A molecular multi-gene classifier for disease diagnostics
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Abstract

Despite its early promise as a diagnostic and prognostic tool, gene expression profiling remains
cost-prohibitive and challenging to implement in a clinical setting. Here, we introduce a molecular
computation strategy for analyzing the information contained in complex gene expression
signatures without the need for costly instrumentation. Our workflow begins by training a
computational classifier on labeled gene expression data. This in silico classifier is then realized
at the molecular level to enable expression analysis and classification of previously
uncharacterized samples. Classification occurs through a series of molecular interactions between
RNA inputs and engineered DNA probes designed to differentially weigh each input according to
its importance. We validate our technology with two applications: a classifier for early cancer
diagnostics and a classifier for differentiating viral and bacterial respiratory infections based on
host gene expression. Together, our results demonstrate a general and modular framework for low-
cost gene expression analysis.



Introduction

Gene expression changes are associated with every human disease. Monitoring such changes
enables clinicians to perform diagnosis, evaluate therapeutic efficacy and predict disease
recurrence!%. Existing methods for high-throughput RNA detection such as RT-qPCR,
microarrays or RNA sequencing can in principle be used to quantitatively monitor gene expression
changes in diagnostic applications but remain cost-prohibitive in situations where recurrent
monitoring or regular screenings are necessary> . Moreover, the experimental complexity and
the need for in silico computational analysis of the resulting data mean that such tests can only be
performed in specialized laboratory settings. To overcome these limitations of complexity and cost
it is necessary to develop instrument-free diagnostic tests that can be administered and interpreted
directly at the point of care'®.

In the past two decades, researchers have found that peripheral gene expression (e.g. whole blood,
platelets, exosomes, plasma or saliva) is consistently altered between cancer patients and healthy
controls® "5, For instance, relative quantitation of telomerase reverse transcriptase (W\TERT)
RNA in blood or serum has diagnostic and prognostic value in many different cancer types'? 1620,
Similarly, researchers have demonstrated that a classifier based on a patient's blood RNA profile
can distinguish between bacterial and viral infections'® 2!, Discriminating between these two
groups is essential to address inappropriate prescription of antibiotics and combat antibiotic
resistance. Importantly, early cancer diagnostics and combating antimicrobial resistance are just
two examples of medical applications that would benefit from rapid and inexpensive gene
expression diagnostics for use at home or the point of care.

Recent work in cell-free synthetic biology and DNA nanotechnology has demonstrated progress
towards the goal of creating low-cost RNA diagnostics?>2. For example, Collins and collaborators
developed a test for Zika virus by embedding a set of engineered molecular components for RNA
sensing and signal amplification in a paper matrix?>*. Detection of the RNA marker is converted
into a colorimetric signal that allows intuitive interpretation. However, to broaden the utility of
such tests beyond applications where detection of a single marker is sufficient, it will be necessary
to develop “molecular computation” technologies that can convert information encoded in multi-
gene expression signatures into interpretable Yes/No answers.

Cell-free molecular circuits with dozens of interconnected components have been experimentally
demonstrated and provide proof-of-principle that complex computation can be embedded in
molecular substrates 2733, But rationally designed molecular circuits realized so far are not well-
matched to diagnostic applications. For instance, it is often assumed that inputs take Boolean
values (i.e. high or low)?’3% 34 an assumption that is not naturally compatible with RNA inputs
derived from a biological sample. In contrast, computational gene expression classifiers are
commonly built using logistic regression, SVMs or neural network approaches that take better
advantage of the information encoded in the actual levels of the biomolecules of interest®3-7.
Finally, inputs are typically short, unstructured oligonucleotides with carefully designed sequences
rather than long biological RNAs with extensive secondary structure. To realize the potential of
DNA computation for diagnostic applications it is thus necessary to develop molecular classifiers
that operate directly on RNA inputs and produce a result rapidly and robustly*3.



Here, we address this challenge and demonstrate a framework for creating a DNA-based molecular
“computer” capable of performing multi-gene classification (Fig. 1a). In our workflow, publicly
available, labeled (e.g. bacterial infection vs. viral infection) gene expression data is first used to
train an in silico linear classifier, specifically a support vector machine (SVM). During training,
constraints are imposed to find the minimal set of genes that need to be considered for classification
with a desired accuracy. The resulting model consist of a set of input features (i.e. the RNA
transcripts), a positive or negative weight associated with each feature, and a set of mathematical
operations (i.e. summation and comparison to a threshold) performed over these inputs. Once an
optimal model has been obtained, a computational tool translates all parameters and mathematical
functions into a novel class of DNA probes that realize the classifier at the molecular level. Below,
we first test each molecular classifier component individually, starting with RNA detection and
assignment of weights. Finally, we validate the entire workflow by implementing molecular
classifiers for the two applications introduced above, namely early cancer diagnostics based on
ratiometric detection of hTERT and distinguishing between bacterial and viral infections based on
a panel of host genes.

Results
Detection of transcripts through assisted hybridization

The first step in our implementation of a molecular classifier is the detection of RNA transcripts
(Fig. 1b). Initially, we pursued an approach using competitive hybridization (or “strand
displacement™) probes at room temperature (Supplementary Text 2, Supplementary Fig. 1).
However, we found that the high degree of secondary structure in RNA transcripts severely limited
probe binding efficiency. The use of computational tools for identifying unstructured stretches of
RNA ameliorated the situation somewhat, but binding kinetics still varied widely (Supplementary
Fig. 2). Moreover, the number of potential probe binding sites on a transcript was determined
entirely by the secondary structure and could not be tuned at will which is incompatible with our
molecular computation scheme, as detailed below.

