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Abstract—Synchronization of bio-inspired pulse-coupled oscil-
lators (PCOs) is receiving increased attention due to its wide
applications in sensor networks and wireless communications.
However, most existing results are obtained in the absence
of malicious attacks. Given the distributed and unattended
nature of wireless sensor networks, it is imperative to enhance
the resilience of pulse based synchronization against malicious
attacks. To achieve this goal, we propose a new pulse based
interaction mechanism to improve the resilience of pulse based
synchronization. We rigorously characterize the condition for
mounting stealthy attacks under the proposed pulse based in-
teraction mechanism and prove analytically that synchronization
of legitimate oscillators can be achieved in the presence of
multiple stealthy attackers even when the initial phases are
unrestricted, i.e., randomly distributed in the entire oscillation
period. This is in distinct difference from most existing attack-
resilient synchronization algorithms (including the seminal paper
from Lamport and Melliar-Smith [1]) which require a priori
(almost) synchronization among legitimate nodes. Numerical
simulations are given to confirm the theoretical results.

I. INTRODUCTION

Inspired by flashing fireflies and contracting cardiac cells,
pulse based synchronization is attracting increased attention in
wireless networks [2]-[5]. By exchanging simple and identical
pulses, pulse based synchronization can be established with
much less energy consumption and communication overhead
compared with conventional packet-based synchronization ap-
proaches [6]. These inherent advantages make pulse based
synchronization appealing to the clock synchronization of
wireless sensor networks [7]-[11]. In the past decade, plenty
of results have been obtained on pulse based synchronization.
For example, by optimizing the interaction function, i.e., phase
response function, synchronization speed of pulse-coupled
oscillators (PCOs) is maximized in [12]; with a judiciously-
added refractory period in the phase response function, the
energy consumption in PCO synchronization is reduced in
[13]-[15]; [16]-[18] show that PCOs can achieve synchro-
nization under a general coupling topology even when their
initial phases are randomly distributed in the entire oscillation
period. Recently, synchronization of PCOs in the presence of
time-delays and unreliable links is also discussed [19], [20].
Other relevant results include [21]-[25].

However, the above results are obtained based on the
assumption that all oscillators behave correctly with no nodes
compromised by malicious attackers. Due to the distributed
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and unattended nature, wireless sensor nodes are extremely
vulnerable to attacks, which makes it imperative to study syn-
chronization in the presence of attacks. Although plenty of dis-
cussions exist for conventional packet-based synchronization,
e.g., [1], [26]-[31], results on the attack-resilience of pulse
based synchronization are very sparse. In [32], the authors
showed that pulse based synchronization is more robust than
its packet-based counterpart in the presence of a faulty node. In
[33], a new phase response function was proposed to combat
non-persistent random attacks in pulse based synchronization.
The authors in [34] considered pulse based synchronization in
the presence of faulty nodes which fire periodically irrespec-
tive of neighboring nodes. However, none of the above pulse
based studies address situations where compromised nodes
act maliciously and apply disturbing pulses with judiciously-
crafted pattern to corrupt synchronization. Furthermore, these
results only apply to a priori synchronized PCOs, i.e., all
legitimate nods are required to have identical phases when
faulty pulses are emitted.

In this paper, we consider the synchronization of PCOs
under stealthy Byzantine attacks. In the pulse based in-
teraction framework where exchanged messages (so-called
pulses) are identical and content-free, Byzantine attacks mean
compromised nodes injecting pulses using judiciously crafted
patterns to disturb the synchronization process. We consider
stealthy Byzantine attacks which are intelligent and only use
pulse injection patterns undetectable by legitimate nodes. So
compared with existing results in [32]-[34], the situation
considered in this paper is more difficult to deal with due to
the intelligent behavior of malicious attackers. By proposing
a new pulse based interaction approach, we show that perfect
synchronization of legitimate oscillators can still be guaranteed
even when their initial phases are randomly distributed in the
entire oscillation period [0,27], which is in distinct difference
from our recent results in [35] requiring initial phases to be
restricted in a certain interval. The approach is applicable even
when individual oscillators do not have access to the total
number of oscillators in a network.

