
Nuclear Structure from the In-Medium Similarity

Renormalization Group

H. Hergert1,∗, J. M. Yao2,1, T. D. Morris3,4, N. M. Parzuchowski1,5,
S. K. Bogner1, J. Engel2

1NSCL/FRIB Laboratory and Department of Physics & Astronomy, Michigan State
University, East Lansing, MI 48824
2Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599
3Department of Physics & Astronomy, University of Tennessee-Knoxville, Knoxville, TN 37996
4Oak Ridge National Laboratory, Oak Ridge, TN 37830
5Department of Physics, The Ohio State University, Columbus, OH 43210
∗Corresponding author, E-mail: hergert@frib.msu.edu

Abstract. Efforts to describe nuclear structure and dynamics from first principles have
advanced significantly in recent years. Exact methods for light nuclei are now able to include
continuum degrees of freedom and treat structure and reactions on the same footing, and
multiple approximate, computationally efficient many-body methods have been developed that
can be routinely applied for medium-mass nuclei. This has made it possible to confront
modern nuclear interactions from Chiral Effective Field Theory, that are rooted in Quantum
Chromodynamics with a wealth of experimental data.

Here, we discuss one of these efficient new many-body methods, the In-Medium Similarity
Renormalization Group (IMSRG), and its applications in modern nuclear structure theory.
The IMSRG evolves the nuclear many-body Hamiltonian in second-quantized form through
continuous unitary transformations that can be implemented with polynomial computational
effort. Through suitably chosen generators, we drive the matrix representation of the
Hamiltonian in configuration space to specific shapes, e.g., to implement a decoupling of low-
and high-energy scales, or to extract energy eigenvalues for a given nucleus.

We present selected results from Multireference IMSRG (MR-IMSRG) calculations of open-
shell nuclei, as well as proof-of-principle applications for intrinsically deformed medium-mass
nuclei. We discuss the successes and prospects of merging the (MR-)IMSRG with many-body
methods ranging from Configuration Interaction to the Density Matrix Renormalization Group,
with the goal of achieving an efficient simultaneous description of dynamic and static correlations
in atomic nuclei.

1. Introduction
Effective Field Theory (EFT) and Renormalization Group (RG) methods have become
important tools of modern (nuclear) many-body theory. In the Standard Model, Quantum
Chromodynamics (QCD) is the fundamental theory of the strong interaction, but the description
of nuclear observables on the level of quarks and gluons is not feasible, except in the lightest
few-nucleon systems (see, e.g., [1]). Nowadays, nuclear interactions are derived in chiral EFT,
which provides a constructive framework and organizational hierarchy not only for nuclear
interactions, but also for the corresponding electroweak currents (see, e.g., [2–14]). Chiral EFT



Figure 1. Survey of IMRSG-based calculations of nuclear ground-state properties and low-lying
spectra up to 2017.

is essentially a low-momentum expansion of nuclear observables, whose high-momentum (short-
range) physics is not explicitly resolved, but parametrized by the so-called low-energy constants
(LECs) of the theory. In principle, LECs can be determined by matching results of chiral
EFT and (Lattice) QCD for observables accessible by both theories, but such efforts are still in
their infancy [15, 16]. In practice, LECs are therefore fit to experimental data for low-energy
QCD observables, typically in the pion-nucleon (πN), two-nucleon (NN), and three-nucleon (3N)
sectors [2, 3, 17, 18].

RG methods can be used to smoothly connect EFTs with different resolution scales and
degrees of freedom [19, 20]. Since they were introduced in low-energy nuclear physics around
the start of the millennium [21–24], they have greatly enhanced our understanding of the nuclear
many-body problem by providing a systematic framework for ideas that had been discussed in
the nuclear structure community since the 1950s. The Similarity Renormalization Group (SRG)
[25, 26], in particular, is now widely used to decouple low- and high-momentum physics in nuclear
interactions [23, 27–29]. This decoupling leads to a greatly improved convergence behavior in
many-body methods that rely on a configuration space, enabling applications of these methods
to increasingly heavy nuclei [29–37]. As an example, Fig. 1 shows the nuclei for which converged
ground-state calculations have been performed in the In-Medium SRG (IMSRG) framework
that is the focus of this work, starting from NN and 3N interactions derived in chiral EFT.
This enhanced reach of ab initio nuclear structure theory has made it possible to confront chiral
interactions with a wealth of existing nuclear data, with the goal of improving these interactions
in order to reduce discrepancies between theory and experiment.

In the IMSRG, we apply the idea of decoupling energy scales to directly tackle the nuclear
many-body problem [37–40]. In essence, we use RG flow equations to decouple physics
at different excitation energy scales of the nucleus, and render the Hamiltonian matrix in



configuration space block or band diagonal in the process. With an appropriately chosen
decoupling strategy, it is even possible to extract specific eigenvalues and eigenstates of the
Hamiltonian, and thereby solve the quantum many-body problem. We will see that this can
be achieved on the operator level, without actually constructing the Hamiltonian matrix in a
factorially growing configuration space basis. We will also discuss how the IMSRG evolution can
be viewed as a re-organization of the many-body expansion in which correlations are absorbed
into an RG-improved Hamiltonian. The idea of using Hamiltonian flow equations to solve
quantum many-body problems was already discussed in Wegner’s initial SRG work [26] (also
see [41] and references therein), and it is used in a variety of flavors in domains like solid-state
physics [42–46], or quantum chemistry [47–52].

In the following, we will briefly discuss the salient elements of the chiral EFT description
of the strong interaction at low energies (Sec. 2), and the use of SRG evolutions to dial the
resolution scale of nuclear interactions (Sec. 3). We will then describe the IMSRG formalism
and its extension to correlated reference states, with the specific goal of tackling open-shell
systems with multi-reference character (Sec. 4). Selected applications of this Multireference
IMSRG (MR-IMSRG) are presented in Sec. 5, followed by a discussion of how the MR-IMSRG
can help us tackle collective correlations in nuclei (Sec. 6). Finally, we will touch upon the use
of IMSRG-improved Hamiltonians in other many-body methods, and possible interfaces with
White’s Density Matrix Renormalization Group (DMRG) [53], as well as tensor RG methods
for many-body systems on spatial lattices [54–56] (Sec. 7).

2. Effective Field Theories of the Strong Interaction
Quantum Chromodynamics (QCD) is the fundamental theory of the strong interaction between
quarks and gluons. One of its essential features is that the strength of the interaction increases
in the low-energy domain that is most relevant for the structure and reactions of atomic nuclei
[57, 58]. This makes the description of all but the lightest nuclei at the QCD level inefficient at
best, and impossible at worst. However, strongly interacting matter undergoes a phase transition
from a quark-gluon plasma to a hadronic phase in which quarks are confined in composite
particles like nucleons and pions. These particles can be used as building blocks for an EFT of
the strong interaction.

Following Weinberg [59, 60], the dynamics of an EFT are governed by a Lagrangian consisting
of all interactions that are consistent with the symmetries of the underlying theory. Of particular
importance is the chiral symmetry of QCD: massless QCD is invariant under independent
rotations of left- and right-handed quarks (hence the name chiral symmetry), expressed by
the symmetry group SU(2)L × SU(2)R [3, 59, 61]. This symmetry is explicitly broken by the
quark mass terms, but since the masses of the up and down quarks are small, it is still very
relevant for the interactions of nucleons and pions, which are built from those light quarks. Since
the symmetry group SU(2)L × SU(2)R can be equivalently represented as a product of vector
and axial vector rotations, SU(2)V × SU(2)A, chiral symmetry would imply the existence of
parity doublets of strongly interacting particles which are not found in nature. Thus, we can
conclude that chiral symmetry must be broken spontaneously, and it turns out that it is the axial
component of the theory that undergoes this symmetry breaking. The invariance of nuclear and
nucleon-pion interactions under the remaining SU(2)V group is the well-known nuclear isospin
symmetry [62]. The relevant particle multiplets for chiral EFT are the proton and neutron,
as well as the π+, π0, π− mesons. The spontaneous breaking of chiral symmetry implies the
existence of massless Goldstone bosons [63], which can be readily identified with the pions.

