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Abstract

We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-
MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy
electronic excitations, with a small band gap of O(meV) if lattice symmetries are broken. Dark
matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite
an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be
absorbed by the electrons in the target. We develop the formalism for dark matter scattering
and absorption in Dirac materials and calculate the experimental reach of these target materials.
We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV
mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon
does not develop an in-medium effective mass. The same target materials provide excellent
sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass
range, superior to all other existing proposals when the dark matter is a kinetically mixed dark

photon.
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1. Introduction

The search for sub-GeV dark matter (DM) is a growing frontier in direct detection experiments.
This program is driven by a theoretical revolution revealing a wide and growing range of models
for light DM. In these scenarios, the DM typically resides in a hidden sector with either strongly
or weakly interacting dynamics [1-28]. There are many ways to fix the observed DM abundance
in these theories, including asymmetric DM [29-31], freeze-in [32, 33|, strong dynamics [34-36],
kinematic thresholds [37], and various non-standard thermal histories [38-43], to name a few. The
breadth of possible scenarios has stimulated a rethinking of the ideal experimental targets for
discovery.

Directly detecting DM relies on observing the effects of its interactions with an experimental
target, either through scattering or absorption in the material. In both cases, sufficient energy must
be deposited to observe the interaction; this becomes increasingly challenging as the DM mass
is reduced. The current suite of direct detection experiments focuses on the weakly-interacting
massive particle (WIMP), where the DM mass is typically above ~ 10 GeV. These experiments
search for nuclei that recoil after a collision with a DM particle. Since the energy deposited in an
elastic scattering process is ¢2/2mr, where ¢ is the momentum transfer and mr is the mass of the
target, it often becomes more effective to search for energy deposition on electron targets when
DM is less massive than a nucleus. Condensed-matter systems are sensitive to scattering events
where the DM carries comparable kinetic energy to the electron excitation energy. For many such
systems, including semiconductors [44-46], graphene [47], scintillators [48], molecules [49], and
crystal lattices [50], these energies are eV-scale. This is optimal for detecting DM y with mass
my 2, MeV, where the kinetic energy is mxvi/Q with vy ~ 1073, the virial velocity of DM in the
Galaxy.! If instead, y is a boson with mass > eV, it can be detected via absorption on an electron
in these same systems [51,52].

Extending experimental sensitivity to scattering or absorption of even lower mass DM carries
many challenges. For example, fermionic DM is consistent with all astrophysical observations when
its mass is greater than a few keV, but to reach these mass scales, one must find a material where
the few meV of energy it deposits in scattering can lead to observable signatures. Superconducting
targets offer one promising option [53-55]. These ultra-pure materials, with a small (~ meV) gap
and a large Fermi velocity, are sensitive to DM scatters in the keV-MeV mass range or to meV-eV
DM absorption. Superfluid helium has also been shown to be sensitive to sub-MeV DM, when
the DM collision can produce multiple phonons [56,57]. Neither superconductors nor superfluid

helium, however, have optimal sensitivity to dark photons [58,59], which can serve either as the

!Throughout this paper, we use natural units with A = ¢ = 1; all velocities are expressed in units of ¢ and all
distances in units of momentum.
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Figure 1: Cartoon of the two dark matter-initiated processes in Dirac materials that we consider
in this paper: inter-band (valence to conduction) scattering (left) and absorption by valence-band
electrons (right).

mediator for DM-electron scattering processes or as the DM itself which is absorbed. In the case of
superconductors, the dark photon takes on a large effective mass in the medium, suppressing the
DM interaction rate. For helium, the leading interaction is through the polarizability of the atom,
which is small.

In this paper, we propose Dirac materials as a new class of electron targets for DM scattering or
absorption. We define Dirac materials as three-dimensional (3D) bulk substances whose low-energy

electronic excitations are characterized by a Dirac Hamiltonian [60-62],

0 vpl-o —iA n
H, = , EF = 4+/v202 + A2, 1.1
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Here, £ is a lattice momentum measured from the location of the point of the Dirac cone (e.g., the
Dirac point) in reciprocal space, A is analogous to the mass term in the Dirac equation giving rise
to a band gap 2A, the Fermi velocity vg plays the role of the speed of light ¢, and the positive and
negative dispersion relations correspond to the conduction and valence bands, respectively.? The
desired signal is a DM-induced inter-band transition from the valence to the conduction band, where
for DM scattering the momentum transfer |q| is typically much larger than the energy deposit w,
with the opposite being true for absorption of non-relativistic DM. A cartoon of these two processes
is illustrated in Fig. 1. As we will show, the dynamics of the photon interacting with Dirac fermions
mimic those of ordinary relativistic QED: the Ward identity keeps the photon massless in a Dirac
material, leading to excellent detection reach in models of DM involving dark photons.

When A = 0, the low-energy degrees of freedom in a Dirac material correspond to two Weyl

fermions of opposite chiralities. Materials with this feature are classified as either Dirac or Weyl

2Real materials typically have anisotropic Fermi velocities, but this complication does not affect the thrust of our
arguments; we treat this case in Appendices A and B.



semimetals and are regarded as the 3D analogues of graphene. In Dirac semimetals, both Weyl
fermions occur at the same point in momentum space, but are decoupled due to an additional
crystalline symmetry which imposes A = 0. Examples of Dirac semimetals include NagBi [63, 64]
and CdgArs [65-67]. Allowing the two Weyl fermions to couple, for example by applying strain to a
Dirac semimetal or tuning a topological insulator close to the semimetal critical point [68], can lead
to a finite A # 0 that is typically small, 2A ~ meV. Such a gap can suppress thermal inter-band
transitions, which is crucial for making detection of meV-scale DM-induced excitations feasible.?
While our analysis is completely general, we propose ZrTes; as a realistic target Dirac material.
Zr'Tes has been synthesized experimentally, and in this work we compute its band structure from
first principles, finding in particular that its small Fermi velocities and tunable Fermi level, which
can be located inside the gap, make it especially suitable for a dark matter search.

This paper is organized as follows. Section 2 presents the benchmark dark photon model, and
then introduces the formalism for describing in-medium effects in Dirac materials. This formalism
is used in Sections 3 and 4 to calculate the DM scattering rate mediated by a dark photon and the
dark photon absorption rate in Dirac materials, respectively. For both cases, we present sensitivity
projections for couplings to electrons, comparing them to other proposals for sub-MeV dark matter
detection. We conclude in Section 5 with a brief discussion of experimental considerations. The
four Appendices describe the derivation of the transition form factor for a generic Dirac material,
the generalization of the scattering rate to anisotropic semimetals, the scattering and absorption
reach for models other than the light kinetically mixed dark photon, and the density functional
theory (DFT) calculations used to derive the band structure of ZrTes.

2. Dark Matter Interactions with In-Medium Effects

Our discussion of sub-MeV DM is focused on the benchmark model of the kinetically mixed dark
photon. Specifically, we consider a new U(1)p gauge boson that mixes with the ordinary photon:
1 1 €
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Here, F,, (F),) is the ordinary (dark) electromagnetic field strength, ¢ is the kinetic mixing

parameter, and J‘E‘M (DM) is the electromagnetic (dark) current, which couples to the (dark) photon

DM
with strength e (gp).* We assume that the new dark photon field Al, acquires a mass m s either

3In Weyl semimetals, the two Weyl fermions are generically located at different points in momentum space and
thus are decoupled at low energies [69-72], making it difficult to open a gap. As the gap is necessary to control
thermal noise in our proposal, we do not consider these materials further in this paper.

“In this paper, we follow high-energy physics conventions and use Heaviside-Lorentz units for electromagnetism,

where e = \/Aragm ~ /47 /137.



through a dark Higgs or Stueckelberg mechanism. The propagating dark photon EL in the mass
basis can be identified by diagonalizing the kinetic terms in Eq. (2.1), and can serve as either the
DM itself or as a mediator of the interactions between the Standard Model and the DM which
comprises the dark current J&, .

Due to the induced coupling of the dark photon to the electromagnetic field strength, dark
photon interactions are modified in an optically responsive medium. The effects of the medium on
the dark photon coupling can be derived by considering the effects of the medium on an ordinary
photon, where the propagator is modified via its interactions with the medium. One finds [54] that
the transverse and longitudinal dark photon fields A’Z’L interact with the electromagnetic current

with reduced coupling:
2
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Here, Il7;, are the transverse and longitudinal components of the in-medium polarization tensor,
I = Tr ) g9 6?“6?*” + Tpeltel” | with & = ﬁ(\q],w%) and 6{2 = %(0,1,:]:1’,0). As
a result of Eq. (2.2), dark photon interactions inside a medium depend on the electromagnetic
response of the medium, parameterized by Il7; (see detailed discussion in Ref. [54]). In this
section, we describe the behavior of an ordinary photon in an optically responsive medium. We
review the optical properties of Dirac materials in Section 2.1 and compare the results to that of

metals in Section 2.2. We will use these results to model dark photon scattering and absorption

processes in later sections of the paper.

2.1 Optical Properties of Dirac Materials
In Lorentz gauge, the in-medium photon propagator is written as
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where ¢ = (w, q) is the 4-momentum transfer, ¢*> = w?—q?, and P, 7 are longitudinal and transverse
projection operators, respectively (see e.g., Ref. [73] for a complete derivation). From Eq. (2.3), we
see that the photon can develop an effective mass in-medium if the real part of II7 1 (¢) contains
terms that do not vanish at ¢ = 0. In general, II7,1,(¢) may be a complicated function of ¢ with no
simple interpretation as an effective mass, but large Ilr ; will generally suppress electromagnetic
interactions. The imaginary parts of Il ;, determine the probability of photon absorption.

