
A Data-Driven Approach to Developing IoT Privacy-Setting
Interfaces

Paritosh Bahirat∗, Yangyang He∗, Abhilash Menon∗, Bart Knijnenburg
Clemson University School of Computing

Clemson, USA
{pbahira,yyhe,abhilas,bartk}@clemson.edu

ABSTRACT
User testing is often used to inform the development of
user interfaces (UIs). But what if an interface needs
to be developed for a system that does not yet exist?
In that case, existing datasets can provide valuable in-
put for UI development. We apply a data-driven ap-
proach to the development of a privacy-setting interface
for Internet-of-Things (IoT) devices. Applying machine
learning techniques to an existing dataset of users’ shar-
ing preferences in IoT scenarios, we develop a set of
“smart” default profiles. Our resulting interface asks
users to choose among these profiles, which capture their
preferences with an accuracy of 82%—a 14% improve-
ment over a naive default setting and a 12% improve-
ment over a single smart default setting for all users.
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INTRODUCTION
Under the moniker of ‘Internet of Things‘ (IoT), smart
connected devices are revolutionizing our everyday life,
just like smartphones did for cellphones. Smartphones,
however, have shown to increase users’ privacy concerns
[4], and the same may be true for IoT. Like smartphones,
IoT devices collect and store personal information to per-
sonalize the user experience, share it across other de-
vices, and/or sell it to third parties. Consequently, pre-
serving users’ privacy is a big concern that limits the
adoption of IoT devices [10].

Privacy is an inherent trade-off in IoT, because IoT de-
vices cannot provide their services without collecting
data. Preserving users’ privacy therefore means giving
them control over this trade-off, by allowing them to

∗: These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
IUI 2018, March 7–11, 2018, Tokyo, Japan.
Copyright c© 2018 ACM ISBN 978-1-4503-4945-1/18/03 ...$15.00.
http://dx.doi.org/10.1145/3172944.3172982

decide what information can be collected about them.
Outside the home environment, people have little control
over the data IoT devices collect. Researchers at Intel
are working on a framework that allows people to be no-
tified about surrounding IoT devices collecting personal
information, and to control these collection practices [5].

Smartphones give users control over their privacy set-
tings in the form of prompts that ask whether the user
allows or denies a certain app access to a certain type
of information. Such prompts are problematic for IoT,
because IoT devices are supposed to operate in the back-
ground. Moreover, as the penetration of IoT devices in
our environment continues to increase, prompts would
become a constant noise which users will soon start to
ignore, like software EULAs [8] or privacy policies [12].

A better solution would be to regulate privacy with
global settings. But research has shown that users are
highly concerned about their privacy, but find it diffi-
cult to implement privacy settings [1, 9, 19]. Indeed, the
vast number of encounters people have with a myriad
of different IoT devices makes chosing adequate privacy
settings a very challenging task that is likely to result in
information and choice overload [28].

Data-driven design
What design process allows us to develop a usable
privacy-setting interface for IoT? The development of us-
able privacy interfaces commonly relies on user studies
with existing systems. However, this method is not pos-
sible in our IoT control scenario, because the Intel con-
trol framework has yet to be implemented [5]. We there-
fore develop and employ a data-driven design methodol-
ogy, leveraging an existing dataset collected by Lee and
Kobsa [16], who asked users whether they would allow
or deny IoT devices in their environment to collect infor-
mation about them. We use this dataset in two phases.

In our first phase, we develop a “layered” settings in-
terface, where users make a decision on a less granular
level (e.g., whether a certain recipient is allowed to col-
lect their personal information or not), and only move
to a more granular decision (e.g., what types of informa-
tion this recipient is allowed to collect) when they desire
more detailed control. This reduces the complexity of
the decisions users have to make, without reducing the
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amount of control available to them. We use statistical
analysis of the Lee and Kobsa dataset to decide which
aspect should be presented at the highest layer of our
IoT privacy-setting interface, and which aspects are rel-
egated to subsequently lower layers.

In our second phase, we develop a “smart” default set-
ting, which preempts the need for many users to man-
ually change their settings [26]. However, since people
differ extensively in their privacy preferences [20], it is
not possible to achieve an optimal default that is the
same for everyone. Instead, different people may require
different settings. Outside the field of IoT, researchers
have been able to establish distinct clusters or “profiles”
based on user behavioral data [14, 20, 29]. We perform
machine learning analysis on the Lee and Kobsa dataset
to create a similar set of “smart profiles” for our IoT
privacy-setting interface.

The remainder of this paper is structured as follows: We
first summarize previous work on privacy in IoT scenar-
ios, and describe the structure of the Lee and Kobsa [16]
dataset. We then inspect users’ behaviors using statis-
tical analysis. Next, we predict users’ behaviors using
machine learning methods. We subsequently present a
set of prototypes for an IoT privacy-setting interface.
Finally, we conclude with a summary of our proposed
procedure and the results of our analysis.

APPROACH AND RELATED WORK
Our goal is to develop intuitive interfaces for IoT privacy
settings, using a data-driven approach. In this section
we therefore discuss existing research on privacy-setting
interfaces and on privacy prediction.