Another important consequence of chiral symmetry and its breaking is that only derivatives of
the pion fields couple to the nucleon. Thus, interaction vertices (and Feynman diagrams) become
proportional to (q/Λχ), where q ∼ mπ ∼ kF ≈ 140 MeV/c is the typical momentum of a system
of nucleons and pions, and Λχ is the so-called breakdown scale of the EFT. The breakdown scale
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Figure 2. Chiral two-, three- and four nucleon forces through next-to-next-to-next-to-leading
order (N3LO) (see, e.g., [2, 3, 6]). Dashed lines represent pion exchanges between nucleons. The
large solid circles, boxes and diamonds represent vertices that are proportional to low-energy
constants (LECs) of the theory (see text).

is associated with physics that is not explicitly taken into account by the constructed EFT. In
chiral EFT, Λχ is traditionally considered to be in the range 700 − 1000 MeV, with the lower
value corresponding to the mass of the ρ meson that is not an explicit degree of freedom of the
theory. Assumptions about Λχ have come under increasing scrutiny as applications in medium-
mass nuclei have revealed shortcomings of the chiral interactions (see, e.g., [64] and references
therein).

Nevertheless, the proportionality of the interaction vertices to q/Λχ < 1 makes it possible to
organize the chiral Lagrangian in powers of this ratio. Based on this power-counting scheme,
one can then develop a systematic low-momentum expansion of nuclear interactions, as shown
in Fig. 2 (see [2, 3, 6, 59]). These interactions consist of pion exchanges between nucleons,
indicated by dashed lines, as well as nucleon contact interactions. Importantly, the diagrams
shown in Fig. 2 contain different types of pion-nucleon, nucleon-nucleon, and three-nucleon
vertices that are proportional to specific LECs of chiral EFT. As mentioned above, these LECs
encode physics that is not explicitly resolved, either because it corresponds to a high momentum
scale, or involves degrees of freedom that are not explicitly treated by the theory. Eventually,
one hopes to calculate these LECs directly from the underlying QCD, i.e., through matching
results from the nuclear sector to Lattice QCD calculations (see [15, 16] for first attempts in



that direction). In the mean time, the LECs are fit to experimental data.
The organization of nuclear forces from leading (LO) to next-to-next-to-next-to-leading order

(N3LO) and beyond in the chiral expansion is appealing for a number of reasons. By starting
from a chiral Lagrangian, we obtain a consistent set of two-, three- and higher many-nucleon
interactions, and the power counting explains the empirical hierarchy of these nuclear forces, i.e.,
VNN > V3N > V4N > . . .. Moreover, the chiral Lagrangian can be readily extended with couplings
to the electroweak sector by replacing the derivatives with their gauge covariant versions. This
implies that the same LECs appear in the nuclear interactions and electroweak currents, and the
LECs can therefore be constrained by electroweak observables (see, e.g., [11, 12, 14, 65]). Last
but not least, by truncating the chiral expansion at a given order, we will eventually be able to
quantify the theoretical uncertainties of the interactions and operators that serve as input for
nuclear many-body theory, once some persistent issues are resolved (see, e.g., [6, 8, 9, 66–68]).

3. The Similarity Renormalization Group
As mentioned in the introduction, RG methods are natural companions for EFTs, because they
make it possible to smoothly dial the resolution scale of those theories. In low-energy nuclear
physics, RG methods have played an important role in formalizing ideas on the renormalization
of nuclear interactions and many-body effects that had been discussed by the community for a
long time (see [21–24] and references therein). For instance, local NN interactions with repulsive
cores at short inter-particle distances or non-local interactions that reproduce NN scattering
data equally well, can yield significantly different properties for nuclei and nuclear matter
(see, e.g., [69, 70]). Colloquially, interactions with strong short-range repulsion are referred
to as “hard” interactions because they induce strong many-body correlations that make the
nuclear many-body problem non-perturbative. Coester and co-workers [69] showed that nuclear
interactions can be softened via unitary transformations that shift strength from the repulsive
core into non-local contributions, thereby making mean-field and finite-order beyond mean-field
approximations to the many-body problem viable. While their work and similar investigations
explicitly recognized that such transformations lead to induced many-body forces, those forces
were neglected, and the discussion very much revolved around using these techniques to pin
down the “true” nucleon-nucleon potential.

From the modern RG perspective, there is no such thing as a true potential, but rather
infinitely many unitarily equivalent representations of low-energy QCD. In this context, the use
of soft or hard NN interactions is related to the choice of a low or high resolution scale for the
description of the nuclear many-body system. When an RG is used to dial the resolution, the
induced many-body forces must be accounted for so that observables remain invariant under
the RG flow (see below). For instance, induced 3N forces play a crucial role in obtaining proper
nuclear matter saturation properties if we work at low resolution scale (see, e.g., [71–73]). Of
course, 3N (and higher) forces are present anyway in an EFT treatment of the strong interaction,
as discussed in the previous section.

3.1. SRG Evolution of Nuclear Forces
In Fig. 3 we show features of the central and tensor forces of the Argonne V18 (AV18) interaction
[74] in the two-body spin-isospin channel (S, T ) = (1, 0), which contains the deuteron bound
state. AV18 is a so-called realistic interaction that describes NN scattering data with high
accuracy, but precedes the modern chiral forces discussed above. It is specifically tailored to be
as local as possible, to make it a suitable input for Quantum Monte Carlo calculations [7–9, 75].
This is the reason why AV18 has a strong repulsive core in the central part of the interaction.
Like all NN interactions, it also has a tensor interaction resulting from pion exchange that mixes
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Figure 3. Repulsive core and tensor force of the Argonne V18 NN interaction [74] in the
(S, T ) = (1, 0) channel. In the left panel, the radial dependencies of the central (VC(r)) and
tensor components (VT (r)) of Argonne V18 are shown, while the right panel shows its momentum
space matrix elements in the deuteron partial waves.

states with different orbital angular momenta,

VT = vT (r)S12(r) ≡
vT (r)

r2
(
3(~σ1 · ~r)(~σ2 · ~r)− (~σ1 · ~σ2)r2

)
, (1)

The radial dependencies of AV18’s central and tensor interactions are shown in the left panel
of Fig. 3. In the corresponding momentum representation, the 3S1 partial wave1 has strong
off-diagonal matrix elements, with tails extending to relative momenta as high as |~q| ∼ 20 fm−1.
The matrix elements of the 3S1−3D1 mixed partial wave, which are generated exclusively by the
tensor force, are sizable as well. The strong coupling between states with low and high relative
momenta forces us to use large Hilbert spaces in few- and many-body calculations, even if we
are only interested in the lowest eigenstates. Consequently, the eigenvalues and eigenstates of
the nuclear Hamiltonian converge very slowly with respect to the basis size of the Hilbert space
(see, e.g., [30]). To solve this problem, we can perform an RG evolution of the NN interaction.

