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Pulse-Coupled Oscillators Resilient to Stealthy

Attacks
Zhenqian Wang and Yongqiang Wang, Senior Member, IEEE

Abstract—Synchronization of bio-inspired pulse-coupled oscil-
lators (PCOs) is receiving increased attention due to its wide
applications in sensor networks and wireless communications.
However, most existing results are obtained in the absence
of malicious attacks. Given the distributed and unattended
nature of wireless sensor networks, it is imperative to enhance
the resilience of pulse based synchronization against malicious
attacks. To achieve this goal, we propose a new pulse based
interaction mechanism to improve the resilience of pulse based
synchronization. We rigorously characterize the condition for
mounting stealthy attacks under the proposed pulse based in-
teraction mechanism and prove analytically that synchronization
of legitimate oscillators can be achieved in the presence of
multiple stealthy attackers even when the initial phases are
unrestricted, i.e., randomly distributed in the entire oscillation
period. This is in distinct difference from most existing attack-
resilient synchronization algorithms (including the seminal paper
from Lamport and Melliar-Smith [1]) which require a priori
(almost) synchronization among legitimate nodes. Numerical
simulations are given to confirm the theoretical results.

I. INTRODUCTION

Inspired by flashing fireflies and contracting cardiac cells,

pulse based synchronization is attracting increased attention in

wireless networks [2]–[5]. By exchanging simple and identical

pulses, pulse based synchronization can be established with

much less energy consumption and communication overhead

compared with conventional packet-based synchronization ap-

proaches [6]. These inherent advantages make pulse based

synchronization appealing to the clock synchronization of

wireless sensor networks [7]–[11]. In the past decade, plenty

of results have been obtained on pulse based synchronization.

For example, by optimizing the interaction function, i.e., phase

response function, synchronization speed of pulse-coupled

oscillators (PCOs) is maximized in [12]; with a judiciously-

added refractory period in the phase response function, the

energy consumption in PCO synchronization is reduced in

[13]–[15]; [16]–[18] show that PCOs can achieve synchro-

nization under a general coupling topology even when their

initial phases are randomly distributed in the entire oscillation

period. Recently, synchronization of PCOs in the presence of

time-delays and unreliable links is also discussed [19], [20].

Other relevant results include [21]–[25].

However, the above results are obtained based on the

assumption that all oscillators behave correctly with no nodes

compromised by malicious attackers. Due to the distributed
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and unattended nature, wireless sensor nodes are extremely

vulnerable to attacks, which makes it imperative to study syn-

chronization in the presence of attacks. Although plenty of dis-

cussions exist for conventional packet-based synchronization,

e.g., [1], [26]–[31], results on the attack-resilience of pulse

based synchronization are very sparse. In [32], the authors

showed that pulse based synchronization is more robust than

its packet-based counterpart in the presence of a faulty node. In

[33], a new phase response function was proposed to combat

non-persistent random attacks in pulse based synchronization.

The authors in [34] considered pulse based synchronization in

the presence of faulty nodes which fire periodically irrespec-

tive of neighboring nodes. However, none of the above pulse

based studies address situations where compromised nodes

act maliciously and apply disturbing pulses with judiciously-

crafted pattern to corrupt synchronization. Furthermore, these

results only apply to a priori synchronized PCOs, i.e., all

legitimate nods are required to have identical phases when

faulty pulses are emitted.

In this paper, we consider the synchronization of PCOs

under stealthy Byzantine attacks. In the pulse based in-

teraction framework where exchanged messages (so-called

pulses) are identical and content-free, Byzantine attacks mean

compromised nodes injecting pulses using judiciously crafted

patterns to disturb the synchronization process. We consider

stealthy Byzantine attacks which are intelligent and only use

pulse injection patterns undetectable by legitimate nodes. So

compared with existing results in [32]–[34], the situation

considered in this paper is more difficult to deal with due to

the intelligent behavior of malicious attackers. By proposing

a new pulse based interaction approach, we show that perfect

synchronization of legitimate oscillators can still be guaranteed

even when their initial phases are randomly distributed in the

entire oscillation period [0,2π], which is in distinct difference

from our recent results in [35] requiring initial phases to be

restricted in a certain interval. The approach is applicable even

when individual oscillators do not have access to the total

number of oscillators in a network.

This paper is organized as follows. Sec. II introduces a

new pulse based interaction mechanism. Sec. III characterizes

the synchronization condition of all-to-all PCOs under the

new interaction mechanism in the absence of attacks. In Sec.

IV, under a pulse-number based detection mechanism, we

characterize the condition for an attacker to keep stealthy, i.e.,

mounting attacks without being detected. In Sec. V, we prove

that synchronization of legitimate oscillators can be guaranteed

even in the presence of multiple stealthy Byzantine attackers.

We also extend the results to relaxed initial conditions, i.e.,
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as N1 and the set of oscillators with phases in (π,2π] as

N2. One can easily get N1∪N2 =N and N1∩N2 = /0.

