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Abstract. Measurements and theoretical calculations of meson form factors are essential
for our understanding of internal hadron structure and QCD, the dynamics that bind the
quarks in hadrons. The pion electromagnetic form factor has been measured at small
space-like momentum transfer |q2| < 0.3 GeV2 by pion scattering from atomic electrons
and at values up to 2.5 GeV2 by scattering electrons from the pion cloud around a proton.
On the other hand, in the limit of very large (or infinite) Q2 = −q2, perturbation theory
is applicable. This leaves a gap in the intermediate Q2 where the form factors are not
known.
As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors
in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for
lattice QCD to make an accurate prediction ahead of the experimental results. Lattice
QCD provides a from-first-principles approach to calculate form factors, and the chal-
lenge here is to control the statistical and systematic uncertainties as errors grow when
going to higher Q2 values.
Here we report on a calculation that tests the method using an ηs meson, a ’heavy pion’
made of strange quarks, and also present preliminary results for kaon and pion form
factors. We use the n f = 2 + 1 + 1 ensembles made by the MILC collaboration and
Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ
action is also designed to have small discretisation errors. Using several light quark
masses and lattice spacings allows us to control the chiral and continuum extrapolation
and keep systematic errors in check.

1 Introduction

The electromagnetic form factor of the meson parameterises the deviations from the behaviour of a
point-like particle when hit by a photon. By determining the form factor at different values of the
square of the 4-momentum transfer, Q2, we can test our knowledge of QCD as a function of Q2.
Measurements of π and K form factors are key experiments in the new Jefferson Lab 12 GeV upgrade
(experiments E12-06-101 [1] and E12-09-11 [2]). The pion form factor is known experimentally but
with sizeable uncertainties up to Q2 < 2.45 GeV2, and the new experiment will extend the Q2 range
up to 6 GeV2.
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Lattice QCD calculations have been done at small Q2 (see [3] for a review) as doing a calculation
at small momenta is easier because of deteriorating signal to noise at large momentum. In [4] we
studied the pion form factor close to Q2 = 0 and determined the charge radius of the pion. The goal
of this study is to provide predictions of the form factors at high Q2 ahead of experiments and to test
the applicability of asymptotic perturbative QCD (PQCD). Here we use the ηs meson, a pseudoscalar
meson made of strange quarks, as a “pseudo pion” to see how (and if) the form factor approaches
the PQCD value. The strange quark is light (ms << ΛQCD) from the PQCD point of view, and the
behaviour is expected to be qualitatively similar for ηs and π. The advantage is that strange quarks
are computationally cheaper to simulate on the lattice, and the signal to noise ratio is better than for
lighter quarks. We are now extending the study to pions and kaons, although the maximum Q2 we can
reach in the current calculations is not as high as for the ηs.

2 Lattice configurations

We use lattice ensembles generated by the MILC Collaboration, with 3 different lattice spacings (rang-
ing from 0.15 fm to 0.09 fm) and different light quark masses to allow a reliable continuum and chiral
extrapolation. The Higly Improved Staggered Quark (HISQ) action is used for both valence and sea
quarks, with u/d, s and c quarks included in the sea. The strange quark mass has been tuned to the
physical mass by using the ηs mass. The ensembles are listed in Table 1.

Table 1. Lattice ensembles used in this study: Set 1 is ’very coarse’ (a ∼ 0.15 fm), sets 2 and 3 ’coarse’
(a ∼ 0.12 fm) and set 4 ’fine’ a ∼ 0.09 fm. Lattice spacing is set using the Wilson flow parameter

w0 = 0.1715(9) fm. amq are the sea quark masses in lattice units and Ls/a × Lt/a gives the lattice size in spatial
and time directions. Mπ and nconf are the pion mass and the number of configurations. The last column gives the

time extent of the 3-point correlators. More details of the lattice ensembles can be found in [5, 6].

