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Abstract 
 
Despite its early promise as a diagnostic and prognostic tool, gene expression profiling remains 
cost-prohibitive and challenging to implement in a clinical setting. Here, we introduce a molecular 
computation strategy for analyzing the information contained in complex gene expression 
signatures without the need for costly instrumentation. Our workflow begins by training a 
computational classifier on labeled gene expression data. This in silico classifier is then realized 
at the molecular level to enable expression analysis and classification of previously 
uncharacterized samples. Classification occurs through a series of molecular interactions between 
RNA inputs and engineered DNA probes designed to differentially weigh each input according to 
its importance. We validate our technology with two applications: a classifier for early cancer 
diagnostics and a classifier for differentiating viral and bacterial respiratory infections based on 
host gene expression. Together, our results demonstrate a general and modular framework for low-
cost gene expression analysis.   
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Introduction 
 
Gene expression changes are associated with every human disease. Monitoring such changes 
enables clinicians to perform diagnosis, evaluate therapeutic efficacy and predict disease 
recurrence1-6. Existing methods for high-throughput RNA detection such as RT-qPCR, 
microarrays or RNA sequencing can in principle be used to quantitatively monitor gene expression 
changes in diagnostic applications but remain cost-prohibitive in situations where recurrent 
monitoring or regular screenings are necessary3, 7-9. Moreover, the experimental complexity and 
the need for in silico computational analysis of the resulting data mean that such tests can only be 
performed in specialized laboratory settings. To overcome these limitations of complexity and cost 
it is necessary to develop instrument-free diagnostic tests that can be administered and interpreted 
directly at the point of care10.  
 
In the past two decades, researchers have found that peripheral gene expression (e.g. whole blood, 
platelets, exosomes, plasma or saliva) is consistently altered between cancer patients and healthy 
controls5, 11-15. For instance, relative quantitation of telomerase reverse transcriptase (hTERT) 
RNA in blood or serum has diagnostic and prognostic value in many different cancer types13, 16-20. 
Similarly, researchers have demonstrated that a classifier based on a patient's blood RNA profile 
can distinguish between bacterial and viral infections10, 21. Discriminating between these two 
groups is essential to address inappropriate prescription of antibiotics and combat antibiotic 
resistance. Importantly, early cancer diagnostics and combating antimicrobial resistance are just 
two examples of medical applications that would benefit from rapid and inexpensive gene 
expression diagnostics for use at home or the point of care. 
 
Recent work in cell-free synthetic biology and DNA nanotechnology has demonstrated progress 
towards the goal of creating low-cost RNA diagnostics22-26. For example, Collins and collaborators 
developed a test for Zika virus by embedding a set of engineered molecular components for RNA 
sensing and signal amplification in a paper matrix24. Detection of the RNA marker is converted 
into a colorimetric signal that allows intuitive interpretation. However, to broaden the utility of 
such tests beyond applications where detection of a single marker is sufficient, it will be necessary 
to develop “molecular computation” technologies that can convert information encoded in multi-
gene expression signatures into interpretable Yes/No answers.  
 
Cell-free molecular circuits with dozens of interconnected components have been experimentally 
demonstrated and provide proof-of-principle that complex computation can be embedded in 
molecular substrates 27-33. But rationally designed molecular circuits realized so far are not well-
matched to diagnostic applications. For instance, it is often assumed that inputs take Boolean 
values (i.e. high or low)27-30, 34, an assumption that is not naturally compatible with RNA inputs 
derived from a biological sample. In contrast, computational gene expression classifiers are 
commonly built using logistic regression, SVMs or neural network approaches that take better 
advantage of the information encoded in the actual levels of the biomolecules of interest35-37. 
Finally, inputs are typically short, unstructured oligonucleotides with carefully designed sequences 
rather than long biological RNAs with extensive secondary structure. To realize the potential of 
DNA computation for diagnostic applications it is thus necessary to develop molecular classifiers 
that operate directly on RNA inputs and produce a result rapidly and robustly33. 
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Here, we address this challenge and demonstrate a framework for creating a DNA-based molecular 
“computer” capable of performing multi-gene classification (Fig. 1a).  In our workflow, publicly 
available, labeled (e.g. bacterial infection vs. viral infection) gene expression data is first used to 
train an in silico linear classifier, specifically a support vector machine (SVM). During training, 
constraints are imposed to find the minimal set of genes that need to be considered for classification 
with a desired accuracy. The resulting model consist of a set of input features (i.e. the RNA 
transcripts), a positive or negative weight associated with each feature, and a set of mathematical 
operations (i.e. summation and comparison to a threshold) performed over these inputs. Once an 
optimal model has been obtained, a computational tool translates all parameters and mathematical 
functions into a novel class of DNA probes that realize the classifier at the molecular level. Below, 
we first test each molecular classifier component individually, starting with RNA detection and 
assignment of weights. Finally, we validate the entire workflow by implementing molecular 
classifiers for the two applications introduced above, namely early cancer diagnostics based on 
ratiometric detection of hTERT and distinguishing between bacterial and viral infections based on 
a panel of host genes. 
 