To enable robust detection of a larger number of target regions within a transcript, we developed
an assisted hybridization protocol. Specifically, we designed a two-stage reaction whereby an input
sequence within the target RNA transcript (domain a) is thermally or chemically annealed to a
hybridization probe consisting of two partially complementary strands (Fig. 1c). Additional helper
strands (60 nt.) are included in the reaction; helper strands hybridize adjacent to the targeted region
on the RNA to further help unfold its secondary structure and to prevent binding between the
adjacent RNA regions and the single stranded domain of the hybridization probe. As a result of
this initial reaction the longer probe strand becomes attached to the transcript and a short toehold
(domain t1*) is exposed within that strand. Domain a* in the hybridization probe is partially double
stranded (15 nt. single stranded and 15 nt. double stranded) and is complementary to the target
sequence. Upon binding to its target, hybridization results in a maximum overall gain of 9 base
pairs making this reaction thermodynamically favorable. Subsequently, a fluorescent reporter is
added to the solution and reacts with the bound strand through toehold-mediated strand
displacement, resulting in an increase in fluorescence. If the target RNA is not present, the
translator probe reforms upon annealing and cannot interact with the fluorescent reporter.



Importantly, because of the two-stage design, the target sequence on the transcript is completely
independent of the reporter sequence.

To experimentally test this strategy, we designed hybridization probes to target three different
regions of an mRNA coding for the fusion protein histone 2B Citrine (Citrine) as well as a control
hybridization probe specific to GAPDH. For an initial test of the probe design with an unstructured
target, a short oligonucleotide encoding the target sequence (30nM) was added to each probe at
room temperature. As designed, addition of the target oligonucleotide resulted in increased signal
from a downstream fluorescent reporter (Fig. 1d). In contrast, addition of in vitro transcribed
Citrine RNA (30 nM) did not result in increased fluorescence, because the secondary structure of
the RNA transcript hindered the strand displacement reaction. We then tested whether addition of
the helper strands could aid hybridization between the RNA target and probe at room temperature,
but we observed significant triggering for only one hybridization probe (Supplementary Fig. 3).

Subsequently, we implemented a thermal annealing strategy where the hybridization probe and
corresponding helper strands were annealed with the Citrine RNA transcript before addition of the
fluorescent reporter. Thermal annealing was performed by heating reactants to 70°C for 10 seconds
and subsequently cooling down to 25°C at arate of -1°C per 10 seconds. As expected, we observed
a fluorescent response equivalent to the concentration of added transcript in all Citrine probes
while the GAPDH probe showed no increased in fluorescence (Fig. 1e). We carried out the same
reaction without addition of helper strands and we observed a lower fluorescence response across
all conditions. These results suggest that the helper strands have a role in suppressing non-specific
binding between single-stranded overhangs in the probe and single-stranded domains in the RNA
target. We also observed very little increase in fluorescence in the case where no transcript was
added. Moreover, we performed thermal annealing experiments in a background of cellular mRNA
extracted from HEK-293 cells without observing any unspecific triggering. (Supplementary Fig.
4).

Since thermal annealing is not ideal for point-of-care diagnostic applications, we also implemented
a chemical denaturing strategy for unfolding RNA targets. Following work by Shelton et. al., we
evaluated the use of Urea and subsequent addition of MgCI?>* as a method to denature and renature
nucleic acid base pairing®®. We implemented this chemical annealing strategy by incubating a
hybridization probe, helper strands and corresponding target in 6.4M urea for 15 minutes followed
by incubation with Mg?" for 15 minutes. We observed target-specific increase in fluorescence
equivalent to thermal annealing conditions when adding the Citrine RNA transcript or a target
oligonucleotide (Fig. 1f).

We note that this assisted hybridization strategy is quite distinct from earlier work in dynamic
DNA nanotechnology that generally aimed to create fully autonomous systems that require
minimal intervention from an experimentalist. However, we found that separating the detection
reaction into an annealing step followed by a more conventional strand displacement-based
reporter reaction improved not only the robustness of input detection but also dramatically
accelerated it. Both features are crucial for designing a practical diagnostic test.

Molecular implementation of weights



In a gene expression classifier, RNA transcripts have varying levels of influence on the classifier
outcome. In silico, every transcript is assigned a numerical weight capturing its importance (Fig.
2a). At the molecular level, we implemented these weights by designing multiple hybridization
probes that target different regions within each RNA. For example, weights n=1, 2, N are realized
by having 1, 2 or N distinct probes targeting the same transcript (Fig. 2b). Even though the targeted
sequences on the transcript are different, each probe contains an identical output strand (domains
t1*x* in Fig. 1c) which then triggers a fluorescent reporter. Every additional hybridization probe
results in a proportional increase in the steady state fluorescence signal. The fluorescence due to
mRNA; should thus be proportional to the product wi*[mRNA ] where wi is an integer weight
and [mRNA] is the concentration of mRNA .

We implemented this set-up experimentally by designing reactions with 1, 2, 3 or 4 probes
targeting contiguous regions on the Citrine transcript. To avoid saturation of the reporter complex,
we operated the system in a regime where reporter and hybridization probes far exceeded the
transcript concentration. We measured the fluorescence signal corresponding to the reporter
complex before and after addition of the hybridized probe-RNA complexes until a steady state was
reached (Fig. 2¢). As expected, we found that the steady state signal was linearly proportional to
the number of hybridization probes bound to the RNA transcript for all RNA concentrations tested,
demonstrating that this mechanism can be used to assign an integer-valued weight to an RNA
transcript (Fig. 2d).

Summation and thresholding

Building a complete linear classifier requires mechanism for summing up weights and comparing
the sum to a threshold value to obtain the desired yes/no answer (Fig. 3a)*> 3. If there are multiple
transcripts with different weights of the same sign, we can compute the sum of their contributions
simply by using the same output sequence across all probes. The total concentration of output
strands and thus the final fluorescence signal is then proportional to the sum wi*[mRNA;]+...+
wn*[mRNAN]. Weights with negative values can be implemented using a distinct output sequence
for the negative probes. The sums of negative and positive weights in a classifier are then
represented by the total concentrations of two distinct output strands.

