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ABSTRACT

Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of
many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial
families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from
mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and
biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse
approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and
ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats
and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in
regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved
in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of
physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate
synergy within the BFI research area and to resolve outstanding questions.

Keywords: bacterial-fungal interactions; metaorganisms; microbiome; mechanism; microbial logistics

INTRODUCTION

Bacteria and fungi often share microhabitats where they as-
semble into dynamic co-evolving communities. Such bacterial-
fungal communities have been described to exist in nearly all
ecosystems and include microbial species from a wide diver-
sity of fungal and bacterial families (Peleg, Hogan and Mylon-
akis 2010; Scherlach, Graupner and Hertweck 2013). Interactions
between fungi and bacteria play a key role in the functioning of
numerous ecosystems: they are cornerstone members of com-
munities driving biochemical cycles, and contribute to both the
health and diseases of plants and animals (Fig. 1). Moreover, bac-
teria and fungi have been exploited by humans for centuries to
manufacture food products, antibiotics and secondary metabo-
lites for pharmacology and biotechnological applications (Frey-
Klett et al. 2011). As a consequence, by-products of bacterial-
fungal interactions (BFI) have been harnessed to improve many
human activities in agriculture, horticulture, forestry, environ-
mental protection, food processing, biotechnology and medical
applications.

BFI intrinsically modulate the behaviour of either or both of
the interacting partners. Such modulation cannot be easily pre-
dicted based on our knowledge of the biology of the isolated mi-
croorganisms grown in pure cultures. Different levels and de-
grees of specificity of BFI have been reported. On one end of
the spectrum, co-occurrence patterns of bacteria and fungi re-
sult from intimate biophysical and metabolic interactions dur-
ing which bacterial and fungal partners interdependently de-
velop and co-evolve. On the other end, co-occurrence may not
be representative of any causal relationships, being the result of
stochastic ‘mixing’ within the microbial community. Depending
on the degree of interaction, the molecular dialogue between the
partners may be very simple, highly refined or absent. Depend-
ing on the species involved in BFI, interactions can be highly spe-
cific, like the intimate interaction between endofungal bacteria
and early emerging fungi (Bonfante and Desird 2017), or they
can involve a broad spectrum of species. For instance, the op-
portunistic human pathogens Candida albicans and Pseudomonas
aeruginosa frequently interact with each other, but also with

numerous additional bacteria and fungi, respectively (Leclair
and Hogan 2010). Such multipartner interactions can occur
within a single environment—such as in the oral plaque (Janus,
Willems and Krom 2016), in soil (Warmink, Nazir and van Elsas
2009), in a single food product (Kastman et al. 2016) or across
multiple environments. Opportunistic microorganisms such as
the aforementioned P. aeruginosa colonise a wide variety of en-
vironments including human tissues, plant root systems and
soils, in which they engage in different interactions with local
fungal species (Walker et al. 2004). Whatever the environment
considered, BFI can produce a diverse range of interactions—
from antagonism to mutualism—that influence the biology and
ecology of the fungal and bacterial partners at different levels,
i.e. with respect to growth, reproduction, transport/movement,
nutrition, stress resistance and pathogenicity. The outcomes of
these interactions are the combined results of the physical asso-
ciations (biofilm, free cells, intracellular), the molecular dialogue
between the organisms (direct or indirect), and the environmen-
tal conditions and/or the host activity (Fig. 1).

Within the past decade, a range of multidisciplinary studies
on diverse BFI, which integrate tools from molecular biology, ge-
nomics, chemical and microbial ecology, biophysics and ecologi-
cal modelling, have emerged. The more than 300 studies dealing
with BFI, as published within the last five years across divergent
fields of research (e.g. medicine, agriculture, environment sci-
ence, biotechnology and food processing), have culminated in
a better understanding of interaction mechanisms and conse-
quences of BFI. Striking mechanistic generalities have emerged
that extend beyond known BFI despite the intricacies inherent to
each system analysed, as first outlined by Frey-Klett et al. (2011)
and Scherlach, Graupner and Hertweck (2013). Such generalist
patterns mirror the remarkable similarities shared between
plants and animals recently documented in microbiota-assisted
host nutrition (Hacquard et al. 2015). Here, we review the main
findings obtained with respect to BFI in different fields in
the past years, including the latest advances with respect to
the roles and mechanisms involved, as well as the emerging
opportunities and applications to biotechnology and ecology.
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Figure 1. Relevance, applications and drivers of BFI. Biotic and abiotic environments filter microbial communities selecting for specific consortia, and conversely
interactions between microorganisms influence the biotic and abiotic environment. Bacterial-fungal phenotypes emerge from physical and molecular interactions
between members of the microbial community and are highly dependent on time and scale.

BFI WITHIN COMPLEX NETWORKS OF
INTERACTIONS: FROM FUNGAL MICROBIOMES
TO METAORGANISMS AND HOLOBIONTS

The exponential development of molecular tools aimed at de-
scribing the diversity of microorganisms in many biomes and
environments on Earth has brought to light the huge diver-
sity of microorganisms and potential interactions between them
(Thompson et al. 2017). As a consequence, the traditional con-
cept of BFI as bipartite bacterial-fungal or bacterial-fungal-host
interactions is now shifting towards BFI as complex networks
of multiple interacting organisms. In these networks, there may
be different levels of complexity depending on the environ-
ment and the scale of analysis. The networks can be envi-
sioned at different levels depending on the habitats consid-
ered: ranging from networks restricted to microorganisms on
abiotic matrices and surfaces such as soils, wood, hydrother-
mal vents, water pipes and medical catheters (Hervé et al. 2014;
Lindsay and Hogan 2014; Urich et al. 2014; Douterelo et al. 2016;
de Menezes, Richardson and Thrall 2017) to networks involv-
ing higher organisms, in which BFI occur within the micro-
biomes of hosts such as lichens (Grube et al. 2015), corals (Moree
et al. 2013), nematodes (Wang et al. 2014), insects (Aylward et al.
2014), batrachians (Longo and Zamudio 2017) or mammals (Hac-
quard et al. 2015; Hoyt et al. 2015). In this regard, the interact-
ing microorganisms together may be conceptually regarded as
one metaorganism (Olsson, Bonfante and Pawlowska 2017, see
box 1).

