WILD THEORIES WITH O-MINIMAL OPEN CORE

PHILIPP HIERONYMI, TRAVIS NELL, AND ERIK WALSBERG

ABSTRACT. Let T be a consistent o-minimal theory extending the theory of
densely ordered groups and let T’ be a consistent theory. Then there is a
complete theory T* extending 7" such that 7" is an open core of T*, but every
model of T* interprets a model of T”. If T’ is NIP, T* can be chosen to be
NIP as well. From this we deduce the existence of an NIP expansion of the
real field that has no distal expansion.

1. INTRODUCTION

Let R be an expansion of a dense linear order (R, <) without endpoints. The
open core of R, denoted by R°, is the structure (R, (U)), where U ranges over
all open sets of all arities definable in R. Miller and Speissegger introduced this
notion of an open core for expansions of (R, <) in [16], and established sufficient
conditions on R such that its open core is o-minimal. Here we want to answer the
following question:

Is there any restriction on what kind of structures can be interpreted in an
expansion of (R, <) with o-minimal open core?

This question, although formulated slightly differently, was already asked by Dolich,
Miller and Steinhorn in a preprint version of [7]. Our answer is negative. To give
a precise statement of our result, we need to recall the notion of an open core of a
theory as introduced in [6]. Let T* be a theory extending the theory of dense linear
orders without endpoints in a language £* D {<}, and let T be another theory in
a language £. We say that T is an open core of T* if for every N |= T* there is
M E T such that A° is interdefinable with M.

Theorem A. Let T be a consistent o-minimal theory extending the theory of
densely ordered groups and let T” be a consistent theory. Then there is a complete
theory T* extending T such that

(1) T* interprets a model of T”,

(2) T is an open core of T™*,

(3) T* is NIP if T" is NIP,

(4) T* is strongly dependent if T’ is strongly dependent.

Statements (3) and (4) of Theorem A indicate that we can choose T in such a
way that not only the open core of T is o-minimal, but also T* remains tame in
the sense of Shelah’s combinatorial tameness notions. For definitions of NIP and
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strong dependence, we refer the reader to Simon [19].

We will deduce the following analogue for o-minimal expansions of the ordered real
additive group from the proof of Theorem A.

Theorem B. Let R be an o-minimal expansion of (R, <,+) in a language £ and
let 77 be a consistent theory such that |£| < |R| and |7”| < |R|. Then there exists
an expansion S of R such that

(1) S interprets a model of 17,

(2) the open core of S is interdefinable with R,

(3) S is NIP if T’ is NIP,

(4) S is strongly dependent if T” is strongly dependent.

We will deduce from work in [6] that an expansion of (R, <,+) has o-minimal open
core if and only if it does not define a discrete linear order. Therefore in Theorem
B the statement S interprets a model of T' cannot be replaced by the statement S
defines a model of T".

The outline of the proof of the above results is as follows. For simplicity, let R
be (R, <,+) and let T” be a consistent theory in a countable language £ with an
infinite model. Take a dense basis P of R as a Q-vector space. By [7, 2.25] the
open core of the structure (R, <,+, P) is R. We further expand (R, <,+, P) by
a binary predicate E such that F is an equivalence relation on P, has countably
many equivalence classes and each equivalence class of F is dense in P. Now take a
countable model M of T" and expand (R, <,+, P, E) to an expansion S such that
the quotient P/E becomes an L’-structure that is isomorphic to M. Since each
equivalence class of E is dense in P and hence in R, we can define this fusion S of
(R, <,+, P, E) and M in a way that the open core of the resulting structure § is still
R. Indeed we use ideas and techniques from [7] to prove a quantifier-elimination
result for S analogous to the one of (R, <, +, P) (see [7, 2.9]), and from that deduce
that the open core of S is R.

In the special case that £’ is empty and T” is the theory of infinite sets, the con-
struction we outlined above gives the following extension of the results from [7].

Theorem C. Let T be a complete o-minimal theory extending the theory of densely
ordered groups in a language £, and let L. be the language £ augmented by a unary
predicate P and a binary predicate E. Let T¢ o be the L.-theory containing 7" and
axiom schemata expressing the following statements:

(1) P is dense and dclp-independent,

(2) E C P? is an equivalence relation on P,
(3) each equivalence class of F is dense in P,
(4) FE has infinitely many equivalence classes.

Then T, o is complete, and T is an open core of T, .

Theorem B should be compared to Friedman and Miller [11, Theorem A]. Among
other things, the latter result implies the existence of an expansion of the real field
that defines a model of first-order arithmetic, but every subset of R definable in this
expansion is a finite union of an open set and finitely many discrete sets. Therefore
both our result and [11] describe situations in which topological tameness exists
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without model-theoretic tameness.

In general our results rule out that the property of having an o-minimal open core
has any consequences in terms of model-theoretic tameness of the whole structure.
At first glance this might look like a disappointing result. However, we do not share
this viewpoint. We regard our results as further evidence that in model-theoretically
wild situations geometric tameness can often prevail. In some of those situations
the open core of a structure or theory seems to be the right tool that can capture
precisely this tameness, making certain phenomena trackable by model-theoretic
analysis.

Theorem B(3) has a few interesting corollaries about NIP expansions of (R, <, +).
First of all, it states that for every NIP theory T” of cardinality at most continuum
there is an NIP expansion of (R, <,+) that interprets a model of 7. Therefore
the model theory of NIP expansions of (R, <, +) is in general as complicated as the
model theory of arbitrary NIP theories. We use this observation to deduce a new
result about the distality of NIP expansions of (R, <, +). The notion of distality was
introduced by Simon in [18] to single out those NIP theories and structures that can
be considered purely unstable. While every o-minimal expansions of (R, <,+) is
distal, there are several natural examples of non-distal NIP expansions of (R, <, +)
(see [13]). However, by Chernikov and Starchenko [4] even just having a distal
expansion guarantees certain desirable combinatorial properties of definable sets
(the strong Erdos-Hajnal property). Therefore it is interesting to know whether or
not all NIP expansions of (R, <,+) have a distal expansion. Although we do not
know it, we expect all examples of non-distal NIP expansions of (R, <, +) produced
in [13] to have distal expansions. So far the only known NIP theory without an
distal expansion is the theory of algebraically closed fields of characteristic p by [4,
Proposition 6.2]. Combining this with Theorem B, we almost immediately obtain
the following.

