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ABSTRACT

The need for high-performance and low-power acceleration tech-

nologies in servers is driving the adoption of PCIe-connected FPGAs

in datacenter environments. However, the co-development of the

application software, driver, and hardware HDL for server FPGA

platforms remains one of the fundamental challenges standing in

the way of wide-scale adoption. The FPGA accelerator development

process is plagued by a lack of comprehensive full-system simu-

lation tools, unacceptably slow debug iteration times, and limited

visibility into the software and hardware at the time of failure.

In this work, we develop a framework that pairs a virtual ma-

chine and an HDL simulator to enable full-system co-simulation of

a server system with a PCIe-connected FPGA. Our framework en-

ables rapid development and debugging of unmodified application

software, operating system, device drivers, and hardware design.

Once debugged, neither the software nor the hardware requires

any changes before being deployed in a production environment. In

our case studies, we find that the co-simulation framework greatly

improves debug iteration time while providing invaluable visibility

into both the software and hardware components.
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1 INTRODUCTION

FPGAs are gaining popularity as an accelerator technology to

offload complex computation and data flows. The combination

of programmability, a high degree of parallelism, and low power

consumption make FPGAs suitable for environments with rapidly

changing workloads and strict power consumption limits, such as

data centers. To put FPGAs into existing systems, PCIe has become
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the most common connection choice, due to its wide availability in

server systems. Today, the majority of FPGAs in data centers are

communicating with the host system through PCIe [2, 12].

Unfortunately, developing applications for PCIe-connected

FPGAs is an extremely slow and painful process. It is challeng-

ing to develop and debug the host software and the FPGA hardware

designs at the same time. Moreover, the hardware designs running

on the FPGAs provide little to no visibility, and even small changes

to the hardware require hours to go through FPGA synthesis and

place-and-route. The development process becomes even more diffi-

cult when operating system and device driver changes are required.

Changes to any part of the system (the OS kernel, the loadable ker-

nel modules, the application software or hardware) can frequently

hang the system without providing enough information for debug-

ging, forcing a tedious reboot. The combination of these problems

results in long debug iterations and a slow development process,

especially in comparison to the quick iteration of the software

development process familiar to application developers.

The traditional way to test and debug hardware designs without

running on a hardware FPGA platform is by writing simulation

testbenches, either using Hardware Description Languages (HDLs)

or Hardware Verification Languages (HVLs), sometimes combined

with Bus Functional Models (BFMs) provided by the FPGA vendors.

However, this approach prevents the hardware from being tested

together with the software and operating system. Moreover, writing

testbenches with high coverage is an extremely time-consuming

and error-prone process. While some vendors provide hardware-

software co-simulation environments [3, 5, 7, 18], these environ-

ments skip the operating system and driver code and provide a

limited environment for development, typically restricting the use

of the co-simulation to simple designs while still requiring consid-

erable development and debugging effort for porting the designs

from the co-simulation framework to the hardware FPGA platform.

There have been several efforts to provide frameworks to connect

instruction-set simulators to HDL simulators to perform full-system

simulation. However, full-system simulation of datacenter servers

is itself an open research challenge and the speed of full-system

simulation of the servers alone limits their use for software de-

velopment [17]. As such, existing full-system simulation-based

frameworks target system-on-chipsÐtypically, ASICs with ARM

coresÐas tools for early stage design exploration, software devel-

opment, and functional verification, rather than the cycle-accurate

simulations required to verify or debug FPGA-accelerated servers.

We observe that, although there are no available full-system sim-

ulation environments of servers with PCIe-connected FPGAs, we

can extend existing mature and robust tools to build a co-simulation

framework for rapid development and debugging of such systems.

In particular, modern datacenters employ virtual machines (VMs)

in production environments to provide security and isolation. Be-

cause of this, virtual machines are effective for high-performance



emulation of full server systems, including CPUs, disks, memory,

and network interfaces. This makes VMs a natural fit to emulate

the server system in an FPGA development environment. Moreover,

FPGA vendors provide sophisticated HDL simulation software, al-

lowing cycle-accurate simulation of the designs as they would run

on the target hardware FPGA platform. Although virtual machines

and HDL simulators separately provide effective software and hard-

ware development environments, the key missing enabler is a link

between a VM’s virtual PCIe and NIC devices and the PCIe and

network blocks in an HDL simulation platform. This link should

be transparent both to the operating system and software running

inside the VM, and to the hardware design in the HDL simulator.

In this work, we developed a co-simulation framework by pro-

viding PCIe and NIC communication channels between a VM and

an HDL simulator. On the VM side, we created a software pseudo

device to represent the FPGA and proxy all device interactions to

the HDL simulator. The operating system and software running

inside the VM see the same PCIe-attached device as if they were

running in a hardware system with an FPGA plugged in.

On the HDL side, we developed a PCIe simulation bridge to

communicate with the VM and proxy all hardware events to the

software pseudo device in the VM. The PCIe simulation bridge is

pin-compatible with the PCIe block of the hardware FPGA platform.

Similarly, we developed a pin-compatible NIC simulation bridge to

allow the FPGA simulation to exchange Ethernet frames with a host

network. The FPGA design observes the same interfaces toward

PCIe and network; thus it requires no modification or porting to

work with the co-simulation framework. To the FPGA develop-

ment tools, the PCIe and NIC simulation bridges appear as regular

hardware blocks and have no impact on the simulation flow.

To demonstrate our VM-HDL co-simulation framework, we pro-

totyped two server systems: a sorting accelerator and a network

card, both using a PCIe-connected FPGA. Our experience indicates

that the co-simulation framework significantly reduces the debug

iteration time and enables rapid design exploration and debugging

that was not previously possible with the available vendor tools.

Moreover, our framework provides invaluable visibility into both

the hardware design and the operating system, making it easier

and faster to identify problems while developing and debugging.

The framework allows single-stepping the host kernel software

instruction by instruction, and examining variable contents and

interactions with the hardware, while simultaneously recording

and visualizing all signal waveforms in the hardware design.

The rest of this paper is organized as follows: Section 2 provides

an in-depth discussion of co-simulation requirements and the moti-

vation behind our approach. Section 3 describes our co-simulation

framework. Section 4 describes the framework implementation.