The transverse and longitudinal components of the in-medium polarization tensor are linked to



the optical response of the medium through the complex permittivity e, by
O, =¢*(1 —¢) and Tr=w?1—¢). (2.4)

In the regime |¢?| ~ q® > w?, which is relevant for DM scattering, II;, dominates over Ilp.
Conversely, in the case of DM absorption where ¢? ~ w? > q2, II;, ~ IIp.

For Dirac materials with a band gap, it is simplest to determine the complex permittivity €, by
borrowing the expression for the one-loop polarization function in massive QED in 341 dimensions
(see e.g., Ref. [74]). In doing so, we substitute ¢ — vr and agy — &, where v is the Fermi velocity

and « is the effective fine-structure constant in the medium:

a= OEM X L R (2.5)
KRUR

with x the background dielectric constant, agy = €?/47, and g = gsgc is the product of spin and

Dirac cone degeneracy [75]. In the M S scheme, to leading order in @, the complex permittivity (at

}

1+ 20° O(w? — viq® —4A?) (2.6)
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zero temperature and doping) is therefore given by:
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where A is a UV cutoff, defined as the momentum distance from the Dirac point at which the

dispersion relation deviates from linear.?

The spin degeneracy in Dirac materials is gs = 2;
taking go = 1 (hence g = 2) corresponds to a single massive Dirac fermion in QED. The complex
permittivity of isotropic semimetals can be recovered from Eq. (2.6) by taking A — 0 and redefining
A — exp(—5/6)A to absorb the finite g-independent piece. This yields the familiar formula [75-81]:
e?g 1 9 402
-]
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which can also be derived directly from the Lindhard formula, as demonstrated in Appendix A.

SHere we are effectively setting the renormalization scale ji at the cutoff, i = 2vrA, which is perhaps unusual from
a high-energy physics perspective. The unphysical parameter ji can be removed from physical quantities by matching
to a measurement of the electric charge e. In QED, one typically thinks of the electric charge as being defined by
a t-channel scattering process, e.g. e~ + e~ — e~ + e~ . However, the inter-band transition in a Dirac material is
analogous to pair production, which is an s-channel process. DM scattering in Dirac materials can be described by
X+ N = x4+ N + v followed by v — e~ 4+ A", where the lattice N provides the necessary recoil for the creation of
an electron-hole pair. Therefore, we use the vertical transition rate with (w,q) = (2vrA,0) to measure the charge.
At the cutoff A, deep inside the band structure and far from the Dirac point, we assume that the electrons behave as
in an ordinary insulator and that the effective charge is ¢ = €*(i) = 4mamm/k.



Eq. (2.7) was recently confirmed at the 10% level with optical measurements of NazBi [67].

Because « is inversely proportional to vg, materials with small Fermi velocities can have large
effective couplings. This is the case of free-standing graphene, where K = 1, vp = 3x 1073, and & ~
2.2, yet perturbation theory still delivers the right predictions when compared to experiment [82].
Since QED flows to a free theory in the IR, perturbation theory remains valid near the Dirac
point and far from the cutoff A, so long as no strong coupling phase transitions are crossed.’
This is believed to be the case for Dirac materials, which are predicted to be weakly interacting
[85]. Because this is consistent with the current experimental and theoretical consensus in the
field [75, 83, 84], we conservatively choose benchmark parameters with @ < 1 and assume the
validity of perturbation theory at one-loop.

The permittivity of a Dirac semimetal exhibits distinctive behavior as a function of g2. As can
be seen from Eq. (2.7), the imaginary part of €, approaches a constant at one-loop order, which is
a signature of Dirac-like excitations with linear dispersions [67,77-81]. The dependence on q? of
the real part of ¢, is mild due to the log, and thus it is also approximately constant. The top panel
of Fig. 2 shows the square-root of the real and imaginary parts of Il = ¢?(1 — ¢,) as a function
of |q| for w = 1 (100) meV in the left (right) panel. As a benchmark, we take vp = 4 x 1074,
A =0.2keV, k =40, and g = 2, which are representative of typical values for real Dirac materials.
The vertical dashed line corresponds to |q| = w; below this point, absorption processes dominate,
while scattering processes dominate above it. To guide the eye, we plot m as the solid green
line, which scales linearly with |q| in the scattering regime |q| > w and is constant in the absorption
regime. Importantly, the square-root of both the real and imaginary values of 17, track \/|qi2 , as
expected from the fact that e, is essentially constant in q? for Dirac semimetals.

We discuss modifications to the complex permittivity for anisotropic Dirac materials (where

there are independent Fermi velocities, vrz, vry, vF.) in Appendix B.

2.2 Comparison of Metals and Dirac Semimetals

We will show in Sections 3 and 4 that Dirac materials are more sensitive than superconductors to
DM scattering via a dark photon mediator, as well as to absorption of dark photons [51,54]. There
are competing effects that drive this result. On the one hand, the optical response of a metal is
much stronger than that of a Dirac semimetal, weakening its sensitivity to dark photon interactions.
On the other hand, a metal has a much larger phase space of conduction electrons at low energies,

which should improve its reach. We now discuss the balance of these effects, comparing the optical

5In gapless Dirac semimetals, vy is also renormalized [75,83,84]. We do not consider this subtlety for our
benchmark gapless Dirac materials, since in any realistic experiment, the material will be gapped and this issue does
not arise.
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polarization tensor y/|IIz| in Dirac semimetals (fop) and metals (bottom), as a function of the
momentum transfer |q|. The left (right) panel takes the deposited energy to be w =1 (100) meV.

For semimetals, we take representative parameters vp = 4 x 1074, A = 0.2 keV ~ 0.1 Afl, g=2,
and k = 40 to give a ~ 0.9. Note that for semimetals, inter-band transitions are only allowed for

q| < w/vp. For metals, we choose aluminum as a representative example, with Apgp >~ 4 keV and
la <w/

response and phase space availability in metals versus Dirac semimetals.
For metals, intra-band transitions dominate because the Fermi energy lies within a single band

and excitations occur just above the Fermi surface. In this case, the permittivity is given by:

lal w
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(2.8)

where )\?FF = 3e2n, /(2EF) is the Thomas-Fermi screening length, n. is the electron density, pp

is the Fermi momentum, and Er is the Fermi energy [86]. We plot the square-root of the real



and imaginary parts of II; in a metal in the bottom panel of Fig. 2. By comparing the top and
bottom panels, it is evident that the magnitude of both the real and imaginary components of
the polarization tensor are many orders of magnitude smaller in Dirac materials than in metals.
Furthermore, the polarization for a metal is roughly constant in |q| over a broad range of momenta
near O(keV)—therefore, we can think of the photon as having an effective mass in this range.
By contrast, the real part of the semimetal polarization function scales as ¢®> up to logarithmic
corrections and thus acts as a charge renormalization.

The difference in behavior between the two materials is related to their differing Fermi surface
geometries. In metals, the Fermi surface is not scale invariant; the dimensional Fermi momentum
pr sets the screening scale. In an (undoped) Dirac semimetal, the Fermi surface is point-like and
thus the Fermi momentum is zero by definition. Consequently, there is no screening length for the
photon. Alternatively, one can understand this fact from the vanishing of the density of states at
the Fermi level in semimetals. The Thomas-Fermi screening length is inversely proportional to the
density of states, which is large for a metal and zero for a semimetal. For the case of gapped Dirac
materials, one can exploit the emergent Lorentz symmetry of the Dirac Hamiltonian, Eq. (1.1), to
see that the Ward identity enforces 117 (¢?) ~ ¢? such that the photon stays exactly massless to all
orders in perturbation theory; the gap 2A does not provide a screening scale akin to pg in a metal.

As we have just seen, the point-like Fermi surface in a semimetal suppresses its optical response,
thereby enhancing processes mediated by a kinetically mixed dark photon. While this benefits
detection rates, it simultaneously suppresses the available phase space for interactions with the
DM. One can use simple geometric arguments to estimate the phase space available for ultra-low-
energy scattering in Dirac semimetals compared to metallic targets, for a given energy deposit w.
In a metal, the Fermi surface is a sphere, so the volume of the initial-state phase space is given by a
spherical shell of radius pr and thickness dp = \/2m.w, where m, is the electron mass. Numerically,

the phase space volume for prp ~ 3.5 keV and w = 1 meV is
VF, metal = 4rps dp ~ 5 x 107 eV3, (2.9)

In a semimetal, the initial-state phase space volume is given by the boundary of the hypercone
traced out by the valence band. The maximum momentum available for the same energy transfer

w is given by pmax = w/vp. The phase space volume for vp = 4 x 107% and w = 1 meV is

4
VF, Dirac = §7Tp13naxy/1 + v% ~ 70 eV3, (2.10)

approximately eight orders of magnitude smaller than the corresponding phase space for metals.

As shown in Fig. 2, however, the phase space suppression in the scattering rate is more than offset

10



by the gain from the reduced in-medium response: the scale of the effective dark photon coupling
in metals can be 4-6 orders of magnitude larger. When squared, this leads to a huge suppression
in the rate, which dominates over the phase space suppression of semimetals. We demonstrate this
behavior explicitly in Sections 3 and 4, where we derive the DM scattering and absorption rates in

Dirac materials.