Theorem D. There is an NIP expansion of (R, <,+) that does not have a distal
expansion.

This is also the first example of an NIP expansion of any densely ordered set that
does not have a distal expansion.

While in general for every countable NIP theory there is an expansion of (R, <, +)
that interprets a model of this theory, there is a natural class of expansions of
(R, <,+) in which models of certain NIP theories in countable languages cannot
be interpreted. A set X C R is somewhere dense and co-dense if there is an open
interval I such that X NI is dense and co-dense in I. We say an expansion of (R, <)
is noiseless if it does not define a somewhere dense and co-dense subset of R.! The
expansion § we produce for Theorem B is not noiseless. It is therefore natural to
ask whether in Theorem B we can require S to be noiseless. The answer to this
question is negative.

1The name noiseless was suggested by Chris Miller. Being noiseless is equivalent to the state-
ment that every definable subset of R either has interior or is nowhere dense. The latter condition
has also been called i-minimality by Fornasiero [9].
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Theorem E. Let R be a noiseless NIP expansion of (R, <,4+,1). Then R has
definable choice, that is: for A C R™ x R” (l-definable in R there is an (-definable
function f : 7(A) — R"™ such that

(1) gr(f) € A4,

(2) f(a) = f(b) whenever a,b € 7(A) and A, = Ap,

where 7 : R™T™ — R™ is the projection onto the first m coordinates.

It follows from Theorem E that if a noiseless NIP expansion R of (R, <,+,1) in-
terprets a structure M, then R defines an isomorphic copy of M. We will prove
Theorem E in greater generality. In particular, Theorem E not only holds for
noiseless NIP expansions, but also for noiseless NTP, expansions (for a definition
of NTP; see [19]).

We now show that Theorem B fails when we require S to be noiseless. Let p be a
prime and [, be the field with p elements. By Shelah and Simon [17, Theorem 2.1]
if V= (V,+,...) is an infinite Fp-vector space and < is a linear order on V, then
(V, <) has IP. Suppose now that M = (M, <,...) is an expansion of an infinite
linear order (M, <) and that V is an M-definable infinite Fp-vector space with
underlying set V' C M*. The lexicographic order on M* induced by < is linear and
induces a linear order on V. It follows that M has IP. Thus no NIP expansion of
a linear order defines an infinite IF-vector space. By Theorem E no noiseless NIP
expansion of (R, <, 4, 1) interprets an infinite vector space over a finite field.

Open questions. We end the introduction with a few open questions.

1. We work here in the context of ordered structures and o-minimal open core.
It is likely that our techniques can be used to extend our results to various other
settings. In particular, by using the technology from Berenstein and Vassiliev [2]
rather than from [7] one should be able produce analogues of Theorem A and B for
other geometric structures such as the field of p-adic numbers.

2. Similar questions can be asked about NIP expansions of (N, <). Since every
such expansion has definable Skolem functions, we again have some limitations on
what kind of theories can be interpreted in such a structure. Can we say anything
more? For example: can an NIP expansion of (N, <) interpret an infinite field? Is
there an NIP expansion of (N, <) that does not admit a distal expansion?

3. Is there a noiseless NIP expansion of (R, <,+) that does not admit a distal
expansion? Is every infinite field interpretable in a noiseless NIP expansion isomor-
phic to (R,+,) or (C,+,)?

The previous question is even open for d-minimal NIP expansions, a subclass of
the class of noiseless NIP expansions (see [15] for a definition of d-minimality). It
follows from Fornasiero [10, Theorem 4.13] that any uncountable field interpretable
in a d-minimal expansion is isomorphic to (R, +, ) or (C,+,-). Thus in this setting
it suffices to show that no d-minimal NIP expansion interprets a countable field. It
is not difficult to show that any countable set definable in a d-minimal expansion
admits a definable order with order type w. Thus, if the above question about the
interpretability of infinite fields in NIP expansions of (N, <) has a negative answer,
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then any infinite field interpretable in a d-minimal NIP expansion of (R, <,+) is
isomorphic to (R, +,-) or (C,+,).

Is every noiseless NIP expansion of (R, <,+) d-minimal? We doubt that this state-
ment is true, but it seems difficult to produce a counterexample.

Acknowledgments. The authors thank Antongiulio Fornasiero and Chris Miller
for helpful conversations around the topic of this paper.

Notation. We will use m,n for natural numbers and x for a cardinal. Let X,Y
be sets. We denote the cardinality of X by |X|. For a function f : X — Y, we
denote the graph of f by gr(f). If Z C X xY and z € X, then Z, denotes
theset {y € Y : (x,y) € Z}. If a = (a1,...,a,), we sometimes write Xa for
X U{a,...,a,}, and XY for X UY.

Let £ be a language and T an L-theory. Let M = T and A C M. In this
situation, L£-definable always means L-definable with parameters. If we want to
be precise about the parameters we write £-A-definable to indicate L£-definability
with parameters from A. Let b € M™. Then we write tp,(b|A) for the L-type of b
over A. Moreover, dcly(A) denotes the definable closure of A in M. Whenever T
is o-minimal, dcly is a pregeometry.

2. THE FUSION

Let T be a consistent o-minimal theory extending the theory of densely ordered
groups with a distinguished positive element, and let £ be its language. Let L’
be a relational language disjoint from £, and let 7" be a consistent £’-theory. In
this section we will construct a language £* O £ and a complete L*-theory T™*
extending T such that T is an open core of T* and T* interprets 7”. In Section
3 we show that T is NIP whenever T is, and in Section 4 we prove that strong
dependence of T" implies strong dependence of T*.

By replacing T by a completion of T and T” by a completion of T”, we can directly
reduce to the case that both T and T” are complete. So from now, we assume that
T and T' are complete.