Results 
 
Detection of transcripts through assisted hybridization 
 
The first step in our implementation of a molecular classifier is the detection of RNA transcripts 
(Fig. 1b). Initially, we pursued an approach using competitive hybridization (or “strand 
displacement”) probes at room temperature (Supplementary Text 2, Supplementary Fig. 1). 
However, we found that the high degree of secondary structure in RNA transcripts severely limited 
probe binding efficiency. The use of computational tools for identifying unstructured stretches of 
RNA ameliorated the situation somewhat, but binding kinetics still varied widely (Supplementary 
Fig. 2). Moreover, the number of potential probe binding sites on a transcript was determined 
entirely by the secondary structure and could not be tuned at will which is incompatible with our 
molecular computation scheme, as detailed below.  
 
To enable robust detection of a larger number of target regions within a transcript, we developed 
an assisted hybridization protocol. Specifically, we designed a two-stage reaction whereby an input 
sequence within the target RNA transcript (domain a) is thermally or chemically annealed to a 
hybridization probe consisting of two partially complementary strands (Fig. 1c). Additional helper 
strands (60 nt.) are included in the reaction; helper strands hybridize adjacent to the targeted region 
on the RNA to further help unfold its secondary structure and to prevent binding between the 
adjacent RNA regions and the single stranded domain of the hybridization probe. As a result of 
this initial reaction the longer probe strand becomes attached to the transcript and a short toehold 
(domain t1*) is exposed within that strand. Domain a* in the hybridization probe is partially double 
stranded (15 nt. single stranded and 15 nt. double stranded) and is complementary to the target 
sequence. Upon binding to its target, hybridization results in a maximum overall gain of 9 base 
pairs making this reaction thermodynamically favorable. Subsequently, a fluorescent reporter is 
added to the solution and reacts with the bound strand through toehold-mediated strand 
displacement, resulting in an increase in fluorescence. If the target RNA is not present, the 
translator probe reforms upon annealing and cannot interact with the fluorescent reporter. 
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Importantly, because of the two-stage design, the target sequence on the transcript is completely 
independent of the reporter sequence.  
 
To experimentally test this strategy, we designed hybridization probes to target three different 
regions of an mRNA coding for the fusion protein histone 2B Citrine (Citrine) as well as a control 
hybridization probe specific to GAPDH. For an initial test of the probe design with an unstructured 
target, a short oligonucleotide encoding the target sequence (30nM) was added to each probe at 
room temperature. As designed, addition of the target oligonucleotide resulted in increased signal 
from a downstream fluorescent reporter (Fig. 1d). In contrast, addition of in vitro transcribed 
Citrine RNA (30 nM) did not result in increased fluorescence, because the secondary structure of 
the RNA transcript hindered the strand displacement reaction. We then tested whether addition of 
the helper strands could aid hybridization between the RNA target and probe at room temperature, 
but we observed significant triggering for only one hybridization probe (Supplementary Fig. 3).  
 
Subsequently, we implemented a thermal annealing strategy where the hybridization probe and 
corresponding helper strands were annealed with the Citrine RNA transcript before addition of the 
fluorescent reporter. Thermal annealing was performed by heating reactants to 70°C for 10 seconds 
and subsequently cooling down to 25°C at a rate of -1°C per 10 seconds. As expected, we observed 
a fluorescent response equivalent to the concentration of added transcript in all Citrine probes 
while the GAPDH probe showed no increased in fluorescence (Fig. 1e). We carried out the same 
reaction without addition of helper strands and we observed a lower fluorescence response across 
all conditions. These results suggest that the helper strands have a role in suppressing non-specific 
binding between single-stranded overhangs in the probe and single-stranded domains in the RNA 
target. We also observed very little increase in fluorescence in the case where no transcript was 
added. Moreover, we performed thermal annealing experiments in a background of cellular mRNA 
extracted from HEK-293 cells without observing any unspecific triggering. (Supplementary Fig. 
4). 
 
Since thermal annealing is not ideal for point-of-care diagnostic applications, we also implemented 
a chemical denaturing strategy for unfolding RNA targets. Following work by Shelton et. al., we 
evaluated the use of Urea and subsequent addition of MgCl2+ as a method to denature and renature 
nucleic acid base pairing38. We implemented this chemical annealing strategy by incubating a 
hybridization probe, helper strands and corresponding target in 6.4M urea for 15 minutes followed 
by incubation with Mg2+ for 15 minutes. We observed target-specific increase in fluorescence 
equivalent to thermal annealing conditions when adding the Citrine RNA transcript or a target 
oligonucleotide (Fig. 1f).  
 