To complete the summation, the individual sums of positive and negative weights — represented
by (positive) concentrations of two distinct nucleic acids sequences — need to be subtracted from
one another. Intuitively, such a subtraction can be realized as a chemical reaction whereby
stoichiometric amounts of positive and negative output strands annihilate each other until only the
majority species is left. The concentration of that species then is the final result of the summation
over all weights. To implement such a stoichiometric annihilation reaction between two nucleic
acid species of unrelated sequence, we take advantage of the cooperative hybridization mechanism
("annihilator" gate) introduced by Zhang3%- 4,

The final step in the molecular computation pipeline is to compare the result of the summation to
a threshold value. In the simplest case, the threshold value is set to zero and the class a specific
input sample belongs to is determined simply by the sign of the final sum. Non-zero threshold
values can be realized by spiking the corresponding amount of negative or positive output strand
into the reaction which biases the sum by a controlled amount.



Molecular thresholding of RNA transcripts

To experimentally test whether an “off-the-shelf” thresholding (or subtraction) element could be
used in conjunction with our RNA detection scheme we created a DNA circuit consisting of three
modules: a translator gate that connects the output strand from the assisted hybridization reaction
to the threshold element, an “annihilator gate” and single-stranded reference oligonucleotide that
together act as the threshold element and a catalytic reporter that amplifies any signal exceeding
the threshold value to a constant level allowing for a Yes/No answer (Supplementary Fig. 5).

We tested this molecular thresholding system on three different transcripts (hnTERT, EGFR,
GAPDH) commonly used as biomarkers or reference genes for diagnostic purposes. To
accommodate different RNAs only the hybridization probe and helper strands needed to be
switched while all the other strand displacement components are retained, demonstrating
modularity of the design. Each mRNA was individually transcribed in vitro from a cDNA template
and quantified. For each transcript, we evaluated four experimental conditions using thermal
annealing with varying ratios of transcript to reference oligonucleotide. Steady state fluorescence
values were acquired two hours after addition of a catalytic amplifier and fluorescent reporter.
With all three transcripts, we only observed an increase in fluorescence when the amount of
transcript exceeded the amount of threshold.

A two-gene diagnostic classifier

For an experimental test of a full two-input classifier circuit, we selected hTERT, a cancer
biomarker, as the target (associated with a positive weight) and GAPDH, a common internal
reference gene in RT-PCR experiments as the reference RNA (associated with a negative weight)
(Fig. 3b). Relative quantitation of HTERT to GAPDH in human plasma has been suggested as an
early diagnostic and prognostic biomarker in human cancer!® 16-20: 41. 42 The thresholding
(subtraction) and amplification reaction are performed exactly as above but instead of an external
reference strand to set the threshold value, there now is an internal reference RNA associated with
a negative weight that effectively sets a threshold (Supplementary Fig. 6).

We evaluated four classifiers with an hTERT weight of +1 and GAPDH weights of -1, -2, -3 and
-4 (Fig. 3¢). A sample containing both RNA transcripts was first combined with corresponding
hybridization probes and helper strands. hTERT transcript was present at 15 nM while GAPDH
transcript was titrated from 0 nM to 14 nM with all DNA circuits components added at higher,
non-limiting concentrations. We further characterized a classifier response with an hTERT weight
of +1 and GAPDH weight of -2 with a range of concentrations of each transcript (OnM to 20nM)
(Fig. 3d,e). Overall, we evaluated 64 different experimental conditions where we recorded
fluorescence levels for 2 hours after addition of strand displacement components. We only
observed a significant increase in fluorescence in conditions when the amount of hTERT transcript
was above the threshold set by the product of the GAPDH transcript concentration and weight, in
agreement with the classifier design.

Training a multi-gene support vector machine



We next sought to scale up our molecular classifier framework. Discriminating between viral and
bacterial infections using molecular gene expression classification is a promising application since
it requires a rapid, cost-effective and self-contained process to be implemented in a clinical setting.
In 2016, Tsalik et. al. developed a peripheral whole blood gene expression classifier with 130
genes to differentiate between bacterial infections, viral infections, non-infectious illness and
healthy controls with 87% accuracy'®.

To build a molecular classifier, we first simplified the classification problem by distinguishing
only between viral and bacterial infections. We used the publically available gene expression data
corresponding to 115 viral infections and 70 bacterial infections for classifier training'®. For each
patient, gene expression values for 14,500 human genes were measured. We implemented a
support vector machine (SVM) to determine the minimal set of genes and corresponding weights
for this classification problem. This process involved iterating through multiple sets of features
(genes) and associated weights until converging to a solution that resulted in the best classification
outcome.

We trained an SVM algorithm with the following constraints: First we required a low number of
genes (<10) to allow for the classifier to be implemented at the molecular level. Second, we
constrained weights to integer values between -5 to +5. This choice was made to limit the number
of probes for a single gene as well as the overall size of the classifier. Third, we made the
misclassification penalty for bacterial samples 3 times higher than that for viral samples. This
choice was made because the worst possible outcome is to incorrectly diagnose a bacterial
infection as viral, delaying the use of antibiotics. Even though this classification model performed
well in the validation set, it is important to note that a model with a higher number of features may
be more robust when encountering gene expression variability absent in the training dataset. We
selected 9 classifiers with at least 80% accuracy in the training set and validated them using a
different gene expression data set’!. We selected the classification model with the highest
performance in the validation set to build a molecular classifier (Fig. 4a). The selected classifier
correctly labelled 94% and 80% of bacterial and viral samples in the training set and 89% of
bacterial and 90% of viral samples in the validation set (Fig. 4b,c).

