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Abstract

We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-

MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy

electronic excitations, with a small band gap of O(meV) if lattice symmetries are broken. Dark

matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite

an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be

absorbed by the electrons in the target. We develop the formalism for dark matter scattering

and absorption in Dirac materials and calculate the experimental reach of these target materials.

We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV

mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon

does not develop an in-medium effective mass. The same target materials provide excellent

sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass

range, superior to all other existing proposals when the dark matter is a kinetically mixed dark

photon.
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1. Introduction

The search for sub-GeV dark matter (DM) is a growing frontier in direct detection experiments.

This program is driven by a theoretical revolution revealing a wide and growing range of models

for light DM. In these scenarios, the DM typically resides in a hidden sector with either strongly

or weakly interacting dynamics [1–28]. There are many ways to fix the observed DM abundance

in these theories, including asymmetric DM [29–31], freeze-in [32, 33], strong dynamics [34–36],

kinematic thresholds [37], and various non-standard thermal histories [38–43], to name a few. The

breadth of possible scenarios has stimulated a rethinking of the ideal experimental targets for

discovery.

Directly detecting DM relies on observing the effects of its interactions with an experimental

target, either through scattering or absorption in the material. In both cases, sufficient energy must

be deposited to observe the interaction; this becomes increasingly challenging as the DM mass

is reduced. The current suite of direct detection experiments focuses on the weakly-interacting

massive particle (WIMP), where the DM mass is typically above ∼ 10 GeV. These experiments

search for nuclei that recoil after a collision with a DM particle. Since the energy deposited in an

elastic scattering process is q2/2mT , where q is the momentum transfer and mT is the mass of the

target, it often becomes more effective to search for energy deposition on electron targets when

DM is less massive than a nucleus. Condensed-matter systems are sensitive to scattering events

where the DM carries comparable kinetic energy to the electron excitation energy. For many such

systems, including semiconductors [44–46], graphene [47], scintillators [48], molecules [49], and

crystal lattices [50], these energies are eV-scale. This is optimal for detecting DM χ with mass

mχ & MeV, where the kinetic energy is mχv
2
χ/2 with vχ ∼ 10−3, the virial velocity of DM in the

Galaxy.1 If instead, χ is a boson with mass & eV, it can be detected via absorption on an electron

in these same systems [51,52].

Extending experimental sensitivity to scattering or absorption of even lower mass DM carries

many challenges. For example, fermionic DM is consistent with all astrophysical observations when

its mass is greater than a few keV, but to reach these mass scales, one must find a material where

the few meV of energy it deposits in scattering can lead to observable signatures. Superconducting

targets offer one promising option [53–55]. These ultra-pure materials, with a small (∼ meV) gap

and a large Fermi velocity, are sensitive to DM scatters in the keV–MeV mass range or to meV–eV

DM absorption. Superfluid helium has also been shown to be sensitive to sub-MeV DM, when

the DM collision can produce multiple phonons [56, 57]. Neither superconductors nor superfluid

helium, however, have optimal sensitivity to dark photons [58, 59], which can serve either as the

1Throughout this paper, we use natural units with ~ = c = 1; all velocities are expressed in units of c and all
distances in units of momentum.
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Inter-band scattering Absorption
|q| � ! |q| ⌧ !

Figure 1: Cartoon of the two dark matter-initiated processes in Dirac materials that we consider
in this paper: inter-band (valence to conduction) scattering (left) and absorption by valence-band
electrons (right).

mediator for DM-electron scattering processes or as the DM itself which is absorbed. In the case of

superconductors, the dark photon takes on a large effective mass in the medium, suppressing the

DM interaction rate. For helium, the leading interaction is through the polarizability of the atom,

which is small.

In this paper, we propose Dirac materials as a new class of electron targets for DM scattering or

absorption. We define Dirac materials as three-dimensional (3D) bulk substances whose low-energy

electronic excitations are characterized by a Dirac Hamiltonian [60–62],

H` =

(
0 vF ` ·σ − i∆

vF ` ·σ + i∆ 0

)
, E±` = ±

√
v2
F `

2 + ∆2. (1.1)

Here, ` is a lattice momentum measured from the location of the point of the Dirac cone (e.g., the

Dirac point) in reciprocal space, ∆ is analogous to the mass term in the Dirac equation giving rise

to a band gap 2∆, the Fermi velocity vF plays the role of the speed of light c, and the positive and

negative dispersion relations correspond to the conduction and valence bands, respectively.2 The

desired signal is a DM-induced inter-band transition from the valence to the conduction band, where

for DM scattering the momentum transfer |q| is typically much larger than the energy deposit ω,

with the opposite being true for absorption of non-relativistic DM. A cartoon of these two processes

is illustrated in Fig. 1. As we will show, the dynamics of the photon interacting with Dirac fermions

mimic those of ordinary relativistic QED: the Ward identity keeps the photon massless in a Dirac

material, leading to excellent detection reach in models of DM involving dark photons.

When ∆ = 0, the low-energy degrees of freedom in a Dirac material correspond to two Weyl

fermions of opposite chiralities. Materials with this feature are classified as either Dirac or Weyl

2Real materials typically have anisotropic Fermi velocities, but this complication does not affect the thrust of our
arguments; we treat this case in Appendices A and B.
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semimetals and are regarded as the 3D analogues of graphene. In Dirac semimetals, both Weyl

fermions occur at the same point in momentum space, but are decoupled due to an additional

crystalline symmetry which imposes ∆ = 0. Examples of Dirac semimetals include Na3Bi [63, 64]

and Cd3Ar2 [65–67]. Allowing the two Weyl fermions to couple, for example by applying strain to a

Dirac semimetal or tuning a topological insulator close to the semimetal critical point [68], can lead

to a finite ∆ 6= 0 that is typically small, 2∆ ∼ meV. Such a gap can suppress thermal inter-band

transitions, which is crucial for making detection of meV-scale DM-induced excitations feasible.3

While our analysis is completely general, we propose ZrTe5 as a realistic target Dirac material.

ZrTe5 has been synthesized experimentally, and in this work we compute its band structure from

first principles, finding in particular that its small Fermi velocities and tunable Fermi level, which

can be located inside the gap, make it especially suitable for a dark matter search.

This paper is organized as follows. Section 2 presents the benchmark dark photon model, and

then introduces the formalism for describing in-medium effects in Dirac materials. This formalism

is used in Sections 3 and 4 to calculate the DM scattering rate mediated by a dark photon and the

dark photon absorption rate in Dirac materials, respectively. For both cases, we present sensitivity

projections for couplings to electrons, comparing them to other proposals for sub-MeV dark matter

detection. We conclude in Section 5 with a brief discussion of experimental considerations. The

four Appendices describe the derivation of the transition form factor for a generic Dirac material,

the generalization of the scattering rate to anisotropic semimetals, the scattering and absorption

reach for models other than the light kinetically mixed dark photon, and the density functional

theory (DFT) calculations used to derive the band structure of ZrTe5.

2. Dark Matter Interactions with In-Medium Effects

Our discussion of sub-MeV DM is focused on the benchmark model of the kinetically mixed dark

photon. Specifically, we consider a new U(1)D gauge boson that mixes with the ordinary photon:

L = −1

4
FµνF

µν − 1

4
F ′µνF

′µν − ε

2
FµνF

′µν + eJµEMAµ + gDJ
µ
DMA

′
µ +

m2
A′

2
A′µA′µ . (2.1)

Here, Fµν (F ′µν) is the ordinary (dark) electromagnetic field strength, ε is the kinetic mixing

parameter, and JµEM (DM) is the electromagnetic (dark) current, which couples to the (dark) photon

with strength e (gD).4 We assume that the new dark photon field A′µ acquires a mass mA′ either

3In Weyl semimetals, the two Weyl fermions are generically located at different points in momentum space and
thus are decoupled at low energies [69–72], making it difficult to open a gap. As the gap is necessary to control
thermal noise in our proposal, we do not consider these materials further in this paper.

4In this paper, we follow high-energy physics conventions and use Heaviside-Lorentz units for electromagnetism,
where e =

√
4παEM '

√
4π/137.
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through a dark Higgs or Stueckelberg mechanism. The propagating dark photon Ã′µ in the mass

basis can be identified by diagonalizing the kinetic terms in Eq. (2.1), and can serve as either the

DM itself or as a mediator of the interactions between the Standard Model and the DM which

comprises the dark current JµDM.

Due to the induced coupling of the dark photon to the electromagnetic field strength, dark

photon interactions are modified in an optically responsive medium. The effects of the medium on

the dark photon coupling can be derived by considering the effects of the medium on an ordinary

photon, where the propagator is modified via its interactions with the medium. One finds [54] that

the transverse and longitudinal dark photon fields Ã′
T,L
µ interact with the electromagnetic current

with reduced coupling:

L ⊃ εe q2

q2 −ΠT,L
Ã′
T,L
µ JµEM . (2.2)

Here, ΠT,L are the transverse and longitudinal components of the in-medium polarization tensor,

Πµν = ΠT
∑

i=1,2 ε
Tµ
i εT∗νi + ΠLε

LµεLν , with εL = 1√
q2

(|q|, ω q
|q|) and εT1,2 = 1√

2
(0, 1,±i, 0) . As

a result of Eq. (2.2), dark photon interactions inside a medium depend on the electromagnetic

response of the medium, parameterized by ΠT,L (see detailed discussion in Ref. [54]). In this

section, we describe the behavior of an ordinary photon in an optically responsive medium. We

review the optical properties of Dirac materials in Section 2.1 and compare the results to that of

metals in Section 2.2. We will use these results to model dark photon scattering and absorption

processes in later sections of the paper.

2.1 Optical Properties of Dirac Materials

In Lorentz gauge, the in-medium photon propagator is written as

Gµνmed(q) =
PµνT

ΠT − q2
+

PµνL
ΠL − q2

, (2.3)

where q = (ω,q) is the 4-momentum transfer, q2 = ω2−q2, and PL,T are longitudinal and transverse

projection operators, respectively (see e.g., Ref. [73] for a complete derivation). From Eq. (2.3), we

see that the photon can develop an effective mass in-medium if the real part of ΠT,L(q) contains

terms that do not vanish at q2 = 0. In general, ΠT,L(q) may be a complicated function of q with no

simple interpretation as an effective mass, but large ΠT,L will generally suppress electromagnetic

interactions. The imaginary parts of ΠT,L determine the probability of photon absorption.