Let L. be £ expanded by a unary predicate P and a binary predicate E such that
neither P nor E are not in £'. Let T, be the extension of T' by axiom schemata
expressing the following statements:

(T1) P is dense and dclp-independent,
(T2) E C P? is an equivalence relation on P,
(T3) each equivalence class of E is dense in P.

Let £* = L. U L. For a given L'-formula 6 we define a £*-formula 6, recursively
as follow:

if 8 is x = y, then define 6, as Exy,

if 0 is Rxzq ...z, where R is an n-ary predicate in £, then define 0, as Rz ...z,
if 0 is —0’, then define 6, as -6/,

if 0 is 6’ A 9", then define 6, as 0, N0,

if 0 is 6’ v 0", then define 6, as 0. Vv 0,
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if 0 is 3x¢’, then define 0. as Jx(Pz A 0.),
if 0 is Va¢’, then define 0. as Va(Pz — 6).

Let T™ be the extension of T, by the following axiom schemata:
(T4) RC P™ and

Ve Vy1 ... Ve, Vy, </"\ Exiyi> — (Rxl ey > Ryp ... yn>
i=1

for every R € £ with ar(R) = n,
(T5) @, for every p € T".

We now fix some further notation. Given a model M of T, we will denote the
underlying model of T' by M, the interpretation of P and E by Pxq and E .

For b € P} and A C Py we denote by tp,,(b|A) the set of all L*-formulas of the
form p.(z, a) for some L'-formula ¢(z,y) such that a € A™ and M |= (b, a).

A standard induction on £'-formulas together with Axiom (T4) gives the following.

Lemma 2.1. Let M = T*, a,b € Py and A C Py . If (a,b) € Enq, then
tper(alA) = tp,/ (blA).

We now show that given a model of T" with enough dclp-independent elements,
this model can be expanded to a model of T*. This result will be used to show
consistency of T™.

Lemma 2.2. Let M =T and let (Ap)pen be a family of dense subsets of M such
that

o Upe Ap is dclp-independent,

o AyN Ay = () whenever b # b,

e there is a model of T' with the same cardinality as B.
Then M can be expanded to a model of T*.

Proof. Let N be a model of 77 with the same cardinality as B. Without loss of
generality, we can assume that B is the universe of N'. We now expand M to
an L*-structure M. We interpret the relation symbol P as Py := (J,c g Ap. For
a,a’ € Py we say aEnqa’ if and only if there is b € B such that a,a’ € A,. It is
clear that Eq is an equivalence relation on Py and that every equivalence class
of Epq is dense in M. Thus (M, Pr, Eaq) is an Le-structure that models T,. Tt is
left to interpret the elements of £’. Let R be an n-ary relation symbol in £'. We
define its interpretation R by

{(a1,....an) € PRy Tby,...;by € B J\ a; € Ay, AN = R(by,...by)}.
i=1
Let M := (M, Py, Enq, (RM)ReL')' It is clear from the definition of F4 and
Ry that M satisfies (T4). By a straightforward induction on formulas we see that
for every L'-formula ¢(z) and for every ay,...,a, € Py and by,...,b, € B with
a; € Ap, we have
M E pe(ai,...,a,) if and only if N = o(by, ..., b,).
Thus M satisfies (T5), and therefore M |= T*.
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Proposition 2.3. The theory T* is consistent.

Proof. By [7, 1.11] there is a model M of T and a family (Ap)pep of dense subsets
of M such that the family (Ap)pep satisfies the assumptions of Lemma 2.2. The
statement of the proposition then follows from Lemma 2.2. O

Proposition 2.4. Every model of T* interprets a model of T".

Proof. Let M := (M, Pn, E, (RM)RGL’) = T*. Let N be the set of equivalence
classes of Enq. For an r-ary relation symbol R, let

Ry :={([a1lEps - -5 [anlEn) €EN® 2 (a1, an) € Raq}-
Note that Ry is well-defined by Lemma 2.1. Let N' = (N, (RN) Reﬁ')‘ Since N is
interpretable in M, it is only left to show that N |= T”. Using a straightforward
induction on £'-formulas and Axiom (T4) the reader can check that for every £’-
formula ¢(x) and for every aq,...,a, € Pym

M E ¢e(ar,...,a,) if and only if N = o([a1]mrs - - - [an] B0,
Thus N | T7, since M satisfies (T5). O

Proposition 2.4 shows that T satisfies condition (1) of Theorem A. In the rest of
this section we will show that T* also satisfies condition (2). In order to do so we
have to carefully analyse the definable sets in models of T*.

2.1. Back-and-forth system. To better understand definable sets and types in
models of T*, we follow the general strategy of the proofs of [7, 2.8] and van den
Dries [8, Theorem 2.5] by constructing a back-and-forth system between models of
T*. Let k be a cardinal larger than |T*|. Let M; and Mz be two k-saturated
models of T*. Let Z be the set of all partial £-isomorphisms ¢ : X — Y between
M and My such that there are

o finite A C Py, and A’ C Ppy,,

e finite Z C M; and Z’ C M,
with
i) (A)=A"and (Z)=Z".
ii) Z and Z’ are dcl-independent over Ppq, and Py, respectively,
(i) X =dclp(AZ) and Y = dclp(A'Z'),
(iv) for all ay,...,a, € A,

M E gela, ..., ay) if and only if Ms = pe(i(ar), ..., lan)).

In the following we will show that Z is back-and-forth system of partial L£*-iso-
morphisms.

Lemma 2.5. Let 1 : X - Y €T andlet A, Z C My and A', Z' C My be such that
A A Z, 7" satisfy conditions (i)-(iv) above. Then v is a partial L*-isomorphism
and X N Py, = A.

Proof. We first show that X N Py, = A. Suppose there is z € (X N Ppy,) \ A.
Since Pay, is dclp-independent and A C Py, , we have that z ¢ dclp(A). Thus
z € delp(AZ) \ delp(A). Since dcly is a pregeometry and z € Py, , this contradicts
the dclr-independence of Z over Ppy,. Similarly we can show that Y N Py, = A'.
Since 1(A) = A', it follows that +(X N Pay,) = Y N Ppy,. Since (z = y). is Exy, we
can easily deduce from (iv) that ¢ is an L.-isomorphism. Applying (iv) once more,
we see that ¢ is also an L*-isomorphism. (]
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Lemma 2.6. The set T is a back-and-forth system.