First systematic applications of RG methods for the renormalization of nuclear interactions
were based on RG decimation, i.e., the projection of the Hamiltonian onto a low-momentum
(low-energy) subspace (see [21, 23] and references therein). In recent years, however, the so-
called Similarity Renormalization Group (SRG) has become the RG method of choice in nuclear
physics [23, 25, 26]. The SRG is based on unitary transformations rather than projection
methods, which greatly facilitates the construction of observables that are consistent with the
renormalized interaction.

The basic concept of the SRG is more general than required by RG theory: We aim to
simplify the structure of the Hamiltonian in a suitable representation through a continuous

1 We use the conventional partial wave notation 2S+1LJ , where L = 0, 1, 2, . . . is indicated by the letters
S, P,D, . . .. The isospin channel is fixed by requiring the antisymmetry of the NN wave function, leading to
the condition (−1)L+S+T = −1.



unitary transformation,
H(s) = U(s)H(0)U †(s) . (2)

Here, H(s = 0) is the starting Hamiltonian, and the flow parameter s parameterizes the unitary
transformation. To implement this transformation, we take the derivative of Eq. (2) to obtain
the operator flow equation

d

ds
H(s) = [η(s), H(s)] , (3)

where the anti-Hermitian generator η(s) is related to U(s) by

η(s) =
dU(s)

ds
U †(s) = −η†(s) . (4)

We can choose η(s) to transform the Hamiltonian to almost arbitrary structures as we integrate
the flow equation (3) for s→∞. Wegner [26] proposed the generator

η(s) ≡ [Hd(s), Hod(s)] , (5)

which is constructed by splitting the Hamiltonian into suitably chosen diagonal (Hd(s)) and
off-diagonal (Hod(s)) parts. The generator (5) will then suppress Hod(s) as the Hamiltonian is
evolved via equation (3) (see [23, 26, 37, 40, 41]). Here, the label diagonal merely refers to a
desired structure that the Hamiltonian will assume in the limit s→∞, and not strict diagonality.
We can make contact with renormalization ideas by imposing a block or band-diagonal structure
on the Hamiltonian that implies a decoupling of momentum or energy scales in the RG sense.

As an example of a realistic application, Fig. 4 shows the SRG evolution of a chiral N3LO
NN interaction. We use a Wegner-type generator built from the relative kinetic energy in the
two-nucleon system to drive the Hamiltonian towards a band-diagonal structure in momentum
space:

η(λ) ≡
[ ~q2

2µ
, v(λ)

]
. (6)

We have changed variables from the flow parameter s to λ = s−1/4, which has the dimensions
of a momentum (in natural units), for reasons that will become clear shortly.

We start from the matrix elements of the initial interaction in the 3S1 partial wave that are
shown in the top row. The interaction has no appreciable strength in states with momentum
differences |∆~q| = |~q′ − ~q| & 4.5 fm−1. By evolving the initial interaction to λ = 3 fm−1 and
then to 2 fm−1, the off-diagonal matrix elements are suppressed, and the interaction is almost
entirely contained in a block of states with |∆~q| ∼ 2 fm−1, except for a weak diagonal ridge.
Thus, we see that λ limits the momentum that the interaction can transfer between pairs of
nucleons, and we identify λ with the resolution scale of the evolved interaction.

Next to the matrix elements, we show deuteron wave functions obtained by solving the
Schrödinger equation with Hamiltonian at each λ. For the initial interaction, the S−wave
(L = 0) component of the wave function is suppressed at small relative distances, which reflects
short-range correlations between the nucleons. There is also a significant D−wave (L = 2)
admixture due to the tensor interaction. As we lower the resolution scale, the “correlation hole”
in the wave function is eliminated, and the D−wave admixture is reduced because the evolution
suppresses the 3S1 − 3D1 matrix elements that cause this mixing [23]. The structure of the
wave function becomes very simple, reminiscent of a Gaussian ansatz for a pair of independent
nucleons.
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Figure 4. SRG evolution of the chiral N3LO NN interaction by Entem and Machleidt [3, 76].
In the left column, we show the momentum-space matrix elements of the interaction in the
3S1 partial wave for different values of the SRG resolution scale λ. The top-most row shows
the initial interaction at s = 0 fm4 , i.e., “λ = ∞”. In the right column, we show the S− and
D−wave components of the deuteron wave function that is obtained by solving the Schrödinger
equation with the corresponding SRG-evolved interaction.

3.2. Induced Forces
The RG decoupling of low- and high-lying momenta prevents the Hamiltonian from scattering
nucleon pairs from low- to high-momentum states, which makes it possible to converge many-
body calculations in much smaller Hilbert spaces than for the harder initial interactions [30–
34, 39, 40, 77–85]. However, this improvement comes at a cost, which is best illustrated by
considering the Hamiltonian in second-quantized form, assuming only a two-nucleon interaction
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for simplicity:

Hint = Trel + V =
1

4

∑
pqrs

〈pq| ~q
2
12

2µ
+ v12 |rs〉a†pa†qasar . (7)

Inserting Trel and V into Eqs. (6) and (3), we obtain

[a†ia
†
jalak, a

†
pa
†
qasar] = δlpa

†
ia
†
ja
†
qasarak + {a†a†a†aaa} − δlpδkqa†ia

†
jasar + {a†a†aa} , (8)

where the terms in brackets schematically stand for additional two- and three-body operators.
Thus, even if we start from a pure two-body interaction, the SRG flow will induce operators of
higher rank.

Nowadays, state-of-the-art SRG evolutions of nuclear interactions are performed in the three-
body system [31, 86, 88–90]. In Fig. 5, we show 3H ground-state energies that have been
calculated with a family of SRG-evolved interactions that is generated from chiral NN and
NN+3N interactions (see [86] for full details). If we truncate the evolved interaction and the
SRG generator at the two-body level (NN-only), the SRG evolution is not unitary in the 3N
system and the energy becomes λ dependent. If we truncate the operators at the three-body
level instead, induced 3N interactions are properly included and unitarity is restored (NN+3N-
induced): The energy does not change as λ is varied. Finally, for the curve NN+3N-full a
3N force is included in the initial Hamiltonian and evolved consistently. The resulting triton
ground-state energy is invariant under the SRG flow, and it closely reproduces the experimental
value because the 3N interaction’s LECs are fit accordingly [2, 3, 65].

The triton example shows that it is important to track induced interactions, especially
if we want to use evolved nuclear Hamiltonians as input for medium-mass or heavy nuclei
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rather than the few-nucleon system considered so far. The nature of the SRG works at least
somewhat in our favor, because truncations of the SRG flow equations lead to a violation of
unitarity that manifests as a (residual) dependence of observables on the resolution scale λ.
We can use this dependence as a tool to assess the size of missing contributions, although
one has to take great care to disentangle them from the effects of many-body truncations
[23, 32, 34, 39, 77, 85, 86, 88, 91]. The empirical observation that SRG evolutions to resolutions
as low as λ ∼ 1.5 fm−1 appear to preserve the natural hierarchy of nuclear forces, i.e.,
VNN > V3N > V4N > . . ., suggests that we can truncate induced forces whose contributions
would be smaller than the desired accuracy of our calculations.

4. The In-Medium SRG
4.1. Concept
As discussed in Sec. 3, the concept of the SRG is actually quite general: We can use continuous
unitary transformations to drive a given Hamiltonian (or generic operator) to a desired structure,
defined by our choice of the diagonal and off-diagonal parts of the Hamiltonian, Hd and Hod.
If we choose Hd to be the diagonal entries of a system’s Hamiltonian matrix, the SRG would
amount to solving the eigenvalue problem! If we consider applying this idea in genuine many-
body systems like medium-mass or heavy nuclei, we quickly realize that an SRG evolution of the
many-body Hamiltonian matrix would be a very inefficient approach for solving the Schrödinger
equation, because the RHS of Eq. (3) forces us to repeatedly perform products of matrices
whose dimension grows factorially with the number of particles and single-particle basis states.
Moreover, we would essentially be working to obtain the complete spectrum of that large matrix
representation rather than just a comparably small number of low-lying states that we are truly
interested in.