Privacy-Setting Interfaces
The most basic privacy-setting interface is the “access
control matrix”, which allows users to indicate who gets
to see what [25]. This can be simplified by grouping re-
cipients into categories, such as Google+’s circles [27].
Taking a step further, Raber et al. [22] proposed Privacy
Wedges, which allow users to make privacy decisions us-
ing a combination of categorization (the wedges) and
inter-personal distance (the position of a person on the
wedge). Users can decide who gets to see their posts or
personal information by “coloring” parts of each wedge.

These wedges have been tested on limited numbers of
friends, and in the case of IoT they are likely insufficient,
due to the complexity of the decision space. To wit, IoT
privacy decisions involve a large selection of devices, each
with various sensors that collect data for a range of dif-
ferent purposes. This makes it complicated to design
an interface that covers every possible setting [28]. A
wedge-based interface will arguably not be able to suc-
cinctly represent such complexity without a significant
amount of information and choice overload.

We propose a data-driven approach to solve this prob-
lem: statistical analysis informs the construction of a

layered settings interface, while machine learning-based
privacy prediction helps us find smart privacy profiles.

Privacy Prediction
Several researchers have proposed privacy prediction as
a solution to the privacy settings complexity problem.
Sadeh et al. used a k-nearest neighbor algorithm and a
random forest algorithm to predict users’ privacy pref-
erences in a location-sharing system [24], based on the
type of recipient and the time and location of the re-
quest. They demonstrated that users had difficulties
setting their privacy preferences, and that the applied
machine learning techniques can help users to choose
more accurate disclosure preferences. Similarly, Pallapa
et al. [21] present a system which can determine the re-
quired privacy level in new situations based on the his-
tory of interaction between users. Their system can ef-
ficiently deal with the rise of privacy concerns and help
users in a pervasive system full of dynamic interactions.

Dong et al. [6] use a binary classification algorithms
to give users personalized advice regarding their pri-
vacy decision-making practices on online social networks.
They found that J48 decision trees provided the best re-
sults. Li and et al. [17] similarly use J48 to demonstrate
that taking the user’s cultural background into account
when making privacy predictions improves the predic-
tion accuracy. Our data stems from a culturally homo-
geneous population (U.S. Mechanical Turk workers), so
cultural variables are outside the scope of our study. We
do however follow these previous works in using J48 de-
cision trees in our prediction approach.

We further extend our approach using clustering to find
several smart default policies (“profiles”). This is in line
with Fang et al. [7], who present an active learning al-
gorithm that comes up with privacy profiles for users
in real time. Since our approach is based on an exist-
ing dataset, our algorithm does not classify users in real
time, but instead creates a static set of profiles ‘offline’,
from which users can subsequently choose. This avoids
cold start problems, and does not rely on the availability
of continuous real-time behaviors. This is beneficial for
IoT settings, because users often specify their settings
in these systems in a “single shot”, leaving the settings
interface alone afterwards.

Ravichandran et al. [23] employ an approach similar to
ours, using k-means clustering on users’ contextualized
location sharing decisions to come up with several de-
fault policies. They showed that a small number of de-
fault policies could accurately reflect a large part of the
location sharing preferences. We extend their approach
to find the best profiles based on various novel cluster-
ing approaches, and take the additional step of designing
user interfaces that incorporate the best solutions.

We apply our procedure to a dataset by Lee and
Kobsa [16], who presented users with a total of 2800
IoT usage scenarios that were systemstically manipu-
lated along five dimensions. Lee and Kobsa observed
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that the scenarios can be grouped into four clusters in
terms of privacy risks. Their clusters differ substantially
along several dimensions, most notably regarding the in-
quirer (‘who’) and data type (‘what’). The dominance
of the ‘who’ parameter is also reflected in a study in a
ubiquitous computing environment by Lederer et al. [15].
Extending upon Lee and Kobsa, our clustering procedure
is performed at the user level rather than the scenario
level. This allows us to create privacy profiles.

DATASET
This study is based on a dataset collected by Lee and
Kobsa [16]. A total of 2800 scenarios were presented
to 200 participants (100 male, 99 female, 1 undisclosed)
through Amazon Mechanical Turk. Four participants
were aged between 18 and 20, 75 aged 20–30, 68 aged
30–40, 31 aged 40–50, 20 aged 50–60, and 2 aged > 60.

Each participant was presented with 14 scenarios de-
scribing a situation where an IoT device would collect
information about the participant. Each scenario was
a combination of five contextual parameters (Table 1),
manipulated at several levels using a mixed fractional
factorial design that allowed us to test main effects and
two-way interactions between all parameters.

For every scenario, participants were asked a total of
9 questions. Our study focuses on the allow/reject
question: “If you had a choice to allow/reject this, what
would you choose?”, with options “I would allow it” and
“I would reject it”. We also used participants’ answers
to three attitudinal questions regarding the scenario:

• Risk: How risky or safe is this situation? (7pt scale
from “very risky” to “very safe”)

• Comfort: How comfortable or uncomfortable do you
feel about this situation? (7pt scale)

• Appropriateness: How appropriate do you consider
this situation? (7pt scale)

INSPECTING USERS’ BEHAVIORS
In this section we analyze how users’ behavioral inten-
tions to allow or reject the information collection de-
scribed in the scenario are influenced by the scenario
parameters. In line with classic attitude-behavior mod-
els [2], we also investigate whether users’ attitudes re-
garding the scenario—their judgment of risk, comfort,
and appropriateness—mediate these effects. This medi-
ation analysis [3] involves the following test:

• Test 1: The effect of the scenario parameters (who,
what, where, reason, persistence) on participants’ at-
titudes (risk, comfort, appropriateness).