3. Scattering in Dirac Materials

The formalism for DM scattering in Dirac materials is a special case of the more general formalism
for scattering in crystal lattices described in Ref. [87]. We describe the calculation of the DM
scattering rate in Section 3.1 and highlight important issues pertaining to the kinematics in
Section 3.2, including the dependence of the scattering rate on the Fermi velocity vg. In Section 3.3,
we discuss the projected sensitivity to DM scattering in a generic Dirac target and for ZrTe; in

particular.

3.1 Scattering Rate Formalism

Consider a Dirac cone located at K in the BZ, and a transition from k = K+ £ in the valence band
to k' = K + £ in the conduction band with [£|, |¢/| < |K]|. In order to present simplified analytic

results where possible, we assume the gapless, isotropic dispersion relations:
Ef = tup|t|. (3.1)

The main effect of a gap is to impose a kinematic threshold 2A on the scattering event, but our
conclusions are otherwise unchanged. A more complete discussion of anisotropic materials with
independent Fermi velocities vg,, vpy, vF is included in Appendix B.

The rate to scatter from the valence band (labeled by ‘—’) at k to the conduction band (labeled
by ‘+7) at k' is given by [87]

Rojespp = X 062 /dgq i77(Umin(\Q\aWkk')) | Fom(9) 1| Fned (@)1= kst (@), (3.2)
My 8T fle lql

where p,, >~ 0.4 GeV/cm? is the local DM density, gy, is the DM-electron reduced mass, 7 is a

fiducial spin-averaged DM—free-electron scattering cross section, and wyy is the energy difference

between the final and initial states. The rate also depends on several form factors, which are

defined explicitly below: Fpy(q) parameterizes the momentum dependence of the DM—free-electron

interaction, Fined(q) parameterizes the momentum-dependent in-medium effects, and f_ x4 w(q)

is the transition form factor parameterizing the transition between bands. Because a distribution

11



of DM velocities contributes to a scattering event with given k,k’, the rate depends on the halo

integral:
d3v
7(Vmin) = 7 9y (V)0(V — Vin)- (3.3)

Here, g, (v) is the DM velocity distribution, which we take to be the Standard Halo Model with
typical Galactic-frame velocity vg = 220 km/s (7.3 x 10~* in natural units), average Earth velocity
with respect to the Galactic frame vy = 232 km/s (7.8 x 10~%), and escape velocity vesc = 550 km/s
(1.8 x 1073). For simplicity, we will assume the DM velocity distribution is spherically symmetric.
The minimum velocity for a DM particle to scatter with momentum transfer q and energy deposit
Wk 1s:

wae | lal _ vr(l€]+1€) | q|

Umin\|4|, Wk k') = + - + . 3.4
b = o, = Tl 2my 34

This expression for vy, arises from solving a delta function for energy conservation assuming a
spherically-symmetric g, (v)—see Ref. [87] for more details. Here, we have assumed the gapless
isotropic dispersion relation near the K-point given in Eq. (3.1); the result generalizes straightfor-
wardly to gapped or anisotropic dispersions.

There are three form factors that appear in Eq. (3.2), two of which are related to the DM
scattering interaction and one of which depends on the initial and final wavefunctions of the

scattered electron. We begin by describing the latter. The transition form factor is defined as

Fossae(q) = / Px U o (X)V_ g (x) 9% (3.5)

where W_ y ., y)(x) is the electron wavefunction in the initial (final) state. An analytic expression

for this factor can be derived using the Hamiltonian in Eq. (1.1) and is given by

T 3 L p!
o se(@ = 2 &7 (1 £t

57 (1= i) dla- @~ o), (3.6)

for gapless isotropic materials, where V' is the crystal volume. A complete derivation of Eq. (3.6),
generalized for anisotropic gapped Dirac materials, is provided in Appendix A.

The other two form factors, Fpym(q) and Fieq(q), are derived from the matrix element corre-
sponding to a DM particle scattering off an electron via the kinetically mixed dark photon we are

interested in:

2,02 2 2.2 2,022 2.2
16mems gpee _ 16mgmygpe’e 1

2\ =
<‘M’ > - (qQ_mi/)QH_HL(q)/qQF (q2—m?4,)2 |€T‘(Q)‘2 ’

(3.7)

where gp is the dark photon gauge coupling and me is the electron mass. Here, we are neglecting

12



the contribution of IIp to the matrix element, since Il < Il in the regime |q2\ > w? relevant for
scattering. The longitudinal polarization tensor I, (or equivalently, the permittivity €,) describing
the material can thus be incorporated into the event rate for DM scattering using this modified
matrix element. We adopt standard conventions in the literature and define Fpy; as the momentum

dependence of the free matrix element,

16m2m?2 g2 e%e?
(IMiee(q)]) = E X§)2 = (IMiree(@0)”) % | Fori(a)” (38)
q= — My

while Fieq captures the in-medium effects through
(M%) = ([ Miee()*) X [Fmeala)|*. (3.9)

The reference momentum ¢p used to define Fpy(g) in Eq. (3.8) is arbitrary. Following the
standard of comprehensive reviews such as Ref. [88], we choose g2 = (apmme)?. Finally, the
fiducial cross section is defined as

2
- Mxe

e 2.71,2
16mmsmg

<|Mfree(QO)|2>‘ (310)

With these definitions, we have for the light (m/y < keV) kinetically mixed dark photon,

2 2 .2
A’ ligh q 1 - 16mps e“agmap
Foni ¢ t(Q) = %7 Fimed(q) = ) Oe = X 1 (qg = (aEMme)2>v (3.11)
q er(q) 99

where ap = g% /4m and Fyed(q) is evaluated at ¢ = (wger, q) for initial and final states labeled by £
and £’ respectively. Because in Dirac materials €,(q) is effectively the ratio of unscreened charge eq
to running charge e(q), the in-medium form factor ensures that the matrix element scales as e?(q)
rather than e2. In Appendix C.1, we provide the analogous form factor expressions and fiducial
cross sections for DM scattering with electrons via other mediators.

The total scattering rate in the crystal is obtained from Eq. (3.2) by summing over initial and

final states, which in this context means integrating over the initial and final BZ momenta:

A3k 3K aede
Rerystal = gs V2 /BZ WRf,kaJr,k’ = gsgc Vz/ WR7,€~>+,Z’ . (3.12)

Note that there is no sum over bands because scattering only takes place between the — and +
bands by assumption. If there are several Dirac points K; with identical linear dispersion, one
can simply integrate over the region surrounding one of the points and multiply by gc, giving an

overall factor of g = gsgc. Because the rate only depends on the integral around the cone (we do
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not consider inter-cone scattering in this paper), and the absolute location of the cone in the BZ is

irrelevant, we will work exclusively in terms of the displacement vector £ instead of k from now on.

3.2 Scattering Kinematics and Spectrum

We can exploit the analytic expressions for the transition form factor and the in-medium form
factor to analyze the kinematics of scattering in a Dirac material. Using the analytic expression
for the transition form factor given in Eq. (3.6), we obtain the rate for the case of an ultralight

kinetically mixed mediator:

R _ Px e 28874 K2vi g (27)°
ST 8y, etg? Vv
1 1 min 5 / £-(£
laf (o —a®)? | 2| ane g €[|€ + q

2 2
"-’U//UF*CI2

We have defined A’ = A exp(12n2kvr/(ge?)) to absorb the constant piece in Ree,, and dropped
the step function in Ime, because all inter-band transitions satisfy wger > vp|q|. Integrating over
£ and £’ in a region of size A near the Dirac point as in Eq. (3.12), and noting that the integrand
only depends on the magnitudes of q and £ and the angle between them, we find the total rate in

counts per unit time per unit detector mass:

2

3672 , py O K
Riot = ——qa 2 == X neVie—v2I (vp, A, my ), 3.14
tot o qomx 2, Ne Ve p vpl(vp, A,my) (3.14)

where I(vp, A, m,) has dimensions of momentum—the full expression is provided in Appendix B.

Eq. (3.14) is related to Eq. (3.12) via Riot = Rerystal/Merystal, Where Merystal is the target mass,
and V = Ny Ve with Ny the total number of unit cells in the target and V;,. the volume of each
unit cell. Then ne = Nyc/Merystal is the number of Dirac valence band electrons per unit mass of
target material. In Eq. (3.14), we have separated the factors that depend on the DM model from
those that depend only on the target material.

Of particular interest is the behavior of I(vg, A,m,) as a function of vp, as it can suggest
the optimal material properties for maximizing detection rates. Firstly, I(vg, A,m,) = 0 for large
values of vr due to the peculiar kinematics associated with linear dispersions. For scattering very

close to the Dirac point, the transition form factor Eq. (3.6) enforces momentum conservation
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Figure 3:  (Left.) Scaling of the dark matter scattering rate with the Fermi velocity vg of a

gapless isotropic Dirac semimetal. The vertical dashed line indicates the point below which &, the
effective fine-structure constant in the medium, is greater than 1. (Right.) Spectrum dI/dE’ for
vp =4 x 1074, where E’ is the final-state energy of the scattered electron. Note that the function
I(vp, A, my) is directly proportional to the total scattering rate, Riot. In both cases, we have taken
A =0.2keV, g =2, and kK = 40. The results are shown for 10 keV and 100 keV dark matter in
blue and orange, respectively.

q = ¢ — £.7 Using this relation, Eq. (3.4) becomes

11+ 18D)

=
T |

2m,,

Vmin(£,£€) = v (3.15)
The first term is at least vp by the triangle inequality, and the second term is nonnegative, so we

have vpin > vp. If vp is greater than the largest possible DM velocity,

Umax = VE + Vesc ~ 2.6 X 1072, (3.16)

then scattering is kinematically forbidden for any (small) m,. Therefore, unsuppressed scattering
can only occur if the DM is moving faster than the electron target.® This is in sharp contrast to
the case of superconductors, where the target velocity should exceed that of the DM for low energy
scattering to occur [53,54].