Instead of this naive approach, we can evolve the Hamiltonian operator, and achieve the
desired decoupling without ever constructing a large matrix. To this end, let us consider a
representation of the Hamiltonian in a basis built from a reference Slater determinant |Φ〉 and
its particle-hole excitations, as shown in the left panel of Fig. 6. For simplicity, we show a
two-body Hamiltonian, which can at most couple the reference state |Φ〉 to 2p2h excitations,
and in general npnh to (n±2)p(n±2)h states, yielding the schematic band structure on display.



We now want to continuously evolve this Hamiltonian to the shape shown in the right panel
of Fig. 6. Inspecting the evolved Hamiltonian more closely, we see that we aim to decouple
the matrix element 〈Φ|H(s) |Φ〉 from all excitations in the limit s → ∞ — if we succeed, we
will have extracted an eigenvalue of H, and our unitary transformation will provide us with
a mapping of the Slater determinant |Φ〉 onto an exact eigenstate |Ψ〉 of H(0), typically the
ground state.

Since we are working with a reference state and its excitations, it is convenient to represent
the Hamiltonian in terms of normal-ordered operators. We introduce the compact notation

Ai1...ikj1...jk
≡ a†i1 . . . a

†
ik
ajk . . . aj1 (9)

for strings of creation and annihilation operators, and the normal ordered operators

:Aik : = Aik − ρik (10)

:Aijkl : = Aijkl− :Aik : ρjl + perm.− ρikρ
j
l + perm. (11)

. . .

where ρik = 〈Φ|Aik |Φ〉 is the usual one-body density matrix of the reference state (see [37, 40]
for details). An intrinsic nuclear A-body Hamiltonian with NN and 3N interactions,

H = T − Tcm + V2 + V3 (12)

can then be exactly rewritten as

H = E +
∑
ij

f ij :Aij : +
1

4

∑
ijkl

Γijkl :Aijkl : +
1

36

∑
ijklmn

W ijk
lmn :Aijklmn : , (13)

with the individual zero- through three-body contributions

E ≡
(

1− 1

A

)∑
ab

tabρ
a
b +

1

4

∑
abcd

(
1

A
tabcd + vabcd

)
ρabcd +

1

36

∑
abcdef

vabcdefρ
abc
def , (14)

f ij ≡
(

1− 1

A

)
tij +

∑
ab

(
1

A
tiajb + viajb

)
ρab +

1

4

∑
abcd

viabjcdρ
ab
cd , (15)

Γijkl ≡
1

A
tijkl + vijkl +

∑
ab

vijaklbρ
a
b , (16)

W ijk
lmn ≡ v

ijk
lmn . (17)

Here, ρa...i... = 〈Φ|Ai1...ikj1...jk
|Φ〉 denote the k-body density matrices of the reference state. For

reasons that will become clear below, we refrain from simplifying these expressions by using the
factorization of Slater determinant’s density matrices. We note that due to the normal ordering,
the zero-, one-, and two-body coefficients all contain in-medium contributions from the three-
body interaction, i.e., contractions of three-body matrix elements with the density matrices of
the reference state. This explains the name In-Medium SRG, and will play an important role
when we introduce truncations of the IMSRG flow equations below.

Using this definition of the Hamiltonian, we can use Wick’s theorem to evaluate the many-
body matrix elements that couple |Φ〉 to excitations, i.e.,

〈Φp
h| :H : |Φ〉 = 〈Φ| :Ahp ::H : |Φ〉 = fph (18)



〈Φpp′

hh′ | :H : |Φ〉 = 〈Φ| :Ahh′pp′ ::H : |Φ〉 = Γpp
′

hh′ (19)

(see [37, 40]). These matrix elements define our off-diagonal Hamiltonian

Hod ≡
∑
ph

fph :Aph : +
1

4

∑
pp′hh′

Γpp
′

h′h :App
′

hh′ : +H.c. , (20)

which can then be used in Eq. (5) or another suitable ansatz for the generator (see [37, 40] for
details) to evolve the Hamiltonian to the desired form shown in the right panel of Fig. 6. Note
that the elimination of Hod also removes the couplings between general npnh and (n±2)p(n±2)h
states, i.e., the outermost side-diagonal blocks.

4.2. Correlated Reference States
The discussion so far was based on the use of a Slater determinant as the reference state. On the
one hand, such an independent-particle reference is convenient because it allows us to distinguish
particle and hole states in our single-particle basis, but on the other hand, it means that the
unitary transformation must encode all many-body correlations. The unitarity of the IMSRG
transformation offers us more flexibility, because we can control to what extent correlations
are described by either the Hamiltonian or the reference state. To see this, we consider the
stationary Schrödinger equation and apply U(s):[

U(s)HU †(s)
]
U(s) |Ψk〉 = EkU(s) |Ψk〉 . (21)

U(s) shifts correlations from the wave function into the evolved, RG-improved Hamiltonian
H(s) = U(s)HU †(s). In many-body calculations with this Hamiltonian, the many-body method
now “only” needs to approximate U(s) |Ψk〉 rather than |Ψk〉— in the case discussed so far, even
a Slater determinant would be sufficient because U(s) or H(s) describe the correlations2. There
can be situations in which it is worthwhile to use the reference state to describe certain types
of correlations, especially if it can capture them more efficiently than through the particle-hole
type expansion in which the IMSRG-evolved Hamiltonian is set up (see Sec. 6).

The IMSRG framework can be extended to correlated reference states using a generalized
normal ordering developed by Kutzelnigg and Mukherjee [92, 93]. It requires a new ingredient,
the irreducible k-body density matrices λ(k). In the one-body case, this is just the usual density
matrix

λik ≡ ρik = 〈Φ|Aik |Φ〉 , (22)

while for k ≥ 2,

λijkl ≡ ρ
ij
kl −A{λ

i
kλ

j
l } , (23)

λijklmn ≡ ρ
ijk
lmn −A{λ

i
lλ
jk
mn} − A{λilλjmλkn} , (24)

etc., where A{. . .} fully antisymmetrizes the indices of the expression within the brackets. The
irreducible densities encode the correlation content of an arbitrary reference state |Φ〉. If the
reference state is a Slater determinant, i.e., an independent-particle state, the full two-body
density matrix factorizes, and λ(2) vanishes (see, e.g., [37]).

Normal-ordered one-body operators are constructed in the same manner as in the standard
normal ordering, e.g.,

:Aab : = Aab − λab , (25)

2 We also recall the evolution of the NN interaction in Sec. 3, where the solution of the Schrödinger equation for
the deuteron with an SRG-evolved Hamiltonian was a very simple two-nucleon wave function which nevertheless
provides the correct deuteron ground-state energy.
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Figure 7. Schematic view of MR-IMSRG decoupling in the many-body Hilbert space. |Φ〉
denotes an arbitrary reference state, and |Φp...

s...〉 are suitably defined excitations.

:Aabcd : = Aabcd − λac :Abd : +λad :Abc : −λbd :Aac : +λbc :Aad : −λacλbd + λadλ
b
c − λabcd , (26)

. . .