• Test 2: The effect of participants’ attitudes on their
behavioral intentions (the allow/reject decision).

• Test 3: The effect of the parameters on behavioral
intentions, controlling for attitudes.

Table 1: Parameters used in the experiment. Example
scenarios:
“A device of a friend records your video to detect your
presence. This happens continuously, while you are at
someone else’s place, for your safety.”
“A government device reads your phone ID to detect your
identity. This happens once, while you are in a public
place (e.g. on the street), for health-related purposes.”

Parameter Levels

Who

The entity collecting
the data

1. Unknown
2. Colleague
3. Friend
4. Own device
5. Business
6. Employer
7. Government

What

The type of data
collected and
(optionally) the
knowledge extracted
from this data

1. PhoneID
2. PhoneID>identity
3. Location
4. Location>presence
5. Voice
6. Voice>gender
7. Voice> age
8. Voice>identity
9. Voice>presence
10. Voice>mood
11. Photo
12. Photo>gender
13. Photo>age
14. Photo>identity
15. Photo>presence
16. Photo>mood
17. Video
18. Video>gender
19. Video>age
20. Video>presence
21. Video>mood
22. Video>looking at
23. Gaze
24. Gaze>looking at

Where

The location of the
data collection

1. Your place
2. Someone else’s place
3. Semi-public place (e.g.
restaurant)
4. Public space (e.g. street)

Reason

The reason for
collecting this data

1. Safety
2. Commercial
3. Social-related
4. Convenience
5. Health-related
6. None

Persistence
1. Once
2. Continuously

Whether data is
collected once or
continuously
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Table 2: Effect of scenario on attitudes. Each model
builds upon and is tested against the previous.

Model χ2 df p-value
risk ∼ (1|sid)
+who 315.37 6 < .0001
+what 67.74 23 < .0001
+reason 15.65 5 .0079
+persistence 9.95 1 .0016
+where 7.47 3 .0586
+who:what 166.47 138 .0050
Model χ2 df p-value
comfort ∼ (1|sid)
+who 334.06 6 < .0001
+what 83.24 23 < .0001
+reason 18.68 5 .0022
+persistence 14.73 1 .0001
+where 3.25 3 .3544
+who:what 195.07 138 .0001
Model χ2 df p-value
appropriateness ∼ (1|sid)
+who 315.77 6 < .0001
+what 72.87 23 < .0001
+reason 23.27 5 .0003
+persistence 8.97 1 .0027
+where 5.46 3 .1411
+who:what 214.61 138 < .0001

If tests 1 and 2 are significant, and test 3 reveals a sub-
stantial reduction in conditional direct effect (compared
to the marginal effect), then we can say that the effects
of the scenario parameters on participants’ behavioral
intention are mediated by their attitudes. Moreover, if
the conditional direct effect is (close to) zero, then the
effects are fully (rather than partially) mediated.

Scenario Parameters and Attitude
ANOVA Test of Main Effects
To understand the effect of the scenario parameters
on participants’ attitudes, we created a separate linear
mixed effects regression (lmer) model with a random in-
tercept (to account for repeated measures on the same
participant) for each dependent variable (risk, comfort,
appropriateness), using the scenario parameters as inde-
pendent variables. We employed a forward stepwise pro-
cedure, adding the strongest remaining parameter into
the model at each step and comparing it against the pre-
vious model. Table 2 shows that all parameters except
where have a significant effect on each of the attitudes.

Post-hoc Comparisons
We also conducted Tukey post hoc analyses to better
understand how the various values of each parameter in-
fluenced the attitudes. Where was excluded from these
analyses, as it did not have an overall significant effect.
Some key findings of these post hoc analyses are:

Who: Participants perceive more risk when the recip-
ient of the information is ‘unknown’ than for any other

recipient (d range = [0.640, 1.450] and all ps < .001,
except for ‘government’: d = 0.286, p < .05). ‘Gov-
ernment’ is the next most risky recipient (d range =
[0.440, 1.190], all ps < .001). Participants consider their
‘own device’ the least risky (d range = [0.510, 1.450], all
ps < .001). Similar patterns were found for comfort and
appropriateness.

Reason: Participants were more comfortable disclos-
ing information for the purpose of ‘safety’ than for any
other reason except ‘health’ (d range = [0.230, 0.355], all
ps < .05). They also believe that disclosing information
for the purpose of ‘health’ or ‘safety’ is more appropri-
ate than for ‘social’ or ‘commercial’ purposes (d range =
[0.270, 0.310], all ps < .05).

Persistence: Participants were more comfortable,
found it more appropriate, and less risky to disclose their
information ‘once’ rather than ‘continuously’ (d = 0.146,
p < .01).

What: This parameter has a large number of values, so
we decided to selectively test planned contrasts instead
of post-hoc tests. We first compared different mediums
(voice, photo, video) regardless of what is being inferred:

• Participants were significantly more comfortable with
‘voice’ than ‘video’ (d = 0.260, p = .005), and found
‘voice’ less risky (d = −0.239, p = .005) and more
appropriate (d = 0.217, p = .015) than ‘video’.

