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Abstract. We present lattice QCD results for the matrix elements of R, and other
dimension-7, AB = 2 operators relevant for calculations of AT, the B, — B, width differ-
ence. We have computed correlation functions using 5 ensembles of the MILC Collab-
oration’s 2+1+1-flavour gauge field configurations, spanning 3 lattice spacings and light
sea quarks masses down to the physical point. The HISQ action is used for the valence
strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis
is complete, the theoretical uncertainty in the Standard Model prediction for AI'; will be
substantially reduced.

1 Introduction

Mixing between particle and antiparticle states of neutral mesons has now been observed in K°, D°,
B°, and B? mesons. These mixings are due to couplings between generations of quark SU(2), doublets
after electroweak symmetry breaking. Since the leading-order weak process, represented by the “box”
diagrams, is at 1-loop level, there is the chance that new heavy particles, beyond those in the Standard
Model, could cause differences between Standard Model predictions and experimental results.

To a good approximation, three parameters are sufficient to describe neutral meson mixing: the
moduli of the off-diagonal matrix elements of the 2 X 2 mass and width matrices, M and I', and
their relative phase ¢ = arg(—M;,/T'1). For the B? system these parameters are constrained by
experimental measurements of the BY-BY mass difference, width difference, and a flavour-specific
CP asymmetry:

4 4 AT,
AM, = 2IM},|, ATy =2|I'},|cos ¢, and af, = N, tan ¢ . (1)

In (1) and the remainder of this paper we use notation specific to B? mixing. See Ref. [1] for a recent
review of BY mixing and references to a rich literature.
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The calculation of AI'y within the Standard Model is summarized in Ref. [2]. Contributions to I'},
come from matrix elements of the non-local product of 2 AB = 1 effective Hamiltonians

T =Imi f d'xT HEF (x) HEF'(0). 2)

The contributions from charm and up quarks in the intermediate states depend on the corresponding
CKM matrix elements; i.e. I'}, = (A2 + 22,4, + A2T'%) with 4; = V}Vj,. At the present level
of accuracy, only the CKM-leading contribution from I'{§ is important.

Direct lattice QCD calculation of matrix elements such as (B,|.7|B;) is not generally feasible due
to the difficulty in correctly treating all intermediate states.! However, one can employ an operator
product expansion known as the heavy quark expansion (HQE). Order-by-order in Agcp/mp, one
relates the matrix elements of nonlocal operators to a series of matrix elements of local AB = 2
operators. Using the most advantageous basis [2] the charm-charm loop contribution to I'}, is given
by

cc G%’mi a3 15, D Tcc
T = S |(6+ %65 ) BlQiIB) + 01Gs(BIQIBY| + Ty, 3)

with the next order in the HQE given by

[cc G%mi CcC/ > cC/ D ~CC/D | P

B 1, = g 196 BulRIBL) + ) [95°(BuIR IBS) + 5 (BIR 1B - “
B -
s j=1

A full basis of dimension-6 AB = 2 operators can be written as

01 = 0Y(1 = Y)s)Pyu(1 =)y, Qs =B —y)sHEP +y)s%)
0> = (B(1 =y )s)PP(1 - y°)sP), Qs = (B(1 =y )Y PP(1 +9°)sY)
0; = (B"(1 =y )PP - y)s"). 5

At higher order in the HQE, one needs matrix elements of the following operators

Ry

1
O +a103 + EQ'ZQI

Ri = 226 (1 - y)s)F (1 + )5 = 220y
my y
1 -« b
Ro = — (5" Dy (1 = Y)Y By = 7))
b

1 - <« _
Ry = —(b"Dy(1 - YIDPs)HP (1 - 9)sP). (©)
b

Matrix elements of the Q; operators (5) have long been calculated using lattice QCD; unquenched
results for By mixing appear in [4-7]. Until this work there have been no calculations of R, and R3
matrix elements. In phenomenological analyses [2, 8] the vacuum saturation approximation was used,
allowing a 50% uncertainty. Sum rule estimates suggest these matrix elements should be within a few
percent of the vacuum saturation approximation values [9], although the VSA predictions depend
sensitively on the value of the b-quark pole mass.



Table 1. Parameters of the ensembles used in this calculation.

label a/fm amy?

VC5  0.1474(5)(14)(2)  0.013 0.0650 0.838 16>x48 0.0641 3297
VCp 0.1450(3)(14)(2)  0.00235 0.0647 0.831 323x48 0.0628 3.25
C5  0.1219(2)(9)(2) 0.0102  0.0509 0.635 24°x64 0.0522 2.66
Cp  0.1189(2)(9)(2) 0.00184 0.0507 0.628 48 x64 0.0507 2.62
F5  0.0873(2)(5)(1) 0.0074  0.037 0.440 32*x96 0.0364 1.91

s gm$ N?XN, am” am,,

am .