Section 5 presents our case studies and evaluation. Lastly, Section 6

discusses related work and Section 7 gives concluding thoughts.

2 MOTIVATION AND APPROACH

The continually rising demand for data processing in datacenters

fuels the need for efficient accelerators. However, to achieve wide-

spread adoption, accelerator technologies must not only achieve

high performance and efficiency, but they must also be convenient

for application developers. Engineers and their managers have

specific expectations of what constitutes a practical development

environment and reasonable debug iteration time, stemming from

their experience in software development for CPUs and GPUs. Un-

fortunately, even ignoring the fact that FPGA development requires

a unique and expert set of skills beyond those of a typical software

engineer, the development of the hardware and software needed for

FPGA acceleration in datacenters presents fundamental challenges

in terms of full-system test, debug iteration time, and visibility into

the design internals during development.

2.1 Challenges of Development and Debugging

Full-System Test. A major challenge with existing FPGA de-

velopment environments is the inability to simulate full systems

including the OS, device drivers, application software, network, and

the accelerator logic. As a result, accelerators are developed in isola-

tion from the software. In traditional FPGA design, developers rely

on simulation and carefully-crafted hardware testbenches. However,

the complexity of server systems and the expected fluidity of rapid

prototyping during the early stages of system development make

testbench-driven design impractical for datacenter applications.

Existing SoC co-simulation environments address this problem

by simulating embedded CPUs with the entire software stack. How-

ever, performing per-instruction CPU emulation in hardware simu-

lation cannot be used for production server software, as simulation

is many orders of magnitude less than łinteractivež performance

expected by developers [17]; even if a simulation platform could be

configured to emulate a typical multi-core x86-64 server system, it

would take days to just boot the server in such an environment.

Seeing these problems, vendors targeting datacenter accelerators

have adopted development platforms that connect HDL simulators

with user-level libraries that wrap accelerator functionality. How-

ever, the interfaces used for these libraries are non-standard and

brittle, developed by small teams for very specific use cases and a

very limited user base. Once an initial prototype is developed in

such an environment, a significant porting and debugging effort

must still take place to move the design to the hardware FPGA

platform and integrate it with the production software stack.

Moreover, FPGA accelerators in datacenters may have network

connectivity beyond the host server. To support network connec-

tivity, FPGA vendors provide IP blocks that interconnect on-chip

data streams with off-chip high-speed interfaces, including all func-

tionality (e.g., MAC, PCS, etc.). Developing and testing network

functionality with hand-written testbenches is impractical, because

the testbench would need to supply many carefully-crafted network

packets whose contents depend on the responses received from the

hardware design. As a result, these systems are currently developed

and debugged directly on hardware FPGA platforms.

Debug Iteration Time. After a design is implemented on the

hardware FPGA platform and integrated with the software stack,

the next challenges are debugging and rapidly iterating over design

changes. A fundamental challenge is caused by the difficulty of syn-

thesizing, placing, and routing a design for large modern FPGAs.

For example, despite large-scale investments in FPGA infrastructure

from Microsoft [4], Intel [6], and Amazon [2], the environments

used to develop accelerators in these frameworks are not amenable

to rapid iteration. Each change to the FPGA design requires hours



of waiting before the new design can be tested. While such times

are acceptable in an ASIC or embedded appliance development envi-

ronment, wide-scale adoption of FPGAs for datacenter applications

is severely stunted by such slow development practices.

Considering these challenges alongside the difficulties associated

with full-system test, FPGA designers face a difficult dilemma: either

attempt to debug in simulation (using testbenches and isolating the

hardware from the software stack), or work with the production

hardware and software, sacrificing the ability to iterate quickly.

Visibility. In addition to the needs of fast iteration and running

full-system tests throughout the development process, rapid accel-

erator development requires visibility into both the server software

and the accelerator hardware as expected for traditional software

development. However, existing platforms offer limited introspec-

tion for system software and hardware. For example, running tests

on hardware FPGA platforms limits visibility if the system freezes,

which leads to debugging with printf() and frequent rebooting.1 On

the hardware side, tools such as SignalTap [1] and Integrated Logic

Analyzer [20] permit the insertion of probes on a select subset of

signals in the hardware design. However, the number of signals that

can be probed is limited, the amount of time for which signals can

be recorded is limited, and changing the set of signals monitored

(or in some cases, the trigger events) requires place and route of

the design. Developers must wait for hours before re-running an

experiment whenever an additional signal needs to be collected.

2.2 Our Approach

In this work, we set out to create a co-simulation framework

that allows for full-system test, rapid debug iteration, and complete

visibility into the system under development. Moreover, our goal

was to construct a flexible platform based on robust, mature, and

production-ready components, so that it can be quickly adopted by a

wide range of projects without discouraging accelerator developers

due to platform limitations, brittleness, and poor performance. To

this end, we developed a co-simulation framework that connects a

virtual machine (running production server software) with an HDL

simulation (running unmodified accelerator hardware designs). The

resulting system addresses the challenges described above.

Enabling Full-System Test. Our co-simulation framework en-

ables development and debugging to take place in a full-system

environment without any software modifications to the operating

system, device drivers, and application software and without any

modifications to the accelerator hardware design. Precisely the

same software and HDL code are used in the development environ-

ment as the production environment. All software components and

any part of the accelerator hardware can be modified and debugged

in co-simulation. This allows all components of the design to be

seamlessly moved between the production environment and the

co-simulation environment without modification.

Our system employs a virtual machine (VM) that mimics the

production server environment. The VM can use CPU virtualiza-

tion features, which allow it to execute nearly as fast as bare-metal

hardware. In fact, in some cases, such as during the system reboot

process, the VM runs faster than bare metal due to the host’s disk

1The situation is exacerbated further for bump-in-the-wire systems [4], where an error
in the FPGA logic can lead to complete loss of connectivity to the server.

cache, which can service requests faster than a physical disk. This

setup provides a functionally-correct fast and convenient develop-

ment environment. Additionally, to help developers debug more

obscure timing-sensitive problems, our system supports transition-

ing in and out of łlock-stepž mode, where the VM’s execution speed

is paired with the HDL simulation’s clock.