The transverse and longitudinal components of the in-medium polarization tensor are linked to
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the optical response of the medium through the complex permittivity εr by

ΠL = q2(1− εr) and ΠT = ω2(1− εr) . (2.4)

In the regime |q2| ∼ q2 � ω2, which is relevant for DM scattering, ΠL dominates over ΠT .

Conversely, in the case of DM absorption where q2 ∼ ω2 � q2, ΠL ' ΠT .

For Dirac materials with a band gap, it is simplest to determine the complex permittivity εr by

borrowing the expression for the one-loop polarization function in massive QED in 3+1 dimensions

(see e.g., Ref. [74]). In doing so, we substitute c→ vF and αEM → α̃, where vF is the Fermi velocity

and α̃ is the effective fine-structure constant in the medium:

α̃ = αEM ×
g

κvF
, (2.5)

with κ the background dielectric constant, αEM = e2/4π, and g = gsgC is the product of spin and

Dirac cone degeneracy [75]. In the MS scheme, to leading order in α̃, the complex permittivity (at

zero temperature and doping) is therefore given by:

(εr)Dirac = 1+
e2g

4π2κvF

∫ 1

0
dx

{
x(1− x) ln

∣∣∣∣ (2vFΛ)2

∆2 − x(1− x)(ω2 − v2
Fq2)

∣∣∣∣}
+ i

e2g

24πκvF

√
1− 4∆2

ω2 − v2
Fq2

(
1 +

2∆2

ω2 − v2
Fq2

)
Θ(ω2 − v2

Fq2 − 4∆2) , (2.6)

where Λ is a UV cutoff, defined as the momentum distance from the Dirac point at which the

dispersion relation deviates from linear.5 The spin degeneracy in Dirac materials is gs = 2;

taking gC = 1 (hence g = 2) corresponds to a single massive Dirac fermion in QED. The complex

permittivity of isotropic semimetals can be recovered from Eq. (2.6) by taking ∆→ 0 and redefining

Λ→ exp(−5/6)Λ to absorb the finite q-independent piece. This yields the familiar formula [75–81]:

(εr)semimetal = 1− e2g

24π2κvF

1

q2

{
−q2ln

∣∣∣∣ 4Λ2

ω2/v2
F − q2

∣∣∣∣− iπq2Θ(ω − vF |q|)
}
, (2.7)

which can also be derived directly from the Lindhard formula, as demonstrated in Appendix A.

5Here we are effectively setting the renormalization scale µ̃ at the cutoff, µ̃ = 2vFΛ, which is perhaps unusual from
a high-energy physics perspective. The unphysical parameter µ̃ can be removed from physical quantities by matching
to a measurement of the electric charge e. In QED, one typically thinks of the electric charge as being defined by
a t-channel scattering process, e.g. e− + e− → e− + e−. However, the inter-band transition in a Dirac material is
analogous to pair production, which is an s-channel process. DM scattering in Dirac materials can be described by
χ + N → χ + N + γ followed by γ → e− + h+, where the lattice N provides the necessary recoil for the creation of
an electron-hole pair. Therefore, we use the vertical transition rate with (ω,q) = (2vFΛ, 0) to measure the charge.
At the cutoff Λ, deep inside the band structure and far from the Dirac point, we assume that the electrons behave as
in an ordinary insulator and that the effective charge is e20 ≡ e2(µ̃) = 4παEM/κ.
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Eq. (2.7) was recently confirmed at the 10% level with optical measurements of Na3Bi [67].

Because α̃ is inversely proportional to vF , materials with small Fermi velocities can have large

effective couplings. This is the case of free-standing graphene, where κ = 1, vF = 3×10−3, and α̃ '
2.2, yet perturbation theory still delivers the right predictions when compared to experiment [82].

Since QED flows to a free theory in the IR, perturbation theory remains valid near the Dirac

point and far from the cutoff Λ, so long as no strong coupling phase transitions are crossed.6

This is believed to be the case for Dirac materials, which are predicted to be weakly interacting

[85]. Because this is consistent with the current experimental and theoretical consensus in the

field [75, 83, 84], we conservatively choose benchmark parameters with α̃ < 1 and assume the

validity of perturbation theory at one-loop.

The permittivity of a Dirac semimetal exhibits distinctive behavior as a function of q2. As can

be seen from Eq. (2.7), the imaginary part of εr approaches a constant at one-loop order, which is

a signature of Dirac-like excitations with linear dispersions [67, 77–81]. The dependence on q2 of

the real part of εr is mild due to the log, and thus it is also approximately constant. The top panel

of Fig. 2 shows the square-root of the real and imaginary parts of ΠL = q2(1 − εr) as a function

of |q| for ω = 1 (100) meV in the left (right) panel. As a benchmark, we take vF = 4 × 10−4,

Λ = 0.2 keV, κ = 40, and g = 2, which are representative of typical values for real Dirac materials.

The vertical dashed line corresponds to |q| = ω; below this point, absorption processes dominate,

while scattering processes dominate above it. To guide the eye, we plot
√
|q2| as the solid green

line, which scales linearly with |q| in the scattering regime |q| � ω and is constant in the absorption

regime. Importantly, the square-root of both the real and imaginary values of ΠL track
√
|q2|, as

expected from the fact that εr is essentially constant in q2 for Dirac semimetals.

We discuss modifications to the complex permittivity for anisotropic Dirac materials (where

there are independent Fermi velocities, vF,x, vF,y, vF,z) in Appendix B.

2.2 Comparison of Metals and Dirac Semimetals

We will show in Sections 3 and 4 that Dirac materials are more sensitive than superconductors to

DM scattering via a dark photon mediator, as well as to absorption of dark photons [51,54]. There

are competing effects that drive this result. On the one hand, the optical response of a metal is

much stronger than that of a Dirac semimetal, weakening its sensitivity to dark photon interactions.

On the other hand, a metal has a much larger phase space of conduction electrons at low energies,

which should improve its reach. We now discuss the balance of these effects, comparing the optical

6In gapless Dirac semimetals, vF is also renormalized [75, 83, 84]. We do not consider this subtlety for our
benchmark gapless Dirac materials, since in any realistic experiment, the material will be gapped and this issue does
not arise.
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Figure 2: The (square root of the) real and imaginary parts of the longitudinal in-medium
polarization tensor

√
|ΠL| in Dirac semimetals (top) and metals (bottom), as a function of the

momentum transfer |q|. The left (right) panel takes the deposited energy to be ω = 1 (100) meV.

For semimetals, we take representative parameters vF = 4× 10−4, Λ = 0.2 keV ' 0.1 Å
−1

, g = 2,
and κ = 40 to give α̃ ∼ 0.9. Note that for semimetals, inter-band transitions are only allowed for
|q| < ω/vF . For metals, we choose aluminum as a representative example, with λTF ' 4 keV and
pF ' 3.5 keV.

response and phase space availability in metals versus Dirac semimetals.

For metals, intra-band transitions dominate because the Fermi energy lies within a single band

and excitations occur just above the Fermi surface. In this case, the permittivity is given by:

(εr)metal = 1 +
λ2

TF

|q|2

1

2
+

 pF
4|q|

[
1−

( |q|
2pF
− ω

|q|vF

)2
]

ln

 |q|2pF
− ω
|q|vF + 1

|q|
2pF
− ω
|q|vF − 1

+ (ω → −ω)

 ,

(2.8)

where λ2
TF = 3e2ne/(2EF ) is the Thomas-Fermi screening length, ne is the electron density, pF

is the Fermi momentum, and EF is the Fermi energy [86]. We plot the square-root of the real
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and imaginary parts of ΠL in a metal in the bottom panel of Fig. 2. By comparing the top and

bottom panels, it is evident that the magnitude of both the real and imaginary components of

the polarization tensor are many orders of magnitude smaller in Dirac materials than in metals.

Furthermore, the polarization for a metal is roughly constant in |q| over a broad range of momenta

near O(keV)—therefore, we can think of the photon as having an effective mass in this range.

By contrast, the real part of the semimetal polarization function scales as q2 up to logarithmic

corrections and thus acts as a charge renormalization.

The difference in behavior between the two materials is related to their differing Fermi surface

geometries. In metals, the Fermi surface is not scale invariant; the dimensional Fermi momentum

pF sets the screening scale. In an (undoped) Dirac semimetal, the Fermi surface is point-like and

thus the Fermi momentum is zero by definition. Consequently, there is no screening length for the

photon. Alternatively, one can understand this fact from the vanishing of the density of states at

the Fermi level in semimetals. The Thomas-Fermi screening length is inversely proportional to the

density of states, which is large for a metal and zero for a semimetal. For the case of gapped Dirac

materials, one can exploit the emergent Lorentz symmetry of the Dirac Hamiltonian, Eq. (1.1), to

see that the Ward identity enforces ΠL(q2) ∼ q2 such that the photon stays exactly massless to all

orders in perturbation theory; the gap 2∆ does not provide a screening scale akin to pF in a metal.

As we have just seen, the point-like Fermi surface in a semimetal suppresses its optical response,

thereby enhancing processes mediated by a kinetically mixed dark photon. While this benefits

detection rates, it simultaneously suppresses the available phase space for interactions with the

DM. One can use simple geometric arguments to estimate the phase space available for ultra-low-

energy scattering in Dirac semimetals compared to metallic targets, for a given energy deposit ω.

In a metal, the Fermi surface is a sphere, so the volume of the initial-state phase space is given by a

spherical shell of radius pF and thickness δp =
√

2meω, where me is the electron mass. Numerically,

the phase space volume for pF ' 3.5 keV and ω = 1 meV is

VF, metal = 4πp2
F δp ∼ 5× 109 eV3. (2.9)

In a semimetal, the initial-state phase space volume is given by the boundary of the hypercone

traced out by the valence band. The maximum momentum available for the same energy transfer

ω is given by pmax = ω/vF . The phase space volume for vF = 4× 10−4 and ω = 1 meV is

VF, Dirac =
4

3
πp3

max

√
1 + v2

F ∼ 70 eV3, (2.10)

approximately eight orders of magnitude smaller than the corresponding phase space for metals.