Dirac materials exhibit a range of Fermi velocities from 6 x 1073 for BLi to 3 x 10~ or smaller
for NbAs and NbP [89,90]. The kinematic arguments presented above suggest that the materials
with smallest vp are most desirable for maximizing the DM scattering rate. However, the prefactor

in Eq. (3.14) is suppressed by v%, which comes from the scaling of €¢,.. Therefore, we do not want

"See Appendix A.3 for a discussion of momentum conservation versus lattice momentum conservation.
8We thank Justin Song for pointing out this phenomenon to us.
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to drive vp too low. To illustrate this tension, the left panel of Fig. 3 plots %U%I(UF,A,mX),
which is proportional to the total scattering rate, for two values of the DM mass. The results are
shown assuming A = 0.2 keV, g = 2, and k = 40, representative of typical values for real Dirac
materials. For both masses, the rate is maximal for a particular choice of the Fermi velocity. When
my = 100 keV, this occurs at vp ~ 10~4. For my = 10 keV, the maximum is at even lower Fermi
velocities. Such small values for the Fermi velocity lead to & > 1 for the material parameters
assumed here. That said, the rate for either mass point only varies by a factor of a few between the
vp that maximizes the rate and vp = 3.6 x 10~%, above which the effective coupling is less than 1.

Finally, we consider the energy spectrum dI /dE’ of the excited electron, shown in Fig. 3 (right)
for vp = 4 x 107* and my = 10,100 keV. The spectrum peaks away from E’ = 0 due to the
vanishing phase space at the point of the Dirac cone. This shows that the majority of the rate
comes from final-state energies above 1 meV. At small E’, the spectrum depends only weakly on
m,. This is because the energetically favorable events correspond to small initial-state energies,
such that |€ — £| is small and v, is approximately independent of m,. As expected, heavier DM
masses yield scattering events with higher-energy final-state electrons, giving a larger total rate.
As we will show in Section 3.3 below, these conclusions do not change for m, 2 10 keV even in the

presence of a meV-scale gap.

3.3 Projected Sensitivity Reach

We are now ready to use the formalism we developed to present the sensitivity reach projections for
DM scattering in Dirac materials via a light kinetically mixed dark photon. The results are shown
in Fig. 4. The green and purple curves show the expected 95% C.L. sensitivity (corresponding to
3.0 signal events) with a kg-year exposure for DM scattering in gapless and gapped Dirac materials,
respectively. For concreteness, we choose A = 0.2 keV, V. = 60 As, and n. = 5 x 10?4 /kg, typical
of experimentally realized semimetals. In addition, we take vp = 4 x 107, k = 40 and g = 2 so
that & ~ 0.9 and perturbation theory is reliable. This corresponds to a typical range of parameters
for Dirac semimetals such as CdsAss [66,96-99], for which perturbation theory is only expected to
break down at & ~ 9.4 [75]. We note that the inclusion of the correct wavefunction overlaps from
Eq. (3.6) suppresses the rate by about an order of magnitude compared to a naive approximation
where the transition form factor is set to unity.

In Fig. 4, we also show the projected sensitivity for a benchmark realistic target material, ZrTes,
which has most of the desired properties we have discussed. The band structure was determined
using density functional theory, as discussed in Appendix D. We find that ZrTes has a small
Fermi velocity vp, = 4.9 x 10~* along one direction, a small degeneracy ¢ = 4, and a small gap

2A = 35 meV at zero temperature. The remaining material parameters are given in Appendix D.
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Figure 4: Projected reach of dark matter scattering in Dirac materials through a light kinetically
mixed dark photon mediator with in-medium effects included. We show the expected background-
free 95% C.L. sensitivity (3.0 events) that can be obtained with 1 kg-yr exposure. For the two
curves labeled ‘Dirac,” we assume an ideal gapless (A = 0, green) or gapped (A = 2.5 meV, purple)
isotropic Dirac material with vp = 4 x 107%, k = 40, g = 2, A = 0.2 keV, n. = 5 x 10%*/kg,
and V. = 60 Ag. We also the show the results for ZrTes, a realistic target material. The red
curve labeled ‘ZrTes, th.” uses the parameters calculated in Appendix D, while the yellow curve
labeled ‘ZrTes, exp.’ uses parameters extracted from experiment [91,92]. For comparison, we also
show the reach of superconductors with a 1 meV threshold [54] (black), and the projected single-
electron reach for a silicon detector with a le™ threshold [88] (blue dotted). The orange curve
labeled ‘Freeze-in’ delineates where freeze-in production [32] results in the correct dark matter relic
abundance. The gray shaded regions indicate bounds from white dwarfs, red giants, big bang
nucleosynthesis, and supernovae, which are derived from limits on millicharged particles [87,93].
The gray dashed line indicates bounds on self-interacting dark matter derived from observations of
the Bullet Cluster [94, 95].

The band structure of ZrTes is highly anisotropic, with vr, < vz, vF.. The crystal lattice also has

a highly anisotropic background dielectric tensor, with xy, < kuz, K22; we take the harmonic mean

KR =

rmatl /iyy Y 25.3 for our estimates here, and justify this approximation in the context
of our assumption of a spherically-symmetric DM distribution in Appendix B.1. Note that the
combined effect of these anisotropies may result in interesting directional dependence of the signal,
including daily modulations of the rate, but this requires a dedicated analysis which is beyond the

scope of this paper. The effective fine-structure constant is & = gaEM/E(UF,vayUFZ)l/?’ ~ 0.80.
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High-purity ZrTe; can be synthesized in macroscopic quantities, and pressure or doping can shift
the Fermi level inside the gap so that the conduction band is empty at zero temperature. As shown
in Refs. [53,54], an meV-scale gap with little or no occupation of excited states is necessary for
suppressing thermal noise. Experimental measurements of the properties of ZrTes; have led to some
ambiguous results regarding the precise values of the Fermi velocities and A, so for comparison, we
also plot the projected sensitivity using the measurements of Fermi velocities from Ref. [91], and a
gap energy 2A = 23.5 meV, the median of the range of values found in Ref. [92].

For comparison, we provide the projections for a superconducting target with a 1 meV thresh-
old [54] (solid black line) and semiconductor target [88] (blue dotted line). For the latter, we
show a silicon target with a single-electron threshold. Both are low-threshold electron-scattering
experimental proposals with complementary detection modalities: the superconductor proposal
exploits the breaking of Cooper pairs to produce quasiparticles and athermal phonons from meV
energy deposits, and the semiconductor proposal aims to detect valence-to-conduction excitation
(as we propose here) in a generic band structure with a large gap of 1.11 eV. As we have discussed,
the reach of Dirac materials is superior to that of superconductors for the case of a light kinetically
mixed dark photon mediator due to the reduced in-medium effects. Assuming the DM velocity
distribution is given by the Standard Halo Model, semiconductors are unable to probe DM lighter
than 500 keV due to their large band gaps.

The orange line in Fig. 4 shows the theory expectation for a benchmark model where the DM
abundance is set through freeze-in via a light mediator [32]. In such models, the DM is very weakly
coupled to the Standard Model such that it never thermalizes, and the DM abundance is instead
gradually populated through very rare interactions at low temperatures. If these interactions are
with the electron, as is the case for DM coupling to a dark photon, freeze-in production gives a
concrete theoretical target for electron scattering direct detection experiments.

The constraints on light dark photons can be quite stringent; the excluded regions of parameter
space (at least for the most naive of models) are indicated by the gray regions in Fig. 4. These are
derived from bounds on millicharged particles [93], which are also applicable to DM coupled to an
ultralight kinetically mixed dark photon [54,87]. When the DM is lighter than the temperature
of red giants and white dwarfs, DM can be copiously produced and lead to excessive cooling; in
Fig. 4, this (approximate) region is shown in gray and marked ‘RG+WD’. In addition, the presence
of dark photons affects the energetics of supernovae and big bang nucleosynthesis (BBN), implying
that e2ap < 107!'7; in Fig. 4, this region is shown in gray and is marked ‘SN4+BBN’. Constraints
from DM self-interactions are generally weaker; for example, the self-interacting DM bound from
observations of the Bullet Cluster [94,95] (labeled ‘SIDM Bullet Cluster’) are subdominant to the

other constraints.
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The light kinetically mixed mediator scenario we have considered here is particularly interest-
ing for direct detection with Dirac materials because the scattering rate is greatly enhanced at
low momentum transfer due to the 1/¢* dependence of the DM form factor |Fpy|?. Since this
momentum dependence is not spoiled by the in-medium form factor F,.q, Dirac materials are able
to probe very small couplings, which are unconstrained by any other observations, cosmological or
otherwise. As anticipated in Section 2, Dirac materials have superior reach in this case to both
superconductors, which suffer from an in-medium suppression at low masses, and semiconductors,
which have eV-scale gaps. Ideal Dirac materials with small Fermi velocity vy ~ 4 x 104 and small
gap 2A = 5 meV, with 1 kg-yr of exposure, can probe cross sections many orders of magnitude
smaller than the entire freeze-in region below 1 MeV. Realistic materials such as ZrTe; still give
excellent reach, which can be improved by identifying materials with smaller Fermi velocities and
gaps.