• Participants were significantly more comfortable with
‘voice’ than ‘photo’ (d = 0.201, p = .007) and found
‘voice’ more appropriate than ‘photo’ (d = 0.157,
p = .028). There was no significant difference in terms
of risk (p = .118).

• No differences were found between ‘photo’ and ‘video’
in terms of risk (p = .24), comfort (p = .35) and
appropriateness (p = .26).

We also compared different inferences (e.g. age, gender,
mood, identity) across mediums. The following planned
contrasts were significant (all others were not):

• Participants were significantly more comfortable
(d = 0.363, p = .028) and found it more appropri-
ate (d = 0.371, p = .018) to reveal their ‘age’ rather
than their ‘identity’.

• Participants were significantly more comfortable
(d = 0.363, p = .008) and found it more appropri-
ate (d = 0.308, p = .024) to reveal their ‘presence’
rather than their ‘identity’.

Interaction effects
We also checked for two-way interactions between the
scenario parameters. The only significant interaction ef-
fect observed was between who and what. The last line
of each section in Table 2 shows the results of adding
this interaction to the model. Due to space concerns,
we choose not to address the post-hoc analysis of the
7 ∗ 24 = 168 specific combinations of who and what.
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Table 3: Effect of attitudes and scenario on allow/reject.

Model OR χ2 df p-value
allow ∼ (1|sid)
+risk 0.25 1005.24 1 < .0001
+comfort 5.04 723.27 1 < .0001
+appropriateness 3.47 128.17 1 < .0001
+who 8.80 6 .1851
+what 26.07 23 .2976
+reason 19.33 5 .0017
+persistence 12.69 1 .0004

Table 4: Effect of scenario on allow/reject, not control-
ling for attitudes.

Model χ2 df p-value
allow ∼ (1|sid)
+who 221.36 6 < .0001
+what 78.55 23 < .0001
+reason 21.95 5 .0005
+persistence 20.64 1 < .0001

Attitude and Behavioral intention
To test the effects of participants’ attitudes on their al-
low/reject decision, we ran a generalized linear mixed
effects regression (glmer) with a random intercept and a
logit link function to account for the binary dependent
variable. We found significant effects of all the three
attitudes on participants’ allow/reject decision (see Ta-
ble 3). Each 1-point increase in risk results in a 4.04-fold
decrease in the odds that the scenario will be allowed
(p < .0001). Each 1-point increase in comfort results
in a 5.04-fold increase (p < .0001), and each 1-point in-
crease in appropriateness results in a 3.47-fold increase
(p < .0001).

Mediation Analysis
The bottom half of Table 3 shows the conditional effects
of the significant parameters (who, what, reason, persis-
tance) on participants’ allow/reject decision, controlling
for attitude. Who and what are no longer significant;
these effects are thus fully mediated by attitude. The
effects of reason and persistance are still significant,
but smaller than the marginal effects (i.e., without con-
trolling for attitude, see Table 4)—their χ2s are reduced
by 12% and 39%, respectively. This means that the me-
diation effect was substantial in all cases. The final me-
diation model is displayed in Figure 1.

Discussion of Statistical Results
Our statistical results show several patterns that can in-
form the development of an IoT privacy-setting inter-
face. We find that who is the most important scenario
parameter, and should thus end up at the top layer of our
interface. People are generally concerned about IoT sce-
narios involving unknown and government devices, but
less concerned about about data collected by their own
devices. Mistrust of government data collection is in line
with Li et al.’s finding regarding US audiences [17].

WHO

WHAT

PERSISTENCE

REASON

RISK

COMFORT

APPROP

Behavioral Intention
(allow v/s reject)

See Table-4

Figure 1: Mediation model of the effect of scenario pa-
rameters on participants’ intention to allow/reject the
scenario, mediated by attitudinal factors

What is the next most important scenario parameter,
and its significant interaction with who suggests that
some users may want to allow/reject the collection of
different types of data by different types of recipients.
Privacy concerns are higher for photo and video than
for voice, arguably because photos and videos are more
likely to reveal the identity of a person. Moreover, people
are less concerned with revealing their age and presence,
and most concerned with revealing their identity.

The reason for the data collection may be used as the
next layer in the interface. Health and safety are gener-
ally seen as acceptable reasons. Persistence is less im-
portant, although one-time collection is more acceptable
than continuous collection. Where the data is being
collected does not influence intention at all. This could
be an artifact of the dataset: location is arguably less
prominent when reading a scenario than it is in real life.

Finally, participants’ attitudes significantly (and in some
cases fully) mediated the effect of scenario parameters on
behavioral intentions. This means that these attitudes
may be used as a valuable source for classifying people
into distinct groups. Such attitudinal clustering could
capture a significant amount of the variation in partic-
ipants in terms of their preferred privacy settings, esp-
cially with respect to the who and what dimensions.