In addition to the PCIe connection to the host, FPGA platforms

often include connections to Ethernet networks. For example, the

latest Microsoft Catapult FPGAs use a bump-in-the-wire arrange-

ment [4] where network traffic intended for the host passes through

the FPGA fabric on its way to the host’s built-in NIC. Other promi-

nent FPGA platforms, such as the NetFPGA SUME [23] and the

Xilinx VCU118 [19], feature multiple network ports that can be

used to configure these platforms as a łSmart NICž for the host.

To support debugging systems with external network connec-

tions, our co-simulation framework includes a network interface

simulation bridge, providing network connectivity to the FPGA.

Virtual machines have extensive support for network connectiv-

ity through software-defined networking (SDN) components. We

leverage this infrastructure to link the HDL simulator into the VM

network, enabling the developer to use standard SDN tools to bridge

the accelerator hardware running in simulation into test networks

(including real LANs or virtual LANs), and even provide direct con-

nectivity between the simulated hardware and the public Internet.

This feature is invaluable for debugging network-connected FPGAs,

as it allows the developer to make the FPGA participate in real

bi-directional network traffic during development and debugging.

Reducing Debug Iteration Time. The use of standard HDL

simulation tools for the accelerator design allows hardware design-

ers to use a familiar simulation workflow. Importantly, modifica-

tions to the accelerator HDL sources can be done quickly, avoiding

the synthesis and place-and-route process which would be neces-

sary when targeting a hardware FPGA platform. Changes to the

hardware design require only a quick rebuild or restart of the HDL

simulation infrastructure, which ranges between seconds to at most

several minutes, depending on the design complexity.

The software and hardware simulation components can be

restarted independently. During the debugging process, developers

frequently face the need to restart application software and unload

and reload kernel device drivers, which can be done freely in our

co-simulation framework. In addition to these, sometimes it is nec-

essary to reboot the system or reset the hardware (for example,

when the operating system source code or the hardware design are

modified). By connecting the virtual machine and HDL simulator

using a fault-tolerant high-level message queue implementation,

either side of the co-simulation can be independently restarted and

the sides will automatically reconnect and continue communicating

as though they were never disconnected or modified.

Providing Full Visibility. The co-simulation framework offers

complete visibility into both software and hardware. In software,

the VM environment supports a remote gdb debugger interface

that permits temporarily freezing the VM and stepping through the

source code of the software running inside, line by line or instruc-

tion by instruction, and observing variable contents in memory. In

hardware, HDL simulators offer the capability of tracing all signal

waveforms from the beginning of simulation without requiring

simulation restarts or prior selection of specific signals to monitor.



Figure 1: Our VM-HDL co-simulation framework (new com-

ponents we developed are shaded gray)

3 VM-HDL CO-SIMULATION FRAMEWORK

We built our VM-HDL co-simulation framework by coupling

several mature technologies. A high-level architecture of the frame-

work in shown Figure 1. On the host side (left), a virtual machine is

used in place of the server. On the FPGA side (right), the hardware

design runs in a commercial HDL simulator. The key framework

components are the links between the hypervisor2 and the HDL

simulator, comprising the PCIe link between the server and the

FPGA and the NIC link between the FPGA and the Ethernet net-

work. Critically, these links provide exactly the same interfaces and

functionality as their hardware FPGA platform counterparts, allow-

ing seamless back-and-forth transitions between the co-simulation

framework and deployment on production hardware. All other parts

of the system, including the FPGA accelerator design, operating sys-

tem, device drivers, and application software run in co-simulation

and on the production hardware without any modifications.

3.1 FPGA Pseudo Device

On the VM side, we created an FPGA pseudo device module

for the hypervisor. From the perspective of the hypervisor, this

module emulates a hardware platform’s FPGA and its interfaces

(PCIe and NIC). To the guest operating system running inside the

virtual machine, the pseudo device appears exactly like a PCIe-

connected FPGA in the target platform. The device exposes the

same number and size of the Base Address Register (BAR) regions

and Message Signaled Interrupt (MSI) capabilities. The hypervisor

interacts with the pseudo device using high-level abstractions such

as Memory-Mapped I/O (MMIO), Direct Memory Access (DMA),

and interrupts. We maintain this high level of abstraction when

sending these operations over the communication links, thereby

avoiding low-level protocol details.

A typical NIC module for a hypervisor has two interfaces. One

exposes the NIC to the guest VM as a PCIe device, and the sec-

ond exposes the NIC to the host system as a tap network interface.

To support debugging FPGA designs with network interfaces, our

2We use the term hypervisor to refer to the software application used to emulate the
virtual hardware and launch a virtual machine.

pseudo device creates a host tap network interface and relays Ether-

net frames between this interface and the NIC link connected to the

HDL simulator. This enables the developer to use standard software

defined networking tools such as bridges and virtual switches to

connect the exposed tap interface to virtual or physical networks.

3.2 FPGA PCIe Simulation Bridge

On the HDL side, we developed an FPGA PCIe simulation bridge

to replace the PCIe bridge IP in the FPGA platform. The PCIe simu-

lation bridge is pin-compatible with the PCIe bridge IP provided by

the FPGA vendor, exposing exactly the same interface and function-

ality to the FPGA hardware design. Because of this, all interactions

between the FPGA hardware and the host are identical in the co-

simulation and production environments. Because the interface is

unchanged, the FPGA hardware design is entirely unaware of the

fact that it is operating in simulation. No modifications are required

to run hardware designs in co-simulation, and the design can glide

freely between the production environment and co-simulation.

The PCIe bridge offers three functions: forwarding the host’s

MMIO requests to the FPGA interconnect, forwarding the FPGA

interconnect’s DMA requests to the host, and raising interrupts

on the host in response to the bridge interrupt pins. Notably, the

PCIe bridge operates at two different levels of abstraction on its two

sides. When communicating to the hypervisor, the bridge maintains

the same high level of abstraction as the FPGA pseudo device. The

data transfers use high-level operations rather than low-level PCIe

transactions. However, on the side of the hardware design, the

bridge faithfully emulates the hardware FPGA platform and uses the

same low-level cycle-accurate protocol models to receive messages

from (and deliver messages to) the FPGA interconnect.

3.3 FPGA NIC Simulation Bridge

Support for the bump-in-the-wire and NIC scenarios in a full-

system setup is facilitated by an FPGA NIC Simulation Bridge. Just

as the PCIe bridge shuttles PCIe operations between the hypervisor

and HDL simulation, the NIC bridge is responsible for shuttling

Ethernet frames between the network components of the hardware

design in simulation and the hypervisor.