As shown in Fig. 2, however, the phase space suppression in the scattering rate is more than offset
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by the gain from the reduced in-medium response: the scale of the effective dark photon coupling

in metals can be 4–6 orders of magnitude larger. When squared, this leads to a huge suppression

in the rate, which dominates over the phase space suppression of semimetals. We demonstrate this

behavior explicitly in Sections 3 and 4, where we derive the DM scattering and absorption rates in

Dirac materials.

3. Scattering in Dirac Materials

The formalism for DM scattering in Dirac materials is a special case of the more general formalism

for scattering in crystal lattices described in Ref. [87]. We describe the calculation of the DM

scattering rate in Section 3.1 and highlight important issues pertaining to the kinematics in

Section 3.2, including the dependence of the scattering rate on the Fermi velocity vF . In Section 3.3,

we discuss the projected sensitivity to DM scattering in a generic Dirac target and for ZrTe5 in

particular.

3.1 Scattering Rate Formalism

Consider a Dirac cone located at K in the BZ, and a transition from k = K+` in the valence band

to k′ = K + `′ in the conduction band with |`|, |`′| � |K|. In order to present simplified analytic

results where possible, we assume the gapless, isotropic dispersion relations:

E±` = ±vF |`|. (3.1)

The main effect of a gap is to impose a kinematic threshold 2∆ on the scattering event, but our

conclusions are otherwise unchanged. A more complete discussion of anisotropic materials with

independent Fermi velocities vF,x, vF,y, vF,z is included in Appendix B.

The rate to scatter from the valence band (labeled by ‘−’) at k to the conduction band (labeled

by ‘+’) at k′ is given by [87]

R−,k→+,k′ =
ρχ
mχ

σe
8πµ2

χe

∫
d3q

1

|q|η (vmin(|q|, ωkk′)) |FDM(q)|2|Fmed(q)|2|f−,k→+,k′(q)|2, (3.2)

where ρχ ' 0.4 GeV/cm3 is the local DM density, µχe is the DM-electron reduced mass, σe is a

fiducial spin-averaged DM–free-electron scattering cross section, and ωkk′ is the energy difference

between the final and initial states. The rate also depends on several form factors, which are

defined explicitly below: FDM(q) parameterizes the momentum dependence of the DM–free-electron

interaction, Fmed(q) parameterizes the momentum-dependent in-medium effects, and f−,k→+,k′(q)

is the transition form factor parameterizing the transition between bands. Because a distribution
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of DM velocities contributes to a scattering event with given k,k′, the rate depends on the halo

integral:

η(vmin) =

∫
d3v

v
gχ(v)θ(v − vmin). (3.3)

Here, gχ(v) is the DM velocity distribution, which we take to be the Standard Halo Model with

typical Galactic-frame velocity v0 = 220 km/s (7.3× 10−4 in natural units), average Earth velocity

with respect to the Galactic frame vE = 232 km/s (7.8×10−4), and escape velocity vesc = 550 km/s

(1.8× 10−3). For simplicity, we will assume the DM velocity distribution is spherically symmetric.

The minimum velocity for a DM particle to scatter with momentum transfer q and energy deposit

ωkk′ is:

vmin(|q|, ωkk′) =
ωkk′

|q| +
|q|

2mχ
=
vF (|`′|+ |`|)

|q| +
|q|

2mχ
. (3.4)

This expression for vmin arises from solving a delta function for energy conservation assuming a

spherically-symmetric gχ(v)—see Ref. [87] for more details. Here, we have assumed the gapless

isotropic dispersion relation near the K-point given in Eq. (3.1); the result generalizes straightfor-

wardly to gapped or anisotropic dispersions.

There are three form factors that appear in Eq. (3.2), two of which are related to the DM

scattering interaction and one of which depends on the initial and final wavefunctions of the

scattered electron. We begin by describing the latter. The transition form factor is defined as

f−,k→+,k′(q) ≡
∫
d3x Ψ∗+,k′(x)Ψ−,k(x) eiq ·x , (3.5)

where Ψ−,k(+,k′)(x) is the electron wavefunction in the initial (final) state. An analytic expression

for this factor can be derived using the Hamiltonian in Eq. (1.1) and is given by

|f−,k→+,k′(q)|2 =
1

2

(2π)3

V

(
1− ` · `′
|`||`′|

)
δ(q− (`′ − `)) , (3.6)

for gapless isotropic materials, where V is the crystal volume. A complete derivation of Eq. (3.6),

generalized for anisotropic gapped Dirac materials, is provided in Appendix A.

The other two form factors, FDM(q) and Fmed(q), are derived from the matrix element corre-

sponding to a DM particle scattering off an electron via the kinetically mixed dark photon we are

interested in:

〈|M|2〉 '
16m2

em
2
χg

2
De

2ε2(
q2 −m2

A′
)2 |1−ΠL(q)/q2|2

=
16m2

em
2
χg

2
De

2ε2(
q2 −m2

A′
)2 1

|εr(q)|2
, (3.7)

where gD is the dark photon gauge coupling and me is the electron mass. Here, we are neglecting
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the contribution of ΠT to the matrix element, since ΠT � ΠL in the regime |q2| � ω2 relevant for

scattering. The longitudinal polarization tensor ΠL (or equivalently, the permittivity εr) describing

the material can thus be incorporated into the event rate for DM scattering using this modified

matrix element. We adopt standard conventions in the literature and define FDM as the momentum

dependence of the free matrix element,

〈|Mfree(q)|2〉 =
16m2

em
2
χg

2
De

2ε2(
q2 −m2

A′
)2 ≡ 〈|Mfree(q0)|2〉 × |FDM(q)|2, (3.8)

while Fmed captures the in-medium effects through

〈|M|2〉 ≡ 〈|Mfree(q)|2〉 × |Fmed(q)|2. (3.9)

The reference momentum q0 used to define FDM(q) in Eq. (3.8) is arbitrary. Following the

standard of comprehensive reviews such as Ref. [88], we choose q2
0 = (αEMme)

2. Finally, the

fiducial cross section is defined as

σe =
µ2
χe

16πm2
χm

2
e

〈|Mfree(q0)|2〉. (3.10)

With these definitions, we have for the light (m′A � keV) kinetically mixed dark photon,

FA
′, light

DM (q) =
q2

0

q2
, Fmed(q) =

1

εr(q)
, σe =

16πµ2
χeε

2αEMαD

q4
0

(q2
0 = (αEMme)

2), (3.11)

where αD = g2
D/4π and Fmed(q) is evaluated at q = (ω``′ ,q) for initial and final states labeled by `

and `′ respectively. Because in Dirac materials εr(q) is effectively the ratio of unscreened charge e0

to running charge e(q), the in-medium form factor ensures that the matrix element scales as e2(q)

rather than e2
0. In Appendix C.1, we provide the analogous form factor expressions and fiducial

cross sections for DM scattering with electrons via other mediators.

The total scattering rate in the crystal is obtained from Eq. (3.2) by summing over initial and

final states, which in this context means integrating over the initial and final BZ momenta:

Rcrystal = gs V
2

∫
BZ

d3k d3k′

(2π)6
R−,k→+,k′ = gsgC V

2

∫
cone

d3` d3`′

(2π)6
R−,`→+,`′ . (3.12)

Note that there is no sum over bands because scattering only takes place between the − and +

bands by assumption. If there are several Dirac points Ki with identical linear dispersion, one

can simply integrate over the region surrounding one of the points and multiply by gC , giving an

overall factor of g = gsgC . Because the rate only depends on the integral around the cone (we do
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not consider inter-cone scattering in this paper), and the absolute location of the cone in the BZ is

irrelevant, we will work exclusively in terms of the displacement vector ` instead of k from now on.

3.2 Scattering Kinematics and Spectrum

We can exploit the analytic expressions for the transition form factor and the in-medium form

factor to analyze the kinematics of scattering in a Dirac material. Using the analytic expression

for the transition form factor given in Eq. (3.6), we obtain the rate for the case of an ultralight

kinetically mixed mediator:

R−,`→+,`′ =
ρχ
mχ

σe
8πµ2

χe

288π4κ2v2
F q

4
0

e4g2

(2π)3

V

×
∫
d3q

1

|q|
1

(ω2
``′ − q2)2

η (vmin(|q|, ω``′))

ln2

∣∣∣∣ 4Λ′2

ω2
``′/v

2
F−q2

∣∣∣∣+ π2

δ(q− (`′ − `))
(

1− ` · (`+ q)

|`||`+ q|

)
. (3.13)

We have defined Λ′ = Λ exp(12π2κvF /(ge
2)) to absorb the constant piece in Re εr, and dropped

the step function in Im εr because all inter-band transitions satisfy ω``′ > vF |q|. Integrating over

` and `′ in a region of size Λ near the Dirac point as in Eq. (3.12), and noting that the integrand

only depends on the magnitudes of q and ` and the angle between them, we find the total rate in

counts per unit time per unit detector mass:

Rtot =
36π2

e4
q4

0

ρχ
mχ

σe
µ2
χe

× neVuc
κ2

g
v2
F I(vF ,Λ,mχ), (3.14)

where I(vF ,Λ,mχ) has dimensions of momentum—the full expression is provided in Appendix B.

Eq. (3.14) is related to Eq. (3.12) via Rtot = Rcrystal/Mcrystal, where Mcrystal is the target mass,

and V = NucVuc with Nuc the total number of unit cells in the target and Vuc the volume of each

unit cell. Then ne = Nuc/Mcrystal is the number of Dirac valence band electrons per unit mass of

target material. In Eq. (3.14), we have separated the factors that depend on the DM model from

those that depend only on the target material.