The length of the containing arc at time instant ti can

be expressed as

δ (ti) =2π + max
k∈N1

{φk(ti)}− min
j∈N2, j 6=i

{φ j(ti)}

=2π +φk̄(ti)−φ j(ti) (7)

where j = argmin j∈N2, j 6=i φ j(ti) and k̄ =
argmaxk∈N1

φk(ti). After the firing of oscillator

i, we have φ+
i (ti) = 0. Under the PRF in (2),

we can get φ+
k (ti) = (1 − l)φk(ti) for k ∈ N1 and

φ+
j (ti) = φ j(ti) + l(2π − φ j(ti)) for j ∈ N2, j 6= i. The

length of the containing arc becomes

δ+(ti) = 2π + max
k∈N1

{φ+
k (ti)}− min

j∈N2, j 6=i
{φ+

j (ti)}

= (1− l)(2π +φk̄(ti)−φ j(ti))

= (1− l)δ (ti) (8)

Since 0 < l ≤ 1 holds, one can easily get δ+(ti)≤ δ (ti)
in this case (Note that the equality mark holds only

when δ (ti) = 0 is true, meaning that the network is

synchronized).

Summarizing the above analysis, we can get that the length

of the containing arc is non-increasing. In addition, if the firing

of an oscillator triggers a jump on another oscillator, then the

firing will reduce the length of the containing arc to δ+(t) =
(1− l)δ (t).

Next, we proceed to prove that the length of the containing

arc will decrease to 0. To this end, we first show that every

oscillator will fire at least once within a certain time period.

Without loss of generality, we set the initial time instant as

t0 = 0. Since the initial length of the containing arc is less

than π rad and it is non-increasing, as analyzed earlier, there

exists a time instant t1 > T at which all oscillators’ phases

reside in (π,2π]. At this time instant, noting that the PRF

in (2) is non-negative in (π,2π], we can get that exchanged

pulses can only advance or have no effect on a receiving

oscillator’s phase. Therefore, all oscillators will reach phase

2π rad and fire within the time interval [t1, t1 +T/2]. On the

other hand, since the PRF in (2) is non-positive in [0,π], we

can get that exchanged pulses can only delay or have no effect

on a receiving oscillator’s phase residing in [0,π]. So it takes

at least T/2 time for an oscillator’s phase to evolve from 0 to

π rad. Therefore, no oscillator can surpass phase point π rad

at time instant t1 +T/2. In other words, each oscillator fired

once within [t1, t1 +T/2] and all oscillators’ phases reside in

[0,π] at time instant t1 +T/2.

Next, we proceed to prove that there exists at least one

oscillator, whose firing can trigger jumps on all the other os-

cillators’ phases within the time interval [t1, t1+T/2]. Assume

to the contrary that no oscillator’s firing triggers a jump on

any other oscillators within [t1, t1 +T/2]. So condition b) of

Mechanism 1 cannot be satisfied, which means that no greater

than λ oscillators fired in any quarter period within the time

interval [t1, t1+T/2]. Hence, no greater than λ oscillators fired

in the time interval [t1, t1 +T/4] and the same is true for the

interval [t1+T/4, t1+T/2]. Therefore, no greater than 2λ <N

oscillators fired within [t1, t1+T/2], which contradicts the fact

that all oscillators fired once within [t1, t1 +T/2]. So we can

conclude that there exists at least one firing event that triggers

phase jumps on the other N−1 oscillators within [t1, t1+T/2].
Without loss of generality, we assume that oscillator i fires

at ti ∈ [t1, t1+T/2], which triggers phase jumps on all the other

N − 1 oscillators. Based on the above analysis, we have that

the length of the containing arc is decreased by the firing of

oscillator i when δ (ti) 6= 0.

At time instant t1 + T/2, the phases of all oscillators

reside in [0,π] and they will evolve freely toward (π,2π]. By

repeating the above analyses, we can get that the length of the

containing arc will be decreased by the firing of at least one

oscillator in a firing round until it converges to 0. Therefore,

synchronization of the network can be achieved.

Next, we show that the initial phase distribution requirement

in Theorem 1 can be removed, i.e., under all-to-all topology,

the new synchronization mechanism can guarantee synchro-

nization even when the phases of oscillators are arbitrarily

distributed in [0,2π].
Theorem 2: For an attack-free all-to-all network of N

PCOs, if the initial phases of all oscillators are randomly

distributed in [0,2π], then Mechanism 1 can achieve perfect

synchronization as long as the coupling strength satisfies

l > 0.5.

Proof: Without loss of generality, we set the initial time

instant as t0 = 0. First, we will show that in any time interval

[t1, t1+T ] with t1 > T , there exists one firing event from some

oscillator which can trigger phase jumps on all the other N−1

oscillators.

Assume to the contrary that no pulse can trigger a jump

within [t1, t1+T ]. One can get that the phase distance between

any two oscillators is invariant within [t1, t1 +T ]. Then every

oscillator will evolve freely with natural frequency ω for a

full cycle and fire once during [t1, t1 +T ]. In other words, N

oscillators fired within the interval [t1, t1 +T ].
Under the assumption that no pulse can trigger a jump on

any oscillator’s phase within [t1, t1+T ], we have that condition

b) of Mechanism 1 cannot be satisfied, i.e., no greater than

λ oscillators fired in any quarter oscillation period within the

time interval [t1, t1 +T ]. Hence, no greater than λ oscillators

fired in the time interval [t1, t1 +T/4] and the same is true for

intervals [t1 +T/4, t1 +T/2], [t1 +T/2, t1 + 3T/4], and [t1 +
3T/4, t1 + T ]. Therefore, no greater than 4λ < N oscillators