The NIC bridge is pin-compatible with the vendor provided IP,

which handles all protocol details and expects for the off-chip in-

terfaces to connect to an Ethernet network. Our co-simulation NIC

bridge interacts with the rx and tx streams in the same way as the

vendor-provided IP. However, rather than interacting with a physi-

cal network, the received and transmitted frames are communicated

as high-level operations to the hypervisor NIC tap functions.

Although our current prototype assumes Ethernet networks, we

note that this approach is not limited to a specific protocol and is not

restricted to communication only with other VMs and servers. For

example, a NIC bridge can be used to connect multi-FPGA systems

in the co-simulation framework. Multiple concurrently-running

HDL simulators, each with its own NIC bridge, can be used for

co-simulation of a system like the Amazon F1.16xlarge [2] instance,

where each FPGA connects to the server host via PCIe and to the

other FPGAs via a 400Gbps bi-directional ring.



3.4 VM-HDL Link Queues

The PCIe link and NIC link provide communication between the

hypervisor and HDL simulator. These links can be implemented

using domain or network socket APIs. However, rather than directly

relying on a low-level stream protocol, we construct the links using

a high-level message queuing library. Messages are guaranteed to

be reliably delivered to the destination process in their entirety and

communication is non-blocking, allowing the sending process to

continue running after enqueuing a message.

Beyond simplifying the implementation, the queue-based ap-

proach offers functional benefits. The queue abstraction allows

independently restarting the VM or the HDL simulator (e.g., after

making changes to the hardware design). The system automatically

re-establishes the connections and continues exchanging high-level

messages after restart. The queue interface also allows to indepen-

dently pause and resume execution of the VM or HDL simulator

(for example, to examine their internal state), without incurring

timeouts and aborts from the side that is not paused.

3.5 Untimed and Lock-Step Modes

Our co-simulation framework enables an optional lock-stepmode,

which forces the VM and the HDL simulation to have a consistent

view of time. This option can be invaluable in resolving timing

bugs or verifying complex time-sensitive interactions between the

server software and hardware design. This mode contrasts with the

standard untimedmode, where the VM operates on real-world time

and the HDL simulator advances time as fast as it can.

Lock-step mode was easily added to the co-simulator framework

because both the hypervisor and the HDL simulator have mech-

anisms to control the advance of time. On the software side, we

can place a hypervisor into a mode where it acts similar to an

instruction-set simulator, with a mechanism to advance time one

instruction at a time. On the hardware side, we can easily control

when the clock signal advances in the HDL simulation environment.

By adding an extra link between them, we can synchronize the pas-

sage of time, allowing them to proceed in lock-step according to

a user-provided clock ratio (e.g., eight server cycles to one FPGA

cycle to simulate a 2GHz server with a 250MHz FPGA).

The downside to this approach is that using a hypervisor in this

mode imposes a very high performance overhead. Our system aims

to minimize the effect of this by allowing the developer to switch

between untimed and lock-step mode dynamically, as needed.

3.6 Debugging and Development Interfaces

Our co-simulation framework enables extensive debugging and

development capabilities that take the process of working with

PCIe-connected FPGAs a step closer to the simplicity and ease-of-

use of traditional software-development environments.

For software debugging, the hypervisor can act as a remote tar-

get for command-line and graphical debuggers. Developers can use

familiar tools such as gdb to connect to the hypervisor to examine

the contents of memory and registers inside the virtual machine

and for single-step execution. Remote target support allows debug-

ging not only the application software running within the VM, but

also to debug the device drivers and operating system, including

interrupt handlers, providing complete access to memory and regis-

ters and supporting single-stepping at both the C statement and the

assembly instruction granularity. Moreover, the interface allows

the developer to modify memory and register contents on the live

system to experiment with various scenarios and on-the-fly fixes.

For hardware debugging, developers can use the HDL simulator

to record all hardware signals during the entire simulation. As a

result, the co-simulation framework provides greater visibility than

using an in-hardware virtual logic analyzer, which limits the num-

ber of probed signals and requires place-and-route to add probes.

Our approach not only provides full visibility into all signals in

the system at the current time, but also allows examining the HDL

state at any point in the past, enabling the developer to quickly

trace back and identify the origin of a bug, regardless of how far

in the past it occurred. Similar to the software debug interface, the

HDL simulator also supports single-step operation, examining all

register contents, and forcing signal and memory values.

In addition to enabling the classic approaches above, our co-

simulation infrastructure offers a new hybrid mode of development

and debugging, combining the practices and expectations of devel-

oping on a hardware FPGA platformwith the debugging capabilities

of simulation. Specifically, software and hardware developers find it

natural to edit, compile, run, and debug code directly on the target

platform. Because of the high (near bare metal) performance of the

VM in co-simulation, including an additional network interface in

the VM allows it to be used by the developers just like a hardware

FPGA platform. The VM can fulfill all expectations of a traditional

development environment by including all editors and build tools

needed to work with code, mounting remote NFS or SMB filesys-

tems, and allowing interaction with remote code repositories. When

the co-simulation framework is deployed in a datacenter, develop-

ers can use ssh or remote desktop to log into the co-simulation

VM and use it exactly as if logging into a hardware FPGA platform

in a production cloud environment. However, while the platform

behaves like a server system with a PCIe-connected FPGA, it comes

with the added benefits of full visibility into the hardware wave-

forms and the ability to make changes to the hardware design and

see them immediately reflected on the live system.

4 FRAMEWORK IMPLEMENTATION

In this section, we describe our design decisions and provide the

key implementation details of our co-simulation framework.

4.1 Hypervisor

To emulate the server system, we use QEMU, an open-source

hypervisor that is widely deployed in production environments.

QEMU includes many features that make it particularly well-suited

for this work: it has robust emulation models of server system com-

ponents, it provides a rich API for developing new device models

such as the FPGA Pseudo Device, it offers bare-metal speeds using

hardware-accelerated virtualization via KVM [8], it includes an

instruction-set simulator-like mode to enable single-step execution,

and it supports a standard remote target debugger interface.