Proof. Let v : X - Y €7 and b € M;. By symmetry it is enough to show that if
b ¢ X, then we can find ./ € 7 extending ¢ such that b is in the domain of ¢/. From
now on, assume that b ¢ X.

Case I: b € Pprg,. Let p be the collection of all £'-formulas ¢(z,¢(a)) such that
a € A" and My | ¢ (b, a). By saturation of M and since ¢ € Z, there is ' € Py,
such that My = @.(V',(a)) for every ¢(x,c(a)) € p. By density of the equivalence
classes of E, we can take an element b” € Py, such that (b',0") € Exp, and the
cuts realized by b in X and by b” in Y correspond via ¢. Thus ¢ extends to an £-
isomorphism ¢/ : delp(ZAb) — delp(ZA'Y") with /(b)) = b". Since (V',0") € Epm,,
we have by Lemma 2.1 that My = ¢.(b”,1(a)) for every p(x,t(a)) € p. It is clear
from our choice of b that /' € 7.

CaseIl: b € dclp(ZAPw,). Letay, ..., am € Pa, besuchthat b € delp(ZAay ... am).
By applying Case I m times, we can find an element ¢/ € Z extending ¢ such that
a1, ...,am are in the domain of ¢/. Since the domain of ¢’ contains dcly(Z Aa; . . . ar,),

it also contains b.

Case III: b ¢ dclp(APa, ). By [7, 2.1] and saturation of Ma, there exists an
element b’ € My \ dclp (A’ Pay,) such that the cuts realized by b over X and b’ over
Y correspond via . Therefore we can find an L-isomorphism ¢’ : delp(AZb) —
delr (A’ Z'Y) extending ¢ and mapping b to V'. It is easy to check that ' € Z. O

2.2. Completeness and quantifier-reduction. We now use the back-and-forth
system Z to deduce certain desirable properties of T*. In particular, we show
completeness of T and a quantifier-reduction result.

Theorem 2.7. The theory T* is complete.

Proof. By Proposition 2.3, T* is consistent. In the previous section we constructed
a back-and-forth system between any two k-saturated models of T*. This implies
that two such models are elementary equivalent. Completeness of T* follows. [

Definition 2.8. We call an £*-formula x(y) special if it is of the form
Jz Pz Ae(z) N (2, y),

where 1) is an £'-formula and ¢ is an £-formula.

We now establish that 7" has quantifier-elimination up to boolean combinations of
special formulas (compare this result and its proof to [7, 2.9]) and [8, Theorem 1]).

Theorem 2.9. Fach L*-formula is T -equivalent to a boolean combination of spe-
cial formulas.

Proof. Let M be a k-saturated model of T*. Let M; := My := M and let
7 be the back-and-forth system between M; and Ms constructed in the previous
section. Let a = (a1,...,a,),b=(b1,...,b,) € M™ be such that a and b satisfy the
same special formulas. To establish the theorem it suffices to show that tp,.(a) =
tp«(b). To prove the latter statement, it is enough to find ¢ € I that maps a to
b. By permuting the coordinates we can assume there is r € {0,...,n} such that
ai,...,a, are dclp-independent over Py and apq1,...,a, € dclp(ag...a-Pa).
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Since a and b satisfy the same special formulas, the reader can easily verify that
bi,...,b, are dclp-independent over Prg. Let m € Nand g = (g1,...,9m) € P}y be
such that a,41,...,a, € dclp(ay ... arg). Fori=r+1,...,n,let fi : M™™ — M
be an L-@-definable function such that f;(ai,...,arg9) = a;. We will now find
h = (hi,...,hn) € Py} such that

(1) tpei(h) = tpei(9),

(2) fi(b1,...,b.,h) =b; foreachi=r+1,... ,n.
If we have such h, we can find an L-isomorphism ¢ : dcl(ay . .. arg) — dcl(by ... bh)
such that ¢(g) = h and ¢(a;) = b; for each i = 1,...,r. Since h satisfies (1) and each
of the sets {a; ...a,} and {by ...b,} is dclp-independent over Py, it is easy to check
that « € Z. Because h also satisfies (2), we get that t(a;) =b; fori=r+1,... n.
Thus ¢ is the desired element of Z.

We now prove the existence of an h € P} satisfying (1) and (2). Observe that
there is an L-formula 9 (z,y) such that an element h € M™ satisfies (2) if and
only if M = 9(h,b). By saturation, in order to find h satisfying (1) and (2), it is
enough to find for every £'-formula ¢(z) with M |= ¢c(g) an h € Py} such that
M = @e(h) Ap(h,b). So let o(x) be an L'-formula with M = ¢.(g). Consider the
special formula x(y) given by

Jz Pz A pe(x) Nip(2, ).

Since M = x(a) and a and b satisfy the same special formulas, we get that M |=
X(b). Thus there exists h € Py} such that M = @c(h) A(h,b). O

2.3. Types. In order to show statements (2)-(4) of Theorem A we need better
control over the L*-types in models of T*. We establish the necessary results in
this section. Throughout let M be a k-saturated model of T*. We first introduce
the following notation: for C C M and n € N we denote by D,,(C) the set

{z € M"™ : zis dclp-independent from CPp4}.

Proposition 2.10. Let a € P}y, = € D;(0), b € P{y and y € Dy,(z). Then
tp« (bylaz) is implied by the conjunction of

b tpﬁ(by|a2);

o ‘be Py” and tp,.(bla),

o ‘ye D,(2)".