The fungal microbiome

The hyphosphere (box 1) provides microhabitats that are
colonised by specific bacterial communities (Frey-Klett et al.
2011). In a seminal paper, some bacterial associates of soil fungi
were called bacterial ‘fungiphiles’ (Warmink and van Elsas 2009,
box 1). The diversity of these communities can range from a few
to several hundreds of species, depending on the fungus and
the organ considered (Grube et al. 2015; Wolfe and Dutton 2015;
Schulz-Bohm et al. 2016; Ghodsalavi et al. 2017). Filamentous
fungi can produce differentiated tissues (e.g. mycelium, fruiting
bodies, spores, mycorrhizae) that are colonised by distinguished
sets of microbiomes (Zagriadskaia et al. 2013; Deveau et al. 2016;
El-Jurdi and Ghannoum 2017). While some bacteria, such as
Burkholderia spp., can colonise a large set of fungal species given
their abilities to utilise fungal-derived metabolites and over-
come fungal defence mechanisms (Haq et al. 2014; Stopnisek
et al. 2016; Jung et al. 2018), others may have a more specific and
intimate relationship with their fungal hosts (Warmink, Nazir
and van Elsas 2009). Similar to plant and animal microbiomes,
which are known to contribute to the ‘extended phenotype’ of
their hosts, it is likely that fungal microbiomes also contribute to
the biology of their fungal hosts. Indeed, treatments with antibi-
otics that suppress or alter fungal-associated bacterial commu-
nities impaired mycelial growth, secondary metabolite produc-
tion and/or reproduction (Vahdatzadeh, Deveau and Splivallo
2015; Schulz-Bohm et al. 2016; Mondo et al. 2017; Uehling et al.
2017).
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Box 1. Definitions of terms and concepts

Bacterial fungiphile. Bacterial strain that preferentially as-
sociates with fungi and for which the hyphosphere is the
main habitat (Warmink and van Elsas 2009).

Hub microorganism. Highly interconnected species that
drives community responses through microbe-microbe in-
teractions.

Hyphosphere. The microhabitat surrounding hyphal cells.
Keystone species. Species on which relies the functioning
of the community.

Metaorganism & holobiont. The metaorganism concept has
been defined as “a community of interacting biological enti-
ties that is indicated by a metagenome” (Bosch and McFall-
Ngai 2011). It thus is a dynamic entity in dependency of
the boundaries set by the researchers. Similarly, the holo-
biont concept is often used in reference to microbiomes
associated with hosts, being both parts of this association
subjected to evolutionary selection (Bordenstein and Theis
2015). When it comes to microbial interactions, it is often
difficult to determine who is the “host”, as is the case in, for
example, the fungal-algal-bacterial holobiont (Aschenbren-
ner et al. 2016). Here, we redefine a holobiont as a “unit of bi-
ological organization composed of several distinct genomes,
that, in principle, influence the genomic evolution of each
other”. This definition is “host neutral”, and avoids the in-
clusion of temporary opportunistic assemblages, while at
the same time focusing on the evolutionary importance of
the holobiont concept (Bordenstein and Theis 2015).
Microbial logistics. Effective provision of microbes, matter
and energy for microbial ecosystem functioning and tar-
geted substrate turnover (Fester 2014).

-omics. The suffix “omics” designates an approach that per-
mits to study given molecules in their globality within a
sample: metabolomics for metabolites, proteomics for pro-
teins, volatilomics for volatiles, genomics for genes and
transcriptomics for transcripts. Moreover, adding the prefix
‘meta’ implies that the omics method will, within technical
limits, measure all genes, transcripts, proteins, metabolites
and volatiles in a given sample containing more than one
organism.

Understanding of the fungal microbiome is an important
challenge in food processing and production, as microbiomes
are often involved in fermentation of alcoholic beverages (e.g.
wine and beers), dairy products (e.g. cheese, sourdough) and
other fermented foods (for review, see Wolfe and Dutton 2015),
as well as cultivation of edible mushrooms (Banfi et al. 2015;
Murat 2015).

The endofungal microbiome

Bacteria that live inside fungal cells (i.e. endofungal bacteria or
endobacteria) have first been described in the seminal work by
Barbara Mosse (Mosse 1970). They were originally considered
as biological curiosities; however, numerous emerging stud-
ies have demonstrated their omnipresence in fungi, as well
as their clear effects on fungal biology (Bonfante and Desiro
2017). To date, endobacteria have been reported in fungi with
diverse lifestyles and of broad taxonomic origins, including en-
dophytic Ascomycetes (Hoffman and Arnold 2010; Arendt et al.
2016; Shaffer et al. 2016), symbiotic, pathogenic and endophytic
Basidiomycetes (Bertaux et al. 2003; Ruiz-Herrera et al. 2015;

Glaeser et al. 2016) as well as saprotrophic and symbiotic fungi
in the Mucoromycota (Partida-Martinez 2017; Uehling et al. 2017;
Desiro et al. 2018). The best-studied fungal endobacteria belong
to the family Burkholderiaceae, and are associated with early-
diverging lineages of terrestrial fungi within the Mucoromycota
(Bonfante and Desiro 2017; Uehling et al. 2017). These associ-
ations appear to be specific, and have presumably tightly co-
evolved over millions of years (Mondo et al. 2012; Desiro et al.
2015; Uehling et al. 2017). This has resulted in host dependency
and significant genome reductions for the bacterial endosym-
bionts (Ghignone et al. 2012; Uehling et al. 2017). Endobacteria
can have profound effects on fungal host biology, including as-
pects of host reproduction (Partida-Martinez et al. 2007; Mondo
et al. 2017), growth (Shaffer et al. 2017; Uehling et al. 2017; Desiro
et al. 2018), energy dynamics (Salvioli et al. 2016; Vannini et al.
2016), primary metabolism (Lastovetsky et al. 2016; Salvioli et al.
2016; Vannini et al. 2016; Li et al. 2017; Uehling et al. 2017) and
secondary metabolism (Rohm et al. 2010; Hoffman et al. 2013).

Several examples of fungi in the Mucoromycota and their en-
dobacteria offer lessons in fungal endobacterial biology. First,
the association between Paraburkholderia rhizoxinica (formerly
Burkholderia rhizoxinica) and Rhizopus microsporus is mutualistic,
whereby the bacterium provides its host with a toxin, which
facilitates fungal pathogenicity on rice. Remarkably, the verti-
cally transmitted endobacteria impact fungal reproduction, as
their removal abolishes asexual sporulation and significantly re-
duces mating (Mondo et al. 2017). A recent study leveraged this
endobacterial control over fungal mating into identifying repro-
ductive genes in the Mucoromycota, a group of fungi that is no-
toriously recalcitrant to genetic approaches, as well as recon-
structing key reproductive pathways across the fungal kingdom
(Mondo et al. 2017). Moreover, studying the pre-symbiotic inter-
action between R. microsporus and Paraburkholderia revealed that
the fungus undergoes specific lipid metabolic changes in order
to accommodate endobacteria, which, when perturbed, shift the
interaction from mutualistic into antagonistic (Lastovetsky et al.
2016). Clearly, the Rhizopus-Paraburkholderia system is a token of
the key role that bacteria can play in modulating the basic biol-
ogy of their host fungi.

