fluctuations of the

uncontrolled power. By reducing turbulent fluctuations, the

wind farm behaves more like a conventional generator by

providing more consistent power output to the grid.

These simulations also demonstrate the importance of

including a dynamic wake model into the control design.

During some periods of the simulation—such as around the

10-minute mark of the RegD.IC1.D4 signal and the last 5

minutes of the RegA.IC2.D4 signal—the controlled wind

farm was able to produce more power than the uncontrolled

farm. Similar trends were seen in prior work [19], [20],

where the controller is able to reduce the energy extraction

of upstream turbines during periods with more available

energy in the flow field, thereby providing increased power

production potential for downstream rows. This mechanism

would allow for increased production for a short duration by

deferring upstream wind turbine energy extraction. Charac-

terizing this phenomenon is a direction for further study.

The relatively poor tracking performance of the third



initial condition requires further investigation. Periods where

the uncontrolled wind farm produces more power than the

controlled farm are particularly hard to explain. In some

cases, such as the under-production during the last twenty

minutes of the RegA cases with the third initial condition,

the uncontrolled farm produces more power than requested

by the reference signal prior to the period. Therefore, the

controlled wind farm probably has at least as much kinetic

energy stored in its flow field as the uncontrolled case during

this period. Determining the cause of this behavior is the

focus of ongoing work.

On the other hand, the under-production around the 10

minute mark of the RegD.IC3.D4 and RegD.IC3.D6 sig-

nals in Figure 8 might be explained by insufficient energy

availability. The uncontrolled farm produces less power than

requested by the reference signal, and the wind farm may be

unable to accommodate the significant increased production

requested by the grid operator. In other words, there simply

may not be enough available kinetic energy in the flow field

to provide the required level of power during this time period.

V. CONCLUSIONS

The performance of model-based receding horizon control

for wind farm power tracking applications was considered.

This approach used a new dynamic wake model that accounts

for important flow phenomena such as wake advection and

interactions. An ensemble Kalman filter was used to provide

state and parameter estimation. The state estimation was

validated against measurements from LES. The addition of

the EnKF provides a more practical approach for estimating

wake model parameters and correcting wake model states

because parameters do not have to be fit prior to initiation

of the control. Results demonstrate the effectiveness of the

controlled wind farm in tracking sample reference signals

from PJM. While the controlled farm failed to track the

signal for one inflow condition, the other inflow conditions

showed good tracking performance. Future work includes the

extension of this approach to explicitly consider blade pitch

and generator torque control as well as inclusion of turbine

loading in the cost function to minimize operating costs.
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