Proof. Set My := M5 := M and let Z be the back-and-forth system between M
and My constructed in the previous section. Let by,by € Py} and yi,y2 € Dp(2)
be such that tp,(biyi|az) = tp,(baye|az) and tp, (bi|a) = tp,(b2]a). In order
to show that tp . (b1y1|az) = tp,«(bayz|az), we only need to find ¢ € Z such that
t(b1y1) = bayo and the coordinates of a and z are in the domain of ¢. It is immediate
that the identity on declr(az) is in Z. Since tp,(biyi|az) = tp,y(bay2]az), there is
a partial L-isomorphism from dcly(azbiyy) to dely(azbayz) mapping b1y to bays.
Because tp,/ (b1]a) = tp,. (b2]a) and y1,y2 € Dy(2), it is immediate that ¢ € Z. O

We immediately obtain the following three corollaries from Proposition 2.10.

Corollary 2.11. Let C C M be finite and y € D, (C). Then tp - (y|C) is implied
by tp, (y|C) in conjunction with “y € D, (C)”.
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Corollary 2.12. Let a € Py, z € D;(0) and b € P},. Then tp,.(blaz) is implied
by tp(blaz), ‘b€ PR,” and tps: (bla).

Corollary 2.13. Let Z C P} be L*-definable. Then there is an L-definable set
Y C M™ and an L'-formula o(x) such that

Z=YN{a€ePy : MEoya)}

Combining Proposition 2.10 with a result of Boxall and Hieronymi [3], we are now
able to deduce statement (2) of Theorem A.

Theorem 2.14. The theory T is an open core of T*.

Proof. We will use [3, Corollary 3.1] to show that every L£*-definable open set in
M is also L-definable. Let X C M™ be open and L*-definable over some finite
parameter set C. We will now apply [3, Corollary 3.1], using D,,(C) as Dg, . s, .
Therefore it is left to check that conditions (1)-(3) of [3, Corollary 3.1] hold for
D,,(C). These three conditions are
(1) Dn(C) is dense in M,
(2) for every y € D, (C) and every open set U C M™, if tp,(y|C) is realized
in U, then tp,(y|C) is realized in U N D,,(C),
(3) for every y € Dy, (2), tpy«(y|C) is implied by tp,(y|C) in conjunction with
“y € D(C).
Condition (1) follows easily from saturation of M and [7, 2.1]. Using o-minimality
of T, it is easy to deduce Condition (2) from Condition (1). Finally, Condition (3)
holds by Corollary 2.11. |

2.4. Completions of T,. Using results from the previous sections we will now give
a characterizations of all complete L.-theories containing 7.

Definition 2.15. Let T, o be the L.-theory consisting of 7, and an axiom schema
expressing the following statement:

(T6) E has infinitely many equivalence classes.

Similarly, for every n € N5 define Tt ,, to be the L.-theory consisting of T, and a
sentence stating that E has exactly n equivalence classes.

Theorem 2.16. Let p € NygU {oo}. The theory T., is complete.

Proof. We first consider the case that p = co. Let £’ be empty and T’ be the
(complete) £'-theory of infinite sets. Let £* and T* be constructed as above. Since
L' = 0, we have that £* = L.. Since T* is complete, it is enough to show that every
model of T,  is also a model of T*. Let M |= T¢ . Since £’ = (), we immediately
get that M satisfies (T4). It is left to show that M satisfies (T5). Let ¢ € T".
Since T is the theory of infinite sets, there is n € N such that ¢ is the following
formula
dzy...3dz, /\ T; # Ty
1<i<j<n
It is easy to check that . is the L.-formula
dzrq... 3z, /\ Px; N—=Ez;x;.
1<i<j<n
Since M satisfies (T6), we get that M = .. Thus M satisfies (T5).
The proof of the case p € N5 can be done similarly by replacing the £'-theory of
infinite sets by the £’-theory of a set with exactly p elements. O
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From Theorem 2.16 we can directly deduce the following characterization of com-
pletions of T,.

Corollary 2.17. Let T be a complete L.-theory such that T, C T. Then there is
p € NygU{oo} such that Te, =T

We obtain the following corollary as an immediate consequence of Theorem 2.14
and the proof of Theorem 2.16.

Corollary 2.18. Let p € N5g U {oo}. The theory T is an open core of Ty .

3. PRESERVATION OF NIP

Let T be a complete o-minimal extension of the theory of densely ordered groups
with a distinguished positive element, and let £ be its language. As before, let
L' be a relational language disjoint from £, and let 77 be a complete £’-theory.
Furthermore, let T be the £*-theory constructed in the previous section. We will
now show that T is NIP if 7”7 is NIP. As we will see, this can be deduced rather
directly from Corollaries 2.11 and 2.12 and the following result of Giinaydin and
Hieronymi [12].

Fact 3.1. [12, Proposition 2.4] Let Ly be a first-order language and let L1 be a
language containing Lo and a unary predicate symbol U not in Ly. Let Ty be a
complete Lo-theory and let T be a complete Li-theory extending Ty. Let M be a
monster model of Ty. Suppose that
(i) dclg, is a pregeometry,
(ii) for every Li-formula p(x,y), indiscernible sequence (g;)icw from Ul and
be M9, the set {i € w : M = p(gi,b)} is either finite or co-finite (in w),
(iii) for every formula o(x,y), indiscernible sequence (a;)ic. from M and b € M2
with a; ¢ dclg, (Umb) for every i € w, the set {i € w : M = p(a;,b)} is
either finite or co-finite (in w).
Then Ty is NIP.

Theorem 3.2. If T is NIP, so is T*.

Proof. We apply Fact 3.1 with Ty := T and Ty := T™. Since T is o-minimal, dclp
is a pregeometry.

For (ii), let p(z,y) be an L*-formula, (g;)ic., an indiscernible sequence from Pl
and b € M?. Without loss of generality, we can assume that there are by € P and
by € M% such that by is delpr-independent over Py and b = (by,b2). By Corollary
2.12 there is an L-formula ¢(z,u,v) and an £'-formula (z,u) such that for all
a € Pl

(%) M E ¢(a,b) (¢(a, b1,b2) A be(a, bl)).

Since both T and T" are NIP, it follows immediately from (x) that {i cw : M |
©(gi,b)} is either finite or co-finite.