FPGA Pseudo Device. To allow the VM to interact with the

simulated FPGA device, we developed a QEMU virtual device to

serve as a proxy for the FPGA, supporting PCIe transactions and



Figure 2: FPGA PCIe simulation bridge

network communication.We based our implementation on a QEMU

reference design of a NIC. The QEMU API supports customization

of all PCIe device parameters, enabling our implementation to ex-

actly mimic the target PCIe-connected FPGA system. The pseudo

device identifies itself using the vendor and device ID of the hard-

ware FPGA platform, and matches the Base Address Register (BAR)

address widths, sizes, pre-fetch capabilities, and the number of

Message Signaled Interrupt (MSI) interrupts. For NIC devices, the

API also includes functions to declare network interfaces, read and

configure their MAC addresses, and send out Ethernet frames.

To enable the device to respond to events, QEMU provides an

interface for the device model to register callback routines. Our

implementation registers callbacks for handling the VM’s MMIO

reads and writes on the FPGA BAR regions and a callback for

receiving Ethernet frames from the network interfaces. Additionally,

QEMU supports registering file descriptors with its event loop and

triggering custom callbacks when there is activity on those file

descriptors. We leverage this functionality to enable efficient receipt

of messages from the HDL simulator by registering callbacks on

the network sockets underlying our PCIe and NIC message queues.

Network Interfaces. QEMU network devices create a tap vir-

tual network interface on the host. Frames sent by the device model

are transmitted by QEMU on the tap interface. Frames received by

the tap interface trigger a QEMU callback, which forwards frames

to the HDL simulator. The tap interface is the standard mechanism

for virtual machine network connectivity. It can be bridged into

the physical network of the simulation host via software-defined

networking components (e.g., a Linux bridge), in a manner identical

to a production setup in a cloud environment. From the perspective

of all other devices connected to the same network, the simulated

hardware is indistinguishable from a plugged-in physical device.

Alternatively, the tap interface can be bridged into a private virtual

network, together with other VMs running on the same host. These

VMs can use a full-system software stack to act as a traffic generator

and to expose the hardware design to a variety of test loads.

When the tap interface is bridged into a physical Ethernet net-

work, the hardware design in the co-simulation framework is ex-

posed to all traffic from this network segment. Such networks rou-

tinely observe a significant amount of background chatter, such as

ARP requests and other broadcast protocols, which serves as an

excellent way to expose the hardware design to a diversity of real

packet contents and timing scenarios in addition to the test traffic.

4.2 Hypervisor-Simulator Message Queues

Rather than directly relying on a stateful connection-oriented

bi-directional stream protocol, we link the QEMU and the HDL

simulator using pairs of unidirectional high-level message queues

constructed with the ZeroMQ (ZMQ) messaging library [22]. ZMQ

is a high-level message library that wraps the low-level details of

inter-process communication. The library provides reliable mes-

sage delivery, which is particularly helpful when one side of the

co-simulation framework slows down, crashes, or simply needs to

be restarted, allowing the other side to continue without interrup-

tion. The loose coupling of the processes enables high performance

operation and makes the system very robust, freeing our imple-

mentations of the pseudo device and simulation bridges from the

responsibility of handling incomplete messages and flow control.

Each communication link comprises a pair of unidirectional

channels. There are two communication links for performing PCIe

operations between QEMU and HDL simulation: one for QEMU to

HDL simulator messages and another for HDL simulator to QEMU

messages. The NIC bridge uses two unidirectional channels, one

for transmitting outgoing frames and one for receiving incoming

frames. Each message sent over a channel contains a structure

comprising the operation type and attributes, such as the address

offset, data, data length, BAR number, etc. The structure and content

of the messages can be easily modified or extended, as the details

of reliably delivering the messages is handled by ZMQ.

4.3 Co-Simulation Bridge IPs

The co-simulation bridge IPs serve as interfaces between the

hardware design and the hypervisor, linking the HDL simulation

with QEMU (via ZMQ channels). The bridges are built using Sys-

temVerilog’s direct programming interface (DPI), which allows

interactivity between the HDL simulation and external software.

The bridges are pin-compatible with Xilinx-provided IPs for PCIe

and Ethernet controllers. The bridges are parameterized to allow

them to be easily configured to match different hardware FPGA

platforms (e.g., PCIe interfaces with differing numbers of lanes).

FPGA PCIe Simulation Bridge. Figure 2 shows a block dia-

gram of the FPGA PCIe simulation bridge. Like the Xilinx PCIe

bridge IP, the simulation bridge has AXI slave and master inter-

faces and an MSI interrupt input. The master interface facilitates

MMIO requests from the host to the hardware design and the slave

interface supports memory requests from the hardware to the host.

In the simulation bridge, each interface’s functionality is split be-

tween SystemVerilog code (which drives the hardware-facing AXI

interfaces), and C functions (which interact with the ZMQ channels

to communicate with QEMU); SystemVerilog DPI is used to link the

two. The slave interface code is activated by the (simulated) clock.

On each positive clock edge, the interface module checks for a new

request from the hardware design via its AXI port. When an AXI

read or write is detected, the interface calls a C function, which

translates the request to a high-level message for the FPGA pseudo

device and places the message into the HDL-VM ZMQ channel.

To handle responses coming back from QEMU, the interface calls

a C function to poll the ZMQ response channel. The polling function

is invoked on the positive clock edge of each simulated cycle. When

it detects a response on the channel, the C function triggers a state



machine within the interface module, which feeds the response

data into the corresponding AXI port. Lastly, the slave interface

has an MSI interrupt input port. Whenever the SystemVerilog code

detects that the interrupt is raised, it calls a C function to write the

interrupt request message into the HDL-VM channel.

The master interface works similarly. The interface uses a clock-

edge activated SystemVerilog block to call a C function which polls

the VM-HDL channel for MMIO requests from QEMU; when one

is detected, the C function triggers a state machine that feeds the

request data into the AXI port. Responses (which arrive from the

hardware via the AXI port) are detected on positive clock edges

and are sent (using a C function) to the VM-HDL response channel.