We note that this assisted hybridization strategy is quite distinct from earlier work in dynamic 
DNA nanotechnology that generally aimed to create fully autonomous systems that require 
minimal intervention from an experimentalist. However, we found that separating the detection 
reaction into an annealing step followed by a more conventional strand displacement-based 
reporter reaction improved not only the robustness of input detection but also dramatically 
accelerated it. Both features are crucial for designing a practical diagnostic test. 
 
Molecular implementation of weights  
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In a gene expression classifier, RNA transcripts have varying levels of influence on the classifier 
outcome. In silico, every transcript is assigned a numerical weight capturing its importance (Fig. 
2a). At the molecular level, we implemented these weights by designing multiple hybridization 
probes that target different regions within each RNA. For example, weights n=1, 2, N are realized 
by having 1, 2 or N distinct probes targeting the same transcript (Fig. 2b). Even though the targeted 
sequences on the transcript are different, each probe contains an identical output strand (domains 
t1*x* in Fig. 1c) which then triggers a fluorescent reporter. Every additional hybridization probe 
results in a proportional increase in the steady state fluorescence signal. The fluorescence due to 
mRNA1 should thus be proportional to the product w1*[mRNA1] where w1 is an integer weight 
and [mRNA1] is the concentration of mRNA1.  
 
We implemented this set-up experimentally by designing reactions with 1, 2, 3 or 4 probes 
targeting contiguous regions on the Citrine transcript. To avoid saturation of the reporter complex, 
we operated the system in a regime where reporter and hybridization probes far exceeded the 
transcript concentration. We measured the fluorescence signal corresponding to the reporter 
complex before and after addition of the hybridized probe-RNA complexes until a steady state was 
reached (Fig. 2c). As expected, we found that the steady state signal was linearly proportional to 
the number of hybridization probes bound to the RNA transcript for all RNA concentrations tested, 
demonstrating that this mechanism can be used to assign an integer-valued weight to an RNA 
transcript (Fig. 2d).  
 
Summation and thresholding 
 
Building a complete linear classifier requires mechanism for summing up weights and comparing 
the sum to a threshold value to obtain the desired yes/no answer (Fig. 3a)33, 39. If there are multiple 
transcripts with different weights of the same sign, we can compute the sum of their contributions 
simply by using the same output sequence across all probes. The total concentration of output 
strands and thus the final fluorescence signal is then proportional to the sum w1*[mRNA1]+…+ 
wN*[mRNAN]. Weights with negative values can be implemented using a distinct output sequence 
for the negative probes. The sums of negative and positive weights in a classifier are then 
represented by the total concentrations of two distinct output strands. 
 
To complete the summation, the individual sums of positive and negative weights – represented 
by (positive) concentrations of two distinct nucleic acids sequences –  need to be subtracted from 
one another. Intuitively, such a subtraction can be realized as a chemical reaction whereby 
stoichiometric amounts of positive and negative output strands annihilate each other until only the 
majority species is left. The concentration of that species then is the final result of the summation 
over all weights. To implement such a stoichiometric annihilation reaction between two nucleic 
acid species of unrelated sequence, we take advantage of the cooperative hybridization mechanism 
("annihilator" gate) introduced by Zhang39, 40. 
 
The final step in the molecular computation pipeline is to compare the result of the summation to 
a threshold value. In the simplest case, the threshold value is set to zero and the class a specific 
input sample belongs to is determined simply by the sign of the final sum. Non-zero threshold 
values can be realized by spiking the corresponding amount of negative or positive output strand 
into the reaction which biases the sum by a controlled amount.  
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Molecular thresholding of RNA transcripts 
 
To experimentally test whether an “off-the-shelf” thresholding (or subtraction) element could be 
used in conjunction with our RNA detection scheme we created a DNA circuit consisting of three 
modules: a translator gate that connects the output strand from the assisted hybridization reaction 
to the threshold element, an “annihilator gate” and single-stranded reference oligonucleotide that 
together act as the threshold element and a catalytic reporter that amplifies any signal exceeding 
the threshold value to a constant level allowing for a Yes/No answer (Supplementary Fig. 5).  
 