For (iii), let p(z,y) be an L*-formula, (a;);e, an indiscernible sequence from M
and b € M? with a; ¢ dcly(Pyb) for every i € w. By Corollary 2.11 there is an
L-formula ¥ (x,b) such that for all a« € M\ dcly(Pybd)

M = ¢(a,b) < ¢(a,b).
Since T is NIP, {i € w : M |= ¢(a;,b)} is either finite or co-finite (in w). O
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We can now give a proof of Theorem D that there is an NIP expansion of T" without
a distal expansion.

Proof of Theorem D. Fix a prime p. Let T’ be ACF,. Since T" is stable, 1" is
NIP. Suppose T™ has a distal expansion T. Then T is distal by [19, Remark after
Definition 9.17]. However, by Proposition 2.4 every model of Te? defines a model
of T'. By [4, Proposition 6.2] T°? cannot be distal. A contradiction. O

4. PRESERVATION OF STRONG DEPENDENCE

In this section, we will show that T* (as constructed in Section 2) is strongly de-
pendent if 7" is. We essentially follow the proof of Berenstein, Dolich and Onshuus
[1, Theorem 2.11].

Let £y be a first-order language containing < and let £1 be a language containing
Ly and a unary predicate symbol U not in Ly. Let Ty be a complete Ly-theory
extending the theory of linear ordered sets such that dclg, is a pregeometry. Let
T be a complete L1-theory extending Ty, and let M be a monster model of T3. If
X,Y are subsets of M, we say X is U-independent over Y if X \ Uy is dclp,-
independent over Uy Y. If Y = (), we simply say that X is U-independent. We say
an indiscernible sequence (a;);cr of tuples of elements of M is U-independent if
each a; is U-independent.

Lemma 4.1. Let k be an infinite cardinal and let (a;)ic; be an indiscernible se-
quence of tuples of elements of M of length k. Then there is an U-independent
indiscernible sequence J = (b;)ier of tuples of elements of M of length r such that
for every j < k there is an Lo-D-definable function f: M™ — M, and j1,...,Jn < K
such that for every i € 1

a; 5 = f(bi7j17 ey bi,jn)~

Proof. We inductively construct a sequence (b;);c; from the sequence (a;)icr by
removing U-dependencies. Let o < x be minimal such that there is ¢ € I such that
{a;,j : j < a}isnot U-independent. By minimality of « there are j; < ... < j, < &
and an Lo-0-definable f: M™++1 — M such that

(*) Jui0,.. . ui0 € Un f(ai,jlw"aai,jmvui,()a cee 7ui,2) = Qj,q-

By indiscernibility of (a;);er, (%) holds for every ¢ € I. For each ¢ € I, define a set

S; = {(ug,...,up) € UL - F(@igrsees @i s Wos-n s Ug) = Gia )

By indiscernibility of (a;);cr, we have that S; is finite for some ¢ if and and only S;
is finite for every ¢ € I.
We first consider the case that S; is finite for every ¢« € I. Then for each i € I we
may choose u; = (u;0,...u;¢) to be the lexicographically least member of S;. Let
b; be the tuple where a; , is replaced by u;. As a;, and u; are interdefinable over
{@ijy,---,aij,}, (bi)icr is indiscernible. Furthermore, the set {b;1,...,b; a1¢} is
U-independent for each i € I.
Now suppose that S; is infinite. Consider the collection of formulas in variables
(@i,5)ier for j < k stating:

(1) @ =a;; for j<a

(2) f(amvl, SR ¢ T3 N e PR 7xi,a+€) = Oj,«

3) Tia,- s Tiare €U
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(4) Ti,a+l+5 = Gj,a+j for j > 1

(5) The sequence (x;);¢; is indiscernible.
As S; is infinite, it can be shown by a standard argument using Ramsey’s theo-
rem that this collection is finitely satisfiable. Therefore, by saturation there is a
realization (b;);er of this collection. By construction, we have for every i € I that
{b1;71, ceey bz‘,a+é} is U—independent and Qj,00 = f(bi,j1 yooo bi,jma bi@, . ,biﬂ_;,_g).
Inductively continuing, we arrange the sequence (b;);c; as desired. [

We will use Lemma 4.1 to show a criterion for strong dependence for T7. Before we
do so, we recall the definition of strong dependence. If I is a linear order, we denote
its completion by compl(I). If I is a linear order, ¢ = (cy,...,¢,) € compl(I)™ and
1,7 € I, we write i ~ 7' if

n
/\((i<Cj(—)i/<0j)/\(i:Cj(—>i/:Cj))
j=1

Note that ~. defines an equivalence relation ~. on I.

Definition 4.2. A theory T in a language £ is strongly dependent if for every
M E T, every b € M™ and every indiscernible sequence (a;);cs, there is n € N
and ¢ € compl(I)" such that i ~. j = tpz(a;|b) = tpz(a;[b).

For more details and other equivalent definitions of strong dependence, we refer the
reader to [19, Chapter 4].

Lemma 4.3. The following are equivalent:

(i) For every b € M, and every U-independent indiscernible sequence (a;)icr, if
b is U-independent over {a; : i € I}, then there ism € N and ¢ € compl(I)"
such that i ~. j = tp,, (a;|b) = tp,, (a;|b).

(ii) For every b € M, and indiscernible sequence (a;)icr, if b is U-independent
over {a; : i € I}), then there is n € N and ¢ € compl(I)"” such that
i~cj = tpg, (ailb) = tp,, (a;b).

(iii) Ty is strongly dependent.

Proof. Tt is clear that (iii)=(ii)=-(i). Observe that (i)=-(ii) follows easily from
Lemma 4.1. So we only need to show that (ii) implies (iii). Let b € M™ and
(a;)ier be an indiscernible sequence of possibly infinite tuples from M. It is enough
to consider the case m = 1 (see for example [19, Proposition 4.26]). Suppose
b € delg, (Upf{a; : i € I}). Then there are g € Ul;, e = (e1,...,e;) € I¥ and an
Lo-P-definable function f such that

(T) b:f(gva‘eu"'aaek)-
Without loss of generality assume that e; < -+ < er. Set ae = (@ey,---,0ae,),
eg = —oo and epy1 = +00. Let t € {0,...,k}. Now observe that (aca;) c(e, e\ 1)n1

is an indiscernible sequence. By (ii) there is d; € (compl(I) N (et, er41))™ such that
for all 4,j € (es, e41) we have i ~q, j = tpg, (acailg) = tpg, (acajlg). By (1) we
get that for all such 1, j

i~a, j = tpr, (ailb) = tpr, (a;b).