Set β w0/a aml ams amc Ls/a × Lt/a Mπ nconf T/a

1 5.8 1.1119(10) 0.01300 0.0650 0.838 16 × 48 300 MeV 1020 9, 12, 15
2 6.0 1.3826(11) 0.01020 0.0509 0.635 24 × 64 300 MeV 1053 12, 15, 18
3 6.0 1.4029(9) 0.00507 0.0507 0.628 32 × 64 220 MeV 1000 12, 15, 18
4 6.3 1.9006(20) 0.00740 0.0370 0.440 32 × 96 310 MeV 1008 15, 18, 21

3 Electromagnetic form factors on the lattice

The electromagnetic form factor is extracted from the 3-point correlation function depicted in Fig. 1,
where a current V is inserted in one of the meson’s quark propagators. We also need the standard 2-
point correlation function of the meson that propagates from time 0 to time t. The 3-point correlation
function gives

〈P(p f )|Vµ|P(pi)〉 = FP(Q2) · (p f + pi)µ, (1)

where pi and p f are the initial and final momenta of the pseudoscalr meson P, respectively. We use
a 1-link vector current Vµ in the time direction, and the Breit frame ~pi = −~p f to maximise Q2 for a
given momentum pa. This leads to the simple relation Q2 = |2~pi|

2. The form factor is normalised by
requiring FP(0) = 1.
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Figure 1. A 3-point correlation function. The meson, here a kaon, is
created at time t = t0, and destroyed at time t = t0 + T . A vector
current V is inserted at time t′, where t0 < t′ < t0 + T . We use multiple
T values to fully map the oscillating states that are a feature of
staggered fermions.

To extract the properties of the meson we use multi-exponential fits with Bayesian priors to fit
both 2-point and 3-point correlators simultaneously. The fit functions are

C2pt(~p) =
∑

i

b2
i f (Ei(p), t′) + o.p.t.,

C3pt(~p,−~p) =
∑
i, j

[
bi(p) f (Ei(p), t)Ji j(Q2)b j(p) f (E j(p),T − t)

]
+ o.p.t.,

f (E, t) = e−Et + e−E(Lt−t), (2)

where Ei is the energy of the state i and ~p is the spatial momentum, and o.p.t. stands for the opposite
parity terms. Note that Ei and the amplitudes bi are common fit parameters for the 2-point and 3-point
functions. We are interested in the ground state parameters Eo (the mass of the meson if momentum
p = 0), b0 (which is associated with the decay constant of the meson) and J00(Q2), but use 6 expo-
nentials to make sure that effects of the excited states are properly included in the error estimates. J00
gives the matrix element of the vector current that we need to extract the form factor. More details
can be found in [7].

poles and cut t=q2 z
Figure 2. Mapping the domain of analyticity in t = q2 onto
the unit circle in z.

To determine the form factor F in the physical continuum limit we must extrapolate in the lattice
spacing and u/d quark mass. We first remove the pole in FP(Q2) by multiplying the form factor by
PV (Q2), where

P−1
V (Q2) =

1
1 + Q2/M2

V

. (3)

The pole mass MV is the mass of the vector meson that corresponds to the quarks at the current V . If
the quarks are light quarks the mass is Mρ, if the quarks are strange quarks the pole mass is Mφ. The
product PV F has reduced Q2-dependence because P−1

V is a good match to the form factor at small Q2.
We then map the domain of analyticity in t = q2 onto the unit circle in z — see Fig. 2:

z(t, tcut) =

√
tcut − t −

√
tcut

√
tcut − t +

√
tcut

(4)



and choose tcut = 4M2
K for the ηs. Now |z| < 1 and we can do a power series expansion in z, and use a

fit form

PV F(z, a,msea) = 1 +
∑

i

ziAi

[
1 + Bi(aΛ)2 + Ci(aΛ)4 + Di

δm
10

]
, (5)

δm =
∑
u,d,s

(mq − mtuned
q )/mtuned

s , Λ = 1.0 GeV.

The terms with Bi and Ci parametrise lattice discretisation effects and the last term takes into account
possible mistunings of the sea quark masses.

4 Results
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Figure 3. Pion, kaon and ηs form factors Q2FP

on the coarse lattice (set 2). The form factors
with a strange current are found to be very
similar, and so are the form factors with a light
current. The spectator quark has only very
small effect to the form factor. The dashed lines
show the corresponding pole forms Q2P−1

V (Q2)
(equation (3)) with pole masses Mφ and Mρ

respectively.

Figure 3 shows results for pion, kaon and ηs form factors Q2FP. Let us start by noting how small
the effect of the spectator quark is in the pseudoscalar meson electromagnetic form factor. The pion is
made of two light quarks, whereas the ηs is made of two strange quarks. The K meson has one strange
quark and one light quark, and the current can thus be either light or strange. Fig. 3 illustrates how the
form factors can be grouped according to the flavor of the quarks at the current insertion: the ηs and
the strange-current K form factors are very similar as are the pion and light-current K form factors.
The form factors follow the pole form at small Q2, but peel away from it when the momentum transfer
grows larger.