A second example of a well-studied endobacterial-fungal
system is the association between members of the arbuscular
mycorrhizal fungal family (Gigasporaceae, Glomeromycotina)
and Candidatus Glomeribacter gigasporarum (CaGg, Burkholde-
riaceae). These bacteria are vertically transmitted between the
fungal generations (Bianciotto et al. 2004) and have a strong
effect on the pre-symbiotic phase of the fungus. In the pre-
symbiotic phase, they raise the fungal bioenergetic capacity, in-
crease ATP production and elicit reactive oxygen detoxification
mechanisms (Salvioli et al. 2016). Recent work discovered a new
aspect of the endobacterial biology, in that a toxin-antitoxin sys-
tem was active (Salvioli Di Fossalunga et al. 2017), as well as
the whole operon for vitamin By production (Ghignone et al.
2012). This indicates potential metabolic assistance by the en-
dobacterium, not only for the fungal host, but also for the plant
mycorrhizal partner. Interestingly, sharing of B-vitamins was
also described for the lichen Lobaria pulmonaria, where lichen-
associated bacteria have been hypothesised to support photo-
synthesis by provision of vitamin By, (Grube et al. 2015).

A third fungal endosymbiont example is the endobacterium
Mycoavidus cysteinexigens, an endosymbiont of the saprotrophic
fungus Mortierella elongata (Mortierellomycotina) (Uehling et al.
2017). Despite the close phylogenetic affiliation to CaGg, its im-
pact on host fungal growth is strikingly different. CaGg promotes
the growth of its fungal host, while M. cysteinexigens decreases
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fungal growth (Uehling et al. 2017) suggesting that these later
endobacteria utilise host fungal metabolic products. This be-
haviour likely reflects their ancient divergence from CaGg and
co-evolution with the fungal host.

Interestingly, many Mucoromycota, including Glomeromy-
cotina, Endogone and Mortierellamycotina, can host endosym-
bionts belonging to the Mollicutes group of bacteria (Naumann,
Schiissler and Bonfante 2010; Desiro et al. 2014, 2015, 2018);
some have been identified as novel types named ‘Candidatus
Moeniiplasma glomeromycotorum’ (CaMg) (Naito et al. 2017).
The effect of these Mollicutes endobacteria on their fungal
hosts is still being unraveled. Molecular evolution analyses of
Glomeromycotina indicate that CaMg is a parasite of the fun-
gus. Experimental work with Mortierellamycotina indicates that
the Mollicutes-related endosymbionts are conditional parasites
(Toomer et al. 2015; Desiro et al. 2018). Remarkably, genome se-
quencing of selected CaMg revealed evidence of horizontal gene
transfer events, in particular of fungal genes involved in post-
translational modification (Naito, Morton and Pawlowska 2015;
Torres-Cortés et al. 2015). Ongoing studies now aim at determin-
ing the function of CaMg; in particular, the striking observation
of the presence of multiple lineages of endobacteria within a sin-
gle fungal host calls for further scrutiny (Desiro0 et al. 2014).

In contrast to the endobacteria of Mucoromycota, endofun-
gal bacteria reported in the Ascomycota and Basidiomycota ap-
pear to be more transient in nature, yet they can also influence
host phenotype and fitness (Hoffman and Arnold 2010; Spraker
et al. 2016). Such transient bacterial-fungal associations may be
ecologically important in local habitat-associated adaptation, in
which the fungal hosts may serve as environmental reservoirs
or refuges for the bacteria (Spraker et al. 2016).

The mechanisms by which endofungal bacteria colonise
their hosts have been deciphered for only a few examples.
Paraburkholderia rhizoxinica actively secretes chitinolytic en-
zymes by means of the type II secretion system, to penetrate
the hyphae of the R. microsporus host (Moebius et al. 2014). In
contrast, Ralstonia solanacearum requires the production of the
lipopeptide ralsomyecin to invade the chlamydospores of its fun-
gal hosts (Spraker et al. 2016). Once inside the mycelium, some
bacteria, much like mitochondria, are able to move through
dolipore septa (Bertaux et al. 2005). Some can also be verti-
cally transmitted between generations through fungal spores
(Spraker et al. 2016), with the bacterial type III secretion system
possibly playing a role (Lackner, Moebius and Hertweck 2011).
Further studies are necessary to decipher how widespread these
mechanisms are among the endofungal bacteria. Interestingly,
in some cases endosymbionts influence fungal host biology and
the ability of the fungus to interact with its own host through
beneficial (Hoffman et al. 2013; Vannini et al. 2016; Guo et al. 2017)
or detrimental (Lackner and Hertweck 2011) associations, giving
rise to multilevel interkingdom interactions.

Bacterial DNA is often detected in fungal genome-
sequencing projects, opening the question of whether en-
dobacteria are more common in fungi than previously thought.
Such ‘contaminating’ DNA could belong to external bacteria or
to endobacteria (either transient or stable). With improvements
in genome-sequencing technology, it has become possible to
assemble entire bacterial genomes from a fungal-bacterial DNA
preparation (Uehling et al. 2017). Researchers are urged to keep
an open mind to the possibility of endobacterial associates in
their fungi before discarding these ‘contaminating’ bacterial
reads from their projects. Although presence of bacterial
reads in fungal sequencing projects is indicative of potential
endobacterial symbionts, the presence and taxonomic identity
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of endofungal bacteria should still be demonstrated by other
evidence, such as provided by transmission electron microscopy
and fluorescence in situ hybridisation (FISH).

BFI in complex microbial communities, metaorganisms
and holobionts

Despite the increasing number of in-depth analyses of micro-
bial communities in multiple systems, studies that consider
fungi and bacteria together are still limited in number. Clearly,
Next Generation Sequencing (NGS) offers unprecedented
opportunities for obtaining a broad view of potential
BFI across habitats (reviewed in de Menezes, Richardson
and Thrall 2017), yet it only permits co-occurrence infer-
ences that may not represent true interactions. Network
inference can help to identify those microbes that potentially
interact. In a recent study, co-occurrence analyses between
bacterial and fungal OTUs across 266 soil samples revealed a
significant association between bacteria belonging to the genus
Burkholderia and a wide range of soil fungi (Stopnisek et al.
2016). This ubiquitous association, together with co-cultivation
experiments under laboratory conditions, suggests that specific
soil bacteria have evolved strategies to utilise fungal-secreted
metabolites and overcome fungal defence mechanisms (Stop-
nisek et al. 2016). Interactions involving hub microorganisms or
keystone species (box 1) can be then further investigated at the
molecular level. Agler and co-workers thus identified the yeast
Dioszegia as a fungal hub of the phyllosphere microbiome of
Arabidopsis thaliana, as well as its bacterial interactants (Agler
et al. 2016). This methodology has already identified BF networks
and the drivers that govern community assembly in leaf litter
(Purahong et al. 2016), soils (de Menezes et al. 2014; Ma et al. 2016;
Stopnisek et al. 2016), floral nectar (Alvarez-Pérez and Herrera
2013), plants (Bell et al. 2014; Agler et al. 2016) and human mi-
crobiomes (Mukherjee et al. 2014; Trosvik and de Muinck 2015).
All these studies revealed non-random associations between
fungi and bacteria and an over-representation of positive asso-
ciations compared to negative ones. Such positive associations
are likely to reflect commonalities of habitats between the
microorganisms and potential positive interactions. However,
they can also be the result of the common colonisation of a
habitat via the same selective or dispersal agent, as in the case
of some microorganisms in flowers that are transported by bees
(Alvarez-Pérez and Herrera 2013). Networks can vary from a few
dozens of microorganisms (as in the oral microbiome) to over
50.000 (in soil) (Mukherjee et al. 2014; Ma et al. 2016). Linking
network-inferred prediction with functional analyses will
represent an important step forward to decipher the potential
link between BFI and ecosystem functioning (Ma et al. 2016;
Purahong et al. 2016). For instance, the co-occurrence of the
lignocellulose decomposer fungi Clitocybe and Mycena spp. with
potential N2-fixing bacterial taxa was correlated with nitrogen
(N) deposition in the soil during the decay of leaves, indicating
that some bacteria may contribute to the N nutrition of fungi
while fungi make C available for bacteria (Purahong et al. 2016).