PREDICTING USERS’ BEHAVIORS
In this section we predict participants’ allow/reject deci-
sion using machine learning methods. Our goal is to find
suitable default settings for an IoT privacy-setting inter-
face. Consequently, we do not attempt to find the best
possible solution; instead we make a conscious tradeoff
between parsimony and prediction accuracy. Accuracy
is important to ensure that users’ privacy preferences
are accurately captured and/or need only few manual
adjustments. Parsimony, on the other hand, prevents
overfitting and promotes fairness: we noticed that more
complex models tended to increase overall accuracy by
predicting a few users’ preferences more accurately, with
no effect on other users. Parsimony also makes the asso-
ciated default setting easier to understand for the user.
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Table 5: Comparison of clustering approaches

Approach clusters Accuracy # of profiles
Naive
classification

1 28.33% 1 (all ‘yes’)
1 71.67% 1 (all ‘no’)

Overall 1 73.10% 1

Attitude-
based
clustering

2 75.28% 2
3 75.17% 3
4 75.60% 3
5 75.25% 3

Fit-based
clustering

2 77.99% 2
3 81.54% 3

Agglomerative
clustering

200 78.13% 4
200 78.27% 5

Our prediction target is the participants’ decision to al-
low or reject the data collection described in each sce-
nario, classifying a scenario as either ‘yes’ or ‘no’. The
scenario parameters serve as input attributes. These are
nominal variables, making decision tree algorithms such
as ID3 and J48 a suitable prediction approach. Unlike
ID3, J48 uses gain ratio as the root node selection metric,
which is not biased towards input attributes with many
values. We therefore use J48 throughout our analysis.

We discuss progressively sophisticated methods for pre-
dicting participants’ decisions. After discussing naive
solutions, we first present a cross-validated tree learning
solution that results in a single “smart default” setting
that is the same for everyone. Subsequently, we dis-
cuss three different procedures that create a number of
“smart profiles” by clustering the participants and cre-
ating a separate cross-validated tree for each cluster. For
each procedure, we try various numbers of clusters. Ac-
curacies of the resulting solutions are reported in Table 5.

Naive Prediction Methods
We start with naive or “information-less” predictions.
Our dataset contains 793 ‘yes’es and 2007 ‘no’s. There-
fore, predicting ‘yes’ for every scenario gives us a 28.33%
prediction accuracy, while making a ‘no’ prediction gives
us an accuracy of 71.67%. In other words, if we disallow
all information collection by default, users will on aver-
age be happy with this default for 71.67% of the settings.

Overall Prediction
We next create a “smart default” by predicting the al-
low/reject decision with the scenario parameters using
J48 with Weka’s [11] default settings. The resulting tree
(Figure 2) has an accuracy of 73.10%. The confusion
matrix (Table 6) shows that this model results in overly
conservative settings; only 208 ‘yes’es are predicted.

Figure 2 shows that this model predicts ‘no’ for every
recipient (who) except ‘Own device’. For this value, the
default setting depends on what is being collected (see
Table 7). For some levels of what, there is a further
drill down based on where, persistence and reason.

Table 6: Confusion matrix for the overall prediction

Observed Prediction Total
Yes No

Yes 124 (TP) 669 (FN) 793
No 84 (FP) 1923 (TN) 2007

Total 208 2592 2800
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WHO

Unknown: NO

Colleague: NO

Friend: NO

Own device: WHAT

Business: NO

Employer: NO

Government: NO

Figure 2: The Overall Prediction decision tree. Further
drill down for who = ‘Own device’ is provided in Table 7

We can use this tree to create a “smart default” setting;
in that case, users would on average be content with
73.10% of these settings—a 2% improvement over the
naive “no to everything” default setting.

Given that people differ substantially in their privacy
preferences, it is not unsurprising that this “one size fits
all” default setting is not very accurate. A better solu-
tion would cluster participants by their privacy prefer-
ences, and then fit a separate tree for each cluster. These
trees could then be used to create “smart profiles” that
new users may choose from. Subsequent sections discuss
several ways of creating such profiles.

Attitude-Based Clustering
Our first “smart profile” solution uses the attitudes
(comfort, risk, appropriateness) participants expressed
for each scenario on a 7-point scale. We averaged the
values per attitude across each participant’s 14 answers,
and ran k-means clustering on that data with 2, 3, 4 and
5 clusters. We then added participants’ cluster assign-
ments to our original dataset, and ran the J48 decision
tree learner on the dataset with the additional cluster
attribute. Accuracies of the resulting solutions are re-
ported in Table 5 under “attitude-based clustering”.

All of the resulting trees had cluster as the root node.
This indicates that this parameter is a very effective pa-
rameter for predicting users’ decisions. This also allows
us to split the trees at the root node, and create separate
default settings for each cluster.

The 2-cluster solution (Figure 3) has a 75.28% accuracy
— a 3.0% improvement over the “smart default”. This
solution results in one profile with ‘no’ for everything,
while for the other profile the decision depends on the
recipient (who). This profile allows any collection in-
volving the user’s ‘Own device’, and may allow collec-
tion by a ‘Friend’ or an ‘Employer/School’, depending
on what is being collected.
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Table 7: Drill down of the Overall Prediction tree for
who = ‘Own device’

What Decision
PhoneID Yes
PhoneID>identity Yes
Location No

Location>presence Reason



Safety Yes
Commercial Yes
Social-related No
Convenience No
Health-related Yes
None Yes

Voice No

Voice>gender Where


Your place No
Someone else No
Semi-public No
Public Yes

Voice> age No
Voice>identity Yes
Voice>presence Yes
Voice>mood Yes
Photo No
Photo>gender No
Photo>age No
Photo>identity Yes
Photo>presence No
Photo>mood No
Video No
Video>gender No
Video>age No
Video>presence No
Video>mood Yes

Video>looking at Persistence

{
Once Yes
Continuous No

Gaze No

Gaze>looking at Reason



Safety Yes
Commercial No
Social-related No
Convenience Yes
Health-related Yes
None Yes
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CLUSTER

Cluster 0 (89 users):

Cluster 1 (111 users):

WHO

NO

Unknown: NO

Colleague: NO

Friend: WHAT

Own device: YES

Business: NO

Employer: WHAT

Government: NO

Figure 3: Attitude-based clustering: 2-cluster tree. Fur-
ther drill down for who = ‘Friend’ or ‘Employer/School’
in Cluster 0 is hidden for space reasons.