fired within [t1, t1 +T ], which contradicts the assumption that

N oscillators fired within [t1, t1+T ]. So at least one oscillator’s

firing will trigger all the other oscillators’ phases to jump in

[t1, t1 +T ].
We assume that oscillator i′s firing at ti ∈ [t1, t1+T ] triggers

a jump on all the other N − 1 oscillators. Denoting φk(ti) as

the phase of oscillator k ∈ N = {1,2, · · · ,N} at time instant

ti, one can get φ+
i (ti) = 0 and φ+

k (ti) = φk(ti)+F(φk(ti)) for

k ∈ N ,k 6= i. When l > 0.5 is true, the PRF in (2) leads to

φ+
k (ti) ∈ (3π/2,2π] for φk(ti) ∈ (π,2π] and φ+

k (ti) ∈ [0,π/2)
for φk(ti) ∈ [0,π]. Hence, the phase of all oscillators reside in

(3π/2,2π]∪ [0,π/2) and the length of the containing arc is

less than π rad. Using Theorem 1, we have that all oscillators

will synchronize.
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IV. STEALTHY BYZANTINE ATTACKS

The concept of Byzantine attacks stems from the Byzantine

generals problem [36]. It is used to describe a traitor comman-

der who sends or relays fake information to other commanders

to avoid the loyal ones from reaching agreement [26]. In the

case of PCO synchronization, Byzantine attacks are assumed

to be able to compromise an oscillator and completely take

over its behavior. So an oscillator compromised by Byzantine

attacks will emit pulses at arbitrary time instants. Apparently,

if an attacker keeps sending pulses continuously without rest,

it can effectively prevent legitimate oscillators from reaching

synchronization. However, such a manner of attacks will

also render themselves easily detectable, just as jamming of

communication channels being easy to detect, isolate, and

remove [37]. Therefore, we are only interested in “stealthy”

Byzantine attacks which cannot be detected by legitimate

oscillators in the pulse based interaction framework.

In all-to-all PCO networks, since all exchanged pulses

are identical with no embedded content such as source or

destination information, conventional content-checking based

attack-detection mechanisms such as [1] cannot be applied.

We propose to let each node detect potential attacks by

monitoring the number of pulses it receives within a certain

time interval. The basic rationale is as follows: In a given time

interval, if the number of received pulses is greater than the

maximally possible number of pulses emitted by all legitimate

oscillators, then it is safe to conclude that an attacker is present

who injected the superfluous pulses. To this end, we first

characterize the number of pulses that an oscillator can receive

within a certain time interval:

Theorem 3: For an all-to-all network of N legitimate PCOs

under Mechanism 1, one oscillator can receive at most N −1

pulses within any time interval [t, t +T/2] for t ≥ 0.

Proof: Without loss of generality, we assume that oscil-

lator i emits a pulse and resets its phase to 0 at time instant

t1, i.e., φi(t1) = 2π rad and φ+
i (t1) = 0. Under Mechanism

1 and the PRF in (2), one can get that the phase evolution

of oscillator i from 0 to π rad can only be decelerated (or

unaffected) by received pulses. Hence, it takes oscillator i at

least T/2 time to evolve from 0 to π rad, which, combined

with the fact that a node cannot jump from π rad to 2π rad

instantaneously (the value of PRF in (2) is −π rad at phase

π rad), further means that it takes oscillator i over T/2 to

evolve from 0 to 2π rad. In other words, within any time

interval [t, t + T/2] for t ≥ 0, oscillator i can emit at most

one pulse. Therefore, an oscillator can emit at most one pulse

during an arbitrary time interval [t, t +T/2] for t ≥ 0.

Based on the above analysis, we know that for an all-to-

all network of N oscillators, at most N pulses can be emitted

during an arbitrary time interval [t, t +T/2] for t ≥ 0. So an

oscillator can receive at most N−1 pulses within an arbitrary

time interval [t, t +T/2] for t ≥ 0.

Based on Theorem 3, we have, under the pulse number

based detection mechanism, that any oscillator’s receiving

more than N − 1 pulses within an arbitrary time interval

[t, t +T/2] implies the presence of attacks.

From the above analysis, the condition for mounting stealthy

Byzantine attacks is given as follows:

Stealthy Byzantine Attack Model: For an all-to-all network

of N PCOs under Mechanism 1, one compromised oscillator

can launch stealthy Byzantine attacks as long as it injects

pulses with a time separation of length over T/2.

Remark 3: In this paper, the detection mechanism only

considers the minimal separation within which one oscillator

can receive at most N − 1 pulses (i.e., T/2) because it is

extremely hard to find a tight maximal separation during which

one oscillator can receive at least N−1 pulses. Another reason

for not imposing a maximal separation is that in practice,

pulse dropout is unavoidable, which makes it impossible to

guarantee that each oscillator will receive at least N−1 pulses

within a certain time interval.