An ecological balance within the microbiome and between
the microbiome and the host (host-microbiota homeostasis) has
been hypothesised to be fundamental to maintaining the health
of both animal and plant hosts (Krom and Oskam 2014; Hac-
quard et al. 2017). Understanding how microbiomes shift be-
tween healthy symbiosis and unhealthy dysbiosis, and how BFI
are involved in such process, is therefore of rising interest in
many research fields. For example, BFI can be a factor that
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modulates human disease if the ecological balance between
the partners shifts. This is illustrated by the recurrent interac-
tions between fungi and bacteria in infections of burn wounds,
denture stomatitis, lungs of cystic fibrosis and immunocompro-
mised patients, as well as in (recurrent) bowel disease, or related
to the use of invasive medical devices (Dhamgaye, Qu and Peleg
2016; Forster et al. 2016). Consequently, BFI in such associations
may impact the virulence of both partners of the interactome.
In plants, the critical role of the microbiota for suppression of
plant pathogens has been extensively reported (e.g. Santhanam
et al. 2015; Ritpitakphong et al. 2016; Expdsito et al. 2017). Similar
to what has been described for human diseases, several plant
infections are often associated with dysbiosis and the loss of di-
versity in the microbiome (Santhanam et al. 2015; Koskella, Hall
and Metcalf 2017). The mechanisms leading to bacterial-fungal
homeostasis in plant tissues remain unclear, but likely involve
a combination of host-dependent and host-independent mech-
anisms, such as metabolic and nutritional interdependencies
among microbes, secretion of antimicrobials and production of
protective barriers (Wei et al. 2015; Mousa et al. 2016).

Such complex interactions are starting to be taken into ac-
count when designing new strategies to improve the growth
and health of crops (Panke-Buisse et al. 2015; Poudel et al. 2016),
or treating dysbiosis in animals and plants using microbiome-
based strategies (Fraune et al. 2015; Santhanam et al. 2015; Adam
etal. 2016). For instance, there is growing awareness that we now
need to consider potential synergisms between BF pathogenic
communities in order to analyse and treat diseases (Lamich-
hane and Venturi 2015), with an emphasis on the interactions
between microorganisms in the context of pathogenesis (Lopes,
Azevedo and Pereira 2014). In addition, positive BFI effects on
human health might allow to use fungi and/or bacteria as pro-
biotics. Microbiome-based analyses are also used to improve
food processes such as cheese or wine making (Pinto et al. 2014;
Dugat-Bony et al. 2015; Liu et al. 2017), and could be applied to
many other systems including energy production and bioreme-
diation.

The emerging importance of Archaea among
microbiomes

Besides bacteria, Archaea are now also recognised as impor-
tant members of Earth’s biosphere in terms of their contribu-
tion to ecosystem functioning (Moissl-Eichinger et al. 2017). They
play key roles in global carbon and nitrogen cycles, for instance
in methanogenesis, anaerobic methane oxidation (methanotro-
phy) and ammonia oxidation. Interestingly, Archaea are found
in niches where BFI occur, such as decaying wood (Rinta-Kanto
et al. 2016), the mycorrhizosphere (Bomberg and Timonen 2009),
rhizosphere (Thion et al. 2016), soil (Ma et al. 2016), rumen (Kumar
et al. 2015) and human gut (Hoffmann et al. 2013). However, to
date, only few studies have investigated the bacterial-archaeal
(Raymann et al. 2017), archaeal-fungal (Hoffmann et al. 2013; Ku-
mar et al. 2015) and fungal-bacterial-archaeal (Ma et al. 2016)
interactions or co-occurrences. Altogether, this suggests that
Archaea should be integrated into the metaorganism concept,
especially since they are known to be involved in different
microbial interactions including syntrophy (Morris et al. 2013).

MECHANISMS OF INTERACTION

A suite of molecular mechanisms may underlie BFI in differ-
ent systems relying on a combination of physical and chem-
ical interactions, as outlined in Frey-Klett et al. (2011) and

illustrated in Table S1, Supporting Information. Such mecha-
nisms were conceptually divided into four classes, i.e. (i) antibio-
sis involving metabolite exchange, (ii) signalling and chemo-
taxis involving metabolite sensing and conversion, (iii) physic-
ochemical changes following adhesion and (iv) protein secre-
tion. Clearly, the above division in four mechanistic types allows
for overlap, as it is likely that in all four cases signalling, signal
perception and modulation of gene expression in either or both
of the partner organisms play a crucial role. Hence, we present
a strong focus on the ways by which BFI depend on signal (or
metabolite) exchange. We also focus specifically on recent ad-
vances on physical interactions during BFI and the particular
importance of ‘microbial logistics’ in BFIL.

Signalling and recognition during BFI

Whether and to what extent fungi and bacteria have the ability
to perceive and recognise other microorganisms is a question
that animates the BFI field for years. Transcriptomic analyses of
several BFI have demonstrated that both fungi and bacteria re-
act to the presence of the partner microorganism and respond
differentially depending on the interacting partners (e.g. Mela
et al. 2011; Sztajer et al. 2014; Gkarmiri et al. 2015; Hagq et al. 2017;
Tomada et al. 2017). Several cues may be used by the microor-
ganisms for mutual detection, and most are based on small sig-
nalling molecules (Scherlach and Hertweck 2017) (Fig. 2). The un-
derlying modes of action vary as well as specificity; from highly
specific signals which are solely perceived as a direct sign of the
presence of the interacting partner, to compounds that interfere
with signalling pathways in the interacting partner and induce
a specific response. This second class of compounds is the most
reported one in the literature so far.