In Appendix C.1, we present the reach of Dirac materials for DM scattering via a heavy
kinetically mixed dark photon, as well as via a light or heavy scalar mediator where no in-medium
effects arise. For the former case, we find that Dirac materials provide better sensitivity than
superconductors; in the latter case, Dirac materials generally fare worse than superconductors,
as expected. Strong constraints from either stellar emission (light mediators) or BBN (heavy
mediators) apply at least for the most naive of such models, such that typically either BBN or
stellar emission bounds must be evaded for the models where DM does not scatter via a light dark
photon. Our results here demonstrate, however, that Dirac materials are an ideal target for light

dark photon mediators.

4. Absorption in Dirac Materials

Having demonstrated that Dirac materials have compelling reach for the case of DM scattering,
we move on to the case of DM absorption. We begin by presenting the formalism for calculating
DM absorption rates, and then discuss the relevant kinematics and projected sensitivities for Dirac

materials.
4.1 Absorption Rate Formalism

The rate for DM absorption in counts per unit time per unit detector mass is given by

L p
Raps = 77X<”Taabsvrel>DM s (41)
T My
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where pr is the mass density of the target, ny is the number of target particles, o,ps is the DM
absorption cross section on the target, and v, the relative velocity between the DM and the
target. One can relate the absorption rate of certain classes of DM particles to the measured
optical properties of the target [51,52,55]. In particular, the absorption rate of photons in a given
(bulk) material is determined by the polarization tensor via the optical theorem:

ImIT(w)

<nTUabsvre1>'y = T > (42)

where w is the energy of the incoming absorbed photon and II(w) denotes the polarization tensor,
in an isotropic material, in the relevant limit of |q| < w. For absorption of DM particles, the
deposited energy w in the system is equal to the DM mass m,, and the momentum transfer q is
equal to the DM momentum m, vpy. Consequently, the momentum transfer is suppressed due to
the virial velocity of the DM, |q| ~ 1073w < w. In this limit, IT; ~ II; = II. Using Eq. (2.4), we

can write the absorption rate for photons as
(NTTabsVrel)y = w Im€, . (4.3)

The sensitivity of a material to DM absorption is therefore obtained by relating the absorption
process to that of ordinary photons through the complex permittivity.

We focus on the case of a kinetically mixed dark photon, as described by Eq. (2.1), which can
be absorbed by a Dirac material. Such a dark photon can comprise all of the DM, with its relic
abundance set via a misalignment mechanism [100-102]. The effective mixing angle between the

dark photon and the photon for the case of absorbtion of non-relativistic DM in the target is given
by

2, 4
25 = L - (4.4)
[m?%, — Re II(ma/)]” + Im II(ma/)]
and so the rate of absorption is
/ 1
R, = p*TPxfgﬁ? Ime, . (4.5)

For dark photon DM in the mass range of meV to hundreds of meV, the energy deposited in
absorption matches the regime of interest for Dirac materials.
4.2 Absorption Kinematics and Scaling

As shown in Fig. 2, TI(¢) has a non-vanishing imaginary part even at ¢ = 0 in a Dirac material.
Indeed, this can be considered a distinctive property of Dirac materials [67,77-81]. The physical

interpretation is that a Dirac material can absorb an incoming particle with momentum transfer
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Figure 5:  (Left.) Scaling of the dark photon absorption rate with vp for fixed x/g. (Right.)
Scaling of the dark photon absorption rate with /g for fixed vp. Note that the absorption rate is
proportional to 5gff x Im(e,). In both cases we have considered a gapless isotropic Dirac semimetal
with A = 0.2 keV for two values of the dark photon mass, 10 eV (blue) and 100 eV (orange). The
dashed line marks where the effective coupling becomes strong, a = 1.

much smaller than its mass, without the presence of additional particles (such as phonons). In
other words, vertical transitions from the valence band to the conduction band are possible. This
is in contrast to absorption in typical metals, where inter-band transitions can be neglected for
ultralow energies and non-relativistic absorption proceeds through emission of a phonon [55]—a
process which is not described by the polarization tensor of Eq. (2.8).

Furthermore, because Im ¢, scales as & = agmg/kvr, one might expect the absorption rate
to increase with small Fermi velocity vg, enhanced degeneracy g, and small background dielectric
constant k. This is indeed the case for absorption of a light scalar or pseudoscalar, which does not
feel in-medium effects. In the case of the kinetically mixed dark photon, Eq. (4.4) shows that the
effective in-medium mixing angle between the dark photon and the photon involves both real and
imaginary parts of 11, leading to a more complicated dependence on the Dirac material parameters.
In Fig. 5 we show the combination 52& x Im(e,) for a Dirac semimetal, which is proportional to the
dark photon absorption rate, for two values of the mass, m 4 = 10 and 100 eV. The left panel fixes
/g and varies vg, while the right panel fixes vp and varies £/g. The optimal Fermi velocity value is
mass-dependent, and is of order 1074 or smaller, while the optimal /g is O(10) for vp = 10~* and
relatively insensitive to m 4. However, for these optimal parameters, a > 1. To be conservative,
in what follows we will present results using the same Dirac material parameters as in Section 3.3

such that & < 1 and perturbation theory remains valid at one-loop.
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Figure 6: Projected reach for absorption of kinetically mixed dark photons, given in terms of
the kinetic mixing parameter €. We show the expected background-free 95% C.L. sensitivity (3.0
events) that can be obtained with 1 kg-yr exposure. The green (purple) curves are gapless (gapped)
isotropic Dirac materials with pr = 10 g/cm? and all other parameters as in Fig. 4. We cut off the
plot at my = 2Avp = 160 meV, the largest energy deposit consistent with the linear dispersion
relation with cutoff A = 0.2 keV. For comparison we show the projected reach of superconductors
with a 1 meV threshold [55] (black), as well as two-phonon excitations in germanium (brown) and
silicon (blue) semiconductors [51]. Stellar emission constraints [103,104] are shown in shaded gray.

4.3 Projected Sensitivity Reach

The projected sensitivity of Dirac materials to absorption of a kinetically mixed dark photon is
shown in Fig. 6, assuming 1 kg-year exposure and that the dark photon comprises all of the DM.
Here, we use a typical target mass density of pr = 10 g/cm?, with all other parameters equal to the
fiducial parameters taken in Section 3.3. The green (purple) curves correspond to ideal isotropic
gapless (gapped) systems. We do not show the projected reach for our candidate target material
ZrTes, as it is highly anisotropic, not only in its band structure but also in its background dielectric
tensor. Because the kinematics of absorption dictates that II; and IIp are of the same order of
magnitude, they can mix in a potentially non-trivial way in an anisotropic medium, implying that
the formalism to describe the absorption rate will be more involved. This feature could give rise
to interesting directional dependence in the rate, which will require a dedicated analysis; we leave
this for future work.

For comparison we show the reach of superconductors as well as multiphonon excitations
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in germanium and silicon semiconductors, as obtained in Refs. [51,55]. Stellar emission con-
straints [103, 104] are shown in shaded gray. Note that we do not show the projected reach for
magnetic bubble chambers [105] as they cannot be directly compared without full treatment of in-
medium effects in those systems. We find that as in the case of scattering, in-medium effects
suppress the response of superconductors compared to Dirac materials. We learn that Dirac
materials are excellent target materials for absorption of dark photon DM, with projected reach
exceeding all current proposals when 2A < m 4.

In Appendix C.2; we discuss the reach for axion-like particle (ALP) DM, where in-medium
effects are absent. As expected, because of the lower phase space volume of target electrons in a

Dirac material in comparison to metals, the reach of an aluminum superconductor is superior to

that of a Dirac material for ALP DM.

5. Conclusions

In this paper, we have shown that 3D Dirac materials are excellent targets to use in searches for
sub-MeV DM. We have described their interactions with a kinetically mixed dark photon, and in
particular the effect of the complex permittivity on the in-medium dark photon couplings. We find
that the dark photon does not develop an in-medium effective mass in these materials. This result
allows Dirac materials to probe both DM scattering and absorption involving a light kinetically
mixed dark photon with greater sensitivity than any other proposed experimental target. In the
case of DM scattering via a light kinetically mixed dark photon, the reach is several orders of
magnitude stronger than that required to probe the theoretical benchmark of freeze-in DM, even
for realistic materials. We have identified promising Dirac material candidates, including ZrTes,
and determined that Fermi velocities of order ~ 10™% or smaller are optimal for both scattering
and absorption.

The strong dependence of the projected scattering reach on the Fermi velocity offers interesting
possibilities for probing the DM velocity distribution. Since low-energy scattering is kinematically
forbidden if vpy < vp, repeating the same experiment with two different materials that have
different Fermi velocities, one well below and one well above the maximum DM velocity, should
result in marked differences in the total scattering rate.® This could also serve to reduce backgrounds
since inter-band excitations from slow-moving neutrons or alpha particles are always forbidden,
providing a handle on backgrounds that can dominate in other experimental targets. Furthermore,
anisotropic crystal lattices have been shown to have excellent directional-detection potential [47,50],

and the combined anisotropies of the crystal lattice and the Fermi velocities in materials such as

9Dirac materials may offer an interesting opportunity to probe a fast sub-population of DM reflected from the
sun [106].
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ZrTes suggest a similar advantage for Dirac materials. We leave an analysis of the directional-
detection capabilities of anisotropic Dirac materials, for both scattering and absorption, to future
work.