V. SYNCHRONIZATION OF ALL-TO-ALL PCO NETWORKS

IN THE PRESENCE OF STEALTHY BYZANTINE ATTACKS

In this section, we address the synchronization of PCO

networks in the presence of stealthy Byzantine attacks. Among

N PCOs, we assume that M are compromised and act as

stealthy Byzantine attackers. Specifically, we will show that

the proposed pulse based interaction mechanism can synchro-

nize legitimate oscillators even in the presence of multiple

stealthy Byzantine attackers. More interestingly, we can prove

that legitimate oscillators can synchronize even when their

initial phases are randomly distributed in the entire oscillation

period [0,2π]. Similar to Lemma 1, we first establish the

following property for PCO networks:

Lemma 2: For an all-to-all network of N PCOs among

which M are compromised and act according to the stealthy

Byzantine attack model in Sec IV, if the firing of an arbitrary

oscillator (either legitimate or malicious) triggers a phase jump

on a legitimate oscillator, then the firing can trigger phase

jumps on all legitimate oscillators.

Proof: Noting that the topology of the network is all-to-

all, one can get that an oscillator’s pulse can be received by

all the other oscillators. Hence, Lemma 2 can be acquired by

following the same line of reasoning in Lemma 1.

Now we are in position to present the synchronization

condition of all-to-all PCO networks in the presence attacks.

Theorem 4: For an all-to-all network of N PCOs among

which M are compromised and act according to the stealthy

Byzantine attack model in Sec IV, if the number of compro-

mised oscillators M is no greater than b(N − 1)/5c and the

initial length of the containing arc is less than π/2 rad, then

all legitimate oscillators can be perfectly synchronized under

Mechanism 1.

Proof: We divide the proof into two parts. In part I, we

will prove that the length of the containing arc of legitimate

oscillators is non-increasing. In Part II, we prove that the

length of the containing arc of legitimate oscillators will

decrease to 0.

Part I (The length of the containing arc of legitimate

oscillators is non-increasing): It can be easily inferred that the

length of the containing arc of legitimate oscillators remains

unchanged if no legitimate oscillator jumps in phase. So we

only consider the case that an oscillator’s firing (say oscillator

i, either legitimate or malicious) triggers a jump on a legitimate
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for h ∈ N5. Hence, the length of the containing arc of

legitimate oscillators becomes

δ+(ti) = 2π + max
k∈N4

{φ+
k (ti)}− min

h∈N5

{φ+
h (ti)}

= 2π +φ+
k̄
(ti)−φ+

h (ti)

= (1− l)(2π +φk̄(ti)−φh(ti))

= (1− l)δ (ti) (12)

Sine 0 < l ≤ 1 holds, one can get δ+(ti)< δ (ti) when-

ever δ (ti) is nonzero.

In conclusion, the length of the containing arc of legitimate

oscillators is non-increasing. In addition, if the firing of an

oscillator triggers a jump on a legitimate oscillator, then the

firing will reduce the length of the containing arc of legitimate

oscillators to δ+(ti) = (1− l)δ (ti).
Part II (The length of the containing arc of legitimate

oscillators will decrease to 0): To prove that the length of the

containing arc of legitimate oscillators will keep decreasing,

we only need to show that pulses which trigger phase jumps

on legitimate oscillators will keep occurring until the length

of the containing arc of legitimate oscillators reaches zero.

Because if none of legitimate oscillators’ phases are trapped in

some sub-interval within [0,2π], then all legitimate oscillators

will keep firing repeatedly within one quarter period interval

from each other (note that as proven before, the containing

arc of legitimate oscillators is non-increasing and hence is

always less than π/2 rad). Given that the number of legitimate

oscillators is N−M > λ , it can be easily inferred that at least

the firing of one legitimate oscillator will trigger a phase jump

according to Mechanism 1 in Sec. II. Therefore, to prove that

the length of the containing arc of legitimate oscillators will

decrease to zero, it is sufficient to show that no legitimate

oscillator will stop from firing.

Given that once the phase of a legitimate oscillator surpasses

π rad, it cannot be stopped from firing (because its phase

can only be advanced under the PRF in (2)). Further taking

into account the fact that pulses from stealthy attackers alone

(no greater than λ ) are not enough to trigger any phase shift

according to Mechanism 1 in Sec. II, we have that at least one

legitimate oscillator can fire repeatedly (Note that if no phase

jumps are triggered, then legitimate oscillators will evolve

freely and fire periodically).

Next, we proceed to prove that if one legitimate oscillator

can fire, i.e., can evolve into the interval (π,2π], then all

legitimate oscillators can evolve into (π,2π]. Without loss of

generality, we assume that the legitimate oscillator which can

fire surpasses phase π rad at time instant ti. Given that the

length of the containing arc of legitimate oscillators is always

strictly less than π/2 rad, as proven before, we have that at

time instant ti, all legitimate oscillators have phases residing

in (π/2,3π/2).
Noting that the phase of a legitimate oscillator having phase

in [0,π] can only be delayed (or unaffected) by received pulses,

it can be easily inferred that after the most recent firing from

legitimate oscillators, it took all legitimate oscillators at least

T/4 to evolve to the current phase in (π/2,3π/2), during

which no legitimate oscillators sent any pulse. Therefore,

starting from ti, attack pulses will not affect the phase of

legitimate oscillators until at least one legitimate oscillator

reaches 2π rad to fire, which takes at least T/4. So after the

at least T/4 time of free evolution, the phases of legitimate

oscillators become residing in (π,2π], which means that all

legitimate oscillators will fire.

Therefore, we can conclude that the length of the containing

arc of legitimate oscillators will keep decreasing until it

reaches 0, i.e., the achievement of synchronization of legit-

imate oscillators.