One example is quorum sensing (QS). QS has long been con-
sidered to constitute a means by which bacteria sense and com-
municate their population density to coordinate their activities.
Recently, QS was shown to be also involved in fungal processes
such as morphogenesis, germination, apoptosis, pathogenic-
ity and biofilm development (reviewed in Wongsuk, Pumeesat
and Luplertlop 2016). Furthermore, both bacterial and fungal
QS molecules were shown to play significant roles in cross-
kingdom signalling (Cugini et al. 2007; Stanley et al. 2014; Szta-
jer et al. 2014; Dixon and Hall 2015). Indeed, certain bacteria re-
act to fungal QS molecules (e.g. farnesol, tyrosol, phenylethanol,
tryptophol; Wongsuk, Pumeesat and Luplertlop 2016), and, con-
versely, fungi may react to bacterium-secreted compounds (e.g.
quinolone signals, homoserine lactones; Dixon and Hall 2015;
Fourie et al. 2016). Such interkingdom signalling is likely to be
a common mechanism of communication between microbes in
mixed fungal-bacterial biofilms in which these molecules are
abundantly produced (Trejo-Herndndez et al. 2014; Dixon and
Hall 2015; Fourie et al. 2016). This intricate dialogue has been
particularly well studied in C. albicans-P.aeruginosa/s. gordonii/S.
aureus interactions (Lindsay and Hogan 2014). Signalling may be
involved in a broader number of habitats since QS may also in-
tervene in bacterial endofungal symbioses (Kai et al. 2012).

Other soluble compounds released by fungi are also sensed
by bacteria. Examples are organic acids, sugars, polyols and
even toxins. These compounds induce bacterial chemotaxis to-
wards the hyphae of fungi that excrete them. Among these
compounds, oxalic acid is of peculiar interest since it induces
chemotaxis in the soil bacterium Collimonas without being con-
sumed (Rudnick, van Veen and de Boer 2015; Haq 2016). This
is in contrast to most other compounds (e.g. glycerol) that are
later used as a source of nutrients by fungal-associated bacteria
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Short distance signalling

Figure 2. Short and long distance signalling in BFI. Diverse small molecules, either soluble or volatile, are perceived as a cue for the presence of the fungal/bacterial
interactant during BFI. These molecules affect positively or negatively the fungal/bacterial partner, but also sometimes the hosts of BFI or additional organisms.

(Boersma et al. 2009; Hagq et al. 2016). Oxalic acid would therefore
serve as a sole probe of the presence of fungi in the present case.

The importance of volatile organic compounds (VOCs) in BFI
signalling has long been overlooked. However, reports involving
‘long-distance’ signalling during BFI through VOCs originating
from bacteria (Briard, Heddergott and Latgé 2016; Jones et al.
2017), fungi (Schmidt 2015), or synergistically from both part-
ners (Spraker et al. 2014; Vahdatzadeh, Deveau and Splivallo
2015; Schmidt et al. 2017; Uehling et al. 2017) have recently accu-
mulated. VOCs encompass a broad range of small compounds
that easily diffuse through water- and gas-filled pores or tissues
(reviewed in Effmert et al. 2012; Schmidt et al. 2015). In addi-
tion to their well-described fungistatic and bacteriostatic activ-
ities (Cordero et al. 2014; Cernava et al. 2015), VOCs such as ter-
penes or dimethyl sulphide stimulate microbial activities during
BFI. For instance, the VOCs produced by P. aeruginosa stimulate
the growth of the opportunistic pathogen Aspergillus fumigatus,
favouring invasion of lung parenchyma by the fungus (Briard,
Heddergott and Latgé 2016). Conversely, the plant-pathogenic
fungus Fusarium culmorum produces terpenes that induce motil-
ity in the bacterium Serratia plymuthica (Schmidt et al. 2017).
Interestingly, VOC production is highly influenced by nutrient
availability (Hacquard 2017), and it has been proposed that mi-
croorganisms sense changes in their environments via shifts in
VOC blends, adapting their behaviour accordingly (Garbeva et al.
2014). Intriguingly, some VOCs, such as the terpene sordorifen,
are produced by both fungi and bacteria. This has led to the

hypothesis that VOCs may serve as a lingua franca between mi-
croorganisms (Schmidt et al. 2017). Elucidating VOC perception
mechanisms in both fungi and bacteria may answer the ques-
tion whether a shared language is used by bacteria and fungi
during their interactions. To date, volatile receptors have not
been identified in either fungi or bacteria and the effects of VOCs
on cell membrane depolarisation-based signalling during BFI re-
main to be measured.

Lastly, fungi may also recognise bacteria during BFI using re-
ceptors similar to plant and animal immune receptors that de-
tect microbe-associated molecular patterns (MAMPs). Transcrip-
tomic data have recently revealed that fungi react to similar
MAMPs as plants and animals (Ipcho et al. 2016), and a recent
survey of fungal genomes has uncovered a repertoire of putative
Nod-like immune receptors or NLRs (Dyrka et al. 2014; Uehling,
Deveau and Paoletti 2017). Some NLRs could directly recognise
the presence of these MAMPs in the environment. Noteworthy is
the fact that a subset of NLRs has the ability to rapidly generate
new binding specificities through recombination of tandem re-
peat sequences (Dyrka et al. 2014; Uehling, Deveau and Paoletti
2017) that could favour fast adaptation to new ligands. A fungal
lectin that binds bacterial lipopolysaccharide was also found to
be upregulated during the interaction of the fungus Laccaria bi-
color with different soil bacteria (Deveau et al. 2014; Wohlschlager
et al. 2014). Whether these different receptors trigger immunity-
like responses or are used to detect more generic BFI still needs
to be determined.

Downloaded from https://academic.oup.com/femsre/advance-article-abstract/doi/10.1093/femsre/fuy008/4875924
by Michigan State University user

on 02 May 2018



8 | FEMS Microbiology Reviews

Microbial diversity

——ee— ‘ Disturbance ‘ R ——

sjejqey snoeueﬁme:,ej_‘[

Function

Figure 3. Microbial logistics in BFI. Fungal hyphae can efficiently colonise heterogeneous environmental habitats, create new microhabitats and thereby enable a
variety of emerging ecosystem processes and services that can be beneficial or detrimental to bacteria. The mycosphere functions depend on the environment and

the microorganisms involved and are highly susceptible to disturbance.

Mycelia as networks for bacterial transport

The spatial structure of the microbial habitat has been recog-
nised to be crucial for its ecology as it drives the composition
and activity of microbiomes (Andersson et al. 2014; Tecon and
Or 2017). Spatial aspects also drive BFI (Harms, Schlosser and
Wick 2011) and their better understanding will assist their use
in microbial resource management. Similar to logistics of hu-
man resources and goods, microbial logistics (box 1) are es-
sential for the functioning of microbial systems (Fig. 3). Given
that mycelia vastly extend in soils (up to 10> m g%, 103 m g!
and 10* m g! length in arable, pasture and forest soils, re-
spectively) (Ritz and Young 2004; Joergensen and Wichern 2018),
mycelia can be considered to constitute ideal transport paths
and scaffolds for bacteria. The fractal structure of mycelia en-
ables fungi to effectively exploit the three-dimensional space
and to easily adapt to environmental disturbances. Fungi also
cope well with heterogeneous distribution of nutrients (Boswell
et al. 2007). A relevant feature of microbial logistics related to
mycelial growth is the translocation of compounds between
‘feeder’ hyphae growing in optimal environments to hyphal ex-
pansion/exploration of more unfavourable areas (i.e. resource
transport, Fig. 3). Likewise, fungi recycle and re-allocate their hy-
phal biomass from substrate-depleted regions to the benefit of
exploratory colonisation of new habitats (Fricker et al. 2017). Hy-
drophobic cell wall proteins (hydrophobins) further enable hy-
phae to cross air-water interfaces and access heterogeneously