As with any new detection technology, many hurdles must be overcome to translate sensitivity
estimates into a feasible experimental implementation. Detection of single-electron excitations in
semiconductors is a burgeoning field (see Ref. [88] for a recent review), but the threshold energy
(due to the band gap) tends to be at least ~ 1 eV, much higher than what we consider here.
Detection of meV athermal phonons and quasiparticles has been proposed in Refs. [53,54], where
the detection scheme takes advantage of long excitation lifetimes made possible by ultra-pure
materials such as superconducting aluminum. In recent years, many semimetal candidates have
been produced and are being discovered in the laboratory [62], which increases the likelihood of
finding ideal materials for DM detection. While the focus is not yet on mass fabrication techniques,
ultra-pure semimetals with ~mm carrier mean free paths have recently been synthesized [107].
Moreover, since the spectrum of DM-induced excitations is peaked away from zero, some remnants
of the initial excitation process may survive after relaxation. Indeed, in undoped graphene, intra-
band de-excitation is highly suppressed and carrier multiplication may be the dominant relaxation
process [108,109]. It would be interesting to investigate whether the same holds true for 3D Dirac
materials. In a forthcoming paper, we plan to consider these issues in depth and present a detailed
experimental configuration for detection of meV-scale DM-induced excitations in Dirac materials.

Sub-MeV dark matter is a viable theoretical and experimental possibility, posing interesting
challenges to both theory and experiment. The DM direct detection community is pursuing a
robust suite of approaches for sub-GeV DM [88], and we look forward to Dirac materials joining
the hunt.
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A. Transition Form Factor

This appendix includes the details behind the analytical form of the transition form factor Eq. (3.6),
the relation between the transition form factor and the g2 dependence of the complex permittivity,

and the relation to previous work [87] on electron scatterings with generic band structure.

A.1 Derivation of the Transition Form Factor

The Dirac Hamiltonian Eq. (1.1) in a block off-diagonal form reads

-0 —iA
= Y A I (A.1)
L-o+iA 0

where an anisotropic Fermi velocity is allowed by defining the rescaled momentum
L= (UF’Ifx,’UF’yEy,UF’Zﬁz). (A.2)

The normalized eigenstates can be written as

Fl_ +(iA = 1,)
1 +(iA +2,) 1 =S
£ 4
U3 = —F—=— , Uy gy = —F=— ) A3
13 \/iEg 0 24 \/§Ee Ep ( )
Ey 0

where (4 = 0, :tigy and Ep = V€2 + A2, The upper (lower) signs correspond to negative (positive)
energy solutions Eﬁ = AEy where A = F1.
The transition form factor appears in the expression for the polarization function, which can

be written

g/ d3e ZfFD Eg+q fFD(Eg)’f
b\ 5y pWAIY Z-i—q’ (A4)
3 v E£+q — E —w—1n

Here, V is the crystal volume, g = 2 is the spin degeneracy, and frp is the Fermi-Dirac distribution,
which is just a step function at zero temperature. The polarization function can also be defined
as the product of two Green’s functions [75, 76], and calculating the polarization function using

Green’s functions and matching to the form of Eq. (A.4) allows one to extract the transition form
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factor. In the diagonal basis, the Green’s function is given by

1
Goe=) ——=P2 (A.5)
W Ee

in terms of the projection operator:

1 %(E-a—iA)

L

A (Z. o+ iA) 1 ’ (4.6)

1
PZ)\: |£7/\><e7>‘|:§

formally defined using the eigenvectors Egs. (A.3), i.e. P, = [€,+) (£, +] = D12 |ub) (uf| with
an analogous definition for P,. As is standard in many-body physics [75, 76], the polarization
function results after integrating over the frequency domain and taking the trace of the product of
two Green’s functions given by Eq. (A.5) evaluated at different momenta £ and € = £ + q. After
evaluating the frequency integral, we are left with the explicit kernel of Eq. (A.4), a factor of 1/2
and the trace over the product of two projectors. The product of the latter two objects defines the

transition form factor as

1 / 1
|f}\7e*>)\/,£/ 2 = §TI' |:P£Apeli| = §Tr Hf, )\> <£,)\H£/,)\,> <£/,)\,H
1 )\)\/ PRy 2
_ 2<1+EeE£/(e-e +A)>. (A7)

It is worth noting that the overlap factor for Dirac systems can be related to standard com-
pleteness relations over spinors, which are perhaps more familiar in the high-energy theory context.
A.2 Relation Between Permittivity and Transition Form Factor

The complex permittivity of a material is given in general by the Lindhard formula [86]:

m et 1 d’k S (Bxtqn’) — frp (Ein)
n—0 V k q2 B7Z (27T)3

2
—_ . A.8
v Exiqn — Exp —w —1in ‘fn’k ’"’7k+q| ( )

n,n’

Here, £ is the background dielectric constant, n and n’ are band indices, g, is the spin degeneracy
of band n, Ey, is the energy of the n'™ band at lattice momentum k, and the integral is taken
over the first Brillouin zone (BZ). The Fermi-Dirac factors in the numerator ensure that at zero
temperature, the only transitions which contribute to €. are from unoccupied to occupied states
and vice-versa. Using Eq. (A.7) and performing the momentum integral in Eq. (A.8) with a cutoff
A, considering a single Dirac cone with valence and conduction bands n = — and n’ = + only,

yields the dielectric constant for an ideal Dirac material. This is equivalent to evaluating Eq. (A.4)
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and using the relationship between the polarization function and the permittivity [86]. The integral

can be performed analytically for A = 0, yielding Eq. (2.7), which we repeat here for convenience:

(67” ) semimetal —

e’g 1 2 402
9 2 ) P
24m%kup 2 q w? /v — g2

mq2@<va|qr>} C(A9)

We have written Eq. (A.9) in a form resembling Eq. (A.8) to illustrate that the inter-band transitions
yield a form factor that scales as g2 (to leading order), which multiplies the Fourier transform of
the Coulomb potential e?/(kq?). This behavior is a direct consequence of the orthogonality of the
valence and conduction bands, which implies that the transition form factor Eq. (3.5) vanishes at
q = 0. This remains true for nonzero A. Indeed, defining A = A /vp and expanding Eq. (A.7) in
small q yields

1 q? (£-q)?
ot era@P = | ( FoE 52)2) +0(d"). (A.10)

This derivation illustrates an alternative perspective on why the dark photon does not develop

an effective mass in-medium in a Dirac material: the vanishing of |f- ¢t e1ql> as @ — 0 in

Eq. (A.8) ensures that ¢, is constant as q — 0, or equivalently II(q) ~ ¢>.

A.3 Lattice Momentum Conservation and Comparison to Formalism For Generic

Band Structure

Note that Eq. (A.7) is written only as a function of initial and final state momenta. To make contact

with the formalism of Ref. [87], we will also write it as a function of the momentum transfer q by

inserting unity in the form @5 (q — (¢ —£)), where V is the volume of the crystal:
2m)3 1 €0+ N
heve@? =2 sa—@ ey (1o 228 )
V2 + A2\ 02 £ A2

which reduces to Eq. (3.6) in the gapless isotropic limit.

The delta function in Eq. (A.11) enforces exact momentum conservation, while typically in
problems involving condensed matter systems, momentum is only conserved up to addition of a
reciprocal lattice vector. We can justify the exact momentum conservation for the cases relevant
to DM scattering by using kinematic arguments. A convenient parameterization of a general

wavefunction in a periodic system is as a linear combination of Bloch waves,
1 ,
Uok(x) = — > up(k + G)etktG) x A12
i) = 5 Dl + ) (A12
where G runs over all reciprocal lattice vectors and the u, are complex numbers. The velocity-
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and directionally-averaged scattering rate for a single electron in the Bloch basis is [87]

py TG
Rn,k%n’,k’ = X - V Z Umln |q‘ wkk/)) |FDM(Q)|2‘f[nk,n’k’,G’] |2 ) (A13)
T M lal q=k'—k+G’

where the crystal form factor is
frkw.an =Y (K + G+ G up(k + G), (A.14)
G

which is related to the transition form factor as defined in Eq. (3.5) by

2 3
Fucomse@l =3 P50 - 0 1t @)l el (A15)

G/

In the Bloch wave basis, orthogonality of different Fourier components leads to lattice momen-
tum conservation q = k/ — k + G’. Here, G’ is a multiple of a reciprocal lattice vector whose size
|G’| is either 0 or ~ 2wm/a for integers m > 0, where a is the lattice spacing. A typical lattice will
have a ~ 1-10 A, so 27/a ~ keV.

If m # 0 we have |G/| Z keV. In a Dirac material, transitions near the Dirac point satisfy
k' —k = ¢ — £ with |£],|¢'| < |G| by assumption. Thus |q| ~ |G’| 2 keV. Referring to Eq. (3.4),
VUmin > % > 1072 > vpwm for m, < 100 keV. In other words, scattering is kinematically impossible
for m, < 100 keV unless G’ = 0. Even if scattering is kinematically allowed for G’ # 0, we will be
primarily concerned with form factors which scale as Fpy(g) ~ 1/¢2, so that the rate (A.13) scales
as 1/|q|®. This represents an enormous suppression when G’ # 0 of the order of (eV /keV)® ~ 10715,
Thus in our kinematic regime, reciprocal vectors G’ # 0 can be safely neglected.