Next, we show that the initial phase distribution requirement

in Theorem 4 can be removed, i.e., Mechanism 1 can guarantee

synchronization in the presence of attacks even when all

legitimate oscillators’ initial phases are arbitrarily distributed

in [0,2π].
Theorem 5: For an all-to-all network of N PCOs, within

which M oscillators are compromised and act as stealthy

Byzantine attackers, if the number of compromised oscillators

M is no greater than b(N−1)/5c, then all legitimate oscillators

can be perfectly synchronized under Mechanism 1 from any

initial phase distribution when the coupling strength satisfies

l > 0.75.

Proof: Without loss of generality, we set the initial time

instant to t0 = 0. Similar to the proof of Theorem 2, we first

show that for any time interval [t1, t1 +T ] with t1 > T , there

exists one firing event which can trigger a phase jump on a

legitimate oscillator.

Assume to the contrary that no pulse can trigger a phase

jump on a legitimate oscillator within [t1, t1 +T ]. One can get

that the phase distance between any two legitimate oscillators

is invariant within [t1, t1 +T ]. Since T is the natural period,

every legitimate oscillator will evolve freely for a full cycle on

the unit circle and fire once during [t1, t1+T ]. In other words,

N −M legitimate oscillators fired within [t1, t1 + T ]. On the

other hand, under the stealthy Byzantine attack model in Sec.

IV, every attacker can fire at most twice during [t1, t1 + T ].
Hence, at least N −M oscillators fired during [t1, t1 +T ].

Under the assumption that no pulse can trigger a jump on

any legitimate oscillator within [t1, t1+T ], we have that condi-

tion b) of Mechanism 1 cannot be satisfied, i.e., no greater than

λ oscillators fired in any quarter oscillation period within the

time interval [t1, t1 +T ]. Hence, no greater than λ oscillators

fired in the time interval [t1, t1 + T/4] and the same is true

for intervals [t1 + T/4, t1 + T/2], [t1 + T/2, t1 + 3T/4], and

[t1 + 3T/4, t1 + T ]. Therefore, no greater than 4λ oscillators

fired within [t1, t1 +T ] and one can easily get

4λ < N −M (13)

which contradicts the assumption that at least N−M oscillators

fired within [t1, t1+T ]. Therefore, at least one oscillator’s firing

can trigger a phase jump on a legitimate oscillator within

[t1, t1+T ]. Based on Lemma 2, we further know that the pulse

will trigger phase jumps on all legitimate oscillators.

Denoting φk(ti) as the phase of a legitimate oscillator

jumps in phase at time instant ti, one can get φ+
k (ti) =

φk(ti) + F(φk(ti)). When l > 0.75 is true, phase shift under

PRF in (2) leads to φ+
k (ti) ∈ (7π/4,2π] for φk(ti) ∈ (π,2π]

and φ+
k (ti) ∈ [0,π/4) for φk(ti) ∈ [0,π]. Hence, the phase of
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all legitimate oscillators will reside in (7π/4,2π]∪ [0,π/4)
after this firing event and the length of the containing arc will

become less than π/2 rad. Using Theorem 4, we have that all

oscillators will synchronize despite the presence of attackers.

Remark 4: The proof above also contains the reason for us

to set λ to b(N − 1)/5c in Mechanism 1: Our key idea for

attack resilience is to avoid attack pulses alone from being

able to trigger phase jumps on legitimate oscillators, so we

have to choose λ that is no less than M, the number of

attackers. Further taking into consideration of (13), which is

necessary to guarantee global synchronization, we can have

λ < N/5. Therefore, we set λ = b(N − 1)/5c, the maximal

integer satisfying λ < N/5, to make the Mechanism be able

to tolerate more attackers.

Remark 5: It is worth noting that existing resilient pulse-

based synchronization approaches in [33] and [34] cannot

guarantee perfect synchronization for all-to-all PCO networks

under the considered stealthy Byzantine attackers even when

the coupling strength is larger than 0.5, as illustrated by

the numerical simulations in Fig. 10 and Fig. 11. Hence,

our synchronization approach is highly non-trivial and more

resilient in enabling PCO synchronization in the presence of

such attackers.

Next, we analyze the convergence speed of Mechanism 1.

From the proof of Theorem 4 and Theorem 5, we know that

the speed at which the containing arc of legitimate oscillators

decreases to zero is proportional to the number of effective

pulses (i.e., pulses which can trigger jumps on all legitimate

oscillators’ phases) and the magnitude of phase jumps. Hence

we have the following results on the convergence speed of

Mechanism 1:

Theorem 6: Under the synchronization conditions in Theo-

rem 5, the time to synchronization of all legitimate oscillators

under Mechanism 1 is propositional to

λ

l(N −M)
(14)

Proof: According to the proof of Theorem 4 and Theorem

5, we know that the speed at which the containing arc of

legitimate oscillators decreases to zero is proportional to the

number of effective pulses (i.e., pulses which can trigger jumps

on all legitimate oscillators’ phases) and the magnitude of

phase jumps. One can easily get that the number of effective

pulses is proportional to the number of legitimate oscillators,

i.e., N−M, but inversely proportional to λ , and the magnitude

of phase jumps is proportional to the coupling strength l under

a given phase response function. Therefore, we can get that

the time to synchronization is proportional to (14).