The expressions for the coefficients of the normal-ordered nuclear Hamiltonian, Eqs. (14)–(17)
remain unchanged, because we wrote them in terms of the full density matrices. When we work
with arbitrary reference states, the regular Wick’s theorem extended with additional contractions
like

:A ab
cd ::Aij

kl
: = +λ ab

kl
:Aijcd : , (27)

:A ab

c d
::A i j

kl
: = −λ abi

dkl
:Ajc : , (28)

:A ab

cd
::A

ij

kl
: = +λ

abij

cdkl
. (29)

(see [37] for a detailed discussion). These contractions increase the number of terms when
we expand operator products, e.g., in the analysis of many-body matrix elements or the flow
equations (see below), but fortunately, the overall increase in complexity is manageable.

In Fig. 7, we illustrate the schematic decoupling for the Hamiltonian in a basis spanned by
a correlated reference state and its excitations. Since our reference state is no longer a Slater
determinant, there are no well-defined notions of a Fermi surface or particle and hole states
any longer, and the indices of the excitation operators run over all single-particle states instead.
Per construction, the reference state |Φ〉 is still orthogonal to general excitations :Ai1...ikj1...jk

: |Φ〉
because

〈Φ| :Ai1...ikj1...jk
: |Φ〉 . (30)

The excitations themselves, however, are in general not orthogonal to each other, and may even
be linearly dependent. As a result, the structure of the evolved MR-IMSRG Hamiltonian, shown
in the right panel of Fig. 7, is not simplified as much as in the Slater determinant case, since
matrix elements in the outer diagonals are not necessarily removed when novel contractions like
(27)–(29) are in play.

In the MR-IMSRG, the linear dependence implies that we are implicitly transforming a rank-
deficient many-body Hamiltonian matrix and are possibly working harder than we need to by



dragging along a space of spurious eigenstates with zero eigenvalues. Since the nuclear states
we are interested in have absolute binding energies of several hundred MeVs, there has been no
evidence that the presence of these spurious eigenstates adversely affects the physical states in
practical calculations.

4.3. MR-IMSRG Flow Equations
We are now ready to formulate the MR-IMSRG flow equations by applying the generalized
normal ordering and Wick’s theorem to Eq. (3). We express all operators in terms of normal-
ordered strings of creation and annihilation operators. As discussed in Sec. 3, each evaluation
of the commutator in Eq. (3) induces operators of higher rank,

[:Aabcd :, :Aijkl :] = δci :Aabjdkl : + . . . , (31)

hence we need to introduce truncations to obtain a computationally feasible many-body method.
In contrast to Eq. (8), we are now working with normal-ordered operators whose in-medium
contributions have been absorbed into terms of lower rank and we expect the induced operators
to be much weaker than in the free-space SRG case. There is ample empirical evidence that
the residual normal-ordered three-body piece can be neglected to a very good approximation
in nuclear physics [37, 80, 94]. In our framework, we will eventually have to consider how the
truncated terms may feed back into operators of lower rank as we evolve the flow equations (see
below). In practice, we presently truncate all flowing operators at the two-body level to close
the system of flow equations:

η(s) ≈ η(1)(s) + η(2)(s) , (32)

H(s) ≈ E(s) + f(s) + Γ(s) , (33)

d

ds
H(s) ≈ d

ds
E(s) +

d

ds
f(s) +

d

ds
Γ(s) . (34)

This is the so-called MR-IMSRG(2) truncation [32, 38–40, 78, 95, 96], which is a cousin to a
variety of other truncated many-body schemes, in particular Coupled Cluster with Singles and
Doubles excitations (CCSD) [35, 47–51, 97–102], although the latter is based on non-unitary
similarity transformations.

The MR-IMSRG(2) flow equations are given by [32, 37, 78]

dE

ds
=
∑
ab

(na − nb)ηab f ba +
1

4

∑
abcd

(
ηabcdΓcdab − Γabcdη

cd
ab

)
nanbn̄cn̄d

+
1

4

∑
abcd

(
d

ds
Γabcd

)
λabcd +

1

4

∑
abcdklm

(
ηabcdΓklam − Γabcdη

kl
am

)
λbklcdm , (35)

d

ds
f ij =

∑
a

(
ηiaf

a
j − f iaηaj

)
+
∑
ab

(
ηabΓbiaj − fab ηbiaj

)
(na − nb)

+
1

2

∑
abc

(
ηiabcΓ

bc
ja − Γiabcη

bc
ja

)
(nan̄bn̄c + n̄anbnc)

+
1

4

∑
abcde

(
ηiabcΓ

de
ja − Γiabcη

de
ja

)
λdebc +

∑
abcde

(
ηiabcΓ

be
jd − Γiabcη

be
jd

)
λaecd

− 1

2

∑
abcde

(
ηiajbΓ

cd
ae − Γiajbη

cd
ae

)
λcdbe +

1

2

∑
abcde

(
ηiajbΓ

bc
de − Γiajbη

bc
de

)
λacde , (36)



d

ds
Γijkl =

∑
a

(
ηiaΓ

aj
kl + ηjaΓ

ia
kl − ηakΓijal − η

a
l Γijka − f

i
aη
aj
kl − f

j
aη

ia
kl + fak η

ij
al + fal η

ij
ka

)
+

1

2

∑
ab

(
ηijabΓ

ab
kl − Γijabη

ab
kl

)
(1− na − nb)

+
∑
ab

(na − nb)
((
ηiakbΓ

jb
la − Γiakbη

jb
la

)
−
(
ηjakbΓ

ib
la − Γjakbη

ib
la

))
, (37)

where the s-dependence has been suppressed for brevity. We work in the natural orbital basis
obtained by diagonalizing the one-body density matrix,

λik = niδ
i
k , (38)

where 0 ≤ ni ≤ 1 indicates the occupation of the i-th orbital in the correlated reference state.
Analogously, 0 ≤ n̄i = 1− ni ≤ 1 are the eigenvalues of the hole density matrix

ξij ≡ λij − δij . (39)

Note that due to the use of general reference states, the MR-IMSRG flow equations also
include couplings to correlated pairs and triples of nucleons in the reference state through the
irreducible density matrices λ(2) and λ(3). The single-reference limit for a Slater determinant
reference state can be obtained by setting the irreducible density matrices λ(2) and λ(3) to zero,
and noting that the occupation numbers now become either 0 or 1.

Superficially, the computational cost for the evaluation of the MR-IMSRG(2) flow equations
is dominated by the final term of Eq. (35), which is of O(N7), where N is the size of the single-
particle basis. However, most practical ansätze for correlated reference states impose conditions
on the density matrix that strongly limit the number of non-zero matrix elements. For instance,
the particle-number projected Hartree-Fock-Bogoliubov (HFB) [103] reference states used in
our initial applications (see Sec. 5) have almost diagonal λ(k) matrices. Moreover, relevant
correlations are often restricted to a so-called valence or active space consisting of a small
number of single-particle states, so that only density matrix elements with all indices belonging
to this space are non-zero. Thus, the main driver of the computational effort is the integration of
the two-body flow equation, at O(N6), which is the same naive scaling as for CCSD and similar
methods. For closed-shell references, we can exploit the distinction of particle and hole indices
to achieve exactly the same scaling as for single-reference CCSD theory, namely O(N2

hN
4
p ).