A molecular implementation of the bacterial vs viral classifier

Next, we designed a molecular implementation of the bacterial vs. viral classifier. First, we
selected regions in each transcript that consisted of individual exons that were at least 200 base-
pairs long such that they could fit multiple hybridization probes. Due to the large number of
transcripts and associated probes, we implemented a probe design tool for systematically
generating the necessary DNA components for molecular classification. Each transcript was
assigned a number of hybridization probes and helper strands, based on the weights learned in
silico. Positive and negative transcripts were assigned hybridization probes with different output
domains such that the concentrations of the positive and negative output strands represent the
weighted sums of the respective RNA inputs, as described above. The complete DNA classifier
consists of 20 hybridization probes and 14 helper strands (two for each transcript). A strand
displacement cascade using two translator gates and two fluorescent reporters aggregate the signal
generated by the hybridization module. Overall, the circuit consists of 62 different
oligonucleotides.



Rather than performing the subtraction at the molecular level as we have done in the previous
example, we chose to use two distinct fluorophores to read out the positive and negative output
strands individually, which allowed us to more quantitatively characterize performance of
individual classifier components. A fluorescent reporter containing a 6-FAM (Fluorescein) (FAM)
and a quencher was associated with positive/bacterial transcripts while a fluorescent reporter
containing a 6-Carboxyl-X-Rhodamine (ROX) and a quencher was associate with negative/viral
transcripts (Fig. 5a). Upon reporter calibration, the fluorescence signal from the ROX reporter can
be subtracted from the FAM reporter signal to obtain a normalized signal used for classification
([FAM]-[ROX] nM). Samples resulting in a normalized signal of [FAM]-[ROX] > 0 belong to the
bacterial infection category while samples for which this signal is less than zero belong to the viral
infection category.

After assembling the molecular classifier, we first used synthetic DNA oligonucleotide targets to
individually test all 20 hybridization probes. Upon thermal annealing and subsequent strand
displacement, we confirmed that each oligonucleotide target triggered the intended fluorescent
channel with the expected signal intensity (corresponding to a unit weight) while the signal
remained near background in the other channel (Fig. 5b). Subsequently, we tested the molecular
classifier using in-vitro transcribed RNA species. After addition of each RNA transcript to the
molecular classifier, we again measured the fluorescence response across both channels. For each
transcript, we only observed significant increase in fluorescence in the expected channel. After
calibration and subtraction of both channel fluorescence signals, we obtained a normalized signal
for each transcript addition ([FAM] — [ROX] nM). We found this normalized signal to be
proportional to the weight assigned to each gene suggesting that the molecular weight
implementation was performed correctly (Fig. 5c).

Lastly, we tested our molecular classifier with samples containing RNA molecules matching the
expression profiles from the training set microarray data. We selected 12 samples corresponding
to six patients with viral and six patients with bacterial infections (Fig. 5d). We replicated the
original gene expression profile by adding each ¢cDNA amplicon based on its expected
concentration as calculated from the microarray data. Each amplicon contained a T7 promoter for
RNA transcription. Samples were then diluted to approximately 10 picomolar followed by in-vitro
transcription which resulted in 1000x amplification (Fig. 5¢). As expected, upon addition of each
sample to the molecular classifier, we observed significant triggering in both fluorescence
channels. All samples were classified correctly based on the normalized signal intensity.
Furthermore, we found a strong correlation between the normalized signal intensity and the
corresponding computational output for each sample as estimated using the corresponding SVM
model (Fig 51).

Discussion

We introduced a systematic framework for translating an in silico gene expression classifier into
DNA circuitry. We confirmed the robustness of this framework by building two distinct classifiers
with varying numbers of weights and inputs. Using our approach, any in silico classifier can in
principle be converted into a molecular classifier, synthesized for rapid prototyping and
experimentally validated.



We developed three novel building blocks to enable molecular computation with RNA transcripts
as inputs. First, breaking up transcript detection into two separate steps, assisted hybridization and
strand displacement, enabled us to robustly perform molecular computing with any RNA transcript
as an input. Second, by varying the number of probes that hybridize to an RNA transcript we were
able to differentially weigh the importance of transcripts. Third, by designing probes with shared
output sequences we were able to compute the weighted sum of multiple transcript. So far, we
have used these building blocks to create classifiers with up to seven distinct RNA inputs and up
to five (positive or negative) probes per transcript. However, the size of the classifiers could in
principle be scaled to tens or hundreds of targets with the number of weights only limited by the
size of the transcripts. In principle, potential cross-talk between probes and incorrect targets
becomes more likely when the number of probes is higher. Nevertheless, a thermodynamic
simulation of these interaction can inform the selection of probes across the length of a target RNA
transcript that exhibit little or no cross-talk.

Compared with existing methods for gene expression analysis, our approach is well-suited for
inexpensive and rapid examination of clinical samples (Supplementary Table 5). Because of its
experimental simplicity, our workflow is fast: the combined reaction time for the assisted
hybridization module and strand displacement reaction was under 20 minutes with no additional
time required for computational analysis and data interpretation. More fundamentally, the amount
of work required to perform gene expression classification using our framework is independent of
the number of genes in the assay. The complexity of RT-qPCR experiments, the current gold-
standard for gene expression profiling in the clinic, in contrast scales linearly with the number of
genes being analyzed. The DNA-based classification workflow thus dramatically reduces the need
for liquid handling making it a good fit for point-of-care applications. RNA sequencing and
barcoded RNA hybridization (Nanostring) also allow for multiplexed gene expression analysis in
a single reaction but require expensive instrumentation or consumables. In contrast, we perform
expression analysis by harnessing DNA computation while relying on inexpensive
instrumentation: a thermocycler and a fluorescence reader. Finally, all alternative approaches
provide information about the expression of individual genes in a panel, while our approach
aggregates this information at the molecular level and provides a single, easy-to-interpret
diagnosis, enabling fast turnaround.