When G’ = 0, the sum in Eq. (A.15) collapses to a single term, and we can identify

(A.16)

L €0+ AN
‘f[(n:_)k,(n’:+)k/70]|2 = 5 1 + )\)\/ _ - ‘
\/£2 —+ AQ\/EIZ + A2

The single delta function in Eq. (A.15) now enforces q = €' — £, establishing that in our kinematic
regime, the physical momentum transfer q is equal to the difference in lattice momenta between

initial and final states.

B. Modifications for Anisotropic Dirac Materials

In this Appendix we discuss modifications to our analysis for scattering of light DM in Dirac

materials for the case of anisotropic materials, with vr, # vFy # vF,..
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B.1 Anisotropic Permittivity

For anisotropic Dirac materials, one may make a change of variables in the integrand of Eq. (A.8)
and evaluate the permittivity at a correspondingly rescaled value of the momentum [78,110]:

(er)an. — 1 _ q

. a4 1— iso. (=~ ). B.1
Dirac q2 UF,:EUF,yUFVzr ( €, (q)‘vF—l) ( )

Here, q is defined as in Eq. (A.2), 9 = (VF20z, VFyqy, VF,2q-), and on the right-hand side the
isotropic form factor is evaluated for vp = 1 and at the rescaled momentum q. For example, in the
gapless case, Eq. (2.7) is modified to

4A2
2 ’(iQ

) 1 629 ~2
(Er)gélmimetal =1 {_q In w

q2 2412 KU 2V UF

— TGO (w — |a>} . (B2

The cutoff A must also be rescaled: we choose A = A x max(vrz, VFy, VF,,) rather than e.g.
A X (VpLUFyv F,z)l/ 3 to recover the correct scaling when one of the vp; is much smaller than the
other two, as is typically the case with real materials.

In addition to the anisotropy of the band structure, the crystal lattice itself may be anisotropic,
in which case €, is more properly described by a full tensor (e, );;. In this situation, Eq. (A.8) should
be interpreted as a tensor equation. In the basis of principal components where the background
dielectric tensor x;; is diagonal, (€,);; is also diagonal. In the gapless case its diagonal components

are given by

1 e’g ~2
()i q2 2472 Ki; VppVFyUF, 2 { 4

4A2

w2_a?

—imq*O(w — Iﬁ\)} : (B.3)

with straightforward modifications for the gapped case. Strictly speaking, the formalism of Section 2
does not apply because longitudinal and transverse modes are not decoupled in anisotropic media.
However, for the case of scattering, II;, > Iy and the dominant effects are still given by Ily.
Assuming a spherically-symmetric velocity distribution, the leading effects of the anisotropic tensor

(€r)i; can be captured by its rotationally-invariant component $Tr(e, ):

4A2

w? —

1 1 al @
-T =1-— 3 Bk
S Tr (&) Q% 2472 Up ,Up U { o

— g O(w — !ﬁl)} : (B4)

where
- 3

K= .
1/ Kze +1/Eyy +1/k2.

(B.5)
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Therefore, in our analysis of scattering in ZrTes where x;; is anisotropic, we compute spherically-

symmetric rates using k.

B.2 Scattering in Anisotropic Dirac Materials

The impact of anisotropic dispersions on the DM scattering rate, Eqgs. (3.13) and (3.14), can be
estimated in a straightforward manner. In typical Dirac materials, the anisotropy of the Dirac
cones often involves a hierarchy of Fermi velocities vp, < vpg,vFy, Where vp, ~vpy, = v . In

this limit, Eq. (B.2) becomes

2 2
GUF<<1)J_ ~ 1_ qL € { g
r ~

42
5 — 5 In
KQ® VF,2 24w

w?fvp1 —

ig
— —0(w— B.6
s - vrilal} . (B0)
where q| = (¢z,qy,0). Following the arguments of Section 3.2, the total scattering rate will then
be proportional to v% ., the smallest of the Fermi velocities. However, vpin, which controls the

behavior of the integral as a function of the Fermi velocities, now takes the form

\/UFL(£+q) +sz(€ +¢.)* + UFL£3_+UFz€2

Umin(|Q], wee+q) = al
o dl 2m,,
£ L V2
N TR T e TN S I B ) (B.7)
7 ’q| 2mx UF,J_

Here, the argument of Section 3.2 that DM scattering is allowed only when vp < vpy fails because
by taking q; = 0, £, small and ¢, large, the first term can be made much smaller than vp | and
scattering is allowed even when vpm < vg . On the other hand, we can obtain a lower bound for
Umin(]d|, wee+q) by taking vp | = vp., and by repeating the kinematic argument of Section 3.2,
we see that we need vpm > v, for scattering to occur. As a result, the behavior of the integral is
also dominated by the smallest velocity v ., so we expect similar results to the isotropic case.

To make this comparison concrete, we recall the isotropic rate integral I(vp, A, m,) implicitly

defined in Eq. (3.14), with explicit expression

A 1 Gmax ,e2q N (Umin{|q|, We e £ ﬁ_’.q
I(UF,A,mX):/ d|e|/ dcos@zq/ dlal; 2\ | l_\ o (Vmin(|al; we.+q)) (1_ WTH ‘)>

’ o ’ Cetta T4y % + 72 q
Weptq/VF—4

(B.8)
The limit of integration gmax = — €| cos Oy + /A2 — €2(1 — cos? Oy,) ensures €+ q] < A. We now
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Figure 7:  Scaling of the DM scattering rate for m, = 10 keV with the Fermi velocity vp.

of a gapless Dirac material, comparing an isotropic dispersion vp, = vp, = vp, to one with
VF gy = VUFy = 1073,

define a generalized anisotropic rate integral

I _ ‘g 1 1 min P z Z q
H(vp, Aymy) = oo 6/d3qd3£ ; _1minllal.weeca)) () EEFA)) g )
23047 a] (Wierq —9%)? €™ (weerq,9)] €]|€ + 4

where U = (VFg, VFy, VF2), €27 is defined in Eq. (B.2), and the rescaled momenta q, £ are defined
as in Eq. (A.2). This is related to the isotropic rate integral (B.8) by I = %v%[ in the isotropic
case Up = (vp,vp,vp). In Fig. 7, we plot I(Up, A, m,) for my, = 10 keV, A = 0.2 keV, and
VFz = Upy = 1072 as a function of vF,.. As anticipated, the shape of the two curves is qualitatively
similar for vp. < vp,/,, with both curves scaling similarly at small vg .. However, the rate is
suppressed by about an order of magnitude in the anisotropic case, showing that isotropic Dirac

materials are preferred for scattering.

C. Reach for Other Models

In this Appendix we consider the cases of scattering through a mediator ¢ with no in-medium
interactions (such as a scalar), as well as the case of a heavy kinetically mixed mediator A’, where
‘heavy’ means m 4 4 > keV. We also consider the case of absorption of pseudoscalar dark matter

(axion-like particles or ALPs).
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Figure 8: Projected scattering reach for a light (left) and heavy (right) mediator ¢ without in-
medium effects. Such models are subject to strong constraints, see text for discussion. We show
the expected background-free 95% C.L. sensitivity (3.0 events) that can be obtained with 1 kg-yr
exposure. Dirac material parameters are the same as in Fig. 4.

C.1 Scattering Reach for Other Mediator Models

The form factors and fiducial cross sections for light scalar mediators, heavy scalar mediators, and

heavy kinetically mixed mediators take the following form:

2 167T,LL3<€€2O¢EMO¢D

¢, light : Fpm(q) = %, Fmed(q) =1, Te = 4 (g5 = (agmme)?);  (C.1)

0

o 167r,u,2 6204EMCkD

¢, heavy : Fpm(q) =1, Fued(q) =1, Tc = Xem4 ; (C2)

o]

1 1672 _e2apma
A’ heavy : Fpm(q) =1, Fued(q) = , Oe = Hie 1 EMTD (C.3)
er(q) my

Note that since €.(g) is roughly constant from Eq. (2.7), the in-medium form factors for the two
heavy mediators are roughly proportional, with in-medium effects providing an order-1 suppression.

As shown in Fig. 8, Dirac materials have inferior reach to superconductors for mediators which
are not kinetically mixed. Since in these models, the mediator does not acquire a large in-medium
mass in superconductors, the larger phase space of superconductors dominates, especially for the
light scalar where smaller momentum transfers are favored. The reach of Dirac materials compared
to superconductors is slightly better for a heavy mediator than for a light mediator; the reason is

3 compared to \/w for a metal, allowing

that the phase space volume for a semimetal grows as w
much of the phase space suppression to be made up at larger energy transfers. The weakening

reach of Dirac materials at masses m, 2 200 keV for the heavy mediator is due to the phase space
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Figure 9: Projected scattering reach for a heavy kinetically mixed mediator A’ including in-
medium effects. Such models are subject to strong constraints, see text for discussion. We show
the expected background-free 95% C.L. sensitivity (3.0 events) that can be obtained with 1 kg-yr
exposure. Dirac material parameters are the same as in Fig. 4.

cutoff at A = 0.2 keV. On the other hand, as shown in Fig. 9, Dirac materials have superior reach
for the heavy kinetically mixed mediator, because the part of the in-medium polarization which
scales as ¢ still suppresses the effective dark photon coupling significantly in metals.