The 3-cluster solution has a slightly lower accuracy of
75.17%, but is more parsimonious than the 2-cluster so-
lution. There is one profile with ‘no’ for everything, one
profile that allows collection by the user’s ‘Own device’
only, and one profile that allows any collection except
when the recipient is ‘Unknown’ or the ‘Government’.
The 4- and 5-cluster solutions have several clusters with
the same sub-tree, and therefore reduce to a 3-cluster
solution with 75.60% and 75.25% accuracy, respectively.

Fit-based clustering
Our fit-based clustering approach clusters participants
without using any additional information. It instead uses
the fit of the tree models to bootstrap the process of sort-
ing participants into clusters. Like many bootstrapping
methods, ours uses random starts and iterative improve-
ments to find the optimal solution.

Random starts: We randomly divide particpants over
N separate groups, and learn a tree for each group. This
is repeated until a non-trivial starting solution (i.e., with
distinctly different trees per cluster) is found.

Iterative improvements: Once each of the N groups
has a unique decision tree, we evaluate for each partici-
pant which of the trees best represents their 14 decisions.
If this is the tree of a different group, we switch the par-
ticipant to this group. Once all participants are evalu-
ated and put in the group of their best-fitting tree, the
tree in each group is re-learned with the data of the new
group members. This then prompts another round of
evaluations, and this process continues until no further
switches are performed.

Since this process is influenced by random chance, it
is repeated in its entirety to find the optimal solution.
Cross-validation is performed in the final step to prevent
over-fitting. Accuracies of the 2- and 3-cluster solutions
are reported in Table 5 under “fit-based clustering”. We
were not able to converge on a higher number of clusters.

The 2-cluster solution has a 77.99% accuracy—a 6.7%
improvement over the “smart default”. One profile has
‘no’ for everything, while the settings in the other profile
depends on who: it allows any collection by the user’s
‘Own device’, and may allow collection by a ‘Friend’s de-
vice’ or an ‘Employer’, depending on what is collected.

The 3-cluster solution (Figure 4) has a 81.54% accuracy
— an 11.5% improvement over the “smart default”. We
find one profile with ‘no’ for everything; one profile that
may allow collection by the user’s ‘Own device’, depend-
ing on what is being collected; and one profile that al-
lows any collection except when the recipient (who) is
‘Unknown’, the ‘Government’, or a ‘Colleague’, with set-
tings for the latter depending on the reason.

Agglomerative clustering
Our final method for finding “smart profiles” follows a
hierarchical bottom-up (or agglomerative) approach. It
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CLUSTER

Cluster 0 (74 users):

Cluster 1 (77 users):

Cluster 2 (49 users):

NO

WHO

WHO

Unknown: NO
Colleague: NO
Friend: NO

Own device: WHAT
Business: NO
Employer: NO
Government: NO

Unknown: NO
Colleague: REASON

Friend: YES
Own device: YES
Business: YES
Employer: YES
Government: NO

PhoneID: YES
PhoneID>identity: YES
Location: PERSISTENCE
Location>presence: YES
Voice: NO
Voice>gender: YES
Voice>age : YES
Voice>identity: YES
Voice>presence: YES
Voice>mood: YES
Photo: YES
Photo>gender: WHERE
Photo>age: NO
Photo>identity: YES
Photo>presence: NO
Photo>mood: NO
Video: NO
Video>gender: NO
Video>age: YES
Video>presence: NO
Video>mood: YES
Video>looking at: PERSISTENCE
Gaze: PERSISTENCE
Gaze>looking at: YES

Safety purposes: YES
Commercial purposes: NO
Socialrelated purposes: YES
Your Convenience: YES
Healthrelated purposes: WHERE
None: NO

Figure 4: Fit-based clustering: 3-cluster tree. Further drill down is hidden for space reasons.

first fits a separate tree for each participant, and then it-
eratively merges them based on similarity. 156 of the ini-
tial 200 trees predict “no for everything” and 34 of them
predict “yes for everything”—these are merged first. For
every possible pair of the remaining 10 trees, the accu-
racy of the pair is compared with the mean accuracy the
individual trees, and the pair with the smallest reduction
in accuracy is merged. This process is repeated until we
reach the predefined number of clusters.

We were able to reach a 5- and 4-cluster solution. The 3-
cluster solution collapsed down into a 2-cluster solution
with one profile of all ‘yes’es and one profile of all ‘no’s
(a somewhat trivial solution with a relatively bad fit).
Accuracies of the 4- and 5-cluster (Table 5, “agglomer-
ative clustering”) are 78.13% and 78.27% respectively.
For the 4-cluster solution, we find one profile with ‘no’
for everything, one profile with ‘yes’ for everything, one
profile that depends on who, and another that depends
on what. The latter two profiles drill down even further
on specific values of who and what, respectively.