In Figure 4 we plot the ηs form factor obtained on very coarse, coarse and fine lattices as a function
of Q2. We can reach Q2 ∼ 6 GeV2 on the fine lattice, and the form factor multiplied by Q2 is found
to be almost flat in the Q2 range 3 – 6 GeV2. This can be compared to the asymptotic value marked
with ’PQCD1’. At high Q2 the electromagnetic form factor can be calculated using perturbative
QCD, because the process in which the hard photon scatters from the quark or antiquark factorises
from the distribution amplitudes which describe the quark-antiquark configuration in the meson, as is
illustrated in figure 5 using a pion as an example. The asymptotic value is

FP(Q2) =
8παs f 2

P

Q2 , (6)



0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

Q
2
F

η s
(Q

2
)(

G
eV

2
)

Q2(GeV2)

pole

PQCD 1

PQCD 2
fine

coarse
v. coarse

Figure 4. The ηs form factor Q2Fηs as a
function of Q2. At small Q2 the form
factor follows the pole form (with pole
mass Mφ) as expected. The discretisation
effects are very small. The grey band
shows the continuum and chiral
extrapolation (equation (5)). ’PQCD1’ is
the asymptotic value from perturbative
QCD, and ’PQCD2’ shows the
perturbative value with corrections added
to the asymptotic PQCD. We plot Q2Fηs

rather than Fηs to compare to the
asymptotic value (eq. 6 multiplied by Q2

gives 8παs f 2
P .)
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used to calculate the meson electromagnetic form factor
directly, as we demonstrate here. The method is straight-
forward, and the same for all Q2 values. As Q2 and there-
fore the meson energy and 3-momentum grow, both sta-
tistical errors and systematic errors from discretisation
e↵ects will increase, so it is important to have a high
statistics calculation in a quark formalism with small
discretisation errors. Previous lattice QCD calculations
(see [22] for a review) that include u, d and s quarks in
the sea [23, 24] have concentrated on having many small
Q2 values and have been limited by statistical noise in go-
ing above Q2 ⇡ a few GeV2 even for unphysically heavy
⇡ masses. See also [25] for a more extensive calculation
but including only u and d quarks in the sea.

Here we are able to reach values of Q2 of 6 GeV2 with
an accuracy of 10% by performing a high statistics calcu-
lation at a number of well-separated Q2 values. Instead
of studying ⇡ mesons we work consistently with pseu-
doscalar mesons made of s quarks (denoted ⌘s), accu-
rately tuned [26] on full QCD (with u, d, s and c quarks
in the sea) ensembles of gluon field configurations at two
values of the lattice spacing and two values of the sea u/d
quark masses. We do this because it is numerically much
faster to accumulate high statistics and obtain a precise
result. We use the Breit frame where the initial and final
mesons have opposite spatial momenta, ~pi = �~pf and Q2

is maximized for a given ~p. By working at values of the
lattice spacing that di↵er by 40% we are able to show that
discretisation errors are small for our formalism, even at
large Q2, and to extrapolate to the zero lattice spacing
continuum limit.

Our ⌘s mesons are qualitatively very similar to ⇡
mesons, because the s quark is light compared to QCD
scales. Both the small-Q2 pole form and very high Q2

perturbative QCD results for the form factor can be read-
ily determined and thus our lattice QCD results provide
a clear comparison to these two pictures in the region of
0 < Q2 < 6 GeV2. In future we can extend this work
to even higher Q2 and also calculate other form factors,
inaccessible to experiment, which can be compared to
perturbative QCD to understand the Q2 range in which
it becomes valid. Most importantly, our results show the
way to accurate predictions for F⇡ from lattice QCD for
the upcoming Je↵erson Lab experiments [1].

LATTICE QCD CALCULATION

The electromagnetic, or vector, form factor for a pseu-
doscalar meson, P , is determined from the matrix ele-
ment

hP (pf )|Vµ|P (pi)i = FP (pi + pf )µ, (2)

where Vµ is a vector current coupling to the photon. Here
we use the temporal component of V and ~pi = �~pf so

�⇡

 
x y

1 � x 1 � y

+ · · ·
!

�⇤
⇡

FIG. 1: The perturbative QCD description of the ⇡ electro-
magnetic form factor. �⇡ represents the distribution ampli-
tude and the blue lines indicate the route of high momentum
transfer through the hard scattering process.

p = 0

0 T

t

⇡ ⇡

0 t0

⇡ ⇡

0 T

J

t

pipf

PP

V

FIG. 2: A 3-point correlator for calculating the electromag-
netic form factor for meson P through interaction with a vec-
tor current at time t.

that the right-hand side of eq. (2) becomes 2EFP with
Q2 = |2~pi|2.