While the DM masses and cross sections are too small to be constrained by current direct
detection experiments, these models are in strong tension with astrophysical and cosmological
constraints which must be evaded, at least for the most naive of models. In the massive mediator
case, detectable cross-sections imply thermalization of the DM sector, including both the mediator
and the DM; this, however, is in tension with Big Bang Nucleosynthesis, which requires at the
20 level that only one real scalar, in addition to the Standard Model, can be thermalized at
temperatures below an MeV [111].10 In the massless mediator case, stellar constraints on the
emission of light mediators imply the couplings to electrons are generally too small to be detectable
[104]. (The exception is a light vector particle whose mass is given by a Stueckelberg mechanism;

this is the benchmark model utilized in Fig. 4.) These constraints are reviewed in Ref. [54].
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Figure 10: Projected reach for absorption of axion-like particles (ALP) in Dirac materials, given
in terms of the ALP-electron coupling guee. We show the expected background-free 95% C.L.
sensitivity (3.0 events) that can be obtained with 1 kg-yr exposure. The green (purple) curves
are gapless (gapped) isotropic Dirac materials with p7 = 10 g/cm?® and all other parameters as
in Fig. 4. We cut off the plot at my = 2Avp = 160 meV, the largest energy deposit consistent
with the linear dispersion relation with momentum cutoff A = 0.2 keV. We also show the reach
of superconductors with a 1 meV threshold [55] (black) as well as constraints from Xenon100 [114]
(shaded gray) and white dwarfs [115] (shaded blue), and the QCD axion region (shaded red).

C.2 Absorption Reach for Axion-Like Particles

An axion-like particle (ALP) of mass m, which comprises DM can couple to electrons via the

operator

YJaee _ 1.5
LD 2, (Oua)ert~’e. (C4)

The absorption of an ALP on electrons through this operator is related to the photon absorption

rate, and is given by (see e.g., Refs. [51,52,55]):

1 3mg gg

a
T Px 4m? e

abs —

5 Ime, . (C.5)

The projected reach of Dirac materials for ALP absorption is shown in Fig. 10, assuming the ALP

comprises all of the DM, and for the same parameters as Fig. 4. The reach of superconductors

10For sufficiently large cross sections, multiple scattering in the Earth may either prevent the DM from reaching
the detector [112] or cause excessive heating in the Earth [113]. However, the relevant cross sections are much larger
than those depicted in our plots.
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is shown for comparison [55], along with the parameter space for the QCD axion (shaded red).
Constraints from Xenonl00 data [114] (shaded gray) and white dwarf cooling [115] (shaded blue)
apply, and rule out the parameter space that can be probed even by an ideal gapless Dirac material
in the mass range of interest. As expected, we learn that for absorption of axion-like particles,
superconductors have superior reach due to the absence of in-medium effects and larger phase

space density of target electrons.

D. Band Structure Calculations for ZrTe;

Among already-synthesized Dirac materials appropriate for detector targets, we identified ZrTes as
a strong candidate, having a linear dispersion near the Fermi level while being slightly gapped by
the spin-orbit interaction.

First-principles calculations based on density functional theory (DFT) are performed using
the projector augmented wave (PAW) method in the Vienna ab initio Simulation Package (VASP)
[116,117] code. Zr (4s, 4p, 5s, 4d), Te(5s, 5p), Se(4s, 4p), Nb(4p, 5s, 4d) and Ta(5p, 6s, 5d) electrons
were treated as valence electrons, and the wavefunctions of the system were expanded in plane waves
to an energy cutoff of 600 eV. Monkhorst-Pack [118] k-point grids of 14x14x4 were used for BZ
sampling. We performed calculations with the generalized gradient approximation (GGA) using
the Perdew-Burke-Ernzerhof (PBE) functional [119]. Spin-orbit (SO) interactions are included self-
consistently in all calculations. Our calculations on ZrTes; were performed using experimentally-
determined lattice parameters and internal coordinates [120]; our structural relaxations of ZrSes
was performed including DFT-D3 van der Waals corrections [121].

Zr'Tes crystallizes in the Cmem structure (Space Group No. 63) as shown in Fig. 11(a). Each Zr
ion is eight-fold-coordinated by Te atoms, which occupy three inequivalent lattice sites. The precise
nature of the topological character of the ZrTes electronic structure has been controversial, with
several conflicting experiments concluding it to be a Dirac semimetal [91,122-126], a topological
insulator [127-132], and a normal semiconductor [133]. Our first-principles PBE calculations of the
electronic band structure show a Dirac cone near I without spin-orbit coupling which is then slightly
gapped (to 35 meV) with the inclusion of the spin-orbit interaction, consistent with previous DFT
calculations [134,135]. We note that although DFT-GGA-SO is not expected to be qualitative for
the band gap, our calculations are very consistent with previous experimental findings [92,128,129].
Table 1 lists the material parameters we use to calculate DM scattering rates, with the theoretical
values derived from the DFT calculations, and the experimental values used from the references
given. If no experimental value is listed, we use the theoretical value. Our estimate of A was derived

from the distance between the I' and Z points in the BZ.
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Parameter value (th.) value (exp.)
VF1 2.9 x 107%¢ (vpz) 1.3 x107%¢ (vpgy) [91]
VF2 5.0 x 107%¢ (vpy) 6.5 x 107%¢ (vpy.) [91]
VF1 2.1 x 1073¢ (vp,) 1.6 x 1073¢ (vpy) [91]
2A (meV) 35 23.5 [92]
A (keV) 0.14
g 4
Koz 187.5
Kyy 9.8
Kas 90.9
pr (g/cm?) 6.1
ne (e~ /kg) 8.3 x 10%
Ve (A?) 795

Table 1: Material parameters for ZrTes. vg; (i = 1,2, 3) are Fermi velocities, 2A is the gap, A is the
linear dispersion cutoff, g = gsgc is the product of spin and Dirac cone degeneracies, x;; (i = 1,2, 3)
are principal components of the background dielectric tensor, pr is the density, n. is the mass density
of Dirac valence-band electrons, and Vi is the unit cell volume. Where no experimental value is
listed, we use the theoretical value. The theoretical values of the Fermi velocities were calculated
along the high-symmetry directions, while the experimental values are mid-plane velocities. For
the experimental value of 2A, we take the median of the range of values presented in [92]. A was
taken to be the distance between the I' and Z points in the BZ, see Figs. 11 and 12. The static
ion-clamped dielectric tensor x;; was calculated using density functional perturbation theory. The
unit cell is defined as containing 4 formula units, see Fig. 11(a).

While the band structure shows the gapping of the Dirac cone near I',; the Fermi level cuts the
top of the band to form a hole-like pocket. To engineer a semiconducting band structure, with the
Fermi level in the gap, we recompute the band structure of electron-doped ZrTes by adding a small
fraction of electrons per unit cell and compensating this additional electron density with a uniform
positive background. We find that electron doping by 0.2 electrons per unit cell shifts the Fermi
level into the gap. Alternatively, Fig. 12(a) shows the band structure for stoichiometric ZrTes at
99% of the experimental lattice volume. We find that a small amount of pressure results in the
desired band structure with the Fermi level now in the gap. This could potentially be achieved
experimentally by epitaxial growth on a substrate with a slightly smaller in-plane lattice parameter
or by chemical substitution of ions with a smaller radius.

We next consider chemical substitution. Since the ZrTes; bands near the Fermi level consist
primarily of Te-p states, we consider substitution on the Zr site by Nb and Ta. We calculate the
band structure of substitution of one Nb/Ta for eight formula units, resulting in electron doping of
0.25 electrons per formula unit as shown in Fig. 12(b) for the Nb case. While the Fermi level shifts
as expected, Nb contributes d-states near the Fermi level, making the material a metal. The same

also occurs for the case of Ta substitution. Substitution of Te with Br alters the band structure

36



-- No spin-orbit
— Spin-orbit

Figure 11: (a) ZrTes in the Cmcem space group. (b) Calculated electronic band structure for ZrTes
with and without spin-orbit coupling. The Fermi level is set to 0 eV and marked by the dashed
line.

near the Fermi level as well.

In light of this, and with the additional motivation of reducing the band gap, we consider
replacing Te with Se in the hypothetical new compound ZrSes in the same Cmem structure as
shown in Fig. 12(c). This chemical substitution has three effects on the electronic properties of
the material. Firstly, the smaller ionic radius of Se reduces the total volume of the compound
which results in a Fermi level in the gap without any external pressure; however, this also has the
undesired effect of increasing the band gap. Independent of the volume change, the lower spin-orbit
coupling in Se reduces the spin-orbit splitting of the bands to 2A ~ 15 meV. Therefore, our DFT
estimates suggest that ZrTes; with a small amount of Se alloying could provide a more desirable
volume contraction and spin-orbit-driven reduction in band gap. Interestingly, another Dirac cone
is present in the ZrSes compound, which doubles the number of Dirac cones and Dirac valence-
band electrons per unit cell. Since the DM scattering rate scales as n./g, from stoichiometry
alone we would expect the overall rate to increase by a factor of mr./mge ~ 1.5 for ZrSes, with
additional increases near threshold from the reduced gap. Neither ZrSes nor Zr(Te,Se)s have yet
been synthesized; should synthesis be possible, these compounds may be be promising targets for

DM detection.
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Figure 12: Calculated band structure for (a) stoichiometric ZrTes; with 99% the lattice volume of
the experimental lattice parameters, (b) ZrTes with 12.5% Nb substitution on the Zr site and (c)
ZrSes. In (b), the Nb d-states near the Fermi level are indicated by the weighted line. In each plot
the Fermi level is set to 0 eV and marked by the dashed line.
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