We tested this molecular thresholding system on three different transcripts (hTERT, EGFR, 
GAPDH) commonly used as biomarkers or reference genes for diagnostic purposes. To 
accommodate different RNAs only the hybridization probe and helper strands needed to be 
switched while all the other strand displacement components are retained, demonstrating 
modularity of the design. Each mRNA was individually transcribed in vitro from a cDNA template 
and quantified. For each transcript, we evaluated four experimental conditions using thermal 
annealing with varying ratios of transcript to reference oligonucleotide. Steady state fluorescence 
values were acquired two hours after addition of a catalytic amplifier and fluorescent reporter.  
With all three transcripts, we only observed an increase in fluorescence when the amount of 
transcript exceeded the amount of threshold. 
 
A two-gene diagnostic classifier 
 
For an experimental test of a full two-input classifier circuit, we selected hTERT, a cancer 
biomarker, as the target (associated with a positive weight) and GAPDH, a common internal 
reference gene in RT-PCR experiments as the reference RNA (associated with a negative weight) 
(Fig. 3b). Relative quantitation of HTERT to GAPDH in human plasma has been suggested as an 
early diagnostic and prognostic biomarker in human cancer13, 16-20, 41, 42. The thresholding 
(subtraction) and amplification reaction are performed exactly as above but instead of an external 
reference strand to set the threshold value, there now is an internal reference RNA associated with 
a negative weight that effectively sets a threshold (Supplementary Fig. 6).  
 
We evaluated four classifiers with an hTERT weight of +1 and GAPDH weights of -1, -2, -3 and 
-4 (Fig. 3c). A sample containing both RNA transcripts was first combined with corresponding 
hybridization probes and helper strands. hTERT transcript was present at 15 nM while GAPDH 
transcript was titrated from 0 nM to 14 nM with all DNA circuits components added at higher, 
non-limiting concentrations. We further characterized a classifier response with an hTERT weight 
of +1 and GAPDH weight of -2 with a range of concentrations of each transcript (0nM to 20nM) 
(Fig. 3d,e). Overall, we evaluated 64 different experimental conditions where we recorded 
fluorescence levels for 2 hours after addition of strand displacement components. We only 
observed a significant increase in fluorescence in conditions when the amount of hTERT transcript 
was above the threshold set by the product of the GAPDH transcript concentration and weight, in 
agreement with the classifier design. 
 
Training a multi-gene support vector machine 
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We next sought to scale up our molecular classifier framework. Discriminating between viral and 
bacterial infections using molecular gene expression classification is a promising application since 
it requires a rapid, cost-effective and self-contained process to be implemented in a clinical setting. 
In 2016, Tsalik et. al. developed a peripheral whole blood gene expression classifier with 130 
genes to differentiate between bacterial infections, viral infections, non-infectious illness and 
healthy controls with 87% accuracy10.  
 
To build a molecular classifier, we first simplified the classification problem by distinguishing 
only between viral and bacterial infections. We used the publically available gene expression data 
corresponding to 115 viral infections and 70 bacterial infections for classifier training10. For each 
patient, gene expression values for 14,500 human genes were measured. We implemented a 
support vector machine (SVM) to determine the minimal set of genes and corresponding weights 
for this classification problem. This process involved iterating through multiple sets of features 
(genes) and associated weights until converging to a solution that resulted in the best classification 
outcome.  
 
We trained an SVM algorithm with the following constraints: First we required a low number of 
genes (<10) to allow for the classifier to be implemented at the molecular level. Second, we 
constrained weights to integer values between -5 to +5. This choice was made to limit the number 
of probes for a single gene as well as the overall size of the classifier. Third, we made the 
misclassification penalty for bacterial samples 3 times higher than that for viral samples. This 
choice was made because the worst possible outcome is to incorrectly diagnose a bacterial 
infection as viral, delaying the use of antibiotics. Even though this classification model performed 
well in the validation set, it is important to note that a model with a higher number of features may 
be more robust when encountering gene expression variability absent in the training dataset. We 
selected 9 classifiers with at least 80% accuracy in the training set and validated them using a 
different gene expression data set21. We selected the classification model with the highest 
performance in the validation set to build a molecular classifier (Fig. 4a). The selected classifier 
correctly labelled 94% and 80% of bacterial and viral samples in the training set and 89% of 
bacterial and 90% of viral samples in the validation set (Fig. 4b,c).  
 