5. Selected Applications
5.1. Reshuffling of Ground-State Correlations: 40Ca
To illustrate the effect of the (MR-)IMSRG flow in practice, we first consider a ground-state
calculation for the closed-shell nucleus 40Ca. As our reference, we use a Slater determinant that
is optimized by performing a Hartree-Fock calculation with a chiral NN+3N interaction. Figure
8 shows the IMSRG(2) ground-state energy E(s) of 40Ca as a function of the flow parameter,
which corresponds to the zero-body piece of the evolved normal-ordered Hamiltonian, Eq. (14).
As we integrate the flow equations to increasing s, the Hamiltonian is RG-improved with
correlations that are otherwise only accessible with post-Hartree Fock methods (see Refs. [37, 40]
for details). This is evident if we also consider the size of the second and third-order MBPT
energy corrections, evaluated with H(s). After a few integration steps, the energy corrections are
absorbed into the Hamiltonian, which implies that we could perform a Hartree-Fock calculation
with H(s) and obtain the fully correlated ground-state energy, up to truncation errors!

Figure 8 also illustrates that the size of the MBPT corrections depends significantly on the
resolution scale of the Hamiltonian (see Sec. 3). At the higher resolution scale λ = 2.24 fm−1, we
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Figure 8. IMSRG(2) flow for 40Ca for a chiral NN+3N interaction, denoted NN+3N(400) in
the following, at two different resolution scales λ = 2.24 fm−1 and 1.88 fm−1 (see Refs. [37, 40] for
details). We show the flowing ground-state energy E(s), and the sum of E(s) and perturbative
energy corrections evaluated with the evolving Hamiltonian H(s) to illustrate the re-shuffling
of correlations into the Hamiltonian (see text). The dashed lines indicate the final IMSRG(2)
energies.

gain about 130 MeV of binding energy from correlations. At the lower resolution λ = 1.88 fm−1,
the HF reference state is already significantly lower in energy, so the energy gains from many-
body correlations are less pronounced. This behavior is expected as interactions become
increasingly soft, and thereby more perturbative (see, e.g., [23, 29]). Note that the final ground-
state energies for λ = 2.24 fm−1 and 1.88 fm−1 are almost identical. As discussed in section 3,
all results should ideally be invariant under arbitrary changes of λ, which seems to be the case
for the specific NN+3N Hamiltonian we used here [33, 77].

5.2. Ground-State Energies Along Isotopic Chains: The Oxygen Isotopes
The oxygen isotopic chain is an important testing ground for ab initio nuclear structure
theory because it is accessible to a wide array of exact and approximate many-body methods
[32, 77, 104–111]. As a bonus, the semi-magicity of the oxygen isotopes — the Z = 8 protons
are in a closed-shell configuration — allows us to exploit spherical symmetry in our calculations.
In Fig. 9, we compare MR-IMSRG(2) ground-state energies, obtained using particle-number
projected HFB vacua [32, 103, 112] as references for the open-shell nuclei, with a variety of
other methods:

• the Importance-Truncated No-Core Shell Model (IT-NCSM), which is an essentially exact
diagonalization [30, 113],

• two types of Coupled Cluster, CCSD and Λ-CCSD(T), the latter of which includes
approximate 3p3h (Triples) excitations [114, 115], and

• the ADC(3) Self-Consistent Green’s Function (SCGF) approach [104, 105] (obtained at a
slightly different resolution, exploiting the approximate invariance of the energies under
variations of λ).
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Figure 9. Ground-state energies of the oxygen isotopes from MR-IMSRG(2) and other many-
body approaches, using the NN+3N(400) interaction at λ = 1.88 fm−1. Some data points were
offset horizontally to enhance the readability of the figure. The ADC(3) Self-Consistent Green’s
Function results [104, 105] were obtained for λ = 2.0 fm−1, but the dependence of energies on λ
is very weak (see Fig. 8). Black bars indicate experimental data [87].

Importantly, all used methods give consistent results when the same input Hamiltonian is
used, and the theoretical ground-state energies agree within a few percent with experimental
ground state energies. The systematically truncated methods, i.e., MR-IMSRG(2), CCSD, Λ-
CCSD(T) and ADC(3), agree very well with the exact IT-NCSM results, on the level of 1%–2%,
which provides us with an estimate of their truncation errors. The MR-IMSRG(2) ground-state
energy of 16O also agrees well with the result of a Nuclear Lattice EFT (NLEFT) calculation
[108] directly using the chiral NNLO Lagrangian. Since the treatment of the nuclear many-body
problem in NLEFT is completely different from all the other approaches compared here [116],
the good agreement is very encouraging.

The ab initio calculations predict the neutron drip line at 24O in accordance with experimental
findings [117, 118]. The addition of further neutrons no longer produces bound oxygen isotopes.
While absolute ground-state energies can change significantly under variations of the resolution
scale or other modifications of the initial Hamiltonian, the drip line signal turns out to be rather
robust [32], if somewhat exaggerated: In recent years, experimental studies have repeatedly
revised the energy of the 26O resonance downward [118–120]. Experimental data for 28O is
forthcoming, which will most likely settle the issue of the oxygen drip line. Still, the complex
interplay of nuclear interactions, many-body and continuum effects causes the flat trend of
experimental ground-state resonance energies beyond 24O that will preserve the oxygen chain’s
status as an important testing ground for nuclear Hamiltonians and many-body methods for the
foreseeable future.

While chiral NN+3N interactions give a good reproduction of the oxygen ground-state
energies, their performance can differ significantly for other observables, as illustrated in Fig. 10.
The NN+3N(400) Hamiltonian [65, 77] that was also used in Figs. 8 and 9 underestimates the
experimentally known oxygen charge radii by about 10%, and misses the sharp increase for
18O. The other shown interaction, NNLOsat [17] improves the situation significantly, in part
because its LECs (cf. Sec. 2) are optimized with a protocol that includes selected many-body
data, including the charge radius of 16O — however, it also falls short in 18O [122].

As we go to heavier nuclei, the NN+3N(400) increasingly overestimates the nuclear binding
energy, up to about 1 MeV/nucleon in the light tin isotopes, which are the heaviest nuclei
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Figure 11. MR-IMSRG(2) charge radii of the calcium isotopes for NNLOsat and NN+3N(400)
with λ = 1.88, . . . , 2.24 fm−1. Note the scale in the zoomed-in second panel. Black bars indicate
experimental data [87, 121].

whose ground states we can converge in the MR-IMSRG(2) scheme for this specific input. This
overbinding then goes along with an expected underestimation of nuclear charge radii, e.g., for
the calcium isotopes shown in Fig. 11. NNLOsat, on the other hand, is the first chiral NN+3N
interaction that gives realistic binding energies and charge radii for 40Ca and 48Ca at the same
time [123, 124]. Unfortunately, it is also a considerably harder interaction than NN+3N(400),
and we already encounter convergence problems if we move a few isotopic chains past calcium.

Focusing on the calcium radii shown in the zoomed plot in the right panel of Fig. 11, we see
that we do not reproduce the inverted parabolic trend between 40Ca and 48Ca. In traditional
nuclear Shell Model/Configuration Interaction (CI) calculations with empirical interactions, this
is explained due to configuration mixing of states containing 4p4h (Quadruples in chemistry
parlance) and possibly higher excitations [125] that are not included in the MR-IMSRG(2) due
to the truncation of the operators at the two-body level, and the use of spherical, particle-number
projected HFB vacua as reference states in these calculations. We will discuss this issue in more
depth in the next section.
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Figure 12. Schematic view of correlations in nuclei. Solid circles indicate nucleons, transparent
circles hole states, and dashed ellipses indicate correlations between nucleons. The left panel
indicates the IMSRG truncation that would be required to describe the sketched 2p2h (Doubles),
3p3h (Triples), etc. correlations. In the right panel, certain 2p2h as well as all 3p3h and higher
correlations (indicated in blue) are built into a correlated wave function that then serves as the
reference state for an MR-IMSRG(2) calculation.