Discussion of Machine Learning Results
Figure 5 shows a comparison of the presented ap-
proaches. Compared to a naive default setting (all ‘no’),
a “smart default” makes a 2.0% improvement. The fit-
based 2-cluster solution results in two “smart profiles”
that make another 6.7% improvement over the “smart
default”, while the three “smart profiles” of the fit-based
3-cluster solution make an 11.5% improvement. If we let
users choose the best option among these three profiles,
they will on average be content with 81.54% of the set-
tings. This rivals the accuracy of some of the “active
tracking” machine learning approaches (cf. [24]).

70 71 72 73 74 75 76 77 78 79 80 81 82 83

Agglomerative	 (5)

Agglomerative	 (4)

Fit	(3) 
Attitude	(3)

Fit	(2)
Attitude	(2)

Overall	 (1)
Naïve	(1)

Accuracy	 (%)

Overview	of	model	accuracies

Figure 5: Accuracy of our clustering approaches

In line with our statistical results, the factor who seems
to be the most prominent parameter, followed by what.
In some cases the settings are more complex, depending
on a combination of who and what. This is in line with
the interaction effect observed in our statistical results.

Even our most accurate solution is not without fault,
and its accuracy depends most on the who parameter.
Specifically, the solution is most accurate for the user’s
own device, the device of a friend, and when the recip-
ient is unknown. It is however less accurate when the
recipient is a colleague, a nearby business, an employer,
or the government. In these scenarios, more misclassifi-
cations tend to happen, so it would be useful to ‘guide’
users to specifically have a look at these default settings,
should they opt to make any manual overrides.

Session 2B: Modelling and Predicting User Behavior IUI 2018, March 7–11, 2018, Tokyo, Japan

172



IoT Settings

Unknown devices
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My employer's devices
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more

more

more

more

more

more

more
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more

more

more

more

more

more

9:00 AM 100% ������ 

Voice, to determine my…

identity

gender

age more

more

more

Photos, to determine my…

Settings Voice - age

never

once

continuously

For what purpose may your friends’ devices record your voice 
to determine your age?

9:00 AM 100% ������ 

Safety

Friends

never

once

continuously

Health

never

once

Convenience

ProfilesDefault profiles
Please select a profile

(you can change individual settings on the next screen)

9:00 AM 100% ������ 

Limited collection
This profile allows the collection of: 
⁃ any data by the your own devices, your friends’ devices, 

your employer/school’s devices, and devices of nearby 
businesses

⁃ any data by your colleagues’ devices, but only for certain 
reasons

learn more…

No collection
This profile prevents the collection of any data

learn more…

next

Limited collection, personal devices only
This profile allows the collection of: 
⁃ certain types of data by the your own devices

learn more…

Figure 6: From Left, Screen 1 shows three default settings, Screen 2,3 and 4 shows layered interface

PRIVACY-SETTING PROTOTYPES
Designers of IoT privacy-setting interfaces face a difficult
challenge. Since there currently exists no system for set-
ting one’s privacy preferences for public IoT scenarios,
designers must rely on existing data such as the Lee and
Kobsa [16] dataset to inform the design of these inter-
faces. Moreover, even for the simplified scenarios in this
dataset, a privacy-setting interface will likely be com-
plex, as it requires users to navigate settings for 7 types
of recipients (who), 24 types of information (what), 4
different locations (where), 6 purposes (reason), and
decide whether they want to allow the collection once or
continuously (persistence). In this section we employ
our data-driven design methodology to develop a proto-
type for an IoT privacy-setting interface based on the
results of our statistical and machine learning analyses.

Manual Settings
The first challenge is to design an interface that users
can navigate manually. Using the results of our statis-
tical analyses, we design a “layered” settings interface:
users can make a decision based on a single parameter
only, and choose ‘yes’, ‘no’, or ‘it depends’ for each pa-
rameter value. If they choose ‘it depends’, they move to
a next layer, where the decision for that parameter value
is broken down by another parameter.

The manual interface is shown in Screens 2-4 of Figure 6.
At the top layer of this interface should be the scenario
parameter that is most influential in our dataset. Our
statistical results inform us that this is the who param-
eter. Screen 2 shows how users can allow/reject data
collection for each of the 7 types of recipients. Users can
choose “more”, which brings them to the second-most
important scenario parameter, i.e. the what parame-
ter. Screen 3 shows the data type options for when the
user clicks on “more” for “Friends’ devices”. We have

conveniently grouped the options by collection medium.
Users can turn the collection of various data types by
their friends’ devices on or off. If only some types of data
are allowed, the toggle at the higher level gets a yellow
color and turns to a middle option, indicating that it is
not completely ‘on’ (see “Friends’ devices” in Screen 2).

Screen 4 shows how users can drill down even further
to specify reasons for which collection is allowed, and
the allowed persistence (we combined these two pa-
rameters in a single screen to reduce the “depth” of our
interface). Since reason and persistence explain rela-
tively little variance in behavioral intention, we expect
that only a few users will go this deep into the inter-
face for a small number of their settings. We leave out
where altogether, because our statistical results deemed
this parameter to be non-significant.