A molecular implementation of the bacterial vs viral classifier 
 
Next, we designed a molecular implementation of the bacterial vs. viral classifier. First, we 
selected regions in each transcript that consisted of individual exons that were at least 200 base-
pairs long such that they could fit multiple hybridization probes. Due to the large number of 
transcripts and associated probes, we implemented a probe design tool for systematically 
generating the necessary DNA components for molecular classification. Each transcript was 
assigned a number of hybridization probes and helper strands, based on the weights learned in 
silico. Positive and negative transcripts were assigned hybridization probes with different output 
domains such that the concentrations of the positive and negative output strands represent the 
weighted sums of the respective RNA inputs, as described above. The complete DNA classifier 
consists of 20 hybridization probes and 14 helper strands (two for each transcript). A strand 
displacement cascade using two translator gates and two fluorescent reporters aggregate the signal 
generated by the hybridization module. Overall, the circuit consists of 62 different 
oligonucleotides.  
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Rather than performing the subtraction at the molecular level as we have done in the previous 
example, we chose to use two distinct fluorophores to read out the positive and negative output 
strands individually, which allowed us to more quantitatively characterize performance of 
individual classifier components. A fluorescent reporter containing a 6-FAM (Fluorescein) (FAM) 
and a quencher was associated with positive/bacterial transcripts while a fluorescent reporter 
containing a 6-Carboxyl-X-Rhodamine (ROX) and a quencher was associate with negative/viral 
transcripts (Fig. 5a). Upon reporter calibration, the fluorescence signal from the ROX reporter can 
be subtracted from the FAM reporter signal to obtain a normalized signal used for classification 
([FAM]-[ROX] nM). Samples resulting in a normalized signal of [FAM]-[ROX] > 0 belong to the 
bacterial infection category while samples for which this signal is less than zero belong to the viral 
infection category.  
 
After assembling the molecular classifier, we first used synthetic DNA oligonucleotide targets to 
individually test all 20 hybridization probes. Upon thermal annealing and subsequent strand 
displacement, we confirmed that each oligonucleotide target triggered the intended fluorescent 
channel with the expected signal intensity (corresponding to a unit weight) while the signal 
remained near background in the other channel (Fig. 5b). Subsequently, we tested the molecular 
classifier using in-vitro transcribed RNA species. After addition of each RNA transcript to the 
molecular classifier, we again measured the fluorescence response across both channels. For each 
transcript, we only observed significant increase in fluorescence in the expected channel. After 
calibration and subtraction of both channel fluorescence signals, we obtained a normalized signal 
for each transcript addition ([FAM] – [ROX] nM). We found this normalized signal to be 
proportional to the weight assigned to each gene suggesting that the molecular weight 
implementation was performed correctly (Fig. 5c).  
 
Lastly, we tested our molecular classifier with samples containing RNA molecules matching the 
expression profiles from the training set microarray data. We selected 12 samples corresponding 
to six patients with viral and six patients with bacterial infections (Fig. 5d). We replicated the 
original gene expression profile by adding each cDNA amplicon based on its expected 
concentration as calculated from the microarray data. Each amplicon contained a T7 promoter for 
RNA transcription. Samples were then diluted to approximately 10 picomolar followed by in-vitro 
transcription which resulted in 1000x amplification (Fig. 5e). As expected, upon addition of each 
sample to the molecular classifier, we observed significant triggering in both fluorescence 
channels. All samples were classified correctly based on the normalized signal intensity. 
Furthermore, we found a strong correlation between the normalized signal intensity and the 
corresponding computational output for each sample as estimated using the corresponding SVM 
model (Fig 5f).   

Discussion 
We introduced a systematic framework for translating an in silico gene expression classifier into 
DNA circuitry. We confirmed the robustness of this framework by building two distinct classifiers 
with varying numbers of weights and inputs. Using our approach, any in silico classifier can in 
principle be converted into a molecular classifier, synthesized for rapid prototyping and 
experimentally validated.  
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We developed three novel building blocks to enable molecular computation with RNA transcripts 
as inputs. First, breaking up transcript detection into two separate steps, assisted hybridization and 
strand displacement, enabled us to robustly perform molecular computing with any RNA transcript 
as an input. Second, by varying the number of probes that hybridize to an RNA transcript we were 
able to differentially weigh the importance of transcripts. Third, by designing probes with shared 
output sequences we were able to compute the weighted sum of multiple transcript. So far, we 
have used these building blocks to create classifiers with up to seven distinct RNA inputs and up 
to five (positive or negative) probes per transcript. However, the size of the classifiers could in 
principle be scaled to tens or hundreds of targets with the number of weights only limited by the 
size of the transcripts. In principle, potential cross-talk between probes and incorrect targets 
becomes more likely when the number of probes is higher. Nevertheless, a thermodynamic 
simulation of these interaction can inform the selection of probes across the length of a target RNA 
transcript that exhibit little or no cross-talk. 
 