It should be noted however that the rate of the strand displacement reaction is highly dependent
on the concentration of the RNA inputs, and including a pre-amplification step in the workflow
would increase processing time. In this work, we demonstrated amplification of a mixture of
cDNA amplicons in the low picomolar range using in vitro transcription before molecular
classification. However, RNA transcripts are typically present at attomolar or femtomolar
concentrations in tissue and blood RNA samples® !°. Other amplification strategies, such as
rolling circle amplification or loop mediated isothermal amplification, will need to be explored
for further amplification and may be more suited for point of care applications?® 446, Moreover,
the output of the classification can be measured using a different readout system such as a paper
based substrate or a colorimetric reaction to further increase sensitivity or simplify readout of
results?® 24,

Still, by demonstrating a robust and modular approach for instrument-free analysis of complex
gene expression signatures, our work closes an important gap in the existing toolbox for



engineering affordable point-of-care diagnostics. The number of clinical studies examining how
variations in peripheral gene expression are associated with disease diagnostics, monitoring and
prognosis is ever increasing, and the use of molecular computation for gene expression analysis
suggests a path towards translating this academic knowledge into future diagnostics.

Methods

DNA oligonucleotides

All DNA oligonucleotides were purchased from Integrated DNA Technology (IDT). Individual
DNA oligonucleotides were suspended to 100 uM and stored in water. Fluorophore and quencher-
labelled oligonucleotides were ordered HPLC purified, except for FAM-labelled oligonucleotides.
Unlabeled oligonucleotides were unpurified.

Hybridization probe preparation

Hybridization probes consisted of annealed complex of two DNA oligonucleotides: a 21-nt bottom
strand and a 56-nt top strand. The strands were mixed stoichiometrically with 30% excess of the
bottom strand and then thermally annealed: heated to 98C for 10 seconds and cooled uniformly
from 98°C to 25°C over the course of 73 minutes.

Hybridization probes for the viral/bacterial classifier

40 oligonucleotides (top and bottom strands) corresponding to 20 hybridization probes were order
using IDT 25 nmole DNA Plate Oligo synthesis normalized to 100uM on IDT LabReady buffer.
For purification, 20 top strands and 20 bottom strands were pooled together respectively and
purified as a mixture using 12% Urea 19:1 acrylamide: bisacrylamide gel (SequaGel UreaGel
System. National Diagnostics). Subsequently, gel bands were visualized using ultraviolet light
with a fluorescent backplate, and then cut out and eluted into 1 ml 1X TAE, 12.5 mM Mg * for
12 hours. Concentrations were calculated by measuring absorbance at 260 nm (Eppendorf
Biophotometer plus) and using IDT-specified extinction coefficient.

Strands displacement probe preparation

Strand displacement probes (translators, reporters, catalytic amplifiers and annihilator gates)
consisted of annealed complexes of two or more DNA oligonucleotides. The strands were mixed
stoichiometrically with 10% excess of the target binding strand for the translator, catalytic
amplifier gate and annihilator gate. Subsequently, DNA complexes were thermally annealed:
heated to 98C for 10 seconds and cooled uniformly from 98°C to 25°C over the course of 73
minutes. After annealing, individual probes were purified using a 12% non-denaturing PAGE gel
as described above.

Cellular mRNA preparation

Cellular mRNA was extracted from HEK-293 (ATCC 30-2003) human cell line using a magnetic
isolation kit for mRNA (NEB Next Poly(A) mRNA Magnetic Isolation kit #E7490). Cellular
mRNA was aliquoted and stored in nuclease free water with RNAse inhibitor (NEB) at -80°C until
needed.

RNA target preparation

10



Amplicons corresponding to RNA target sequences were generated by PCR amplification of HEK-
293 cDNA or human genomic DNA (ThermoFisher Catalog number 4312660). Amplification of
each target was carried out with a corresponding forward primer containing a T7 RNA polymerase
promoter sequence (5-TAATACGACTCACTATAGGG-3). After amplification, each product
was visualized on a 1.5% agarose gel and the correct band was excised and processed with a gel
extraction kit (QIAGEN catalog number 28704). RNA targets were generated using T7
RiboMAX™ Express Large-Scale RNA Production System (Promega). Purification of RNA
targets was carried out using a phenol/chloroform extraction protocol. Final RNA concentrations
were determined using absorbance at 260 nm and estimated extinction coefficient for the
corresponding single stranded RNA. RNA was aliquoted and stored in nuclease free water with
RNAse inhibitor (NEB) at -80°C until needed.

Time-course fluorescence measurements

Kinetic fluorescence measurements were performed using a fluorescence plate reader for higher
measurement throughput (Biotek Synergy HTX). Thermal annealing and strand displacement
reactions were carried out in 1X TAE, 12.5 mM Mg **.

Fluorescence normalization

Arbitrary fluorescence units were converted to concentrations using a calibration curve of each
reporter complex. To create a calibration curve, annealed reporter complex stock was suspended
in 1X TAE/Mg"" and an initial baseline fluorescence signal was recorded. That was followed by
stepwise addition of known concentrations of reporter triggering strands. After each trigger strand
addition, the steady state was recorded.

Viral/Bacterial SVM training and validation

For training of the support vector machine algorithm, we obtained microarray data (NCBI
GSE63990) for 273 ill patients and 44 healthy volunteers'®. We processed the dataset by first
selecting samples labelled only as bacterial or viral infections (70 and 115 samples respectively)
and transforming the microarray gene expression ratios by logarithm of base 2 to estimate
biological expression levels. We trained an SVM algorithm (classifier with a linear kernel) on this
data set to distinguish between viral and bacterial classes using the svm.LinearSVC function from
Python library sklearn. We used a squared hinge loss function with L1 norm while iterating through
multiple penalty parameters to obtain SVM classifiers with varying number of features. We found
9 models that employed less than 10 genes while maintaining a classification accuracy of 80% or
higher in the training set. We evaluated these classifiers using a different microarray dataset (NCBI
GSE6269) where they performed similarly well (AUC > 0.90)?!. Finally, we selected the classifier
with the highest AUC value for experimental implementation.