Set ¢ := (dperds . ..epdgy1). It can be checked easily that this is the desired ¢ €
compl(I)". O
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Let us now recall the setting of Section 2. Let T be a complete o-minimal extension
of the theory of densely ordered groups with a distinguished positive element, and
let £ be its language. As before, let £’ be a language disjoint from £, and let 7" be
a complete £'-theory. Furthermore, let T* be the £*-theory constructed in Section
2.

Theorem 4.4. If T’ is strongly dependent, so is T*.

Proof. We now apply Lemma 4.3 with Ty := T, Ty := T* and U := P. As before,
note that dclp is a pregeometry, since 71" is o-minimal.
Let b € M and (a;);cr be an P-independent sequence such that b is P-independent
over {a; : ¢ € I'}. Since each a; is P-independent, we have (after possibly changing
the order of entries of the a;’s) that for each ¢ € I there are tuples u;, v; of elements
of M such that for each i € i

® a; = U;V;,

e u; is a tuple of elements in Py,

e v; is dclp-independent over Py.
Since b is P-independent over {a; : i € I}, we get that either b € Py or b ¢
delp({a; : @ € I} Py). We consider the two different cases.

Let b € Py. By Proposition 2.10 the type tp,«(u;v;]b) is determined by

o tp(uvilb),

e the statement “u; is a tuple of elements of Py” and tp,. (u;|b),

e the statement “v; is dclp-independent over Py”.
Since both T and T are strongly dependent, we can find ¢ € compl(I)™ such that
for every i,5 €

i ~e g = ((tpe(uindb) = the(ususlb) and th(uilh) = th(us[b))-

Thus for every i,j € I with i ~. j we get tp,.(a;|b) = tp - (a;[b).

Now suppose that b ¢ dclr({a; : i € I}Py). In particular, b ¢ dclp(Py). Since dcly
is a pregeometry, v; is dclp-independent over Byb for each ¢ € I. By Proposition
2.10, for each i € I the type tp,«(u;v;|b) is determined by

e tp(uvilb),

e the statement “u; is a tuple of elements of Py” and tp, (u;),

e the statement “v; is dclp-independent over Pyb”.

”

As before using strong dependence of T and T’, we can find ¢ € compl(I)™ such
that for every i,5 € I

ir~ve ] = (tpc(“ivi|b) = tp,(u;v;[b) and tpe(u;) = tpe (“J))
Thus for every 4,5 € I with i ~. j we get tp,.(a;|b) = tp,«(a D). O
This completes the proof of Theorem A. In the next section we will deduce Theorem

B from Theorem A.

It is worth pointing out in this section on strong dependence that by Dolich and
Goodrick [5, Corollary 2.4] every strongly dependent expansion of the real field has
o-minimal open core. In contrast to this restriction, our Theorem B(4) shows that
there is a large variety of such expansions of the real field.
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5. PROOF OF THEOREM B

The purpose of this section is twofold. We first deduce Theorem B from our
proof of Theorem A. Then we show that in Theorem B the statement “S interprets
a model of T"” cannot be replaced by the statement “S defines a model of T"”.

Proof of Theorem B. Let R = (R, <,+,...) be an o-minimal expansion of the real
ordered additive group in a language £ and let 7" be a theory such that |£] < |R|
and |T7| < |R|. Let T* be the theory as constructed in Section 2. Since T™* satisfies
the statements (1)-(4) of Theorem A, it is only left to show that R can be expanded
to a model of T*. Since |£| < |R|, we can find a dclp-basis of cardinality at least
|T'|. Since dclr(f) is dense in R, we are able to choose this basis such that it is
dense in R. Now apply Lemma 2.2. (I

Proposition 5.1. Let S be an expansion of (R, <,+). The following are equivalent

(1) S defines an infinite discrete linear order.
(2) S defines an order with order type w.
(3) The open core of S is not o-minimal.

Proof. We show that (1) implies (2). Suppose S defines an infinite discrete linear
order (D, <). Fix d € D. Either D4 or D, 4 is infinite. After replacing < with
the reverse order if necessary, we may suppose that D, 4 is infinite. After replacing
(D, <) with (Dxgq, <) if necessary we suppose that (D, <) has a minimal element.
Let £ C D be the set of e such that D_,. is finite. Recall that a subset of R™ is
finite if and only if it is closed, bounded and discrete. It follows that E is definable.
Note that E_. is finite for all e € D. Then (E, <) is a discrete linear order with
minimal element and finite initial segments. Thus it has order type w.
We now show that (2) implies (3). Suppose that (D, <) is a definable order with
order type w and D C R". First suppose that there is no coordinate projection
7w : R™ — R such that (D) is somewhere dense. Since D is infinite, there is a
coordinate projection p : R™ — R such that p(D) is infinite. Then p(D) is an
infinite, nowhere dense, subset of R. Thus the open core of S is not o-minimal.
Now let 7 : R™ — R be a coordinate projection such that w(D) is somewhere
dense. Let a,b € R such that (a,b) is an interval in in which 7(D) is dense. We
now reduce to the case when D is a dense subset of an open interval. Note that
D' ={e€ D:a< m(e) < b} is an infinite, and hence <-cofinal, subset of D. It
follows that (D’, <) has order type w. After replacing D with D’ if necessary we
suppose that 7(D) is a subset of (a,b). We put an order <, on 7(D) by declaring
x < y if there is a e € D such that 7(e) = x and w(e’) # y for all ¢’ < e. It is easy
to see that (w(D), <) has order type w. After replacing (D, <) with (7(D), <)
we suppose that D is a dense subset of (a,b). We declare

Y:={zxeD :VzeD(z<z)— (2<x)}.
That is, Y is the set of e € D such that e the <-maximal element of D<.. By
density of D in (a,b), it is easy to see that Y is infinite and that (Y, <) is order-
isomorphic to (N, <). Thus Y is an infinite discrete definable subset of R. Hence

the closure of Y does not have interior, but infinitely many connected components.
Therefore S does not have o-minimal open core.