Compared with existing methods for gene expression analysis, our approach is well-suited for 
inexpensive and rapid examination of clinical samples (Supplementary Table 5). Because of its 
experimental simplicity, our workflow is fast: the combined reaction time for the assisted 
hybridization module and strand displacement reaction was under 20 minutes with no additional 
time required for computational analysis and data interpretation. More fundamentally, the amount 
of work required to perform gene expression classification using our framework is independent of 
the number of genes in the assay. The complexity of RT-qPCR experiments, the current gold-
standard for gene expression profiling in the clinic, in contrast scales linearly with the number of 
genes being analyzed. The DNA-based classification workflow thus dramatically reduces the need 
for liquid handling making it a good fit for point-of-care applications. RNA sequencing and 
barcoded RNA hybridization (Nanostring) also allow for multiplexed gene expression analysis in 
a single reaction but require expensive instrumentation or consumables. In contrast, we perform 
expression analysis by harnessing DNA computation while relying on inexpensive 
instrumentation: a thermocycler and a fluorescence reader. Finally, all alternative approaches 
provide information about the expression of individual genes in a panel, while our approach 
aggregates this information at the molecular level and provides a single, easy-to-interpret 
diagnosis, enabling fast turnaround.  

It should be noted however that the rate of the strand displacement reaction is highly dependent 
on the concentration of the RNA inputs, and including a pre-amplification step in the workflow 
would increase processing time. In this work, we demonstrated amplification of a mixture of 
cDNA amplicons in the low picomolar range using in vitro transcription before molecular 
classification. However, RNA transcripts are typically present at attomolar or femtomolar 
concentrations in tissue and blood RNA samples5, 19. Other amplification strategies, such as 
rolling circle amplification or loop mediated isothermal amplification, will need to be explored 
for further amplification and may be more suited for point of care applications26, 43-46. Moreover, 
the output of the classification can be measured using a different readout system such as a paper 
based substrate or a colorimetric reaction to further increase sensitivity or simplify readout of 
results23, 24.  

Still, by demonstrating a robust and modular approach for instrument-free analysis of complex 
gene expression signatures, our work closes an important gap in the existing toolbox for 
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engineering affordable point-of-care diagnostics. The number of clinical studies examining how 
variations in peripheral gene expression are associated with disease diagnostics, monitoring and 
prognosis is ever increasing, and the use of molecular computation for gene expression analysis 
suggests a path towards translating this academic knowledge into future diagnostics.  
 
Methods 
 
DNA oligonucleotides 
All DNA oligonucleotides were purchased from Integrated DNA Technology (IDT). Individual 
DNA oligonucleotides were suspended to 100 µM and stored in water. Fluorophore and quencher-
labelled oligonucleotides were ordered HPLC purified, except for FAM-labelled oligonucleotides. 
Unlabeled oligonucleotides were unpurified.  
 
Hybridization probe preparation 
Hybridization probes consisted of annealed complex of two DNA oligonucleotides: a 21-nt bottom 
strand and a 56-nt top strand. The strands were mixed stoichiometrically with 30% excess of the 
bottom strand and then thermally annealed: heated to 98C for 10 seconds and cooled uniformly 
from 98°C to 25°C over the course of 73 minutes. 
 
Hybridization probes for the viral/bacterial classifier 
40 oligonucleotides (top and bottom strands) corresponding to 20 hybridization probes were order 
using IDT 25 nmole DNA Plate Oligo synthesis normalized to 100uM on IDT LabReady buffer. 
For purification, 20 top strands and 20 bottom strands were pooled together respectively and 
purified as a mixture using 12% Urea 19:1 acrylamide: bisacrylamide gel (SequaGel UreaGel 
System. National Diagnostics). Subsequently, gel bands were visualized using ultraviolet light 
with a fluorescent backplate, and then cut out and eluted into 1 ml 1X TAE, 12.5 mM Mg ++ for 
12 hours. Concentrations were calculated by measuring absorbance at 260 nm (Eppendorf 
Biophotometer plus) and using IDT-specified extinction coefficient.  
 
Strands displacement probe preparation 
Strand displacement probes (translators, reporters, catalytic amplifiers and annihilator gates) 
consisted of annealed complexes of two or more DNA oligonucleotides. The strands were mixed 
stoichiometrically with 10% excess of the target binding strand for the translator, catalytic 
amplifier gate and annihilator gate. Subsequently, DNA complexes were thermally annealed: 
heated to 98C for 10 seconds and cooled uniformly from 98°C to 25°C over the course of 73 
minutes. After annealing, individual probes were purified using a 12% non-denaturing PAGE gel 
as described above.  
 
Cellular mRNA preparation 
Cellular mRNA was extracted from HEK-293 (ATCC 30-2003) human cell line using a magnetic 
isolation kit for mRNA (NEB Next Poly(A) mRNA Magnetic Isolation kit #E7490). Cellular 
mRNA was aliquoted and stored in nuclease free water with RNAse inhibitor (NEB) at -80°C until 
needed.  
 