Of particular interest is the behavior of I(vF ,Λ,mχ) as a function of vF , as it can suggest

the optimal material properties for maximizing detection rates. Firstly, I(vF ,Λ,mχ) = 0 for large

values of vF due to the peculiar kinematics associated with linear dispersions. For scattering very

close to the Dirac point, the transition form factor Eq. (3.6) enforces momentum conservation
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Figure 3: (Left.) Scaling of the dark matter scattering rate with the Fermi velocity vF of a
gapless isotropic Dirac semimetal. The vertical dashed line indicates the point below which α̃, the
effective fine-structure constant in the medium, is greater than 1. (Right.) Spectrum dI/dE′ for
vF = 4× 10−4, where E′ is the final-state energy of the scattered electron. Note that the function
I(vF ,Λ,mχ) is directly proportional to the total scattering rate, Rtot. In both cases, we have taken
Λ = 0.2 keV, g = 2, and κ = 40. The results are shown for 10 keV and 100 keV dark matter in
blue and orange, respectively.

q = `′ − `.7 Using this relation, Eq. (3.4) becomes

vmin(`, `′) = vF
(|`′|+ |`|)
|`′ − `| +

|`′ − `|
2mχ

. (3.15)

The first term is at least vF by the triangle inequality, and the second term is nonnegative, so we

have vmin > vF . If vF is greater than the largest possible DM velocity,

vmax = vE + vesc ' 2.6× 10−3, (3.16)

then scattering is kinematically forbidden for any (small) mχ. Therefore, unsuppressed scattering

can only occur if the DM is moving faster than the electron target.8 This is in sharp contrast to

the case of superconductors, where the target velocity should exceed that of the DM for low energy

scattering to occur [53,54].

Dirac materials exhibit a range of Fermi velocities from 6× 10−3 for BLi to 3× 10−5 or smaller

for NbAs and NbP [89, 90]. The kinematic arguments presented above suggest that the materials

with smallest vF are most desirable for maximizing the DM scattering rate. However, the prefactor

in Eq. (3.14) is suppressed by v2
F , which comes from the scaling of εr. Therefore, we do not want

7See Appendix A.3 for a discussion of momentum conservation versus lattice momentum conservation.
8We thank Justin Song for pointing out this phenomenon to us.
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to drive vF too low. To illustrate this tension, the left panel of Fig. 3 plots κ2

g v
2
F I(vF ,Λ,mχ),

which is proportional to the total scattering rate, for two values of the DM mass. The results are

shown assuming Λ = 0.2 keV, g = 2, and κ = 40, representative of typical values for real Dirac

materials. For both masses, the rate is maximal for a particular choice of the Fermi velocity. When

mχ = 100 keV, this occurs at vF ' 10−4. For mχ = 10 keV, the maximum is at even lower Fermi

velocities. Such small values for the Fermi velocity lead to α̃ > 1 for the material parameters

assumed here. That said, the rate for either mass point only varies by a factor of a few between the

vF that maximizes the rate and vF = 3.6× 10−4, above which the effective coupling is less than 1.

Finally, we consider the energy spectrum dI/dE′ of the excited electron, shown in Fig. 3 (right)

for vF = 4 × 10−4 and mχ = 10, 100 keV. The spectrum peaks away from E′ = 0 due to the

vanishing phase space at the point of the Dirac cone. This shows that the majority of the rate

comes from final-state energies above 1 meV. At small E′, the spectrum depends only weakly on

mχ. This is because the energetically favorable events correspond to small initial-state energies,

such that |`′ − `| is small and vmin is approximately independent of mχ. As expected, heavier DM

masses yield scattering events with higher-energy final-state electrons, giving a larger total rate.

As we will show in Section 3.3 below, these conclusions do not change for mχ & 10 keV even in the

presence of a meV-scale gap.

3.3 Projected Sensitivity Reach

We are now ready to use the formalism we developed to present the sensitivity reach projections for

DM scattering in Dirac materials via a light kinetically mixed dark photon. The results are shown

in Fig. 4. The green and purple curves show the expected 95% C.L. sensitivity (corresponding to

3.0 signal events) with a kg-year exposure for DM scattering in gapless and gapped Dirac materials,

respectively. For concreteness, we choose Λ = 0.2 keV, Vuc = 60 Å
3
, and ne = 5× 1024/kg, typical

of experimentally realized semimetals. In addition, we take vF = 4 × 10−4, κ = 40 and g = 2 so

that α̃ ∼ 0.9 and perturbation theory is reliable. This corresponds to a typical range of parameters

for Dirac semimetals such as Cd3As2 [66,96–99], for which perturbation theory is only expected to

break down at α̃ ' 9.4 [75]. We note that the inclusion of the correct wavefunction overlaps from

Eq. (3.6) suppresses the rate by about an order of magnitude compared to a naive approximation

where the transition form factor is set to unity.

In Fig. 4, we also show the projected sensitivity for a benchmark realistic target material, ZrTe5,

which has most of the desired properties we have discussed. The band structure was determined

using density functional theory, as discussed in Appendix D. We find that ZrTe5 has a small

Fermi velocity vF,y = 4.9 × 10−4 along one direction, a small degeneracy g = 4, and a small gap

2∆ = 35 meV at zero temperature. The remaining material parameters are given in Appendix D.
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Figure 4: Projected reach of dark matter scattering in Dirac materials through a light kinetically
mixed dark photon mediator with in-medium effects included. We show the expected background-
free 95% C.L. sensitivity (3.0 events) that can be obtained with 1 kg-yr exposure. For the two
curves labeled ‘Dirac,’ we assume an ideal gapless (∆ = 0, green) or gapped (∆ = 2.5 meV, purple)
isotropic Dirac material with vF = 4 × 10−4, κ = 40, g = 2, Λ = 0.2 keV, ne = 5 × 1024/kg,

and Vuc = 60 Å
3
. We also the show the results for ZrTe5, a realistic target material. The red

curve labeled ‘ZrTe5, th.’ uses the parameters calculated in Appendix D, while the yellow curve
labeled ‘ZrTe5, exp.’ uses parameters extracted from experiment [91, 92]. For comparison, we also
show the reach of superconductors with a 1 meV threshold [54] (black), and the projected single-
electron reach for a silicon detector with a 1e− threshold [88] (blue dotted). The orange curve
labeled ‘Freeze-in’ delineates where freeze-in production [32] results in the correct dark matter relic
abundance. The gray shaded regions indicate bounds from white dwarfs, red giants, big bang
nucleosynthesis, and supernovae, which are derived from limits on millicharged particles [87, 93].
The gray dashed line indicates bounds on self-interacting dark matter derived from observations of
the Bullet Cluster [94,95].

The band structure of ZrTe5 is highly anisotropic, with vF,y � vF,x, vF,z. The crystal lattice also has

a highly anisotropic background dielectric tensor, with κyy � κxx, κzz; we take the harmonic mean

κ̃ = 3
1/κxx+1/κyy+1/κzz

= 25.3 for our estimates here, and justify this approximation in the context

of our assumption of a spherically-symmetric DM distribution in Appendix B.1. Note that the

combined effect of these anisotropies may result in interesting directional dependence of the signal,

including daily modulations of the rate, but this requires a dedicated analysis which is beyond the

scope of this paper. The effective fine-structure constant is α̃ = gαEM/κ̃(vF,xvF,yvFz)
1/3 ' 0.80.
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High-purity ZrTe5 can be synthesized in macroscopic quantities, and pressure or doping can shift

the Fermi level inside the gap so that the conduction band is empty at zero temperature. As shown

in Refs. [53, 54], an meV-scale gap with little or no occupation of excited states is necessary for

suppressing thermal noise. Experimental measurements of the properties of ZrTe5 have led to some

ambiguous results regarding the precise values of the Fermi velocities and ∆, so for comparison, we

also plot the projected sensitivity using the measurements of Fermi velocities from Ref. [91], and a

gap energy 2∆ = 23.5 meV, the median of the range of values found in Ref. [92].

For comparison, we provide the projections for a superconducting target with a 1 meV thresh-

old [54] (solid black line) and semiconductor target [88] (blue dotted line). For the latter, we

show a silicon target with a single-electron threshold. Both are low-threshold electron-scattering

experimental proposals with complementary detection modalities: the superconductor proposal

exploits the breaking of Cooper pairs to produce quasiparticles and athermal phonons from meV

energy deposits, and the semiconductor proposal aims to detect valence-to-conduction excitation

(as we propose here) in a generic band structure with a large gap of 1.11 eV. As we have discussed,

the reach of Dirac materials is superior to that of superconductors for the case of a light kinetically

mixed dark photon mediator due to the reduced in-medium effects. Assuming the DM velocity

distribution is given by the Standard Halo Model, semiconductors are unable to probe DM lighter

than 500 keV due to their large band gaps.

The orange line in Fig. 4 shows the theory expectation for a benchmark model where the DM

abundance is set through freeze-in via a light mediator [32]. In such models, the DM is very weakly

coupled to the Standard Model such that it never thermalizes, and the DM abundance is instead

gradually populated through very rare interactions at low temperatures. If these interactions are

with the electron, as is the case for DM coupling to a dark photon, freeze-in production gives a

concrete theoretical target for electron scattering direct detection experiments.

The constraints on light dark photons can be quite stringent; the excluded regions of parameter

space (at least for the most naive of models) are indicated by the gray regions in Fig. 4. These are

derived from bounds on millicharged particles [93], which are also applicable to DM coupled to an

ultralight kinetically mixed dark photon [54, 87]. When the DM is lighter than the temperature

of red giants and white dwarfs, DM can be copiously produced and lead to excessive cooling; in

Fig. 4, this (approximate) region is shown in gray and marked ‘RG+WD’. In addition, the presence

of dark photons affects the energetics of supernovae and big bang nucleosynthesis (BBN), implying

that ε2αD . 10−17; in Fig. 4, this region is shown in gray and is marked ‘SN+BBN’. Constraints

from DM self-interactions are generally weaker; for example, the self-interacting DM bound from

observations of the Bullet Cluster [94, 95] (labeled ‘SIDM Bullet Cluster’) are subdominant to the

other constraints.
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The light kinetically mixed mediator scenario we have considered here is particularly interest-

ing for direct detection with Dirac materials because the scattering rate is greatly enhanced at

low momentum transfer due to the 1/q4 dependence of the DM form factor |FDM|2. Since this

momentum dependence is not spoiled by the in-medium form factor Fmed, Dirac materials are able

to probe very small couplings, which are unconstrained by any other observations, cosmological or

otherwise. As anticipated in Section 2, Dirac materials have superior reach in this case to both

superconductors, which suffer from an in-medium suppression at low masses, and semiconductors,

which have eV-scale gaps. Ideal Dirac materials with small Fermi velocity vF ∼ 4×10−4 and small

gap 2∆ = 5 meV, with 1 kg-yr of exposure, can probe cross sections many orders of magnitude

smaller than the entire freeze-in region below 1 MeV. Realistic materials such as ZrTe5 still give

excellent reach, which can be improved by identifying materials with smaller Fermi velocities and

gaps.