Computational tool for generating hybridization probes from the in silico classifier

First, we generated an input file containing each transcript sequence and their corresponding
weights from the in silico classifier. A python script sliced the transcript sequence to generate
helper strands (first and last 60 nts.), hybridization targets (30 nt. each) and hybridization probes.
Hybridization probes were generated with either a positive or negative sequence domain based on
the classifier weight. The output of this script contains each component sequence (helper, top
strand hybridization probe, bottom strand hybridization probe and target sequence) and name.

11



Bibliography

l.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Vargas, J.D. & Lima, J.A.C. Coronary artery disease: a gene-expression score to predict
obstructive CAD. Nat. Rev. Cardiol, 243-244 (2013).

Veer, V.t.L.J.,, Dai, H., Vijver, V.M.J. & He, Y.D. Gene expression profiling predicts
clinical outcome of breast cancer. Nature, 530-536 (2002).

Blank, P.R. et al. Cost-effectiveness analysis of prognostic gene expression signature-
based stratification of early breast cancer patients. Pharmacoeconomics 33, 179-190
(2015).

Myers, M.B. Targeted therapies with companion diagnostics in the management of breast
cancer: current perspectives. Pharmgenomics Pers Med, 7-16 (2016).

Rotunno, M. et al. A Gene Expression Signature from Peripheral Whole Blood for Stage |
Lung Adenocarcinoma. Cancer Prev Res 4, 1599-1608 (2011).

Lunnon, K., Sattlecker, M. & Furney, S.J. A blood gene expression marker of early
Alzheimer's disease. J Alzheimers Dis. 33, 737-753 (2013).

Koscielny, S. Why most gene expression signatures of tumors have not been useful in the
clinic. Sci. Transl. Med. 2 (2010).

Sotiriou, C. & Piccart, M.J. Taking gene-expression profiling to the clinic: when will
molecular signatures become relevant to patient care? Nat. Rev. Cancer 7, 545-553 (2007).
Cassarino, D.S., Lewine, N., Cole, D. & Wade, B. Budget impact analysis of a novel gene
expression assay for the diagnosis of malignant melanoma. J Med Econ. 17, 782-791
(2014).

Tsalik, E.L. et al. Host gene expression classifiers diagnose acute respiratory illness
etiology. Sci. Transl. Med. 8 (2016).

Best, M.G. et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer,
Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 28, 666-676 (2015).
Yuan, T., Huang, X., Woodcock, M., Du, M. & Dittmar, R. Plasma extracellular RNA
profiles in healthy and cancer patients. Sci. Rep. 6 (2016).

Dasi, F. et al. Real-time quantification in plasma of human telomerase reverse transcriptase
(hTERT) mRNA: a simple blood test to monitor disease in cancer patients. Lab. Invest. 81,
767-769 (2001).

Zhang, L. et al. Salivary Transcriptomic Biomarkers for Detection of Resectable Pancreatic
Cancer. Gastroenterology 138, 949 (2009).

Zhang, L. et al. Development of transcriptomic biomarker signature in human saliva to
detect lung cancer. Cell Mol Life Sci 69, 3341-3350 (2012).

Kyo, S., Takakura, M., Fujiwara, T. & Inoue, M. Understanding and exploiting hTERT
promoter regulation for diagnosis and treatment of human cancers. Cancer Sci. 99, 1528-
1538 (2008).

Lledo et al. Real time quantification in plasma of human telomerase reverse transcriptase
(hTERT) mRNA in patients with colorectal cancer. Colorectal Dis 6, 236-242 (2004).
March-Villalba, J.A. et al. Cell-Free Circulating Plasma hTERT mRNA Is a Useful Marker
for Prostate Cancer Diagnosis and Is Associated with Poor Prognosis Tumor
Characteristics. PLoS ONE (2012).

12



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Miura, N., Nakamura, H., Sato, R. & Tsukamoto, T. Clinical usefulness of serum
telomerase reverse transcriptase (WnTERT) mRNA and epidermal growth factor receptor
(EGFR) mRNA as a novel tumor marker. Cancer Sci. 97, 1366-1373 (2006).

Terrin, L. et al. Relationship between tumor and plasma levels of hTERT mRNA in patients
with colorectal cancer: implications for monitoring of neoplastic disease. Clin. Cancer Res.
14, 7444-7451 (2008).

Ramilo, O., Allman, W., Chung, W., Mejias, A. & Ardura, M. Gene expression patterns in
blood leukocytes discriminate patients with acute infections. Blood 109, 2066-2077 (2007).
Chen, S.X. & Seelig, G. An Engineered Kinetic Amplification Mechanism for Single
Nucleotide Variant Discrimination by DNA Hybridization Probes. J. Am. Chem. Soc 138,
5076-5086 (2016).

Pardee, K., Green, A.A., Ferrante, T. & Cameron, D.E. Paper-based synthetic gene
networks. Cell 159, 940-954 (2014).

Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular
components. Cell 165, 1255-1266 (2016).

Jung, C. & Ellington, A.D. Diagnostic applications of nucleic acid circuits. Acc. Chem. Res
47, 1825-1835 (2014).

Gootenberg, J.S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356,
438-442 (2017).

Qian, L. & Winfree, E. Scaling Up Digital Circuit Computation with DNA Strand
Displacement Cascades. Science 332, 1196-1201 (2011).

Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand
displacement cascades. Nature 475, 368-372 (2011).

Seelig, G., Soloveichik, D., Zhang, D. & Winfree, E. Enzyme-Free Nucleic Acid Logic
Circuits. Science 314, 1585-1588 (2006).