Since (2) trivially implies (1), it is enough to show that (3) implies (2). Suppose
that the open core of S is not o-minimal. By [6, 2.14 (2)] there is an infinite discrete
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subset D C R definable in S. First consider the case that D N [—a,a] is a finite set
for every a € Rsg. Then either ((—D)NJ0,00), <) or (DN[0,00), <) has order type
w. From now on we can assume that there is a € Ry such that the cardinality
of DN [—a,a] is infinite. Thus without loss of generality we can assume that D is
bounded. For ¢ € Ry set

D.:={deD : (d—e,d+e)ND ={d}}.

Since D is bounded, each D. is finite. Moreover, since D is discrete and infinite,
there is a function f : D — Ry definable in § mapping d € D to the supremum of
all e € Ry with d € D.. We now define the following order on D: let dy,ds € D,
we set d; < dy whenever one of the following conditions holds:

o f(di) > f(d2),

° f(dl) = f(dg) and dy < ds.
It can be checked easily that (D, <) has order type w. O

Let T" be the theory of an infinite discrete order. By Theorem B there exists an
expansion of (R, <, +) that has o-minimal open core and interprets a model of T".
However, by Proposition 5.1 there is no expansion of (R, <,+) that has o-minimal
open core and defines a model of T”. Therefore in Theorem B the statement “S
interprets a model of 7”7 cannot be replace by the statement “S defines a model
of T"”.

6. NoIsELESS NIP EXPANSIONS OF (R, <, +)

Recall that an expansion of (R, <) is noiseless if it does not define a somewhere
dense and co-dense subset of R. In this section we show that every noiseless NIP ex-
pansion of (R, <, +, 1) has definable choice and hence eliminates imaginaries. This
statement will be established for the slightly larger class of noiseless expansions of
(R, <, +,1) that do not define a Cantor set. A Cantor set is a non-empty compact
subset of R that neither has interior nor isolated points. By [14, Theorem B] every
NTP; (and hence every NIP) expansion of (R, <,+) does not define a Cantor set.

Fix a noiseless expansion R of (R,<,4+,1) that does not define a Cantor set.
Throughout this section, definable will mean definable in R. For a subset X C R™,
we denote the (topological) closure of X by Cl(X) and the interior of X by Int(X).

Lemma 6.1. Let X C R be a non-empty definable set with empty interior. Then
X contains an isolated point.

Proof. Since R is noiseless, the closure CI(X) of X has empty interior. Because R
does not define a Cantor set, C1(X) has an isolated point. It follows directly that
X has an isolated point. ([

Therefore in an expansion of (R, <,+) that does not define a Cantor set, every
definable subset of R contains a locally closed point. For expansions of the real
field, the existence of definable Skolem functions in expansions satisfying the latter
condition was shown in [9, Lemma 9.1].

Lemma 6.2. Let C C R"! be ()-definable such that C, has empty interior for
every x € R™. Then there is an (-definable function f : 7(C) — R such that
gr(f) C C, where w: R"Tt — R™ is the projection onto the first n coordinates.
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Proof. By Lemma 6.1 we have that for all x € n(C) the set C, has an isolated
point whenever C,, is non-empty. Let g : 7(C) — R map = € 7(C) to

sup{r e Ryg : yeCy (y—r,y+r)NC, ={y}}
if such supremum exists, and to 1 otherwise. Define
Di={(zy) eC : (y- L y+4NC, = {y}}.

It is easy to check that D, is non-empty if and if C, is non-empty. For each
x € (D) and y1,y2 € D, we have |y; — y2| > @. Therefore the set D, is closed
and discrete for each © € (D). Let f: 7(C') — R be the function defined by

- min D, N [0, 00), if D, N[0,00) is non-empty
max D, N (—o00,0), otherwise.

Observe that f is well-defined, because D, is closed and discrete. From the defini-
tion of f we obtain directly that gr(f) C C. O

Proposition 6.3. Let A C R™ x R" be (-definable. Then there is an O-definable
function f:mw(A) — R™ such that

(1) gr(f) € A,

(2) f(a) = f(b) whenever a,b € w(A) and A, = Ay,

where 7 : R™*™ — R™ is the projection onto the first m coordinates.

Proof. Using induction it is easy to reduce to the case that n = 1. We can split A
into B,C C R™*" such that A = BUC and

B:={(z,y) € A : yent(4,)}, C:={(z,y) €A : ye A, \Int(A4,)}.

Observe that C, has empty interior for each « € 7(C). Thus by Lemma 6.2 there
is a definable function f; : 7(C') — R such that gr(f1) € C. Now define a subset
D C R™*! such that (x,y) € D whenever one the following conditions holds:

y is a midpoint of a connected component of B,

y=1+sup(R\ B;) and R\ B, is bounded from above,

y=—1+inf(R\ B;) and R\ B, is bounded from below,

y=0and B, =R.

It is easy to see that D is definable, D C B and wn(B) = w(D). Moreover, D,

has empty interior for each « € (D). By Lemma 6.2 there is a definable function
f2 : m(D) — R such that gr(f2) € D. We now define f : 7(4) — R by

T { fi(z), if By =0;

f2(x), otherwise.

It follows directly that gr(f) C A. Furthermore, the reader can easily check that for
a € w(A) the value of f(a) only depends on A, and not on a. Therefore condition
(2) holds for f as well. O

Theorem E follows immediately from Proposition 6.3. Note that Theorem E fails for
NIP expansions of (R, <, 4+, 1) in general. For example, the structure (R, <,+,1,Q)
is NIP (see for example [12, Corollary 3.2]), does not have definable Skolem func-
tions ([6, 5.4]) and does not eliminate imaginaries ([6, 5.5]).
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