In Appendix C.1, we present the reach of Dirac materials for DM scattering via a heavy

kinetically mixed dark photon, as well as via a light or heavy scalar mediator where no in-medium

effects arise. For the former case, we find that Dirac materials provide better sensitivity than

superconductors; in the latter case, Dirac materials generally fare worse than superconductors,

as expected. Strong constraints from either stellar emission (light mediators) or BBN (heavy

mediators) apply at least for the most naive of such models, such that typically either BBN or

stellar emission bounds must be evaded for the models where DM does not scatter via a light dark

photon. Our results here demonstrate, however, that Dirac materials are an ideal target for light

dark photon mediators.

4. Absorption in Dirac Materials

Having demonstrated that Dirac materials have compelling reach for the case of DM scattering,

we move on to the case of DM absorption. We begin by presenting the formalism for calculating

DM absorption rates, and then discuss the relevant kinematics and projected sensitivities for Dirac

materials.

4.1 Absorption Rate Formalism

The rate for DM absorption in counts per unit time per unit detector mass is given by

Rabs =
1

ρT

ρχ
mχ
〈nTσabsvrel〉DM , (4.1)
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where ρT is the mass density of the target, nT is the number of target particles, σabs is the DM

absorption cross section on the target, and vrel the relative velocity between the DM and the

target. One can relate the absorption rate of certain classes of DM particles to the measured

optical properties of the target [51,52,55]. In particular, the absorption rate of photons in a given

(bulk) material is determined by the polarization tensor via the optical theorem:

〈nTσabsvrel〉γ = − Im Π(ω)

ω
, (4.2)

where ω is the energy of the incoming absorbed photon and Π(ω) denotes the polarization tensor,

in an isotropic material, in the relevant limit of |q| � ω. For absorption of DM particles, the

deposited energy ω in the system is equal to the DM mass mχ, and the momentum transfer q is

equal to the DM momentum mχvDM. Consequently, the momentum transfer is suppressed due to

the virial velocity of the DM, |q| ∼ 10−3ω � ω. In this limit, ΠL ≈ ΠT ≡ Π. Using Eq. (2.4), we

can write the absorption rate for photons as

〈nTσabsvrel〉γ = ω Im εr . (4.3)

The sensitivity of a material to DM absorption is therefore obtained by relating the absorption

process to that of ordinary photons through the complex permittivity.

We focus on the case of a kinetically mixed dark photon, as described by Eq. (2.1), which can

be absorbed by a Dirac material. Such a dark photon can comprise all of the DM, with its relic

abundance set via a misalignment mechanism [100–102]. The effective mixing angle between the

dark photon and the photon for the case of absorbtion of non-relativistic DM in the target is given

by

ε2
eff =

ε2m4
A′[

m2
A′ − Re Π(mA′)

]2
+ [Im Π(mA′)]

2
, (4.4)

and so the rate of absorption is

RA
′

abs =
1

ρT
ρχε

2
eff Im εr . (4.5)

For dark photon DM in the mass range of meV to hundreds of meV, the energy deposited in

absorption matches the regime of interest for Dirac materials.

4.2 Absorption Kinematics and Scaling

As shown in Fig. 2, Π(q) has a non-vanishing imaginary part even at q = 0 in a Dirac material.

Indeed, this can be considered a distinctive property of Dirac materials [67, 77–81]. The physical

interpretation is that a Dirac material can absorb an incoming particle with momentum transfer
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Figure 5: (Left.) Scaling of the dark photon absorption rate with vF for fixed κ/g. (Right.)
Scaling of the dark photon absorption rate with κ/g for fixed vF . Note that the absorption rate is
proportional to ε2

eff × Im(εr). In both cases we have considered a gapless isotropic Dirac semimetal
with Λ = 0.2 keV for two values of the dark photon mass, 10 eV (blue) and 100 eV (orange). The
dashed line marks where the effective coupling becomes strong, α̃ = 1.

much smaller than its mass, without the presence of additional particles (such as phonons). In

other words, vertical transitions from the valence band to the conduction band are possible. This

is in contrast to absorption in typical metals, where inter-band transitions can be neglected for

ultralow energies and non-relativistic absorption proceeds through emission of a phonon [55]—a

process which is not described by the polarization tensor of Eq. (2.8).

Furthermore, because Im εr scales as α̃ = αEMg/κvF , one might expect the absorption rate

to increase with small Fermi velocity vF , enhanced degeneracy g, and small background dielectric

constant κ. This is indeed the case for absorption of a light scalar or pseudoscalar, which does not

feel in-medium effects. In the case of the kinetically mixed dark photon, Eq. (4.4) shows that the

effective in-medium mixing angle between the dark photon and the photon involves both real and

imaginary parts of Π, leading to a more complicated dependence on the Dirac material parameters.

In Fig. 5 we show the combination ε2
eff × Im(εr) for a Dirac semimetal, which is proportional to the

dark photon absorption rate, for two values of the mass, mA′ = 10 and 100 eV. The left panel fixes

κ/g and varies vF , while the right panel fixes vF and varies κ/g. The optimal Fermi velocity value is

mass-dependent, and is of order 10−4 or smaller, while the optimal κ/g is O(10) for vF = 10−4 and

relatively insensitive to mA′ . However, for these optimal parameters, α̃ > 1. To be conservative,

in what follows we will present results using the same Dirac material parameters as in Section 3.3

such that α̃ < 1 and perturbation theory remains valid at one-loop.
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Ge

(2-phonon)

Si

(2-phonon)

Dark photon absorption

Figure 6: Projected reach for absorption of kinetically mixed dark photons, given in terms of
the kinetic mixing parameter ε. We show the expected background-free 95% C.L. sensitivity (3.0
events) that can be obtained with 1 kg-yr exposure. The green (purple) curves are gapless (gapped)
isotropic Dirac materials with ρT = 10 g/cm3 and all other parameters as in Fig. 4. We cut off the
plot at mA′ = 2ΛvF = 160 meV, the largest energy deposit consistent with the linear dispersion
relation with cutoff Λ = 0.2 keV. For comparison we show the projected reach of superconductors
with a 1 meV threshold [55] (black), as well as two-phonon excitations in germanium (brown) and
silicon (blue) semiconductors [51]. Stellar emission constraints [103,104] are shown in shaded gray.

4.3 Projected Sensitivity Reach

The projected sensitivity of Dirac materials to absorption of a kinetically mixed dark photon is

shown in Fig. 6, assuming 1 kg-year exposure and that the dark photon comprises all of the DM.

Here, we use a typical target mass density of ρT = 10 g/cm3, with all other parameters equal to the

fiducial parameters taken in Section 3.3. The green (purple) curves correspond to ideal isotropic

gapless (gapped) systems. We do not show the projected reach for our candidate target material

ZrTe5, as it is highly anisotropic, not only in its band structure but also in its background dielectric

tensor. Because the kinematics of absorption dictates that ΠL and ΠT are of the same order of

magnitude, they can mix in a potentially non-trivial way in an anisotropic medium, implying that

the formalism to describe the absorption rate will be more involved. This feature could give rise

to interesting directional dependence in the rate, which will require a dedicated analysis; we leave

this for future work.

For comparison we show the reach of superconductors as well as multiphonon excitations
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in germanium and silicon semiconductors, as obtained in Refs. [51, 55]. Stellar emission con-

straints [103, 104] are shown in shaded gray. Note that we do not show the projected reach for

magnetic bubble chambers [105] as they cannot be directly compared without full treatment of in-

medium effects in those systems. We find that as in the case of scattering, in-medium effects

suppress the response of superconductors compared to Dirac materials. We learn that Dirac

materials are excellent target materials for absorption of dark photon DM, with projected reach

exceeding all current proposals when 2∆ < mA′ .

In Appendix C.2, we discuss the reach for axion-like particle (ALP) DM, where in-medium

effects are absent. As expected, because of the lower phase space volume of target electrons in a

Dirac material in comparison to metals, the reach of an aluminum superconductor is superior to

that of a Dirac material for ALP DM.

5. Conclusions

In this paper, we have shown that 3D Dirac materials are excellent targets to use in searches for

sub-MeV DM. We have described their interactions with a kinetically mixed dark photon, and in

particular the effect of the complex permittivity on the in-medium dark photon couplings. We find

that the dark photon does not develop an in-medium effective mass in these materials. This result

allows Dirac materials to probe both DM scattering and absorption involving a light kinetically

mixed dark photon with greater sensitivity than any other proposed experimental target. In the

case of DM scattering via a light kinetically mixed dark photon, the reach is several orders of

magnitude stronger than that required to probe the theoretical benchmark of freeze-in DM, even

for realistic materials. We have identified promising Dirac material candidates, including ZrTe5,

and determined that Fermi velocities of order ∼ 10−4 or smaller are optimal for both scattering

and absorption.

The strong dependence of the projected scattering reach on the Fermi velocity offers interesting

possibilities for probing the DM velocity distribution. Since low-energy scattering is kinematically

forbidden if vDM < vF , repeating the same experiment with two different materials that have

different Fermi velocities, one well below and one well above the maximum DM velocity, should

result in marked differences in the total scattering rate.9 This could also serve to reduce backgrounds

since inter-band excitations from slow-moving neutrons or alpha particles are always forbidden,

providing a handle on backgrounds that can dominate in other experimental targets. Furthermore,

anisotropic crystal lattices have been shown to have excellent directional-detection potential [47,50],

and the combined anisotropies of the crystal lattice and the Fermi velocities in materials such as

9Dirac materials may offer an interesting opportunity to probe a fast sub-population of DM reflected from the
sun [106].
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ZrTe5 suggest a similar advantage for Dirac materials. We leave an analysis of the directional-

detection capabilities of anisotropic Dirac materials, for both scattering and absorption, to future

work.

As with any new detection technology, many hurdles must be overcome to translate sensitivity

estimates into a feasible experimental implementation. Detection of single-electron excitations in

semiconductors is a burgeoning field (see Ref. [88] for a recent review), but the threshold energy

(due to the band gap) tends to be at least ∼ 1 eV, much higher than what we consider here.