RNA target preparation 
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Amplicons corresponding to RNA target sequences were generated by PCR amplification of HEK-
293 cDNA or human genomic DNA (ThermoFisher Catalog number 4312660). Amplification of 
each target was carried out with a corresponding forward primer containing a T7 RNA polymerase 
promoter sequence (5-TAATACGACTCACTATAGGG-3).  After amplification, each product 
was visualized on a 1.5% agarose gel and the correct band was excised and processed with a gel 
extraction kit (QIAGEN catalog number 28704). RNA targets were generated using T7 
RiboMAX™ Express Large-Scale RNA Production System (Promega). Purification of RNA 
targets was carried out using a phenol/chloroform extraction protocol. Final RNA concentrations 
were determined using absorbance at 260 nm and estimated extinction coefficient for the 
corresponding single stranded RNA. RNA was aliquoted and stored in nuclease free water with 
RNAse inhibitor (NEB) at -80°C until needed.  
 
Time-course fluorescence measurements 
Kinetic fluorescence measurements were performed using a fluorescence plate reader for higher 
measurement throughput (Biotek Synergy HTX). Thermal annealing and strand displacement 
reactions were carried out in 1X TAE, 12.5 mM Mg ++. 
 
Fluorescence normalization 
Arbitrary fluorescence units were converted to concentrations using a calibration curve of each 
reporter complex. To create a calibration curve, annealed reporter complex stock was suspended 
in 1X TAE/Mg++ and an initial baseline fluorescence signal was recorded. That was followed by 
stepwise addition of known concentrations of reporter triggering strands. After each trigger strand 
addition, the steady state was recorded.  
 
Viral/Bacterial SVM training and validation 
For training of the support vector machine algorithm, we obtained microarray data (NCBI 
GSE63990) for 273 ill patients and 44 healthy volunteers10. We processed the dataset by first 
selecting samples labelled only as bacterial or viral infections (70 and 115 samples respectively) 
and transforming the microarray gene expression ratios by logarithm of base 2 to estimate 
biological expression levels. We trained an SVM algorithm (classifier with a linear kernel) on this 
data set to distinguish between viral and bacterial classes using the svm.LinearSVC function from 
Python library sklearn. We used a squared hinge loss function with L1 norm while iterating through 
multiple penalty parameters to obtain SVM classifiers with varying number of features. We found 
9 models that employed less than 10 genes while maintaining a classification accuracy of 80% or 
higher in the training set. We evaluated these classifiers using a different microarray dataset (NCBI 
GSE6269) where they performed similarly well (AUC > 0.90)21. Finally, we selected the classifier 
with the highest AUC value for experimental implementation. 
 