6. Reference States with Static Correlation
As explained in Sec. 4, the IMSRG allows us to control which correlations are built into the
reference state and the RG-improved Hamiltonian, respectively. This flexibility offers us an
appealing option for addressing the lack of specific features in nuclear charge radii that we
described at the end of Sec. 5.

Many-body bases built from a Slater determinant reference and its particle-hole excitations
work best for systems with large gaps in the single-particle spectrum, such as closed-shell
nuclei. If the gap is small, particle-hole excited basis states can be near-degenerate with the
reference determinant, which results in strong configuration mixing. When the mixing involves
configurations in which many nucleons are excited simultaneously, we will have static or collective
correlations in the wave function, as opposed to dynamic correlations that result from a small
number of nucleons only.

Important examples are the emergence of nuclear superfluidity [126] or diverse rotational
and vibrational bands in open-shell nuclei (see, e.g., [127]). These phenomena are conveniently
described by using the concept of intrinsic wave functions that explicitly break appropriate
symmetries of the Hamiltonian. For instance, nuclear superfluidity can be treated to
leading-order by introducing quasiparticles that are defined as superpositions of particle and
holes [103, 128, 129]. The ground-state of an open-shell nucleus can be expressed as an
antisymmetrized product state of these quasiparticles, which can then be optimized variationally
— this is precisely the HFB method that was the first step in the generation of references
states for the studies of isotopic chains discussed in Sec. 5. The intrinsic HFB wave functions
are superpositions of states with different particle numbers, hence we eventually proceeded to
restore the symmetry by particle number projection. Such approaches that involve symmetry
breaking and subsequent restoration via projection have a long history in nuclear many-body
theory [103, 130–140]).

The benefit of symmetry breaking and projection methods is that they capture static
correlations in a set of simple one-body transition density matrices [103, 140]. Instead of using a
Slater determinant reference state and trying to describe static correlations via 3p3h (Triples),
4p4h (Quadruples) and higher excitations of this reference via a high-rank IMSRG evolution
(left panel of Fig. 12), we can use a correlated reference state whose irreducible density matrices
λ(k) we can construct on the fly with little effort, and perform an MR-IMSRG(2) evolution to
treat the dynamical correlation on top of this state (right panel of Fig. 12).

As a proof of principle, we show MR-IMSRG(2) calculations for the nucleus 20Ne in Fig. 13.
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Figure 14. MR-IMSRG(2) and approximate MR-IMSRG(3) ground-state energies of the oxygen
isotopes, using the USD Shell Model interaction [141, 142].

Both the proton and neutron shells are open in 20Ne, which causes the ground-state to develop
prolate intrinsic deformation. We obtain reference states by performing HFB calculations with
a constraint on the quadrupole moment of the many-body state, and subsequently projecting
them on good particle number and angular momentum Jπ = 0+. The references with prolate
deformation (β > 0.0) flow towards the same 0+ ground state whose energy is close to the
result of an exact diagonalization with the empirical USD Hamiltonian [141, 142] we use in our
calculation. A spherical reference state (β = 0.0) flows to an excited 0+ state in the spectrum
of 20Ne instead.

The discrepancies between the MR-IMSRG(2) energies for the intrinsically prolate and



spherical states and the exact Shell Model results are caused by the truncation of the flow
equations at the two-body level. While a full MR-IMSRG(3) calculation would have a
computational cost of O(N9), one-step approximations that leverage information from the
MR-IMSRG(2) can be implemented at a more manageable O(N7) effort [143], analogous to
completely renormalized Coupled Cluster schemes that account for leading Triples excitations
[144, 145]. In the left panel of Fig. 14, we perform such an approximate MR-IMSRG(3)
calculation for 18O, and find that we recover the exact diagonalization result[146]. In the right
panel, we show that the same improvement is found for all even oxygen isotopes, which is very
promising for future applications of the approximate MR-IMSRG(3) in general open-shell nuclei.

7. RG-Improved Hamiltonians: Merging (MR-)IMSRG with Other Many-Body
Methods
In the previous sections we have focused on using the (MR-)IMSRG to directly calculate the
ground-state energy of nuclei, expressed as the zero-body part of the RG-improved Hamiltonian
in the limit s→∞. We are only realizing a fraction of the power and utility of the (MR-)IMSRG
framework in this way: In principle, we have the entire Hamiltonian at our disposal, and not just
at the end-point of the flow, but along an entire RG trajectory, which equips us with additional
diagnostic power — we recall the variation of the triton ground-state energy with the resolution
scale in a free-space SRG, and how we can draw conclusions about missing induced forces from
it (see Sec. 3).

In our discussion of Fig. 6, we pointed out that the suppression of the off-diagonal matrix
elements that couple the ground state to 2p2h excitations will also eliminate the outermost side
diagonals of the Hamiltonian matrix, which implies that it can be beneficial to use the RG-
improved Hamiltonian as an input for a secondary many-body calculation. We have explored
this idea in several ways:

• With a simple modification of the definition of the off-diagonal Hamiltonian, it is possible to
systematically derive effective interactions and operators for valence-space CI calculations,
i.e., the traditional interacting Shell Model [95, 110, 111, 147]. This allows us to make
use of existing technology to study any nucleus whose low-lying states can be converged
in typical Shell Model calculations, explaining the coverage of the nuclear chart we have
shown in Fig. 1. it also directly connects Shell Model phenomenology to the underlying
chiral interactions — the valence-space diagonalization is merely an approximation to a no-
core, large-scale diagonalization. In applications for sd-shell nuclei (8 ≤ Z ≤ 20), we were
able to achieve a surprisingly good agreement with calculations using the gold standard
empirical USD interaction [141, 142], which itself has an rms deviation of a mere ∼ 130 keV
for more than 600 energy levels in this region of the nuclear chart.

• The (MR-)IMSRG was recently merged with the No-Core Shell Model (NCSM) into the
so-called In-Medium NCSM, in an effort to combine the strengths of the two approaches
[148]. A NCSM calculation in a small space provides a correlated reference state for
the normal ordering and MR-IMSRG evolution, which enhances the Hamiltonian with
dynamical correlation corresponding whose description would otherwise require extremely
large NCSM model spaces. For NCSM reference states, the decoupling of the ground-state
from excitations is not perfect, hence a secondary small NCSM diagonalization is performed
to extract the low-lying eigenvalues and the associated eigenstates. In the IM-NCSM, we
make explicit use of the Hamiltonian’s flow-parameter dependence for diagnostic purposes
(see Ref. [148] for more details).

• Finally, the ground-state decoupled Hamiltonian can be used as input for Equation-of-
Motion (EOM) methods like the well-known Tamm-Dancoff (TDA) and Random Phase
Approximations (RPA). TDA and RPA will actually become identical for an IMSRG



Hamiltonian, because the ground-state decoupling removes the feedback of RPA correlations
into the ground state [149]. EOM calculations are complementary to the CI-based
approaches discussed above because they allow us to explore the effects of large single-
particle bases, at the cost of limiting the particle rank of the excitation operator for
computational efficiency. Thus, they are best suited for the description of dynamical
correlations in excited states, although the development of an MR-EOM approach based on
correlated reference states is in progress.

The combination of the (MR-)IMSRG with CI/Shell Model techniques allows us to treat both
dynamical and static correlation (see Sec. 6), but limits us through the factorial computational
scaling of the diagonalization step. As already pointed out by White in Ref. [47], the Density
Matrix Renormalization Group (DMRG) can be an appealing and efficient alternative to large-
scale CI methods, especially when combined with (MR-)IMSRG decoupling (or Canonical
Diagonalization in his choice of words). This idea was pursed by Yanai and co-workers in
quantum chemistry [48, 98, 150–152]), and we are exploring its applications in nuclear physics.