distributed nutrients in vadose environments. Important for BFI
ecology is the observation that hyphae serve as dispersal vec-
tors for motile bacteria (‘fungal highways’, Kohlmeier et al. 2005;
see https://www.youtube.com/watch?v=AnsYh6511Ic for a time
lapse movie). In soil, fungal hyphae may thereby preferentially
invade the larger pores that are most likely air-filled under typ-
ical field conditions (Falconer et al. 2012) and hence allow for
bacterial dispersal at vadose conditions. This enables random
and directed (e.g. chemotactic) access to new habitats and nu-
trients (Furuno et al. 2010). For instance, experiments and model
simulations showed that mycelia-based bacterial dispersal
stimulates contaminant biodegradation in situations where
chemicals and/or bacteria are heterogeneously distributed and
where the active movement of bacteria to pollutant reservoirs
is limited by physical barriers (e.g. air-filled pores) (Banitz et al.
2011; Tecon and Or 2016; Worrich et al. 2016). The hyphosphere
is also an ideal hotspot for the foraging of bacterial prey popu-
lations (Otto et al. 2016; Otto, Harms and Wick 2017) and for hor-
izontal gene transfer, including those for antibiotic resistance,
by facilitating dispersal and preferential contact of bacteria in
the hyphosphere (Zhang et al. 2014; Berthold et al. 2016; Nazir
et al. 2017). Mycelia-facilitated bacterial dispersal may likewise
promote new niche colonisation (Warmink and van Elsas 2009;
Martin et al. 2012; Simon et al. 2017) and contribute to bacterial
food spoilage (Lee et al. 2014), or the co-invasion of tissues during
pathogenesis (Schlecht et al. 2015; Jung et al. 2018). It may be a
critical issue in the medical field, as recent studies have revealed
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the existence of a variety of diverse mycobiomes related to hu-
man niches (Kalan et al. 2016; El-Jurdi and Ghannoum 2017).

Is it all about food acquisition? New aspects of
nutrient-based BFI

It has long been known that many BFI, whether antago-
nistic or synergistic, rely on competition or cooperation for
the acquisition of nutrients, both organic and inorganic ones
(Fig. 3). Competition for nutrients has led to the development
of a large chemical arsenal in both fungi and bacteria over
the millions of years of interaction. Antimicrobial peptides
(e.g. copsin—Essig et al. 2014), biosurfactants (e.g. surfactin,
nunamycin—Raaijmakers et al. 2010; Hennessy et al. 2017), phe-
nol and quinone derivatives (e.g. penicillin, atromentin—Kong,
Schneper and Mathee 2010; Reen et al. 2016; Tauber et al. 2016),
pyrrol nitrin (Costa et al. 2009), phenazines (e.g. pyocianin—
Morales et al. 2010), QS inhibitors (Scopel et al. 2013; de Car-
valho et al. 2016) to name a few, are all microbial compounds
that are naturally involved in BFI (Table 1). These compounds act
through a wide variety of mechanisms that include cell mem-
brane disruption, inhibition of cell wall biosynthesis and pri-
mary metabolism, formation of reactive oxygen species against
a fungus, starvation or disruption by a fungus of bacterial QS
signalling (Table 1). The production of these compounds varies
depending on the organisms and on environmental conditions,
as exemplified by the interaction between P. aeruginosa and A.
fumigatus or C. albicans (Lindsay and Hogan 2014; Ferreira et al.
2015). In response, defensive mechanisms (e.g. active efflux of
antibiotics or degrading enzymes) have also been developed by
target microorganisms to protect themselves (Kiinzler 2015). The
development of protection mechanisms against toxins can also
lead to cooperative behaviours between toxic fungi and bacteria
as in the case of the plant pathogens B. glumae and F. gramin-
earum (Jung et al. 2018). Chemical warfare in BFI can be exploited
to search for new drugs and antibiotics (Reen et al. 2016). A
number of novel compounds, e.g. glionitrin A or new members
of enacyloxin family, has been uncovered through BFI analy-
ses in the past years (Park et al. 2009; Ross et al. 2014; Tyc et al.
2014; Barkal et al. 2016). High-throughput screening of BFI has
been developed to uncover cryptic or new secondary metabo-
lites (Tyc et al. 2014; Navarri et al. 2016). Antibiotics are probably
the most commonly sought-after compounds; however, other
compounds such as QS inhibitors could also prove to be valu-
able (Scopel et al. 2013; de Carvalho et al. 2016). Given the huge
unexplored metabolome space, there is great potential for the
discovery of novel therapeutic approaches or methods to limit
food spoilage (Debbab et al. 2010; Navarri et al. 2016). For in-
stance, lactic acid bacteria, via the production of organic acids,
hydroxyl fatty acids, hydrogen peroxide or reuterin, may restrict
food spoilage (Ganzle 2015). Conversely, some compounds may
be detrimental, as exemplified by the production of rhizoxin and
rhizonin toxins through BFI in soybean fermentations, which
can cause hepatic lesions when ingested (Rohm et al. 2010).
Less recognised is maybe the importance of BFI in food
webs and nutrient cycling. Numbers of bacteria have the
ability to degrade fungal cell walls, and bacteria are likely
to have an important role in fungal biomass decomposition
(Brabcova et al. 2016; Lladd, Lépez-mondéjar and Baldrian 2017).
Lysis of fungal cells by bacteria also stimulates biogeochemi-
cal processes such as carbon flow within the mycorrhizosphere
(Ballhausen and de Boer 2016) or cellulose degradation from
plant biomass as exemplified by the activities of the forest soil
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bacterium Clostridium phytofermentans (Tolonen et al. 2015). Plant
biomass degradation often involves the action of both bacte-
ria and fungi (Zifédkova et al. 2017). In the case of fungus-
growing termites of the order Macrotermitinae, it has been
demonstrated that the gut microbiomes of both fungal ectosym-
biont (Termytomyces) and termite (workers) participate in plant
biomass decomposition by providing a full set of complementary
carbohydrate-active enzymes (Poulsen et al. 2014). In addition to
decomposition, a large array of rhizosphere bacteria can directly
consume fungal exudates, and so fungal hyphae may be an im-
portant source of nutrients in this habitat as well as in soil (Rud-
nick, van Veen and de Boer 2015). Some bacteria can kill and con-
sume living fungi (i.e. mycophagy, Fig. 3). Collimonas fungivorans
is the best-described ‘mycophagous’ bacterium so far, whereas
other bacteria such as S. marcescens can also live off living fungi
(Rudnick, van Veen and de Boer 2015; Ballhausen and de Boer
2016; Hover et al. 2016). While Collimonas relies on the produc-
tion of secondary metabolites and chitinases to destabilise and
degrade fungal cell walls (Mela et al. 2012), the killer activity of
S. marcescens is independent of chitinase production and relies
instead on the ability to form biofilms on the hyphae (Hover
et al. 2016). The abilities to produce antifungal compounds are
phylogenetically conserved in collimonads, suggesting the exis-
tence of co-evolution processes in this nutrient-based BFI (Ball-
hausen and de Boer 2016). Fungi may also be able to take ad-
vantage of their bacterial partner to improve their nutrition.
Pion et al. (2013) demonstrated that the fungus Morchella cras-
sipes is able to exploit bacterial biomass through a sophisticated
mechanism coined bacterial farming, in which the fungus first
feeds the bacterium P. putida and then harvests this self-created
C source.