Chen, Y.-J. et al. Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8, 755-762 (2013).

Genot, A.J., Fujii, T. & Rondelez, Y. Scaling down DNA circuits with competitive neural
networks. J. R. Soc. Interface 10,20130212 (2013).

Franco, E. et al. Timing molecular motion and production with a synthetic transcriptional
clock. Proc Natl Acad Sci U S A 108 (2011).

Mills, A.P. Gene expression profiling diagnosis through DNA molecular computation.
Trends Biotechnol 20, 137-140 (2002).

Green, A.A. et al. Complex cellular logic computation using ribocomputing devices.
Nature 548, 117-121 (2017).

Brown, M.P.S., Grundy, W.N. & Lin, D. Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proc Natl Acad Sci U S A 97, 262-267
(2000).

Abusamra, H. A comparative study of feature selection and classification methods for gene
expression data of glioma. Procedia Comput Sci 23, 5-14 (2013).

Liu, H., Li, J. & Wong, L. A comparative study on feature selection and classification
methods using gene expression profiles and proteomic patterns. Genome Inform. 13, 51-60
(2002).

Shelton, V.M., Sosnick, T.R. & Pan, T. Applicability of Urea in the Thermodynamic
Analysis of Secondary and Tertiary RNA Folding. Biochemistry 38, 16831-16839 (1999).

13



39. Zhang, D. & Seelig, G. DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits.
LNCS 16, 176-186 (2010).

40. Zhang, D. Cooperative Hybridization of Oligonucleotides. J. Am. Chem. Soc 133, 1077-
1086 (2011).

41.  Dasi, F. et al. Real-time quantification of human telomerase reverse transcriptase mRNA
in the plasma of patients with prostate cancer. Ann. N. Y. Acad. Sci. 1075, 204-210 (2006).

42. Yang, Y.J., Chen, H., Huang, P., Li, C.H. & Dong, Z.H. Quantification of plasma hTERT
DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain
reaction. Clin Invest Med 34 (2011).

43. Lizardi, P.M., Huang, X., Zhu, Z. & Bray-Ward, P. Mutation detection and single-molecule
counting using isothermal rolling-circle amplification. Nature Genet 19, 225-232 (1998).

44. Zhao, W., Ali, M.M., Brook, M.A. & Li, Y. Rolling circle amplification: applications in
nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed Engl.
47, 6330-6337 (2008).

45. Notomi, T., Okayama, H. & Masubuchi, H. Loop-mediated isothermal amplification of
DNA. Nucleic acids Res 28, €63 (2000).

46. Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification
(LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877-
882 (2008).

Acknowledgements. We thank Yuan-Jyue Chen, Sifang Chen, Gourab Chatterjee and David Yu
Zhang for their support and helpful discussion. This work was supported by NSF grants CCF-
171449 and CCF-1317653.

Author contributions. R.L. and G.S. designed experiments and wrote the paper. R.L. and R.-W.
performed the experiments.

Supplementary Materials. Supplementary information includes supplementary text, figures and
tables.

Code availability. The computer code corresponding to the computational sections of this work
are available in the following GitHub repository: https://github.com/rmlb/classifier probegen/ or
from the corresponding author upon request.

Data availability. The characterization data and experimental protocols for this work are

available within this manuscript and its associated Supplementary Information, or from the
corresponding author upon request.

14



4 Genes ¥ Genes Feare e Transcrpt Welght b probes - Feature detection o
Trai Detection ~ *'c9M"9 c i @ 3 Molsatl “WiGi0hing - Amplification
g rain ! ompile 3 olecular | /wasampie Qeghicd AN
k4 Sum  Activation - .
$ model ’—’®\F‘umm e | o oA | 0320 5 | classifier i ey
GereB)e— (1) 2] J 15 i,
. P 00| P g @ = | =P PESR R
g
- -—»@ %L @ — Sample (n)
Gene expression Support Vector Molecular weight Rapid gene expression
data Machine design diagnostics
Feature
Detection RNA transcript

GereR)o— () NN,
H‘ < \ )

H-
Gene B)o—> _J
EEED)e— (1) U <

— —> Hyb. probe
@ > @ 4 B\ Assisted T Strand
o hybridization displacement

* / t y @ Fluorescent "

Helper strands reporter
Gene E)e— ()

Room temperature Thermal annealing Chemical annealing
Oligonucleotide ™= Citrine No target Citrine + Helpers ™= Citrine No target Oligonucleotide ™= Citrine + Helpers No target
20 Citrine Probe #1 40 Citrine probe #2 40 Citrine Probe #1 20 Citrine probe #2 20 Citrine Probe #1 20 Citrine probe #2
30 . 30 30 o 30 sz 30 30
S 2 { 20 —~ 20 ! 20 { — 20 ; 20 —
= = =
s 10 c 10 10 c 10 10
T o 0 <§( 0 e {1 o E: 0 -/ 1 o
T_‘; 0 15 30 45 60 0 15 30 45 60 L 0 15 30 45 60 0 15 30 45 60 L 0 15 30 45 60 0 15 30 45 60
& o ] s < -
o> a0 Citrine Probe #3 20 GAPDH probe % 40 Citrine Probe #3 20 GAPDH probe g’ 20 Citrine Probe #3 20 GAPDH probe
N ) 2
g 30 30 - 30 - 30 - 30 30
N g @ @
5 2 g 20 N 20 f 20 N 20 2 20
= 5] ]
£ 10 10 € 10 10 € 10 10
S ] £
z (=] | S
0 0 Zz of - 0 Z 0 0
0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60
Time (minutes) Time (minutes) Time (minutes)