Computational tool for generating hybridization probes from the in silico classifier 
First, we generated an input file containing each transcript sequence and their corresponding 
weights from the in silico classifier. A python script sliced the transcript sequence to generate 
helper strands (first and last 60 nts.), hybridization targets (30 nt. each) and hybridization probes. 
Hybridization probes were generated with either a positive or negative sequence domain based on 
the classifier weight. The output of this script contains each component sequence (helper, top 
strand hybridization probe, bottom strand hybridization probe and target sequence) and name.  
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Figure 1 | A universal framework for rapid prototyping of molecular classifiers for gene expression 
diagnostics. a, An in-silico classifier is trained and validated on publicly available gene expression data. The 
weights and other characteristics of the in silico classifier are then translated into DNA complexes that realize 
the classifier at the molecular level. Finally, the molecular classifier is tested with RNA targets and a diagnosis 
is obtained. b, As a first step towards creating a molecular gene expression classifier, we developed a systematic 
approach for detecting specific RNA transcripts with DNA strand displacement cascades c, The molecular 
mechanism for coupling DNA-based circuits with endogenous RNA transcripts consists of two reaction steps. 
First, a hybridization probe and helper strands are hybridized to the target site using chemical or thermal 
annealing. Subsequently, a fluorescent reporter is added to the reaction and binds to the product of the assisted 
hybridization reaction via strand displacement. d, We tested the RNA detection reaction by designing 3 
hybridization probes targeting different regions in Citrine and a probe targeting a region in GAPDH. At room 
temperature, the addition of Citrine transcript (30 nM) resulted in no significant triggering in all probes. As a 
positive control, we added a target oligonucleotide (30 nM) for each probe that resulted in the expected 
fluorescence response. e, Experimental results corresponding to the thermal annealing protocol where each probe 
was annealed with Citrine RNA and corresponding helper strands before addition of the fluorescent reporter. All 
Citrine probes were triggered by the Citrine RNA while the GAPDH probe resulted in no fluorescence response. 
Without inclusion of the helper strands, Citrine probes resulted in a diminished fluorescence response. f, 
Experimental results corresponding to the chemical annealing protocol where each probe was incubated with 
Citrine RNA and corresponding helper strands in Urea and subsequently in MgCl2. We observed the expected 
fluorescence response with addition of an oligonucleotide target or Citrine transcript.  
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Figure 2 | Implementation of classifier weights by targeting of multiple adjacent regions in a transcript. a, 
Each transcript is assigned a weight reflecting its influence in the classifier decision. b,  Each transcript is targeted 
with a number of probes equivalent to its classifier weight. By targeting probes to neighboring regions, only a 
single pair of flanking helper strands is necessary for each transcript hybridization event. c, Probe binding was 
characterized through fluorescence kinetics experiments. Initial fluorescence values correspond to quenched 
reporter in solution. After 10 minutes, annealed probe-transcript complexes are added to the solution resulting in 
an increase in fluorescence proportional to the number of hybridization probes (1, 2, 3 or 4). Reactions were carried 
out with 50 nM of reporter, 40 nM of combined hybridization probe and different concentrations of Citrine 
transcript d, Steady state fluorescence response corresponding to 1, 2, 3 or 4 hybridization probes targeting the 
H2B-Citrine RNA transcript. As expected, we observed a linear relationship between the number of hybridization 
probes and the fluorescence response across a range of Citrine RNA concentrations.  
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Figure 3 | Molecular implementation of a two-gene classifier for cancer diagnostics a, A sum and activation 
function are used to aggregate weighted gene expression information into a single, interpretable output. Upon 
transcript detection and scaling, a sum function calculates the resulting net input. If the net input is higher than a 
threshold, an activation function produces a catalytic response. b, Graphical representation of the hTERT/GAPDH 
molecular classifier with variable negative weights for GAPDH and a weight of +1 for hTERT. c, Final state 
fluorescence measurements after 2 hours corresponding to four classifiers with varying GAPDH weights. Grey 
line indicates ideal thresholding boundary. Reactions were carried out with 50 nM of reporter, 100 nM of helper 
strands and 30 nM of catalytic amplifier, annihilator, translators and hybridization probes. d, 2-hour fluorescence 
measurements after addition of strand displacement components corresponding to a +1 hTERT / -2 GAPDH 
molecular classifier. e, End point fluorescence measurements after 2 hours corresponding to a +1 hTERT / -2 
GAPDH molecular classifier. 
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Figure 4 | In silico training of a minimal linear classifier to discriminate viral from bacterial infections 
based on host gene expression data. a, ROC curves illustrate the diagnostic ability of a binary classifier system 
as the threshold is varied. ROC curves correspond to the classification performance in the validation set from 10 
classification models selected from the training phase. We used the classification model with the highest AUC 
in the validation dataset to build a molecular classifier. b, Performance of the selected classifier in the validation 
set where 89% and 90% of bacterial and viral samples were labeled correctly. c, Performance of the selected 
classifier in the training set where 94% and 80% of bacterial and viral samples were labeled correctly.  
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Figure 5 | A molecular classifier of host gene expression for respiratory infections diagnostics. a, Graphical 
representation of the viral vs. bacterial infection classifier. The classifier uses 7 genes. 20 hybridization probes 
assign weights ranging from -4 to +5 to each transcript. The weighted sums of all transcripts with positive and 
negative weights are independently measured using two spectrally distinct reporters. b, As an initial test, we 
added 20 oligonucleotides (3nM) corresponding to the target sequences of each hybridization probe individually 
and measured the fluorescence response across both channels. Targets 1-10 corresponded to transcripts with 
positive weights (FAM) while targets 11-20 corresponded to transcripts with negative weights (ROX). As 
expected, each target resulted in specific triggering of the assigned reporter with almost no crosstalk. c, The 
molecular classifier was tested using in vitro transcribed RNA transcripts. Addition of each transcript resulted in 
a fluorescence signal proportional to the weight associated with a transcript. d, Gene expression data for 6 
bacterial and 6 viral samples selected from the training set to validate the molecular classifier. e, Gene expression 
patterns for each sample were replicated by mixing gene amplicons containing T7 RNA polymerase promoter 
sequences in the ratios expected from the microarray data. Subsequently, the samples were in vitro transcribed 
resulting in production of RNA molecules with approximately 1000X amplification. Upon addition of the 
molecular classifier, fluorescence signals were recorded across both channels and a classification value was 
recorded.  f, All samples were classified correctly by the molecular classifier: a positive normalized signal was 
obtained for bacterial class samples and a negative for viral class samples. The normalized fluorescence signal 
matches the estimated computational SVM output, reflecting the correct implementation of the weights in a 
sample containing multiple RNA transcripts.  
 