Smart Default Setting
The next challenge is to decide on a default setting, so
that users only have to make minimal adjustments to
their settings. We can use a simple “yes to everything” or
“no to everything” default, but these are on average only
accurate 28.33% and 71.67% of the time, respectively.

Using the results from our Overall Prediction (see Fig-
ure 2), we can create a “smart default” setting that is
73.10% accurate on average. In this version, the IoT
settings for all devices are set to ‘off’, except for ‘My
own device’, which will be set to the middle option. Ta-
ble 7 shows the default settings at deeper levels. As this
default setting is on average only 73.10% accurate, we
expect users to still change some of their settings. They
can do this by navigating the manual settings interface.

Smart Profiles
To improve the accuracy of the default setting, we can
instead build two “smart profiles”, and allow the user to
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choose among them. Using the 3-cluster solution of the
fit-based approach (see Figure 4), we can attain an ac-
curacy of 81.54%. Screen 1 in Figure 6 shows a selection
screen where the user can choose between these profiles.
The “Limited collection” profile allows the collection of
any information by the user’s own devices, their friends’
devices, their employer/school’s devices, and devices of
nearby businesses. Devices of colleagues are only allowed
to collect information for certain reasons. The “Limited
collection, personal devices only” profile only allows the
collection of certain types of information by the user’s
own devices. The “No collection” profile does not allow
any data collection to take place by default.

Once the user chooses a profile, they will move to the
manual settings interface (Screens 2–4), where they can
further change some of their settings.

CONCLUSION
The motivation behind our research was the informa-
tion and choice overload associated with the plethora of
choices that users might face while setting their privacy
settings in an IoT environment. We have made use of
statistical analyses and machine learning algorithms to
provide a data-driven design for an IoT privacy-setting
interface. We summarize this procedure as follows:

• Using statistical analysis, uncover the relative impor-
tance of the parameters that influence users’ privacy
decisions. Develop a “layered interface” in which these
parameters are presented in decreasing order of impor-
tance.

• Using a tree-learning algorithm, create a decision tree
that best predicts participants’ choices based on the
parameters. Use this tree to create a “smart default”
setting.

• Using a combination of clustering and tree-learning
algorithms, create a set of N decision trees that best
predict participants’ choices. Use the trees to create
N “smart profiles”.

• Develop a prototype for an IoT privacy-setting in-
terface that integrates the layered interface with the
smart default or the smart profiles.

We demonstrated this procedure by applying it to a
dataset collected by Lee and Kobsa [16]. In the process,
we made a number of interesting observations.

The statistical and machine learning results both indi-
cated that recipient of the information (who) is the most
significant parameter in users’ decision to allow or reject
IoT-based information collection. This parameter there-
fore features at the forefront in our layered settings inter-
face, and plays an important role in our smart profiles.

The what parameter was the second-most important de-
cision parameter, and interacted significantly with the
who parameter. This parameter therefore features at
the second level of our settings interface, and further
qualifies some of the settings in our smart profiles.

Our layered interface allows a further drill-down to the
reason and persistence parameters, but given the rel-
atively lesser importance of these parameters, we expect
few users to engage with the interface at this level. More-
over, the where parameter was not significant, so we left
it out of the interface.

While a naive (‘no’ to all) default setting in our interface
would have provided an accuracy of 71.67%, it would not
have allowed users to reap the potential benefits associ-
ated with IoT data collection without changing the de-
fault setting. Our Overall Prediction procedure resulted
in a smart default setting that was a bit more permissive,
and increased the accuracy by 2%.

The fit-based clustering approach, which iteratively clus-
ters users and fits an optimal tree in each cluster, pro-
vided the best solution. This resulted in an interface
where users can choose from 3 profiles, which increases
the accuracy by another 11.5%.

Our analysis allowed us to use data-driven design to
bootstrap the development of a privacy-setting interface,
but a future user experiment could investigate whether
users are comfortable with the layered interface, and
whether they prefer a single “smart default” setting or
a choice among “smart profiles”.

The scenario-based method presented in this paper is
particularly suited for novel domains where few real in-
teraction exist. We note, though, that this novelty may
hamper our approach: users’ decisions are inherently
limited by the knowledge they have about IoT. Lee and
Kobsa [16] made sure to educate users about the pre-
sented scenarios, hence their data is arguably better in
this regard than data from “live” systems. However,
as the adaptation of IoT becomes more widespread, the
mindset and knowledge regarding such technologies—
and thus their privacy preferences—might change. Our
“smart profiles” may thus eventually have to be updated
in future work, but for now, our current profiles can at
least help users make make better privacy decisions in
their initial stages of usage.

Future work could also apply the proposed procedure to
other privacy-setting domains. In using scenarios, the
procedure avoids typical decision externalities such as
default effects, framing effects, and decision-context ef-
fects that tend to obfuscate users’ behaviors in more nat-
uralistic studies. Moreover, the scenarios can inform the
creation of privacy-setting interfaces for novel or cur-
rently non-existent technologies. As such we imagine
that the procedure could be applied in new domains,
such as household IoT (“smart home”) privacy, drone
privacy, and nano-tech privacy. In some of these do-
mains, fully “adaptive” privacy mechanisms that use
“active tracking” (cf. [13, 18]) are more suitable, while
other domains could benefit from our static, profile-
based approach.
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