Detection of meV athermal phonons and quasiparticles has been proposed in Refs. [53, 54], where

the detection scheme takes advantage of long excitation lifetimes made possible by ultra-pure

materials such as superconducting aluminum. In recent years, many semimetal candidates have

been produced and are being discovered in the laboratory [62], which increases the likelihood of

finding ideal materials for DM detection. While the focus is not yet on mass fabrication techniques,

ultra-pure semimetals with ∼mm carrier mean free paths have recently been synthesized [107].

Moreover, since the spectrum of DM-induced excitations is peaked away from zero, some remnants

of the initial excitation process may survive after relaxation. Indeed, in undoped graphene, intra-

band de-excitation is highly suppressed and carrier multiplication may be the dominant relaxation

process [108,109]. It would be interesting to investigate whether the same holds true for 3D Dirac

materials. In a forthcoming paper, we plan to consider these issues in depth and present a detailed

experimental configuration for detection of meV-scale DM-induced excitations in Dirac materials.

Sub-MeV dark matter is a viable theoretical and experimental possibility, posing interesting

challenges to both theory and experiment. The DM direct detection community is pursuing a

robust suite of approaches for sub-GeV DM [88], and we look forward to Dirac materials joining

the hunt.
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A. Transition Form Factor

This appendix includes the details behind the analytical form of the transition form factor Eq. (3.6),

the relation between the transition form factor and the q2 dependence of the complex permittivity,

and the relation to previous work [87] on electron scatterings with generic band structure.

A.1 Derivation of the Transition Form Factor

The Dirac Hamiltonian Eq. (1.1) in a block off-diagonal form reads

H` =

(
0 ˜̀·σ − i∆˜̀·σ + i∆ 0

)
, (A.1)

where an anisotropic Fermi velocity is allowed by defining the rescaled momentum

˜̀= (vF,x`x, vF,y`y, vF,z`z). (A.2)

The normalized eigenstates can be written as

u`1,3 =
1√
2E`


∓˜̀−

±(i∆ + ˜̀z)
0

E`

 , u`2,4 =
1√
2E`


±(i∆− ˜̀z)
∓˜̀+
E`

0

 , (A.3)

where ˜̀± = ˜̀
x± i˜̀y and E` =

√˜̀2 + ∆2. The upper (lower) signs correspond to negative (positive)

energy solutions Eλ` = λE` where λ = ∓1.

The transition form factor appears in the expression for the polarization function, which can

be written

Π(ω,q) = lim
η→0

g

V

∫
d3`

(2π)3

∑
λ,λ′

fFD(Eλ
′

`+q)− fFD(Eλ` )

Eλ
′

`+q − Eλ` − ω − iη
|fλ,`→λ′,`+q|2 . (A.4)

Here, V is the crystal volume, g = 2 is the spin degeneracy, and fFD is the Fermi-Dirac distribution,

which is just a step function at zero temperature. The polarization function can also be defined

as the product of two Green’s functions [75, 76], and calculating the polarization function using

Green’s functions and matching to the form of Eq. (A.4) allows one to extract the transition form
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factor. In the diagonal basis, the Green’s function is given by

Gω,` =
∑
λ=±

1

iω − Eλ`
P λ` (A.5)

in terms of the projection operator:

P λ` = |`, λ〉 〈`, λ| = 1

2

 1 λ
E`

(˜̀·σ − i∆)
λ
E`

(˜̀·σ + i∆
)

1

 , (A.6)

formally defined using the eigenvectors Eqs. (A.3), i.e. P+
` = |`,+〉 〈`,+| = ∑

i=1,2

∣∣u`i 〉 〈u`i ∣∣ with

an analogous definition for P−` . As is standard in many-body physics [75, 76], the polarization

function results after integrating over the frequency domain and taking the trace of the product of

two Green’s functions given by Eq. (A.5) evaluated at different momenta ` and `′ = ` + q. After

evaluating the frequency integral, we are left with the explicit kernel of Eq. (A.4), a factor of 1/2

and the trace over the product of two projectors. The product of the latter two objects defines the

transition form factor as

|fλ,`→λ′,`′ |2 =
1

2
Tr
[
P λ` P

λ′
`′

]
=

1

2
Tr [|`, λ〉

〈
`, λ||`′, λ′

〉 〈
`′, λ′|

]
=

1

2

(
1 +

λλ′

E`E`′
( ˜̀· ˜̀′ + ∆2)

)
. (A.7)

It is worth noting that the overlap factor for Dirac systems can be related to standard com-

pleteness relations over spinors, which are perhaps more familiar in the high-energy theory context.

A.2 Relation Between Permittivity and Transition Form Factor

The complex permittivity of a material is given in general by the Lindhard formula [86]:

εr(ω,q) = 1− lim
η→0

1

V

e2

κ

1

q2

∫
BZ

d3k

(2π)3

∑
n,n′

gs,n
fFD(Ek+q,n′)− fFD(Ek,n)

Ek+q,n′ − Ek,n − ω − iη
|fn,k→n′,k+q|2 . (A.8)

Here, κ is the background dielectric constant, n and n′ are band indices, gs,n is the spin degeneracy

of band n, Ek,n is the energy of the nth band at lattice momentum k, and the integral is taken

over the first Brillouin zone (BZ). The Fermi-Dirac factors in the numerator ensure that at zero

temperature, the only transitions which contribute to εr are from unoccupied to occupied states

and vice-versa. Using Eq. (A.7) and performing the momentum integral in Eq. (A.8) with a cutoff

Λ, considering a single Dirac cone with valence and conduction bands n = − and n′ = + only,

yields the dielectric constant for an ideal Dirac material. This is equivalent to evaluating Eq. (A.4)
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and using the relationship between the polarization function and the permittivity [86]. The integral

can be performed analytically for ∆ = 0, yielding Eq. (2.7), which we repeat here for convenience:

(εr)semimetal = 1− e2g

24π2κvF

1

q2

{
−q2ln

∣∣∣∣ 4Λ2

ω2/v2
F − q2

∣∣∣∣− iπq2Θ(ω − vF |q|)
}
. (A.9)

We have written Eq. (A.9) in a form resembling Eq. (A.8) to illustrate that the inter-band transitions

yield a form factor that scales as q2 (to leading order), which multiplies the Fourier transform of

the Coulomb potential e2/(κq2). This behavior is a direct consequence of the orthogonality of the

valence and conduction bands, which implies that the transition form factor Eq. (3.5) vanishes at

q = 0. This remains true for nonzero ∆. Indeed, defining ∆̃ = ∆/vF and expanding Eq. (A.7) in

small q yields

|f−,`→+,`+q(q)|2 =
1

4

(
q2

`2 + ∆̃2
− (` ·q)2

(`2 + ∆̃2)2

)
+O(q4) . (A.10)

This derivation illustrates an alternative perspective on why the dark photon does not develop

an effective mass in-medium in a Dirac material: the vanishing of |f−,`→+,`+q|2 as q → 0 in

Eq. (A.8) ensures that εr is constant as q→ 0, or equivalently Π(q) ∼ q2.

A.3 Lattice Momentum Conservation and Comparison to Formalism For Generic

Band Structure

Note that Eq. (A.7) is written only as a function of initial and final state momenta. To make contact

with the formalism of Ref. [87], we will also write it as a function of the momentum transfer q by

inserting unity in the form (2π)3

V δ(q− (`′ − `)), where V is the volume of the crystal:

|fλ,`→λ′,`′(q)|2 =
(2π)3

V
δ(q− (`′ − `))1

2

(
1 + λλ′

˜̀· ˜̀′ + ∆2√˜̀2 + ∆2
√˜̀′2 + ∆2

)
, (A.11)

which reduces to Eq. (3.6) in the gapless isotropic limit.

The delta function in Eq. (A.11) enforces exact momentum conservation, while typically in

problems involving condensed matter systems, momentum is only conserved up to addition of a

reciprocal lattice vector. We can justify the exact momentum conservation for the cases relevant

to DM scattering by using kinematic arguments. A convenient parameterization of a general

wavefunction in a periodic system is as a linear combination of Bloch waves,

Ψn,k(x) =
1√
V

∑
G

un(k + G)ei(k+G) ·x , (A.12)

where G runs over all reciprocal lattice vectors and the un are complex numbers. The velocity-
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and directionally-averaged scattering rate for a single electron in the Bloch basis is [87]

Rn,k→n′,k′ =
ρχ
mχ

π2σ̄e
µ2
χe

1

V

∑
G′

1

|q|η (vmin(|q|, ωkk′)) |FDM(q)|2|f[nk,n′k′,G′]|2
∣∣∣∣∣
q=k′−k+G′

, (A.13)

where the crystal form factor is

f[nk,n′k′,G′] =
∑
G

u∗n′(k
′ + G + G′)un(k + G), (A.14)

which is related to the transition form factor as defined in Eq. (3.5) by

|fn,k→n′,k′(q)|2 =
∑
G′

(2π)3

V
δ(q− (k′ − k + G′))|f[nk,n′k′,G′]|2. (A.15)

In the Bloch wave basis, orthogonality of different Fourier components leads to lattice momen-

tum conservation q = k′ − k + G′. Here, G′ is a multiple of a reciprocal lattice vector whose size

|G′| is either 0 or ∼ 2πm/a for integers m > 0, where a is the lattice spacing. A typical lattice will

have a ∼ 1–10 Å, so 2π/a ∼ keV.

If m 6= 0 we have |G′| & keV. In a Dirac material, transitions near the Dirac point satisfy

k′ − k = `′ − ` with |`|, |`′| � |G′| by assumption. Thus |q| ∼ |G′| & keV. Referring to Eq. (3.4),

vmin ≥ |q|
2mχ

& 10−2 � vDM formχ . 100 keV. In other words, scattering is kinematically impossible

for mχ . 100 keV unless G′ = 0. Even if scattering is kinematically allowed for G′ 6= 0, we will be

primarily concerned with form factors which scale as FDM(q) ∼ 1/q2, so that the rate (A.13) scales

as 1/|q|5. This represents an enormous suppression when G′ 6= 0 of the order of (eV/keV)5 ' 10−15.