FPGA NIC Simulation Bridge. The NIC bridge has a similar

structure to the PCIe bridge, with two notable differences. First, the

NIC bridge only needs one ZMQ channel pair to handle incoming

and outgoing frames. Second, the NIC bridge uses unidirectional

AXI Stream interfaces to interact with the hardware design (rather

than connecting to an AXI interconnect). The NIC bridge indicates

frame boundaries by setting the Start of Frame (SOF) and End of

Frame (EOF) symbols on the rx stream and uses the EOF symbol

on the tx stream as an indication that a complete frame has been

received from the hardware and should now be sent to QEMU.

4.4 Lock-Step Mode

We created a lock-step mode, which builds on QEMU’s icount

mode to synchronize the execution of the VM and simulated hard-

ware. The icount mode disables hardware virtualization support,

falling back to an instruction-set simulator with IPC 1 (one instruc-

tion per cycle), and modifying the VM’s notion of time to be relative

to the number of instructions executed (e.g., two billion instructions

corresponds to one second of execution). Our variant of this mode

further restricts QEMU such that it runs in sync with the HDL

simulator, allowing the two to perceive the same notion of time.

The lock-step mode allows co-simulating timing-sensitive in-

teractions between the server software and hardware design. In

this mode, the HDL simulator includes an additional unidirectional

ZMQ channel to transmit a clock message to QEMU on every posi-

tive clock edge. We modified the QEMU interpreter loop to perform

a blocking read on this channel after QEMU executes the number of

instructions corresponding to a single cycle of the hardware design.

For example, when targeting a 2GHz server CPU and 250MHz FPGA

hardware design, each clock message allows QEMU to advance by

eight instructions. To maintain high performance, QEMU internals

sometimes cause simulation to advance by more than one instruc-

tion before re-entering the interpreter loop. To account for this, our

implementation keeps track of the actual number of instructions

executed by QEMU and adjusts the number of instructions that are

permitted to execute on the subsequent clock message. As a result,

any deviation between the server’s and the HDL simulator’s notion

of time is eliminated as soon as it is detected.

The lock-step mode is orders of magnitude slower than the un-

timed co-simulation running with hardware virtualization. Booting

the server in lock-step mode would take multiple days. To make

this mode practical for debugging, we support dynamically tog-

gling lock-step execution on a running QEMU instance. Lock-step

mode can be disabled to allow QEMU to run without waiting for

Table 1: Co-Simulation and Hardware FPGA Platform

Target FPGA Board NetFPGA SUME (xc7vx690tffg1761-3)
Co-Sim Host Xeon E5-2620v3, 64GB DDR4
FPGA Compilation Host Xeon E5-2620v3, 64GB DDR4
Operating System Ubuntu 16.04, Linux 4.4.0 with KVM
Hypervisor QEMU 2.7.50
FPGA Tool Xilinx Vivado 2017.1
HDL Simulator Synopsys VCS J-2014.12-SP3-8 (with GCC 4.4)
Message Passing Library ZeroMQ 4.2.1

the HDL simulator while booting the guest operating system and

while the developer works on setting up the debugging experiment,

and enabled immediately before the start of the experiment.

5 EVALUATION

This section presents an evaluation of our VM-HDL co-

simulation framework. For this evaluation, we developed two test

cases: an FPGA accelerator for sorting of data, and an FPGA net-

work card device. Using these test cases, we demonstrate how the

co-simulation framework allows full-system simulation including

hardware, application software, device driver, and operating system,

and we evaluate how the co-simulator improves the developer’s de-

sign and debug experience, in terms of the debug iteration time and

the visibility into the internal state of the hardware and software.

5.1 Methodology

We list the details of the hardware and software platform we

use for our evaluation of both test designs in Table 1. We inten-

tionally use the same hardware for the co-simulation framework

measurements as for the hardware FPGA platform, and use the

same versions of the operating system and all software in both.

Sorting Accelerator Design. The sorting accelerator design

represents a common style of coarse-grained accelerators. Such

hardware designs typically comprise one or several compute units

for processing data and a DMA engine to perform data transfers.

The software running on the server prepares the input data and

triggers the accelerator’s DMA and compute unit. The DMA engine

fetches input data from the server memory and sends it to the

compute unit. After the compute unit finishes processing the input

data and generates the result, the DMA engine stores the result

back to the server memory and notifies the application software.

We automatically generate the sorting unit using the Spiral Sort-

ing Network IP Generator [24]. The sorting unit takes a stream of

input data and produces a stream of output data after a fixed num-

ber of cycles. Xilinx DMA IP is used in basic mode to fetch input

data from the server memory through PCIe, stream data through

the sorting unit, and write the results back to the server memory.

Network Card Design. The network card device is an example

system that connects the FPGA hardware to a network interface.

Compared to the sorting accelerator, the NIC has a more complex

dataflow, including finer-granularity interaction with the server op-

erating system. The NIC design uses the Xilinx DMA IP to transfer

packets to/from the VM memory, but the controller is configured in

scatter/gather mode. When sending data to the network, the device

driver prepares the packets in server memory and triggers the DMA

to fetch them through PCIe and stream them to the FPGA MAC’s



Table 2: Run time comparison for operations (µs)

Hardware Platform Untimed Co-Sim

MMIO Read 0.74 42,400
DMA and Sorting 23.33 2,830,000

transmit interface. In the hardware FPGA platform, the MAC inter-

face then sends data to the wire; in the co-simulation environment,

the NIC FPGA simulation bridge will instead transfer this data to

the pseudo device in QEMU.When receiving data, the FPGAMAC’s

receive interface streams the packets into the DMA unit, where

they are transferred to the server memory. After a transfer finishes,

the DMA sends an interrupt to the operating system to notify it.

5.2 Full-System Performance

PCIe Bridge Performance. To evaluate the performance of our

PCIe simulation bridge, we timed the same operations running on

a hardware FPGA platform and in co-simulation. For MMIO, we

performed dependent serialized MMIO reads from a block RAM in

the hardware design. For DMA, we measured the execution time of

the sorting accelerator task, including DMA transfers.

Table 2 shows the performance of our framework compared

to the hardware FPGA platform. As expected, the co-simulation

runs slower than the hardware FPGA platform, because the co-

simulation performs cycle-accurate HDL simulation. By comparing

the simulation run time with and without the VM-HDL communi-

cation channels, we found that communication with the VM does

not noticeably impact performance. The VM runs on a separate

host CPU core from the HDL simulation, and polling of the ZMQ

channels takes negligible CPU time. Although the poor HDL simu-

lator performance requires developers to still be cautious regarding

long test cases while debugging using the co-simulation platform,

the performance impact of doing HDL simulation as part of the

co-simulation framework is small and is well worth the benefits.