By contrast, mycelia of fungi (F. oxysporum and Lyophillum sp.
strain Karsten) and oomycetes (Pythium ultimum) may enable
bacterial activity by nutrient and water transfer from the hy-
phae to the bacterial cells exposed to oligotrophic habitats (Wor-
rich et al. 2017) or favour microbial activity in dry soils (Guhr
et al. 2015) (Fig. 3). Mycelia have also been found to mobilise
entrapped polycyclic aromatic hydrocarbons (PAHs) via vesicle-
bound cytoplasmic transport (‘hyphal pipelines’, Furuno et al.
2012) and to render them available to degrader bacteria (Fester
et al. 2014; Schamfuf3 et al. 2013). Altogether, we see an emerg-
ing picture of fungi promoting ecosystem functioning in hetero-
geneous habitats by transporting resources from high nutrient
level and water activity areas to nutrient-poor and dry areas.

BFI mediated habitat modification

Bacteria and fungi can indirectly interact by modifying their en-
vironment in ways that positively or negatively affect their part-
ners (i.e. niche modulation, Fig. 3). pH has been frequently re-
ported as an important factor involved in tinkering with BFI
(Frey-Klett et al. 2011). Fungi sense and actively modulate the pH
in their surroundings (Nazir et al. 2010; Bignell 2012; Braunsdorf,
Maildnder-Sanchez and Schaller 2016). For instance, Lyophyllum
sp. strain Karsten growing through soil was shown to raise the
soil pH from levels below pH 5.0 to just above this threshold
for survival of the pH sensitive Variovorax paradoxus and other
fungal-associated bacterial strains (Nazir et al. 2010). Also, C. al-
bicans has been shown to influence the pH of the phagolyso-
some to increase its chances of survival in phagocytic cells of
the immune system (Vylkova and Lorenz 2014; Vylkova 2017). In
addition, in combination with Streptococcus mutans, a cariogenic
acid producing oral bacterium, C. albicans actively raises the en-
vironmental pH (Willems et al. 2016). Increasing the pH from acid
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towards a more neutral value directly stimulates overall bacte-
rial growth and metabolism, as low pH commonly inhibits the
growth of most bacteria.

Recent studies also identified oxygen level as an important
BFI modulator, particularly for C. albicans—bacteria interactions.
Early reports indicated that biofilms of C. albicans provide an
anoxic environment (Bonhomme et al. 2011). This was later con-
firmed by co-culturing C. albicans with a variety of strict anaer-
obic bacterial species (Fox et al. 2014). In the oral cavity, rapid
respiration by C. albicans and several other Candida species cre-
ates an anaerobic niche by reducing the level of dissolved oxy-
gen (Lambooij et al. 2017). This favours anaerobic bacteria and
antagonises aerobic ones, thereby directly influencing the com-
position of the microbiome (Janus, Willems and Krom 2016;
Janus et al. 2017). Notwithstanding the afore described anaero-
bism, aerobic respiration is facilitated by the structure of Candida
biofilms, and inhibition of respiration (e.g. by bacterial metabo-
lites such as phenazines) inhibits biofilm formation by the fun-
gus (Morales et al. 2013). Conversely, ethanol production by C.
albicans stimulates phenazine production by P. aeruginosa and
biofilm formation by the bacteria through a feedback loop, which
theoretically increases virulence of both microorganisms (Chen
et al. 2014). In light of the diversity of other fungi commonly
found in the oral cavity, this oxygen-mediated effect may play
an important role in more BFI in this habitat as well as many
other human-associated niches.

BFI can also occur indirectly, via host behaviour modulations.
For instance, bacteria and fungi induce different innate immune
defences in the nematode Caenorhabditis elegans (Pukkila-Worley,
Ausubel and Mylonakis 2011). By this means, co-infection by
bacteria and fungi can alter the outcome of the disease and
favour or reduce the development of the pathogens (Arvanitis
and Mylonakis 2015). Candida albicans and S. aureus resulted in
increased end-organ damage in murine peritonitis and higher
mortality compared with single-pathogen infection. This was
mediated by higher levels of circulating inflammatory cytokines
(Peters and Noverr 2013). Interplays between bacteria, fungi and
the innate ‘immune systems’ are also expected in plants (Hac-
quard et al. 2017).

Use of -omics to obtain an integrated view of BFIs

The molecular dialogue that occurs during BFI usually relies on
intricate and multiple cell responses as highlighted in Table S1,
Supporting Information. ‘Omics’ approaches are ideally suited
to address such dialogues and -omics tools can be used to anal-
yse BFI from ‘simple’ in vitro dual interactions to complex natu-
ral multispecies interactions (box 1). The past years have seen a
multitude of applications of -omics to BFI (e.g. Mela et al. 2012;
Deveau et al. 2014; Phelan et al. 2014; Benoit et al. 2015; Gkarmiri
et al. 2015; Lamacchia et al. 2016; Li et al. 2017; Haq et al. 2017,
Schmidt et al. 2017; Uehling et al. 2017; Jung et al. 2018). As an
overriding theme, responses of partner organisms were com-
monly found, yet the magnitudes of the responses varied greatly,
probably reflecting dependency on the types of interactions,
their context, and the technology used. Interestingly, most stud-
ies demonstrated regulation of primary metabolisms including
nutrient transporters, stress response, cell wall remodelling and
secondary metabolite production during BFI. Noteworthy is the
fact that genes/proteins with unknown functions, or showingre-
stricted phylogenetic distribution, often represent a significant
part of genes regulated in BFI. Emerging studies have been made
on tripartite interactions between fungi, bacteria and a host,
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shedding light on the complex cross-talks occurring (Kurth et al.
2015; Vannini et al. 2016).

Complex microbial communities, being most realistic,
should be examined using the combination of such analyses.
The following questions emerge as relevant: ‘Who is there?’,
‘What are they capable of?’, ‘Who is actively doing what?’ and
‘What are the factors that modify the output of the interac-
tion?” Combining metagenomics and metaproteomics analyses,
Grube deciphered the multifaceted roles of the bacteriome of
the lichen L. pulmonaria (Grube et al. 2015). In this fungus-alga-
bacteria symbiosis, more than 800 bacterial species contributed
to the nutrient supply of the lichen, helped its resistance against
fungal pathogens and abiotic stress and provided essential hor-
mones and vitamins. Similarly, by using a combination of multi-
omics approaches and soil biological techniques, Nuccio et al.
demonstrated, for the first time, that the AMF Glomus hoi in Plan-
tago lanceolate, significantly modified 10% of the bacterial com-
munity in decomposing litter (Nuccio et al. 2013). Moreover, the
AMF was shown to affect the physicochemical environment in
the decomposinglitter by preferentially exporting N, for which it
appeared to acquire N primarily in the inorganic form. This im-
plied that the export of N from litter is one mechanism by which
AMF alter the composition of the bacterial community and de-
composition processes in soil.