Thus in our kinematic regime, reciprocal vectors G′ 6= 0 can be safely neglected.

When G′ = 0, the sum in Eq. (A.15) collapses to a single term, and we can identify

|f[(n=−)k,(n′=+)k′,0]|2 =
1

2

(
1 + λλ′

˜̀· ˜̀′ + ∆2√˜̀2 + ∆2
√˜̀′2 + ∆2

)
. (A.16)

The single delta function in Eq. (A.15) now enforces q = `′ − `, establishing that in our kinematic

regime, the physical momentum transfer q is equal to the difference in lattice momenta between

initial and final states.

B. Modifications for Anisotropic Dirac Materials

In this Appendix we discuss modifications to our analysis for scattering of light DM in Dirac

materials for the case of anisotropic materials, with vF,x 6= vF,y 6= vF,z.
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B.1 Anisotropic Permittivity

For anisotropic Dirac materials, one may make a change of variables in the integrand of Eq. (A.8)

and evaluate the permittivity at a correspondingly rescaled value of the momentum [78,110]:

(εr)
an.
Dirac = 1− q̃2

q2

1

vF,xvF,yvF,z

(
1− εiso.r (q̃)|vF=1

)
. (B.1)

Here, q̃ is defined as in Eq. (A.2), q̃ = (vF,xqx, vF,yqy, vF,zqz), and on the right-hand side the

isotropic form factor is evaluated for vF = 1 and at the rescaled momentum q̃. For example, in the

gapless case, Eq. (2.7) is modified to

(εr)
an.
semimetal = 1− 1

q2

e2g

24π2κvF,xvF,yvF,z

{
−q̃2 ln

∣∣∣∣∣ 4Λ̃2

ω2 − q̃2

∣∣∣∣∣− iπq̃2Θ(ω − |q̃|)
}
, (B.2)

The cutoff Λ must also be rescaled: we choose Λ̃ = Λ × max(vF,x, vF,y, vF,z) rather than e.g.

Λ × (vF,xvF,yvF,z)
1/3 to recover the correct scaling when one of the vF,i is much smaller than the

other two, as is typically the case with real materials.

In addition to the anisotropy of the band structure, the crystal lattice itself may be anisotropic,

in which case εr is more properly described by a full tensor (εr)ij . In this situation, Eq. (A.8) should

be interpreted as a tensor equation. In the basis of principal components where the background

dielectric tensor κij is diagonal, (εr)ij is also diagonal. In the gapless case its diagonal components

are given by

(εr)ii = 1− 1

q2

e2g

24π2κii vF,xvF,yvF,z

{
−q̃2 ln

∣∣∣∣∣ 4Λ̃2

ω2 − q̃2

∣∣∣∣∣− iπq̃2Θ(ω − |q̃|)
}
, (B.3)

with straightforward modifications for the gapped case. Strictly speaking, the formalism of Section 2

does not apply because longitudinal and transverse modes are not decoupled in anisotropic media.

However, for the case of scattering, ΠL � ΠT and the dominant effects are still given by ΠL.

Assuming a spherically-symmetric velocity distribution, the leading effects of the anisotropic tensor

(εr)ij can be captured by its rotationally-invariant component 1
3Tr(εr):

1

3
Tr (εr) = 1− 1

q2

e2g

24π2κ̃ vF,xvF,yvF,z

{
−q̃2 ln

∣∣∣∣∣ 4Λ̃2

ω2 − q̃2

∣∣∣∣∣− iπq̃2Θ(ω − |q̃|)
}
, (B.4)

where

κ̃ =
3

1/κxx + 1/κyy + 1/κzz
. (B.5)
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Therefore, in our analysis of scattering in ZrTe5 where κij is anisotropic, we compute spherically-

symmetric rates using κ̃.

B.2 Scattering in Anisotropic Dirac Materials

The impact of anisotropic dispersions on the DM scattering rate, Eqs. (3.13) and (3.14), can be

estimated in a straightforward manner. In typical Dirac materials, the anisotropy of the Dirac

cones often involves a hierarchy of Fermi velocities vF,z � vF,x, vF,y, where vF,x ' vF,y ≡ vF,⊥. In

this limit, Eq. (B.2) becomes

εvF�v⊥r ≈ 1− q⊥
2

κq2

e2

vF,z

{
− g

24π2
ln

∣∣∣∣ 4Λ2

ω2/vF,⊥ − q2
⊥

∣∣∣∣− ig

24π
Θ(ω − vF,⊥|q⊥|)

}
, (B.6)

where q⊥ = (qx, qy, 0). Following the arguments of Section 3.2, the total scattering rate will then

be proportional to v2
F,z, the smallest of the Fermi velocities. However, vmin, which controls the

behavior of the integral as a function of the Fermi velocities, now takes the form

vmin(|q|, ω`,`+q) =

√
v2
F,⊥(`+ q)2

⊥ + v2
F,z(`z + qz)2 +

√
v2
F,⊥`

2
⊥ + v2

F,z`
2
z

|q| +
|q|

2mχ

= vF,⊥
|`⊥ + q⊥|+ |`⊥|

|q| +
|q|

2mχ
+O

(
v2
F,z

v2
F,⊥

)
. (B.7)

Here, the argument of Section 3.2 that DM scattering is allowed only when vF < vDM fails because

by taking q⊥ = 0, `⊥ small and qz large, the first term can be made much smaller than vF,⊥ and

scattering is allowed even when vDM < vF,⊥. On the other hand, we can obtain a lower bound for

vmin(|q|, ω`,`+q) by taking vF,⊥ = vF,z, and by repeating the kinematic argument of Section 3.2,

we see that we need vDM > vF,z for scattering to occur. As a result, the behavior of the integral is

also dominated by the smallest velocity vF,z, so we expect similar results to the isotropic case.

To make this comparison concrete, we recall the isotropic rate integral I(vF ,Λ,mχ) implicitly

defined in Eq. (3.14), with explicit expression

I(vF ,Λ,mχ) =

∫ Λ

0
d|`|

∫ 1

−1
d cos θ`q

∫ qmax

0
d|q| |`|2|q|

(ω2
`,`+q − q2)2

η (vmin(|q|, ω`,`+q))

ln2

∣∣∣∣ 4Λ′2

ω2
`,`+q/v

2
F−q2

∣∣∣∣+ π2

(
1− ` · (`+ q)

|`||`+ q|

)
.

(B.8)

The limit of integration qmax = −|`| cos θ`q +
√

Λ2 − `2(1− cos2 θ`q) ensures |`+ q| < Λ. We now
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vF,z

Figure 7: Scaling of the DM scattering rate for mχ = 10 keV with the Fermi velocity vF,z
of a gapless Dirac material, comparing an isotropic dispersion vF,x = vF,y = vF,z to one with
vF,x = vF,y = 10−3.

define a generalized anisotropic rate integral

Ĩ(~vF ,Λ,mχ) =
e4g2

2304π6

∫
d3q d3`

1

|q|
1

(ω2
`,`+q − q2)2

η (vmin(|q|, ω`,`+q))

|εan.
r (ω`,`+q,q)|2

(
1−

˜̀· ( ˜̀+ q̃)

| ˜̀|| ˜̀+ q̃|

)
, (B.9)

where ~vF = (vF,x, vF,y, vF,z), ε
an.
r is defined in Eq. (B.2), and the rescaled momenta q̃, ˜̀are defined

as in Eq. (A.2). This is related to the isotropic rate integral (B.8) by Ĩ = κ2

g v
2
F I in the isotropic

case ~vF = (vF , vF , vF ). In Fig. 7, we plot Ĩ(~vF ,Λ,mχ) for mχ = 10 keV, Λ = 0.2 keV, and

vF,x = vF,y = 10−3 as a function of vF,z. As anticipated, the shape of the two curves is qualitatively

similar for vF,z � vF,x/y, with both curves scaling similarly at small vF,z. However, the rate is

suppressed by about an order of magnitude in the anisotropic case, showing that isotropic Dirac

materials are preferred for scattering.

C. Reach for Other Models

In this Appendix we consider the cases of scattering through a mediator φ with no in-medium

interactions (such as a scalar), as well as the case of a heavy kinetically mixed mediator A′, where

‘heavy’ means mA′,φ � keV. We also consider the case of absorption of pseudoscalar dark matter

(axion-like particles or ALPs).
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Figure 8: Projected scattering reach for a light (left) and heavy (right) mediator φ without in-
medium effects. Such models are subject to strong constraints, see text for discussion. We show
the expected background-free 95% C.L. sensitivity (3.0 events) that can be obtained with 1 kg-yr
exposure. Dirac material parameters are the same as in Fig. 4.

C.1 Scattering Reach for Other Mediator Models

The form factors and fiducial cross sections for light scalar mediators, heavy scalar mediators, and

heavy kinetically mixed mediators take the following form:

φ, light : FDM(q) =
q2

0

q2
, Fmed(q) = 1, σe =

16πµ2
χeε

2αEMαD

q4
0

(q2
0 = (αEMme)

2); (C.1)

φ, heavy : FDM(q) = 1, Fmed(q) = 1, σe =
16πµ2

χeε
2αEMαD

m4
φ

; (C.2)

A′, heavy : FDM(q) = 1, Fmed(q) =
1

εr(q)
, σe =

16πµ2
χeε

2αEMαD

m4
A′

. (C.3)

Note that since εr(q) is roughly constant from Eq. (2.7), the in-medium form factors for the two

heavy mediators are roughly proportional, with in-medium effects providing an order-1 suppression.

As shown in Fig. 8, Dirac materials have inferior reach to superconductors for mediators which

are not kinetically mixed. Since in these models, the mediator does not acquire a large in-medium

mass in superconductors, the larger phase space of superconductors dominates, especially for the

light scalar where smaller momentum transfers are favored. The reach of Dirac materials compared

to superconductors is slightly better for a heavy mediator than for a light mediator; the reason is

that the phase space volume for a semimetal grows as ω3 compared to
√
ω for a metal, allowing

much of the phase space suppression to be made up at larger energy transfers. The weakening

reach of Dirac materials at masses mχ & 200 keV for the heavy mediator is due to the phase space

32



Figure 9: Projected scattering reach for a heavy kinetically mixed mediator A′ including in-
medium effects. Such models are subject to strong constraints, see text for discussion. We show
the expected background-free 95% C.L. sensitivity (3.0 events) that can be obtained with 1 kg-yr
exposure. Dirac material parameters are the same as in Fig. 4.

cutoff at Λ = 0.2 keV. On the other hand, as shown in Fig. 9, Dirac materials have superior reach

for the heavy kinetically mixed mediator, because the part of the in-medium polarization which

scales as q2 still suppresses the effective dark photon coupling significantly in metals.