The matrix element is determined in lattice QCD by
combining information from meson ‘2-point’ and ‘3-point’
functions (see, for example, [27]). 2-point functions tie
together quark and antiquark propagators for a correla-
tion function that creates a hadron at time 0 and destroys
it at time t0. 3-point functions combine 3 propagators,
as illustrated in Figure 2. This is the only diagram we
need to consider because the charge-conjugation symme-
try of the vector current means that quark-line discon-
nected diagrams vanish [28]. A meson is created at time
0, its quark (or antiquark) carrying momentum ~pi inter-
acts with a photon at time t and is scattered into ~pf ,
with the meson being destroyed at time T . We fit the t-,
t0- and T -dependence of the 2- and 3-point results (aver-
aged over the gluon field configurations in an ensemble)
simultaneously to a multi-exponential form in Euclidean
time that includes the set of possible mesons made from
this valence quark and antiquark [8]. This enables us to
isolate the matrix element for the ground-state, lightest,
meson and relate it to the required form factor, whilst
making sure that systematic e↵ects from the presence of
higher mass states in the correlator are taken into ac-
count. We can normalise the form factor by the electric
charge conservation requirement that FP (0) = 1. Note
that we do not include electric charges in the form factor
definition, so the form factor can be formally calculated
for electrically neutral qq mesons (as we do here).

We use the Highly Improved Staggered Quark (HISQ)
formalism [29] designed, and shown [30–33], to have very

Figure 5. The perturbative QCD description of
a meson electromagnetic form factor (here the
pion is used as an example, but the calculation
is analogous for the ηs). φπ is the distribution
amplitude and the blue colour marks the high
momentum photon and gluon.

where fP is the decay constant of the pseudoscalar meson (pion, kaon, ηs). The value we obtain for
the ηs form factor is much higher than the asymptotic value at Q2 = 6 GeV2. On the other hand, the
curve ’PQCD2’ that includes non-asymptotic corrections to the distribution amplitude lies above the
ηs form factor. More details can be found in [7].
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Figure 6. The pion form factor Q2Fπ as a
function of Q2. The agreement with
experimental results at small Q2 is excellent,
and peeling away from the pole form (shown as
the continuous line) is observed as expected.
The results are preliminary as we are pushing
to higher Q2, and no continuum extrapolation is
done at this time. Also smaller light quark
masses have to be included in the study to do a
reliable chiral extrapolation: the pion masses
used here are ∼ 300 MeV. The experimental
results are from [8–10].

In figures 6 and 7 we show our preliminary results for pion and kaon electromagnetic form factors
as a function of Q2. These are the first predictions of the K0 and K+ form factors from lattice QCD
ahead of the Jefferson Lab experiment. The K0 and K+ form factors are calculated from the strange
and light current K form factors by combining with the electric charges of the quarks: K+ is us̄ and K0

is ds̄. Work is underway to go to higher Q2 values and to study the dependence of the pion and kaon
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function of Q2. The agreement with
experimental results at small Q2 is excellent.
The results are preliminary as we are pushing
to higher Q2, and no continuum extrapolation is
done at this time. Also smaller light quark
masses have to be included in the study to do a
reliable chiral extrapolation. The experimental
results are from [11].

form factors on the light quark mass. The light quark masses used at this preliminary stage correspond
to pion mass of ∼ 310 MeV. This has been studied in the case of the ηs form factor, where the effect
is negligible, but smaller masses are needed to do the chiral extrapolation for the pion and kaon form
factors. We plan to include results from physical light quarks in our final analysis. No continuum or
chiral extrapolation is presented at this time for the pion and kaon form factors.

5 Conclusions and outlook

Our ηs form factor results indicate that asymptotic perturbative QCD is not applicable at Q2 ∼ 6 GeV2

or below — much larger Q2 are needed. Using strange quarks instead of light quarks allows us to get
some qualitative knowledge of light pseudoscalar meson form factors (pion and kaon form factors) at
high Q2 ahead of the more lengthy calculations required for K and π. We can also probe higher Q2

values with strange quarks than with light quarks. However, we can already provide first, preliminary
predictions of the K+ and K0 form factors ahead of the upcoming Jefferson Lab experiment. The pion
form factor is the most challenging. By gathering more statistics and pushing to higher Q2 we will
have good theoretical understanding of the form factors in the momentum range that the Jefferson Lab
pion and kaon experiments will use.
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