Figure 1 | A universal framework for rapid prototyping of molecular classifiers for gene expression
diagnostics. a, An in-silico classifier is trained and validated on publicly available gene expression data. The
weights and other characteristics of the in silico classifier are then translated into DNA complexes that realize
the classifier at the molecular level. Finally, the molecular classifier is tested with RNA targets and a diagnosis
is obtained. b, As a first step towards creating a molecular gene expression classifier, we developed a systematic
approach for detecting specific RNA transcripts with DNA strand displacement cascades ¢, The molecular
mechanism for coupling DNA-based circuits with endogenous RNA transcripts consists of two reaction steps.
First, a hybridization probe and helper strands are hybridized to the target site using chemical or thermal
annealing. Subsequently, a fluorescent reporter is added to the reaction and binds to the product of the assisted
hybridization reaction via strand displacement. d, We tested the RNA detection reaction by designing 3
hybridization probes targeting different regions in Citrine and a probe targeting a region in GAPDH. At room
temperature, the addition of Citrine transcript (30 nM) resulted in no significant triggering in all probes. As a
positive control, we added a target oligonucleotide (30 nM) for each probe that resulted in the expected
fluorescence response. e, Experimental results corresponding to the thermal annealing protocol where each probe
was annealed with Citrine RNA and corresponding helper strands before addition of the fluorescent reporter. All
Citrine probes were triggered by the Citrine RNA while the GAPDH probe resulted in no fluorescence response.
Without inclusion of the helper strands, Citrine probes resulted in a diminished fluorescence response. f,
Experimental results corresponding to the chemicali gnnealing protocol where each probe was incubated with
Citrine RNA and corresponding helper strands in Urea and subsequently in MgCl.. We observed the expected
fluorescence response with addition of an oligonucleotide target or Citrine transcript.
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Figure 2 | Implementation of classifier weights by targeting of multiple adjacent regions in a transcript. a,
Each transcript is assigned a weight reflecting its influence in the classifier decision. b, Each transcript is targeted
with a number of probes equivalent to its classifier weight. By targeting probes to neighboring regions, only a
single pair of flanking helper strands is necessary for each transcript hybridization event. ¢, Probe binding was
characterized through fluorescence kinetics experiments. Initial fluorescence values correspond to quenched
reporter in solution. After 10 minutes, annealed probe-transcript complexes are added to the solution resulting in
an increase in fluorescence proportional to the number of hybridization probes (1, 2, 3 or 4). Reactions were carried
out with 50 nM of reporter, 40 nM of combined hybridization probe and different concentrations of Citrine
transcript d, Steady state fluorescence response corresponding to 1, 2, 3 or 4 hybridization probes targeting the
H2B-Citrine RNA transcript. As expected, we observed a linear relationship between the number of hybridization
probes and the fluorescence response across a range of Citrine RNA concentrations.
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Figure 3 | Molecular implementation of a two-gene classifier for cancer diagnostics a, A sum and activation
function are used to aggregate weighted gene expression information into a single, interpretable output. Upon
transcript detection and scaling, a sum function calculates the resulting net input. If the net input is higher than a
threshold, an activation function produces a catalytic response. b, Graphical representation of the hTERT/GAPDH
molecular classifier with variable negative weights for GAPDH and a weight of +1 for hTERT. ¢, Final state
fluorescence measurements after 2 hours corresponding to four classifiers with varying GAPDH weights. Grey
line indicates ideal thresholding boundary. Reactions were carried out with 50 nM of reporter, 100 nM of helper
strands and 30 nM of catalytic amplifier, annihilator, translators and hybridization probes. d, 2-hour fluorescence
measurements after addition of strand displacement components corresponding to a +1 hTERT / -2 GAPDH
molecular classifier. e, End point fluorescence measurements after 2 hours corresponding to a +1 hTERT / -2
GAPDH molecular classifier.
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Figure 4 | In silico training of a minimal linear classifier to discriminate viral from bacterial infections
based on host gene expression data. a, ROC curves illustrate the diagnostic ability of a binary classifier system
as the threshold is varied. ROC curves correspond to the classification performance in the validation set from 10
classification models selected from the training phase. We used the classification model with the highest AUC
in the validation dataset to build a molecular classifier. b, Performance of the selected classifier in the validation
set where 89% and 90% of bacterial and viral samples were labeled correctly. ¢, Performance of the selected
classifier in the training set where 94% and 80% of bacterial and viral samples were labeled correctly.
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Figure 5| A molecular classifier of host gene expression for respiratory infections diagnostics. a, Graphical
representation of the viral vs. bacterial infection classifier. The classifier uses 7 genes. 20 hybridization probes
assign weights ranging from -4 to +5 to each transcript. The weighted sums of all transcripts with positive and
negative weights are independently measured using two spectrally distinct reporters. b, As an initial test, we
added 20 oligonucleotides (3nM) corresponding to the target sequences of each hybridization probe individually
and measured the fluorescence response across both channels. Targets 1-10 corresponded to transcripts with
positive weights (FAM) while targets 11-20 corresponded to transcripts with negative weights (ROX). As
expected, each target resulted in specific triggering of the assigned reporter with almost no crosstalk. ¢, The
molecular classifier was tested using in vitro transcribed RNA transcripts. Addition of each transcript resulted in
a fluorescence signal proportional to the weight associated with a transcript. d, Gene expression data for 6
bacterial and 6 viral samples selected from the training set to validate the molecular classifier. e, Gene expression
patterns for each sample were replicated by mixing gene amplicons containing T7 RNA polymerase promoter
sequences in the ratios expected from the microarray data. Subsequently, the samples were in vitro transcribed
resulting in production of RNA molecules with approximately 1000X amplification. Upon addition of the
molecular classifier, fluorescence signals were recorded across both channels and a classification value was
recorded. f, All samples were classified correctly by the molecular classifier: a positive normalized signal was
obtained for bacterial class samples and a negative for viral class samples. The normalized fluorescence signal
matches the estimated computational SVM output, reflecting the correct implementation of the weights in a
sample containing multiple RNA transcripts.
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