UntimedMode TimeDilation.When using our co-simulation

framework in untimed mode, the QEMU VM runs at bare-metal

speed, and time in the VM equals wall-clock time. However, the

HDL simulator is running cycle-accurate simulation and is slower

than a hardware FPGA platform. Because QEMU and the HDL sim-

ulator run independently, the user observes a time dilation between

the VM and the hardware design. The performance measurements

in Table 2 show this effect to be approximately five orders of magni-

tude; a hardware design at 250MHz appears as though it is running

at approximately 2.5KHz to the software in the VM. However, de-

spite the time dilation, the system remains completely functional

and can be used for interactive development and debugging.

Lock-step Mode Performance. To overcome time dilation for

timing-sensitive simulations, we utilize the lock-step mode of our

framework to force a realistic clock ratio between the VM and the

hardware design running inside the HDL simulator.

To measure the accuracy of the co-simulation in lock-step mode,

we target a CPU frequency of 2GHz at an IPC of 1 (QEMU shift=1

setting, which instructs QEMU to treat two billion instructions as

equivalent to one second). We target a 250MHz hardware design to

set the lock-step multiplier, which means that every HDL simulator

clock cycle permits the QEMU VM to advance by eight instructions.

We used a simple sleep application to measure time in the vir-

tual machine. We observed that, although the wall clock elapsed

time is approximately three orders of magnitude longer than the

requested sleep time, the elapsed time observed by both the VM

and HDL simulator match the requested sleep time. This indicates

that, although the simulation runs much slower than real time, the

VM’s notion of time remains self-consistent. We also tested our

network card design in lock-step mode. We used ping to test the

network latency between the VM and its host. Unlike the untimed

mode, which resulted in higher latency than on a real system due

to the VM observing time faster than HDL simulation, the reported

latency in lock-step mode is very similar to a real system. This

happens because the time taken by ping outside the co-simulation

environment appears instantaneous to the co-simulation (just like

when a real host pings itself), resulting in the latency reported by

the VM corresponding to the actual number of cycles that elapsed in

the lock-step co-simulation framework. This further demonstrates

that the notion of time is self-consistent between the VM and the

HDL simulator in lock-step mode.

NIC Bridge Performance. Our framework presents new op-

portunities for debugging FPGA hardware designs with network

connectivity by exposing them to the LAN and Internet traffic. How-

ever, network packets between real hosts have a higher packet rate

than expected by the co-simulation setup, and can overwhelm the

co-simulation when processing the test traffic.We therefore use fire-

wall rules on the co-simulation host to filter out background ARP

chatter and packets not sent to the co-simulated host. We then use

HTTP file transfer to evaluate the bandwidth and ping to evaluate

the latency of network traffic from the co-simulation environment

when running network card hardware in HDL simulation.

In the untimed mode, our experiments show that the platform

can sustain 15KB/sec connections. The platform introduces an extra

80ms round-trip latency on each ping, indicating that the network

card hardware in simulation takes approximately 40ms to process a

packet. These results demonstrate that the platform is fast enough

to sustain network connectivity to to the real world, without the

remote end timing out or retransmitting packets, despite the packets

passing through a cycle-accurate HDL simulation of the network

card. We also performed these tests in lock-step mode. Due to

significant slowdown of the virtual machine, the round-trip ping

times observe an additional 400ms of latency. Network transfers

from real-world hosts become impractical, as the co-simulation

environment falls too far behind to send TCP acknowledgments in

a timely fashion and the remote end closes the connection.

5.3 Debug Iteration Time

Hardware Design Changes.While developing and debugging

applications, developers frequently need to modify the hardware

design due to bugs, design changes, or simply to observe the effects

of different design decisions. If working with the hardware FPGA

platform, this would require the developer to run the FPGA syn-

thesis and place-and-route process. However, in our co-simulation

framework the developer only needs to launch the simulation. We

quantify this difference using our sorting accelerator. As shown in

Table 3, when compared to a hardware FPGA platform, which takes



Table 3: Run-time comparison (minutes:seconds)

Hardware Platform Co-Simulation

Launch Simulator - 1:10
Synthesis 18:03 -
Place and Route 35:40 -
Reboot 2:33 0:25
Execution ≈0 0:02.8

Total 56:16 1:38

Table 4: System boot time comparison (minutes:seconds)

Local disk iSCSI VM

BIOS 0:55 1:10 0:05
OS 0:33 1:23 0:14

Total 1:26 2:33 0:19

about an hour to go through the FPGA synthesis and place-and-

route process, the co-simulation framework can achieve an over

30x reduction in iteration time. Changes in the FPGA platform can

run in the co-simulation framework in just a few minutes.

Software Reboot.When debugging accelerators on a hardware

FPGA platform, instability in the hardware, software, and device

driver can all frequently hang the entire system, requiring slow and

tedious reboots. An advantage of our co-simulation framework is

that VMs are typically faster to reboot. To illustrate this, Table 4

compares: the boot time from a local disk, the same server booting

from an iSCSI disk, and the VM in our co-simulation framework,

all running the same version of Linux. The results indicate that the

VM reboot time is consistently faster than server reboot.

Additionally, the developer can use VM snapshots to achieve

nearly-instant reboot. Although server reboot time seems negligible

compared to the FPGA synthesis and place-and-route, frequent and

slow system reboots greatly contribute to the slow debug process.

5.4 Full Hardware Visibility

Adding Logic Analyzer Probes. When debugging on a hard-

ware FPGA platform, developers frequently use embedded logic

analyzers such as Xilinx ILA [20] or Altera SignalTap II [1] to ob-

serve the values of internal signals over time. This approach places

practical limitations on the number of signals observed and the

number of cycles of data that can be recorded. Naturally, these limi-

tations mean that developers gradually adjust the set of signals they

monitor during the debug process. Each time the set of monitored

signals changes, the developer must re-run at least place-and-route.