In addition, to pinpoint functional activities within micro-
biomes, metaomics approaches help in determining the active
players in natural conditions in microbiomes of cheese, soil or
the human gut (Huttenhower et al. 2012; Dugat-Bony et al. 2015;
Perazzolli et al. 2016; Ghodsalavi et al. 2017). Identifying keystone
members of such microbiomes and their responses to perturba-
tions is a current challenge of microbial ecology. To allow such
studies, synthetic communities may be designed that reproduce
patterns of community formation and dynamics of natural sys-
tems as well as their functional outputs. So far, much progress
has been achieved in fermented food ecosystems (Wolfe and
Dutton 2015). In surface-ripened cheese, key functions involved
in cheese maturation process such as carbohydrate, lipid and
protein metabolisms were highlighted using synthetic bacterial
and fungal communities (Dugat-Bonny 2015). The consumption
of lactate produced by Lactobacillus lactis, by the fungi Debary-
omyces hansenii and Geotrichum candidum was evidenced by a high
level of lactate dehydrogenase transcripts (Dugat-Bonny 2015).
Moreover, the dominance of Staphylococcus equorum in cheese
was maintained due to the presence of the fungus Scopulariop-
sis sp. via a molecular mechanism based on the iron utilisation
pathways such as a homolog of the S. aureus staphyloferrin B
siderophore operon pathway (Kastman et al. 2016).

One of the future challenges will be to take into account the
spatial and temporal scales of BFI in the analyses. Even though
fungi and bacteria co-colonise the same habitat, they do not
have the same lifestyle in terms of colonisation area. This is
particularly true for soils, in which bacterial habitats may be re-
duced to a soil particle of a mm? or specific zones in a biofilm on
aroot, while the hyphae of the fungus with which theylocally in-
teract forage across centimetres to meters and also interact with
other plants, wood debris, microorganisms and microfauna. We
here argue that there are fundamental differences in the way
that bacteria and fungi respond to biotic and abiotic cues. For
example, plant-associated bacterial communities show more re-
sistance to perturbations such as in land use and pH modifica-
tion than plant-associated fungal communities, while the fun-
gal communities are more resistant to drought than bacterial
communities (Uroz et al. 2016). Moreover, the interactive popu-
lations tend to be spatiotemporally heterogeneous, so each part
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of the interacting system may be (slightly) different from each
other, at different points in time during development. In addi-
tion, BFI tend to be dynamic (Young and Crawford 2004; Hen-
nessy, Stougaard and Olsson 2017). Current methodologies used
to analyse bacterial and fungal microbiomes do not allow one
to take into account such complex spatiotemporal organisation.
However, their use in combination with microscopy, FISH and
analytic techniques such as Raman spectroscopy, Imaging Mass
Spectrometry or nanoSIMS may help to overcome this limitation
(Behrens et al. 2008; Kaltenpoth, Strupat and Svatos 2016; Wang
et al. 2016).

FUTURE PERSPECTIVES OF BFI RESEARCH

As highlighted in this review, important progress has been made
in the understanding of BFI in model microorganisms, as well
as in the description of complex microbial communities involv-
ing BFI. Within the last two decades, it has become clear that
BFI are crucial to the functions in both natural and anthro-
pogenic ecosystems, including human health. At the ecosys-
tem scale, BFI present all types of outcomes, from positive to
negative. As a result, on the one hand they represent a great
potential to be harnessed, for instance in sustainable agricul-
ture. On the other hand, the recognition of BFI with negative
properties, for instance in human health, could lead to im-
proved therapeutics. However, there is still an important gap
between studies performed in laboratory conditions and the ‘in
vivo’ reality that impedes our ability to extrapolate generic prin-
ciples of BFI at the (eco)system scale. The rapid technological ad-
vances in methodological fields related to the study of microor-
ganisms may help in reaching such goal. The manipulation of
host-associated microbiomes using either synthetic microbial
communities, dilution of natural communities, CRISPR-Cas9,
Agrobacterium-mediated and other transgenesis tools or antibi-
otic manipulation of microbial communities and/or germ-free
hosts combined with modelling will help to identify the driving
factors of BFI and of their interactions with their hosts and/or
environment. Moreover, although the number of researchers in-
tegrating BFI into their studies is expanding, the field needs to
become more interdisciplinary. As a result, we expect that both
the methodological aspect and the interdisciplinary contribu-
tion will bring new development in the BFI research field.
Finally, BFI could also have a broader impact in science if
they are used as model systems to analyse complex interac-
tions. Indeed, apart from being an object of study, the BFI holo-
biont also provides an interesting and relatively simple model
for the study of eukaryote-bacterial interactions. One advan-
tage is the fact that many fungi are haploid, easy to transform
(Michielse et al. 2005), and may be grown both in the absence
or presence of bacterial partners. In this way, the BFI holo-
biont can become a model system for the assessment of evolu-
tionarily conserved molecular interactions between eukaryotic
cells and bacteria. A key characteristic of eukaryotic metaor-
ganisms/holobionts is the modulated recognition of bacterial
symbionts by the hosts’ innate immune systems, welcoming
mutualists and resisting pathogens (Artis 2008; Zamioudis and
Pieterse 2012). It has long been proposed that fungi, similar to
plants and animals, possess an innate immune system (Pao-
letti and Saupe 2009; Salvioli et al. 2016), and have receptors
for recognising bacteria (Dyrka et al. 2014; Uehling, Deveau and
Paoletti 2017) and indeed do so with fast transcriptomic re-
sponses (Ipcho et al. 2016). This opens up an exciting avenue of
research into the conservation of innate immune systems across

phylogenetically distant eukaryotes. BFI also serve as useful
models for the study of evolutionary theory. For example, how do
symbiotic bacteria—eukaryote interactions remain stable under
different environmental conditions and over time (Olsson, Bon-
fante and Pawlowska 2017). Fungal mycelia have recently been
proposed to be a driving factor of the evolution of bacterial diver-
sity by enabling preferential contact of spatially distinct bacte-
ria and acting as focal point for horizontal gene transfer (Zhang
et al. 2014; Berthold et al. 2016). Thus, BFI may serve as models
to study other eukaryotes—prokaryotes interactions, in an anal-
ogous way to how fruit flies or worms are used as models to
study processes occurring in human cells (Olsson, Bonfante and
Pawlowska 2017). Fungal and bacterial model systems have the
advantages of being fast-growing, and easy to manipulate and
track genetically. Based on these premises, BFI research should
expand rapidly, not only to better understand the fundamental
processes involved in BFI across research fields, and commercial
and industrial settings, but also to take advantage of the fantas-
tic properties of BFI to exploit them as model systems.
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