Remark 6: From Theorem 6, and the synchronization

derivations in Theorem 5, we can get that if λ were to allowed

to be chosen from {1,2, ...,b(N − 1)/5c} and is no less than

the number of attackers in the network, then synchroniza-

tion can also be achieved. Furthermore, combining Theorem

6 (which indicates that a larger λ reduces synchronization

speed) and Remark 4 (which implies that a larger λ leads to

resilience to more stealthy attackers), we have that a trade-

off exists between resilience to attackers and synchronization

speed if λ in Mechanism 1 were allowed to be chosen from

{1,2, ...,b(N −1)/5c}. In this paper, we set λ to b(N −1)/5c
to guarantee resilience to more attackers.

VI. EXTENSION TO THE CASE WHERE N IS UNKNOWN

In this section, we extend our approach to the case where the

total number of oscillators, i.e., N, is unknown to individual

oscillators. In this case, the exact number of compromised

oscillators that a network can tolerate, i.e., λ in Mechanism

1, cannot be determined precisely by each individual oscil-

lator. As the implementation of Mechanism 1 requires the

knowledge of λ , we have to revise it to accommodate the

fact that λ is unavailable. Based on the observation that under

the stealthy attacker model in Sec. IV, each oscillator can

use the number of received pulses to estimate the number

of oscillators in a network, we revise Mechanism 1 to make

it applicable to cases where N is unknown to individual

oscillators. More specifically, we will prove that the revised

mechanism can still guarantee global synchronization in the

presence of compromised oscillators as long as their number

is no larger than 10% of the total number of oscillators in the

network.

The same as Mechanism 1, we allow each oscillator to

evolve freely for the first oscillation period [0,T ]. So each

oscillator’s phase will reach 2π rad at a certain time instant

within [0,T ] upon which the oscillator will emit a pulse. Note

that when the network is all-to-all, every oscillator will receive

the same number of pulses. Based on the number of received

pulses in the first oscillation period [0,T ], we propose the

following mechanism:

New pulse based interaction approach (Mechanism 2):

1) The phase φi of oscillator i evolves from 0 to 2π rad

with a constant speed ω = 1rad/second.

2) Once φi reaches 2π rad, oscillator i fires (emits a pulse)

and resets its phase to 0.

3) In the first oscillation period [0,T ], each oscillator i

counts the number of received pulses, and stores this

number as Pi.

4) When oscillator i receives a pulse at time instant t, it

shifts its phase according to (1) only when both of the

following conditions are satisfied:

a) an entire period T has elapsed since initiation;

b) in the past quarter period, oscillator i fired and re-

ceived at least b(Pi−1)/5.5c−1 pulses, or oscilla-

tor i did not fire but received at least b(Pi−1)/5.5c
pulses within this past quarter period, where b•c
means the largest integer no greater than “• .”

Otherwise, the pulse has no effect on φi(t).

Next, we show that Mechanism 2 can guarantee synchro-

nization even when the total number of oscillators, i.e., N,

is unknown to individual oscillators. Under the assumption

that the portion of compromised oscillators is no larger than

10%, we first give a condition for local synchronization,

i.e., synchronization when the initial phases of legitimate
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oscillators are constrained in a certain range, then we prove

that when the coupling strength is over 0.75, the network can

synchronize from an arbitrary initial phase distribution.

Theorem 7: For an all-to-all PCO network of N oscillators

where no more than 10% of all oscillators are compromised

and act as stealthy Byzantine attackers, if the initial length

of the containing arc of all legitimate oscillators is less than

π/2 rad, even with N completely unknown to individual oscil-

lators, all legitimate oscillators can be perfectly synchronized

under Mechanism 2.

Proof: Under Mechanism 2, no pulse will trigger a jump

on any legitimate oscillator’s phase within the first oscillation

period [0,T ]. So every legitimate oscillator will evolve freely

for a full cycle, i.e., every legitimate oscillator will fire once

within the first oscillation period. In the meantime, according

to the stealthy Byzantine attack model in Sec. IV, every

stealthy Byzantine attacker can emit at most two pulses within

the first oscillation period [0,T ]. Further more, under all-to-

all connection, the number of pulses each legitimate oscillator

receives within the first oscillation period, i.e., Pi, is identical.

The proof follows the same line of reasoning as Theorem 4.

More specifically, using a same argument as Part I of the proof

of Theorem 4, we can obtain that if the number of attackers

in the network is no larger than the b(Pi − 1)/5.5c in step

4). b) in Mechanism 2, then a pulse from neither a legitimate

oscillator nor a stealthy Byzantine attacker could expand the

containing arc of legitimate oscillators, i.e., the length of

the containing arc is non-increasing. Moreover, following the

same argument in Part II of the proof of Theorem 4, we

know that if b(Pi − 1)/5.5c ≤ b(N − 1)/5c = λ holds, then

at least the firing of one legitimate oscillator will reduce the

length of the containing arc of legitimate oscillators and no

legitimate oscillator will stop from firing until synchroniza-

tion is achieved. Therefore, to prove that synchronization of

legitimate oscillators will be achieved, it suffices to show

b0.1Nc ≤ b(Pi −1)/5.5c ≤ b(N −1)/5c is true, where b0.1Nc
is the maximal number of attackers in the network and b•c
denotes the largest integer no greater than “• .”