We use our sorting accelerator as a case study to quantify the

cost of re-configuring the embedded logic analyzer (Xilinx ILA). For

the hardware FPGA platform, we follow a typical debug workflow,

where the developer iterates several times, changing the locations

of the limited embedded logic analyzer probes each time. We first

configured the logic analyzer to observe the ports of the sorting unit

(408 pins) for 8192 cycles. We then synthesized and implemented

the design, as the developer would need to do to program the FPGA.

In the next step, we added one AXI port (659 pins) to the monitored

signals and repeated the process. In the third step, we swapped

monitoring one AXI port for another one (806 pins). To compare

Table 5: Visibility overhead (minutes:seconds)

1st Change 2nd Change 3rd Change

Hardware FPGA Platform:

Synthesis 17:48 - -
Place and Route 39:16 42:22 58.52
Reboot 1:26 1:26 1:26
Execution ≈0 ≈0 ≈0

Total 58:30 43:48 60:18

Co-Simulation:

Launch Simulator 1:10 - -
Reboot 0:19 - -
Execution 0:04.2 - -

Total 1:33 0 0

Speedup over 30x ∞ ∞

with the time required to observe the same signals using our co-

simulation framework, we simply configured the HDL simulator to

store all signals from the start to the end of the entire simulation.

Table 5 compares the time required for these changes in the

two scenarios. On the hardware FPGA platform, the first insertion

of the debug core requires both synthesis and place-and-route,

which requires nearly an hour even for this relatively small design.

Further changes to the monitoring signal set do not require re-

synthesis, but the place-and-route time increases along with the

number of the signals being observed. In contrast, our co-simulation

framework has full visibility into the hardware design after only

one simulation run because all signal values in the design are stored.

The co-simulator’s first iteration is already over 30x faster than the

hardware FPGA platform; further iterations are unnecessary.

Cost of Full Visibility. By storing the entire waveform history

for every signal in the hardware design, it is possible for our co-

simulation framework to enable full visibility of all internal values

in the FPGA from a single simulation run. There are two costs asso-

ciated with storing this large number of signals: the time overhead

of writing the data to disk, and the amount of storage required.

To quantify the runtime differences, we compare the co-

simulation execution times in Table 3 (which do not record internal

signals) and Table 5 (which saves all signals for the entire execution).

We observe a 50% increase in execution time when saving signals.

As shown in Table 5, this performance overhead is still much lower

than the cost of having to re-run place-and-route to reconfigure the

hardware FPGA platform’s embedded logic analyzer probes. The

other cost is the disk space. Experiments shows that a two-hour

(wall clock time) simulation of our network card design creates

an 8GB waveform file in the FSDB format, suggesting that it is

affordable with today’s storage capacity even for long simulations.

6 RELATED WORK

HW-SW Co-Sim. Several frameworks introduced by academia,

EDA companies, FPGA vendors, and cloud service providers with

FPGA offerings aim to co-simulate FPGA hardware and application

software. These systems, such as the Message-passing Simulation

Framework (MSF) [13], Intel OpenCL for FPGA [5], Intel AFU Simu-

lation Environment (ASE), Xilinx SDAccel [18], and Amazon F1 [3]



allow software testbenches to drive HDL simulation environments.

However, these systems are limited to executing application soft-

ware, rather than allowing full-system co-simulation. In contrast,

our framework supports co-simulating and debugging the oper-

ating system, device drivers, application software, and hardware

designs. Like our approach, the open-source VPCIe co-simulation

project [15] uses QEMU to support full-system device driver devel-

opment in the co-simulation environment. However, while simi-

lar in spirit, VPCIe is a proof-of-concept system that significantly

restricts the hardware designs that can be simulated and uses in-

terfaces that require extensive modification to QEMU and to the

hardware design to allow them to work in co-simulation.

Full-System Simulation for SoC ASICs. Another class of re-

lated work targets simulation and design exploration for system-

on-chip (SoC) ASICs. In this situation, designers’ needs and mo-

tivations are quite different than those of developers targeting

FPGA-accelerated datacenters. In this context, designers typically

aim to study design trade-offs or perform early software develop-

ment alongside high-level models of hardware systems. For exam-

ple, [9, 11, 14, 16, 21] use QEMU as an instruction-set simulator,

connecting it to high-level models of virtual platforms written in

SystemC, and there are commercial tools like [10] that can do full-

system simulation with hardware designs in HDL. However, all

these platforms generally focus on ARM-based SoC ASICs using

early-stage hardware models. This contrasts starkly with the ap-

proach and goals of our system, wherewe require full cycle-accurate

simulation of the exact hardware design because we aim to analyze

and debug the exact hardware and software that will run in the

production environment on the target hardware FPGA platform.

7 CONCLUSIONS

FPGAs hold great promise as accelerators in datacenters; in re-

cent years, we have seen several large-scale deployments of FPGA-

accelerated servers. Although the performance and energy advan-

tages of FPGAs are well known, a major challenge to wide-spread

use is the difficulty of designing, debugging, and integrating FPGA

accelerators. Better methodologies and tools, which can reduce the

impact of these obstacles, are crucially needed to improve developer

productivity and increase adoption of FPGA accelerators.

In this work we aim to improve a challenging drawback in the

typical FPGA accelerator workflow: namely, that testbenches are

insufficient for testing and debugging full server systems, but de-

bugging on hardware FPGA platforms is slow and cumbersome,

due to the long synthesis and place-and-route process, frequent and

tedious system reboots, and insufficient visibility. The combination

of these problems results in a time-consuming development process,

hindering the effective use of FPGA-equipped servers.

Our VM-HDL co-simulation framework leverages existing and

widely used mature technologies: virtual machines (which allow

fast execution of the operating system, device driver, and appli-

cation software), and commercial HDL simulators (which provide

cycle-accurate simulation of the FPGA design). We join these to-

gether by designing new pin-compatible bridge IP for the FPGA’s

PCIe and NIC interfaces, allowing developers to move seamlessly

between the co-simulation framework and hardware FPGA plat-

form, with identical hardware designs, software, and operating

system code. By avoiding the FPGA synthesis and place-and-route

process, our framework can drastically reduce the debug iteration

time, while providing full visibility of the entire system by enabling

the use of standard software debuggers and by comprehensively

recording waveforms for all hardware signals. The end result is a

co-simulation framework that enables rapid development of FPGA

accelerators in datacenter systems.
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