This paper is organized as follows. Sec. II introduces a
new pulse based interaction mechanism. Sec. III characterizes
the synchronization condition of all-to-all PCOs under the
new interaction mechanism in the absence of attacks. In Sec.
IV, under a pulse-number based detection mechanism, we
characterize the condition for an attacker to keep stealthy, i.e.,
mounting attacks without being detected. In Sec. V, we prove
that synchronization of legitimate oscillators can be guaranteed
even in the presence of multiple stealthy Byzantine attackers.
We also extend the results to relaxed initial conditions, i.e.,



arbitrary distribution on the entire oscillation period [0,27]
in Sec. V. In Sec. VI, we further show that our approach
is still applicable even when the total number of oscillators
in a network is unknown to individual oscillators. Simulation
results are presented in Sec. VII.

II. A NEW PULSE BASED INTERACTION MECHANISM

Consider a network of N pulse-coupled oscillators. Each
oscillator is equipped with a phase variable. When the evolving
phase of an oscillator satisfies a certain condition, the oscillator
will emit a pulse. Receiving a pulse from a neighboring oscil-
lator will lead to the adjustment of the receiving oscillator’s
phase, which can be designed to achieve a desired collective
behavior such as phase synchronization. Motivated by the fact
that the conventional pulse based interaction mechanism is
vulnerable to attacks, we propose a new pulse based interaction
mechanism to enable resilience of PCO synchronization. To
this end, we first present the conventional pulse based inter-
action mechanism.

Conventional pulse based interaction approach [15]:

1) The phase ¢; of oscillator i evolves from O to 27 rad
with a constant speed ®. Without loss of generality, we
assume @ = lrad/second in this paper.

2) Once ¢; reaches 27 rad, oscillator i fires (emits a pulse)
and resets its phase to 0.

3) Whenever oscillator i receives a pulse, it instantaneously
resets its phase to

O =0 +1x F(¢y) (1)

where [ € (0,1] is the coupling strength and F(e) is the
phase response function (PRF) with an example given

in (2)
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Figure 1: Phase Response Function
The PRF in (2) is visualized in Fig. 1. In the conventional

pulse based interaction mechanism, every incoming pulse trig-
gers a jump on the receiving oscillator’s phase, which makes

attackers easy to perturb the phase of legitimate oscillators and
destroy their synchronization. Based on this observation, we
propose a new pulse based interaction mechanism to improve
the resilience of pulse based synchronization. The key idea
is to let an oscillator adjust its phase only when sufficiently
many pulses are received, as detailed below:

New pulse based interaction approach (Mechanism 1):

1) The phase ¢; of oscillator i evolves from 0 to 27 rad
with a constant speed ® = lrad/second.

2) Once ¢; reaches 27 rad, oscillator i fires (emits a pulse)
and resets its phase to 0.

3) When oscillator i receives a pulse at time instant #, it
shifts its phase according to (1) only when both of the
following conditions are satisfied:

a) an entire period T = 27w/® = 2w seconds has
elapsed since initiation;

b) in the past quarter period, oscillator i fired and
received at least A — 1 pulses, or oscillator i did
not fire but received at least A pulses within this
past quarter period, where A = |(N —1)/5] holds
and |e] is the largest integer no greater than “e.”

Otherwise, the pulse has no effect on ¢;().

Fig. 2 gives the evolution of one legitimate oscillator’s phase
in a network of eleven PCOs. Given A = [(N—1)/5] =2,
we have that a pulse can trigger a phase jump on a receiving
oscillator only when 1) it is sent after time T has elapsed
since initiation; and 2) in the past quarter period, at least
two pulses were received by the oscillator, or the oscillator
fired and received at least one other pulse in the past quarter
period. Therefore, in Fig. 2, only the 9th pulse causes a jump
on the phase of the considered oscillator.
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Figure 2: The phase evolution of a legitimate oscillator in an
all-to-all network of eleven oscillators under Mechanism 1.
Vertical pulses represent incoming pulses.

Remark 1: Following [23]-[25], we assume that when a
legitimate oscillator receives multiple pulses simultaneously,
it will process these pulses consecutively. In other words, no
two pulses will be regarded as an aggregated pulse.

Remark 2: Compared with the conventional pulse based
interaction mechanism, the new one is more resilient to
malicious pulse attacks, as illustrated later by the simulation
results in Fig. 8, Fig. 9, Fig. 10, and Fig. 11. Rigorous analysis
will be provided in Sec. V.