Based on the assumption that the portion of compromised

oscillators is no larger than 10% and every stealthy Byzantine

attacker can emit at most two pulses within the first oscillation

period [0,T ], we have the following relationship:

N −1−b0.1Nc ≤ Pi ≤ N −1+ b0.1Nc (15)

Noticing b0.1Nc ≤ 0.1N, we further have

N −1−0.1N ≤ Pi ≤ N −1+0.1N

⇒0.9N −2 ≤ Pi −1 ≤ N −1+0.1(N −1)

⇒(0.9N −2)/5.5 ≤ (Pi −1)/5.5 ≤ (N −1)/5

⇒b(0.9N −2)/5.5c ≤ b(Pi −1)/5.5c ≤ b(N −1)/5c (16)

One can easily get b0.1Nc ≤ b(0.9N − 2)/5.5c for N ≥ 3.

(Note that under the attacker less than 10% assumption, the

network will contain no attackers when N < 3 and hence

every oscillator can use Pi to precisely estimate the number

of oscillators in the network and achieve synchronization

according to Theorem 1.) Substituting the above inequality

into (16) lead to

b0.1Nc ≤ b(Pi −1)/5.5c ≤ b(N −1)/5c= λ

for N ≥ 3. Therefore, we can get that all legitimate oscillators

can be perfectly synchronized under Mechanism 2.

Next, we show that the initial phase distribution requirement

in Theorem 7 can be removed, i.e., Mechanism 2 can guar-

antee synchronization in the presence of stealthy Byzantine

attacks even when all legitimate oscillators’ initial phases are

arbitrarily distributed in [0,2π].
Theorem 8: For an all-to-all PCO network of N oscillators

where no more than 10% of all oscillators are compro-

mised and act as stealthy Byzantine attackers, even with N

completely unknown to individual oscillators, all legitimate

oscillators can be perfectly synchronized under Mechanism

2 from any initial phase distribution as long as the coupling

strength satisfies l > 0.75.

Proof: Proof of Theorem 8 can be obtained following

Theorem 5 and Theorem 7 and is omitted.

Remark 7: It is worth noting that the maximally allowable

number of attackers in a PCO network is b0.1Nc when the

network size N is unknown, which is less than the maximally

allowable number of composed oscillators λ = b(N − 1)/5c
when the network size N is known. This reduction of max-

imally allowable compromised oscillators is consistent with

our intuition that less knowledge of a PCO network reduces

the capability of attack-resilient synchronization design.

Next, similar to Theorem 6, we present the convergence

speed of Mechanism 2 where N is unknown to individual

oscillators:

Theorem 9: Under the synchronization conditions in Theo-

rem 8, the time to synchronization of all legitimate oscillators

under Mechanism 2 is propositional to

b(Pi −1)/5.5c

l(N −b0.1Nc)
(17)

Proof: Proof of Theorem 9 can be obtained following the

argument in Theorem 6 and is omitted.

VII. SIMULATIONS

A. Attack-Free Case

We first considered the situation without attackers. We

simulated an all-to-all network of 11 PCOs under Mechanism

1. The initial time was set to t0 = 0 and the phases of oscillators

were randomly chosen from [0,π). Hence, the initial length of

the containing arc satisfied δ (t0)< π . According to Theorem

1, the network will synchronize. This was confirmed by

numerical simulations in Fig. 6, which showed that the length

of the containing arc converged to zero.

To verify Theorem 2, we randomly distributed the initial

phases across the entire oscillation period [0,2π] and simulated

the network under coupling strength l = 0.51. The evolution

of the containing arc was presented in Fig. 7, which confirmed

that Mechanism 1 can achieve synchronization even when the

initial phases are randomly distributed in the entire phase space

[0,2π].
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Figure 6: Phase evolution and the length of the containing

arc of 11 PCOs under Mechanism 1 in the absence of attacks.

The initial phases of all oscillators were randomly chosen from

[0,π). The coupling strength was set to l = 0.2.
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Figure 7: Phase evolution and the length of the containing

arc of 11 PCOs under Mechanism 1 in the absence of attacks.

The initial phases of all oscillators were randomly chosen from

[0,2π]. The coupling strength was set to l = 0.51.

B. In the Presence of Stealthy Byzantine Attacks

Using the same network, we ran simulations in the presence

of stealthy Byzantine attacks. We assumed that 2 of the 11

oscillators were compromised and acted as stealthy Byzantine

attackers. The initial time was set to t0 = 0 and the initial

phases of the 9 legitimate oscillators were randomly distributed

in [0,π/2). Hence, the initial length of the containing arc was

less than π/2 rad.

The phase evolution of the 9 legitimate oscillators under

Mechanism 1 is given in Fig. 8 (b) and Fig. 9 (b), with

the firing time instants of attackers denoted by asterisks

on the x-axis. The results confirmed that Mechanism 1 is

resilient to stealthy attacks. However, conventional pulse base

synchronization approaches in [33] and [34] failed to achieve

synchronization, as illustrated in Fig. 8 (a) and Fig. 9 (a),

respectively, which confirmed the advantages of the new

mechanism.