While the DM masses and cross sections are too small to be constrained by current direct

detection experiments, these models are in strong tension with astrophysical and cosmological

constraints which must be evaded, at least for the most naive of models. In the massive mediator

case, detectable cross-sections imply thermalization of the DM sector, including both the mediator

and the DM; this, however, is in tension with Big Bang Nucleosynthesis, which requires at the

2σ level that only one real scalar, in addition to the Standard Model, can be thermalized at

temperatures below an MeV [111].10 In the massless mediator case, stellar constraints on the

emission of light mediators imply the couplings to electrons are generally too small to be detectable

[104]. (The exception is a light vector particle whose mass is given by a Stueckelberg mechanism;

this is the benchmark model utilized in Fig. 4.) These constraints are reviewed in Ref. [54].
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ALP absorption

Figure 10: Projected reach for absorption of axion-like particles (ALP) in Dirac materials, given
in terms of the ALP-electron coupling gaee. We show the expected background-free 95% C.L.
sensitivity (3.0 events) that can be obtained with 1 kg-yr exposure. The green (purple) curves
are gapless (gapped) isotropic Dirac materials with ρT = 10 g/cm3 and all other parameters as
in Fig. 4. We cut off the plot at mA′ = 2ΛvF = 160 meV, the largest energy deposit consistent
with the linear dispersion relation with momentum cutoff Λ = 0.2 keV. We also show the reach
of superconductors with a 1 meV threshold [55] (black) as well as constraints from Xenon100 [114]
(shaded gray) and white dwarfs [115] (shaded blue), and the QCD axion region (shaded red).

C.2 Absorption Reach for Axion-Like Particles

An axion-like particle (ALP) of mass ma which comprises DM can couple to electrons via the

operator

L ⊃ gaee
2me

(∂µa)ēγµγ5e . (C.4)

The absorption of an ALP on electrons through this operator is related to the photon absorption

rate, and is given by (see e.g., Refs. [51, 52,55]):

Raabs =
1

ρT
ρχ

3m2
a

4m2
e

g2
aee

e2
Im εr . (C.5)

The projected reach of Dirac materials for ALP absorption is shown in Fig. 10, assuming the ALP

comprises all of the DM, and for the same parameters as Fig. 4. The reach of superconductors

10For sufficiently large cross sections, multiple scattering in the Earth may either prevent the DM from reaching
the detector [112] or cause excessive heating in the Earth [113]. However, the relevant cross sections are much larger
than those depicted in our plots.
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is shown for comparison [55], along with the parameter space for the QCD axion (shaded red).

Constraints from Xenon100 data [114] (shaded gray) and white dwarf cooling [115] (shaded blue)

apply, and rule out the parameter space that can be probed even by an ideal gapless Dirac material

in the mass range of interest. As expected, we learn that for absorption of axion-like particles,

superconductors have superior reach due to the absence of in-medium effects and larger phase

space density of target electrons.

D. Band Structure Calculations for ZrTe5

Among already-synthesized Dirac materials appropriate for detector targets, we identified ZrTe5 as

a strong candidate, having a linear dispersion near the Fermi level while being slightly gapped by

the spin-orbit interaction.

First-principles calculations based on density functional theory (DFT) are performed using

the projector augmented wave (PAW) method in the Vienna ab initio Simulation Package (VASP)

[116,117] code. Zr (4s, 4p, 5s, 4d), Te(5s, 5p), Se(4s, 4p), Nb(4p, 5s, 4d) and Ta(5p, 6s, 5d) electrons

were treated as valence electrons, and the wavefunctions of the system were expanded in plane waves

to an energy cutoff of 600 eV. Monkhorst-Pack [118] k-point grids of 14x14x4 were used for BZ

sampling. We performed calculations with the generalized gradient approximation (GGA) using

the Perdew-Burke-Ernzerhof (PBE) functional [119]. Spin-orbit (SO) interactions are included self-

consistently in all calculations. Our calculations on ZrTe5 were performed using experimentally-

determined lattice parameters and internal coordinates [120]; our structural relaxations of ZrSe5

was performed including DFT-D3 van der Waals corrections [121].

ZrTe5 crystallizes in the Cmcm structure (Space Group No. 63) as shown in Fig. 11(a). Each Zr

ion is eight-fold-coordinated by Te atoms, which occupy three inequivalent lattice sites. The precise

nature of the topological character of the ZrTe5 electronic structure has been controversial, with

several conflicting experiments concluding it to be a Dirac semimetal [91, 122–126], a topological

insulator [127–132], and a normal semiconductor [133]. Our first-principles PBE calculations of the

electronic band structure show a Dirac cone near Γ without spin-orbit coupling which is then slightly

gapped (to 35 meV) with the inclusion of the spin-orbit interaction, consistent with previous DFT

calculations [134,135]. We note that although DFT-GGA-SO is not expected to be qualitative for

the band gap, our calculations are very consistent with previous experimental findings [92,128,129].

Table 1 lists the material parameters we use to calculate DM scattering rates, with the theoretical

values derived from the DFT calculations, and the experimental values used from the references

given. If no experimental value is listed, we use the theoretical value. Our estimate of Λ was derived

from the distance between the Γ and Z points in the BZ.
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Parameter value (th.) value (exp.)

vF,1 2.9× 10−3c (vF,x) 1.3× 10−3c (vF,xy) [91]
vF,2 5.0× 10−4c (vF,y) 6.5× 10−4c (vF,yz) [91]
vF,1 2.1× 10−3c (vF,z) 1.6× 10−3c (vF,xz) [91]

2∆ (meV) 35 23.5 [92]
Λ (keV) 0.14

g 4
κxx 187.5
κyy 9.8
κzz 90.9

ρT (g/cm3) 6.1
ne (e−/kg) 8.3× 1023

Vuc (Å3) 795

Table 1: Material parameters for ZrTe5. vF,i (i = 1, 2, 3) are Fermi velocities, 2∆ is the gap, Λ is the
linear dispersion cutoff, g = gsgC is the product of spin and Dirac cone degeneracies, κii (i = 1, 2, 3)
are principal components of the background dielectric tensor, ρT is the density, ne is the mass density
of Dirac valence-band electrons, and Vuc is the unit cell volume. Where no experimental value is
listed, we use the theoretical value. The theoretical values of the Fermi velocities were calculated
along the high-symmetry directions, while the experimental values are mid-plane velocities. For
the experimental value of 2∆, we take the median of the range of values presented in [92]. Λ was
taken to be the distance between the Γ and Z points in the BZ, see Figs. 11 and 12. The static
ion-clamped dielectric tensor κij was calculated using density functional perturbation theory. The
unit cell is defined as containing 4 formula units, see Fig. 11(a).

While the band structure shows the gapping of the Dirac cone near Γ, the Fermi level cuts the

top of the band to form a hole-like pocket. To engineer a semiconducting band structure, with the

Fermi level in the gap, we recompute the band structure of electron-doped ZrTe5 by adding a small

fraction of electrons per unit cell and compensating this additional electron density with a uniform

positive background. We find that electron doping by 0.2 electrons per unit cell shifts the Fermi

level into the gap. Alternatively, Fig. 12(a) shows the band structure for stoichiometric ZrTe5 at

99% of the experimental lattice volume. We find that a small amount of pressure results in the

desired band structure with the Fermi level now in the gap. This could potentially be achieved

experimentally by epitaxial growth on a substrate with a slightly smaller in-plane lattice parameter

or by chemical substitution of ions with a smaller radius.

We next consider chemical substitution. Since the ZrTe5 bands near the Fermi level consist

primarily of Te-p states, we consider substitution on the Zr site by Nb and Ta. We calculate the

band structure of substitution of one Nb/Ta for eight formula units, resulting in electron doping of

0.25 electrons per formula unit as shown in Fig. 12(b) for the Nb case. While the Fermi level shifts

as expected, Nb contributes d-states near the Fermi level, making the material a metal. The same

also occurs for the case of Ta substitution. Substitution of Te with Br alters the band structure
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Figure 11: (a) ZrTe5 in the Cmcm space group. (b) Calculated electronic band structure for ZrTe5

with and without spin-orbit coupling. The Fermi level is set to 0 eV and marked by the dashed
line.

near the Fermi level as well.

In light of this, and with the additional motivation of reducing the band gap, we consider

replacing Te with Se in the hypothetical new compound ZrSe5 in the same Cmcm structure as

shown in Fig. 12(c). This chemical substitution has three effects on the electronic properties of

the material. Firstly, the smaller ionic radius of Se reduces the total volume of the compound

which results in a Fermi level in the gap without any external pressure; however, this also has the

undesired effect of increasing the band gap. Independent of the volume change, the lower spin-orbit

coupling in Se reduces the spin-orbit splitting of the bands to 2∆ ' 15 meV. Therefore, our DFT

estimates suggest that ZrTe5 with a small amount of Se alloying could provide a more desirable

volume contraction and spin-orbit-driven reduction in band gap. Interestingly, another Dirac cone

is present in the ZrSe5 compound, which doubles the number of Dirac cones and Dirac valence-

band electrons per unit cell. Since the DM scattering rate scales as ne/g, from stoichiometry

alone we would expect the overall rate to increase by a factor of mTe/mSe ' 1.5 for ZrSe5, with

additional increases near threshold from the reduced gap. Neither ZrSe5 nor Zr(Te,Se)5 have yet

been synthesized; should synthesis be possible, these compounds may be be promising targets for

DM detection.
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Figure 12: Calculated band structure for (a) stoichiometric ZrTe5 with 99% the lattice volume of
the experimental lattice parameters, (b) ZrTe5 with 12.5% Nb substitution on the Zr site and (c)
ZrSe5. In (b), the Nb d-states near the Fermi level are indicated by the weighted line. In each plot
the Fermi level is set to 0 eV and marked by the dashed line.
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