2 Method

We use MILC’s HISQ ensembles, which include sea quark effects of degenerate up and down quarks
and physical-mass strange and charm quarks [10, 11]. We use the HISQ action for the valence s quark
and the NRQCD action for the b quark. The 5 ensembles include 3 distinct lattice spacings which
we respectively refer to as fine (F), coarse (C), and very coarse (VC). For each of these spacings
we use configurations with dynamical pion mass of approximately 300 MeV, and for the coarse and
very coarse spacings, we used the physical ensembles which have pion mass approximately 130 MeV.
Table 1 lists specific input parameters and the lattice spacings as determined from the (25 — 15)
splitting [12, 13].

In carrying out the calculation of (B,|R;|B,), with i = 2, 3, we need not compute all 4 terms in the
Lorentz dot product (6). The temporal derivative acting on the b field is O(my,): I_JB() = +mybyy, the
sign depending on whether we have an outgoing b quark or incoming b antiquark. Thus we can write

1 _ < 1 - « 1
— (B"D,I'D’s") = — (b*Dol'D°s™) + 0(—2) : ©)
n, n, m,

Applying the equations of motion, iyoD’s = (7 - D)s, we arrive at
1 - Y 2 ot
Ry3 = im—(baﬁ’o()’ - D)s")(Ts) . ®)
b

The lattice calculation of (B;|Ry3|B;) proceeds just as for the Q ; matrix elements, except for
the need to have a derivative operate on the strange quark at the operator. In addition to needing a
staggered propagator g(y, z) computed from local source [14]

K(x,y)g(y,2) = 6(x,2), ©))
we need propagators from a point-split source (k = 1,2,3)
1 A R R
Kxy g9, = 3 [6x.2+ ka)U] () - 6(x. 2 - ka)Un(z - ka)] . (10)
Naive quark propagators are constructed from staggered propagators via

Gy.2) = Qy) 9y, 2) Q' (2)
GP(y,2) = Q) g* (y, 2) Q' (z + ka) (11)

_ 3 x./a . . . . . .
where Q(x) = [T,0(yu) «/a_Since we will need to sum over spatial directions, we require 4 strange
quark inversions on each configuration and for each source location.

Progress is being made in the kaon system with heavier than physical quark masses, where the only intermediate state with
energy less than my is the 70 [3].



Table 2. Perturbative subtraction coefficients used in (14), for the values of am;, used on each ensemble.

Coefficient VG5 VCp C5 Cp F5
& —-0.1311 —-0.1327 —-0.1557 —-0.1573 —-0.2004
&n 0.0092 0.0093 0.013 0.0133 0.0225
& —-0.0331 -0.0334  -0.0392  -0.0397 —-0.0508
&n -0.2829 -0.2864 03404  -0.3449 -0.451

3 Perturbative matching

One-loop matching between the lattice theory and the continuum MS renormalization schemes has
been carried out for the Q; operators, including tree-level 1/m,, corrections [15]. The 1-loop mixing
between operators is parametrized by the p;; matrix and 1/m, corrections are given by Q%*°, which

il
are of the form %mb(Dkl}"ykl"l $s))(DPT,sP):
O = 0 + a0+ O} (12)

Because derivatives are implemented as finite difference operators the éQA, mix with Q;; this can
similarly be computed in perturbation theory. We define a subtracted operator which gives a more
accurate determination of the next-to-leading contribution:

Q?,ulb = Qi1 - i;0; . (13)

The coefficients p;; and ¢;; are tabulated in [15].
A similar subtraction is done here for the R, 3 operators:

R™ = R — a,&;;0; . (14)

Values for &;; are given in Table 2. We use the ay values as tabulated in [16]. Note that we have
not carried out the 1-loop matching between lattice and MS schemes for QA:“lb or ﬁ?“b. Therefore our

results for their MS matrix elements will have an O(a;) systematic uncertainty.

4 Fits to correlation functions

On each of the 1000 or so configurations in the 5 ensembles listed in Table 1, we created strange quark
propagators with inversion sources on 2 timeslices per configuration — except for the VC5 ensemble
where we weighed the benefits of doubling the number of sources per configuration.> We calculated
3-point functions with local B, and B, sinks as well as Gaussian smeared sinks with 2 radii. The
smearing was done with the links fixed to Coulomb gauge. The 2-point correlators are taken from
earlier work where 16 sources per configuration were used [13].