Theorem 5 indicates that Mechanism 1 can achieve synchro-
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Figure 8: Phase evolutions of an all-to-all network of 11

PCOs, two of which are compromised with firing time in-

stants represented by asterisks. Plot (a) and (b) present the

phase evolutions of the 9 legitimate oscillators under the

conventional pulse based interaction mechanism in [33] and

Mechanism 1, respectively. The coupling strength was set to

l = 0.3.
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Figure 9: Phase evolutions of an all-to-all network of 11

PCOs, two of which are compromised with firing time in-

stants represented by asterisks. Plot (a) and (b) present the

phase evolutions of the 9 legitimate oscillators under the

conventional pulse based interaction mechanism in [34] and

Mechanism 1, respectively. The coupling strength was set to

l = 0.3.

nization in the presence of stealthy Byzantine attacks even

when the initial phase distribution is not restricted, i.e., the

phases are randomly distributed in [0,2π]. To verify Theorem

5, we set l = 0.76 and simulated the network. Results in

Fig. 10 (b) and Fig. 11 (b) confirmed Theorem 5. Phase

evolution under the same condition was also simulated under

the conventional pulse based synchronization approaches in

[33] and [34], respectively. The results in Fig. 10 (a) and Fig.

11 (a) showed that neither of the conventional approaches

can achieve synchronization, which further confirmed the

advantages of Mechanism 1.

We also ran simulations when the network size was un-

known to individual oscillators. For an all-to-all network of

20 oscillators, we assumed that two were compromised and

acted as stealthy Byzantine attackers. The initial time was set
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Figure 10: Phase evolutions of an all-to-all network of 11

PCOs, two of which are compromised with firing time in-

stants represented by asterisks. Plot (a) and (b) present the

phase evolutions of the 9 legitimate oscillators under the

conventional pulse based interaction mechanism in [33] and

Mechanism 1, respectively. The coupling strength was set to

l = 0.76.
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Figure 11: Phase evolutions of an all-to-all network of 11

PCOs, two of which are compromised with firing time in-

stants represented by asterisks. Plot (a) and (b) present the

phase evolutions of the 9 legitimate oscillators under the

conventional pulse based interaction mechanism in [34] and

Mechanism 1, respectively. The coupling strength was set to

l = 0.76.

to t0 = 0 and the initial phases of the legitimates oscillators

were randomly distributed in [0,π/2). Hence, the initial length

of the containing arc is less than π/2. According to Theorem 7,

all legitimate oscillators will synchronize. This was confirmed

by numerical simulations in Fig. 12 (a), which showed that

Mechanism 2 was resilient to stealthy Byzantine attacks even

when the number of oscillators is unknown to individual

oscillators.

Moreover, with the total number of oscillators N is unknown

to individual oscillators, Theorem 8 indicates that Mechanism

2 can achieve synchronization in the presence of stealthy

Byzantine attacks even when the phases of legitimate oscil-

lators are randomly distributed in [0,2π]. Results in Fig. 12

(b) confirmed Theorem 8.

We also numerically compared the attack-resilience and the
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Figure 12: Phase evolutions of an all-to-all network of 20

PCOs, two of which are compromised with firing time instants

represented by asterisks. The network size is unknown to

individual oscillators. Plot (a) shows the phase evolutions of

the 18 legitimate oscillators under Mechanism 2 with coupling

strength l = 0.3 and the phases of all legitimate oscillators

distributing randomly within [0,π/2). Plot (b) shows the phase

evolutions of the 18 legitimate oscillators under Mechanism 2

with coupling strength l = 0.76 and the phases of all legitimate

oscillators distributing randomly within [0,2π].

convergence speed of Mechanism 1 if λ were allowed to

be chosen from 1,2, ...,b(N −1)/5c. We considered all-to-all

PCO networks within which zero/one/two/three oscillator(s)

were compromised and λ was set to 1, 2, and 3, respectively.

The initial phases of legitimate oscillators were randomly

chosen from [0,2π] and the coupling strength was set to

l = 0.76. Synchronization was defined to be achieved when the

length of the containing arc became and remained less than

1×10−6. The mean synchronization probabilities and times to

synchronization of 10,000 runs under random attackers were

shown in Fig. 13 and Fig. 14 (when 100% synchronization is

not achieved, only synchronized runs were considered in the

time-to-synchronization statistics). It can be seen that when

M ≤ λ holds, synchronization of legitimate oscillators can be

guaranteed and a larger λ renders a longer synchronization

time; when M > λ holds, a larger λ leads to a higher

synchronization probability but a lower convergence speed.

Similar simulation results were obtained for Mechanism 2 but

omitted here due to space limits.

We also numerically compared the performance of Mech-

anisms 1 and 2 with the mechanisms in [33] and [34] under

random attacks, which was addressed in [33]. Random attack-

ers inject pulses randomly in their own pace irrespective of

legitimate oscillators’ phases. Note that random attacks may

not be stealthy. The initial phases of legitimate oscillators

were randomly chosen from [0,2π] and the coupling strength

was set to l = 0.3. The attacker(s) sent pulses with a random

period uniformly distributed in [T/4, 9T/4]. Synchronization

was defined to be achieved when the length of the containing

arc became and remained less than 1 × 10−6. In the pres-

ence of one attacker, the synchronization probabilities under

Mechanism 1, Mechanism 2 and the approaches in [33] and

[34] were given by the red curves in Fig. 15 and Fig. 16,
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