Finally, we are looking ahead at applications of the IMSRG framework to the description of
nuclei with cluster structures, and eventually reaction processes. Such structures and processes
are most conveniently modeled on spatial lattices, which is why we are working on formulating
the IMSRG in that context. Tensor RG methods that generalize the ideas of DMRG to higher
dimensions have been very successful in describing correlated systems on spatial lattices could
be an ideal complement to the IMSRG (see, e.g., [54–56]) . Interestingly, these Tensor RGs
rely on unitary transformations to disentangle long- and short-range physics that are at least
superficially reminiscent of SRG and IMSRG transformations — this certainly merits further
investigation.

8. Conclusions and Outlook
In this contribution, we have attempted to illustrate the current reach and capabilities of modern
ab initio nuclear structure theory, using the (MR-)IMSRG as a representative example. The
discussion is by no means exhaustive, given the rapid rate at which new advances are being
introduced. While our focus was on the many-body method, the presented results show that the
input NN+3N interactions from chiral EFT are currently the dominant source of uncertainty in
our theoretical results, but promising new chiral interactions [5, 8, 9, 17, 66, 153] are now being
explored by the nuclear many-body community. The MR-IMSRG will be particularly useful
in the community’s efforts to confront these new Hamiltonians with current and forthcoming
experimental data for medium-mass and heavy open-shell nuclei.

Work is currently underway to extend the MR-IMSRG framework in several directions,
including the coupling to continuum degrees of freedom, and the treatment of intrinsic
deformation. The present contribution showed first proof-of-principle results for the
latter, implementing the MR-IMSRG transformation with an intrinsically deformed, angular-
momentum projected reference state. We plan to extend this work further by using the Generator
Coordinate Method to mix multiple projected configurations (see, e.g., [103]).

Motivated by our successes in using the (MR-)IMSRG to construct RG-improved
Hamiltonians that can serve as input for the traditional nuclear Shell Model/CI [110, 111, 147],
the No-Core Shell Model [148], and EOM methods [149], we seek to integrate the (MR-)IMSRG
evolution with further approaches, in particular DMRG, which presents an appealing alternative
to costly diagonalization methods for treating static correlations in configuration space. Such
a combination of the IMSRG for the Hamiltonian with an entanglement-based RG for wave
functions could also offer interesting opportunities for describing strongly interacting systems
on spatial or spacetime lattices.
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[65] Gazit D, Quaglioni S and Navrátil P 2009 Phys. Rev. Lett. 103(10) 102502 URL http:

//link.aps.org/doi/10.1103/PhysRevLett.103.102502

[66] Reinert P, Krebs H and Epelbaum E 2017 (Preprint 1711.08821)

[67] Valderrama M P, Sánchez M S, Yang C J, Long B, Carbonell J and van Kolck U 2017 Phys.
Rev. C 95(5) 054001 URL https://link.aps.org/doi/10.1103/PhysRevC.95.054001

[68] Sánchez M S, Yang C J, Long B and van Kolck U 2018 Phys. Rev. C 97(2) 024001 URL
https://link.aps.org/doi/10.1103/PhysRevC.97.024001

[69] Coester F, Cohen S, Day B and Vincent C M 1970 Phys. Rev. C 1(3) 769–776 URL
https://link.aps.org/doi/10.1103/PhysRevC.1.769

[70] Bethe H A 1971 Ann. Rev. Nucl. Sci. 21 93–244 URL http://dx.doi.org/10.1146/

annurev.ns.21.120171.000521

[71] Kuckei J, Montani F, Muther H and Sedrakian A 2003 Nucl. Phys. A 723 32–44 (Preprint
nucl-th/0210010)

[72] Hebeler K, Bogner S K, Furnstahl R J, Nogga A and Schwenk A 2011 Phys. Rev. C 83(3)
031301 URL http://link.aps.org/doi/10.1103/PhysRevC.83.031301

[73] Hebeler K and Furnstahl R J 2013 Phys. Rev. C 87(3) 031302 URL http://link.aps.

org/doi/10.1103/PhysRevC.87.031302

[74] Wiringa R B, Stoks V G J and Schiavilla R 1995 Phys. Rev. C 51(1) 38–51 URL
https://link.aps.org/doi/10.1103/PhysRevC.51.38

[75] Carlson J, Gandolfi S, Pederiva F, Pieper S C, Schiavilla R, Schmidt K E and Wiringa
R B 2015 Rev. Mod. Phys. 87(3) 1067–1118 URL http://link.aps.org/doi/10.1103/

RevModPhys.87.1067

[76] Entem D R and Machleidt R 2003 Phys. Rev. C 68 041001 URL http://link.aps.org/

doi/10.1103/PhysRevC.68.041001

[77] Roth R, Langhammer J, Calci A, Binder S and Navrátil P 2011 Phys. Rev. Lett. 107(7)
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[85] Somà V, Cipollone A, Barbieri C, Navrátil P and Duguet T 2014 Phys. Rev. C 89(6)
061301 URL http://link.aps.org/doi/10.1103/PhysRevC.89.061301

[86] Hebeler K 2012 Phys. Rev. C 85(2) 021002 URL http://link.aps.org/doi/10.1103/

PhysRevC.85.021002

[87] Wang M, Audi G, Wapstra A, Kondev F, MacCormick M, Xu X and Pfeiffer B 2012 Chin.
Phys. C 36 1603 URL http://stacks.iop.org/1674-1137/36/i=12/a=003
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M, Rossi D, Sanchez del Rio J, Savran D, Scheit H, Schwenk A, Simon H, Sorlin O,
Stoica V, Streicher B, Taylor J, Tengblad O, Terashima S, Thies R, Togano Y, Uberseder
E, Van de Walle J, Velho P, Volkov V, Wagner A, Wamers F, Weick H, Weigand M,
Wheldon C, Wilson G, Wimmer C, Winfield J S, Woods P, Yakorev D, Zhukov M V,
Zilges A, Zoric M and Zuber K (R3B collaboration) 2013 Phys. Rev. C 88(3) 034313 URL
http://link.aps.org/doi/10.1103/PhysRevC.88.034313

[119] Rogers W F, Garrett S, Grovom A, Anthony R E, Aulie A, Barker A, Baumann T,
Brett J J, Brown J, Christian G, DeYoung P A, Finck J E, Frank N, Hamann A,
Haring-Kaye R A, Hinnefeld J, Howe A R, Islam N T, Jones M D, Kuchera A N,
Kwiatkowski J, Lunderberg E M, Luther B, Meyer D A, Mosby S, Palmisano A,
Parkhurst R, Peters A, Smith J, Snyder J, Spyrou A, Stephenson S L, Strongman M,
Sutherland B, Taylor N E and Thoennessen M 2015 Phys. Rev. C 92(3) 034316 URL
http://link.aps.org/doi/10.1103/PhysRevC.92.034316

[120] Kohley Z, Baumann T, Christian G, DeYoung P A, Finck J E, Frank N, Luther B,
Lunderberg E, Jones M, Mosby S, Smith J K, Spyrou A and Thoennessen M 2015 Phys.
Rev. C 91(3) 034323 URL http://link.aps.org/doi/10.1103/PhysRevC.91.034323

[121] Angeli I and Marinova K P 2013 Atomic Data and Nuclear Data Tables 99 69–95 URL
http://www.sciencedirect.com/science/article/pii/S0092640X12000265
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