Correlator data are fit to functions of the form

ngt(t) — Z Xa,iXb,ie_Eit + Z(_l)l/a Ya,i Yb,ie_E;)t (15)
i i

(16)

2We concluded that increased statistics were not sufficiently beneficial to warrant the cost of doubling the data set on other
ensembles.



Table 3. Ranges in Euclidean time used for fits to correlation functions. Numbers are given in lattice units.

Ensemble(s)  tuin zﬁﬁfx T
VG5, VCp 5 17 11,12, 13
C5,Cp 6 21 13, 14, 15, 16
F5 9 40 19, 20, 21, 22, 23, 24, 25
and
e, T) = qu,,-v,m,ijx,,, je Ete BI04 ogcillating (17)

LJ
using the corrfitter package [17]. The oscillating states in (16) and (17) appear due to opposite-
parity temporal doublers present in staggered quark formulations. In (17), ¢ is the temporal distance
between the initial state interpolating operator and the 4-quark operator and 7 is the distance between
the initial and final state interpolating operators. Values used in the fits presented here are given in
Table 3.

The Gaussian priors for the fit amplitudes and energies were set as follows. We first performed 2-
exponential fits (N = 2 exponentials in each parity channel) to the 2-point data using wide priors and
tmin = 1.2 fm. From the output of this fit we took the ground state energy and amplitude, multiplied
their uncertainties by 10, and used this as the prior means and half-widths for subsequent fits. For the
excited states, we took the energy splittings to be O(aAqp) + 50% and the amplitudes to be 0 + 1.

After fixing the priors for the energies and 2-point amplitudes, we performed N = 3 fits to 3-point
correlator data with #,;, ~ 1.0 fm and 2 large values of T using O + 1 for the priors on the V fit
parameters. This gave an order-of-magnitude estimate for the ground state amplitude. In subsequent
fits we set the prior on V,, 0o to be the fit result +50 — 100%; for the amplitudes in the oscillating
terms, we used standard deviations of 100 — 400% of the results from the preliminary fits.

In the fits presented below, we found that convergence was improved by first fitting the 2-point
correlator data and using the results as priors for the fits to the 3-point correlators. In most cases the
difference between these “chained” fits and fully simultaneous fits is not significant [18]; however,
there were some cases where the simultaneous fits failed to converge.

In Fig. 1 we show preliminary results of fits to the 3-point amplitudes V,, oo determining the R,
and R; matrix elements. We observe results which give consistent results once enough exponentials
are included to account for excited state contributions to the correlators. In order to obtain this, it was
necessary to impose an SVD cut of 0.001 on the correlation matrix whose smaller singular values are
not well-determined by the data.

Figure 2 shows preliminary results vs. a> for matrix elements of R, and Rj after subtraction (14),
on the VC5, C5, and F5 ensembles. The fits on the physical point ensembles VCp and Cp are not
as far along in the process of being checked. We are still assessing fitting uncertainties and ensuring
results are robust against different fitting choices. What we present here are the results of separate fits
to correlators for the operators R, Rz, Q1, and O,. Once we have finished investigating these fits, we
will form the linear combinations of correlators, configuration-by-configuration, which will allow us
to determine matrix elements of R;”b and R;“b directly.

5 Outlook

We presented preliminary results for (B|R,|B;) and (B;|R3|B;) on 5 ensembles spanning a range of
3 lattice spacing and including 2 physical mass ensembles. We are presently verifying stability of fit
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Figure 1. Fit results (upper plots) and y? per degree-of-freedom (lower plots) for unsubtracted R, and R; fit
amplitudes (V,,,00) for increasing number of exponentials (Eq. 17) on the VCS5, CS, and F5 ensembles. N is
equal to the number of energies in the nonoscillating channel (desired parity) and the number of energies in the
oscillating channel.

results. The statistical precision may be improved by performing fits to the linear combinations of
correlators directly yielding the 1-loop subtracted matrix elements. The results from different ensem-
bles will then enable an assessment of discretization and quark-mass tuning effects. We expect the
dominant uncertainty to be due to the O(«a;) difference between lattice and continuum regularization
schemes. This will be the first time these matrix elements have been computed using lattice QCD.
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Figure 2. Results (in GeV*) for subtracted R, and R; matrix elements on the ensembles with m,/m; = 1/5.

Error bars shown only include statistical and fitting uncertainties. The vacuum saturation approximation gives
(Ry)V$A = —0.3 GeV* and (R3)¥** = 0.5 GeV*.
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