III. SYNCHRONIZATION OF ALL-TO-ALL PCOS IN THE
ABSENCE OF ATTACKS

In this section, we will show that all-to-all connected
oscillators can be guaranteed to synchronize under Mechanism
1 in the absence of attacks. To this end, we first define
synchronization:

Definition 1 (Synchronization): We define synchronization
to be achieved when all legitimate oscillators fire at the same
time instants.

To facilitate theoretical analysis, we also define containing
arc as follows:

Definition 2 (Containing Arc): The containing arc is defined
as the shortest arc on the unit circle that contains all legitimate
oscillators’ phases.

When oscillators” phases approach synchronization, the
length of the containing arc converges to zero.

We first characterize the property of all-to-all PCO networks
under Mechanism 1.

Lemma 1: In an attack-free all-to-all network of N PCOs, if
the firing of an oscillator can trigger a phase jump on another
oscillator, then the firing can trigger phase jumps on all the
other N — 1 oscillators.

Proof: Without loss of generality, we assume that oscil-
lator i’s firing at time instant #; triggers the phase of oscillator
j to jump, which, according to Mechanism 1, implies that
oscillator j either fired and received at least A — 1 pulses in
the past quarter period, or it did not fire in the past quarter
period but received at least A pulses within. In both cases, it
can be inferred that for any oscillator other than i, if it fired in
the past quarter period, then it must have received at least A — 1
pulses under the considered all-to-all topology; or if it did not
fire in the past quarter period, then it must have received at
least A pulses within. Therefore, in an all-to-all topology, if
the firing of an oscillator i triggers another oscillator j to jump,
then it will trigger all the other N — 1 oscillators to jump. M

Now we are in place to present the synchronization condi-
tion in the absence of attacks:

Theorem 1: For an attack-free all-to-all network of N
PCOs, if the length of the initial containing arc is less than
7 rad, then Mechanism 1 can achieve perfect synchronization.

Proof: First, we will show that the length of the contain-
ing arc will never increase. It can be easily inferred that the
length of the containing arc remains unchanged if no oscillator
jumps in phase. So we only need to consider the case that an
oscillator’s firing triggers a jump on another oscillator. Based
on Lemma 1, one can know that if the firing of an oscillator
triggers a jump on another oscillator, it will trigger phase
jumps on all the other oscillators.

We assume that oscillator / fires at time instant #; whose
pulse triggers phase jumps on all the other oscillators. One
can easily get ¢;(t;) =27 rad, i.e., the containing arc includes
the phase point 27 rad at time instant ¢;. Since the length of
the containing arc is less than 7 rad, the phases of the other
N — 1 oscillators at this time instant can only be distributed in
the following three ways, as depicted in Fig. 3:

1) all the other N — 1 oscillators’ phases reside in (7,27];
2) all the other N — 1 oscillators’ phases reside in [0, 7);

3) the other N — 1 oscillators’ phases reside partially in
[0,7) and partially in (7,27].
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Figure 3: Three possible phase distribution of all oscillators
when oscillator i fires at time instant ;.
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Denoting §(¢;) as the length of the containing arc at time
instant ¢;, we next show that 6(#;) cannot be increased by the
firing of oscillator i in any of the three cases, i.e., 67 (;) < 8(z;)
always holds.

1) When all the other N — 1 oscillators’ phases reside in
(m,27], at time instant #;, the length of the containing
arc can be obtained as follows:

o(t:) = ¢i(t:) — jerj},ivf}#{% )} =2m—¢;(t) ()
where 4" = {1,2,--- N} represents the index set and
| = argminjc 4 ;- 9;(t;). After the firing of oscillator
i, we have gl)l.+ (t;) = 0. Under the PRF in (2), one can
get 07 (t;) = ¢;(1:) +1(2m — 9;(1;)) for j € A, j#i. The
length of the containing arc becomes

5 (1) =27~ min {9 (1)} +9, (1)
min T
jeN, j;éi{(p] (1)}
:(1—l)(27r—¢l(t,~)):(I—I)S(ti) 4)

Since 0 <1 <1 holds, one can easily get 87 (¢;) < &(;)
in this case (Note that the equality mark holds only
when 6(z;) = 0 is true, meaning that the network is
synchronized).

2) When all the other oscillators’ phases reside in [0, 1), at
time instant #;, the length of the containing arc can be
obtained as follows:

0(t;) =2 — ¢;(t;) +k€{32§¢i{¢k &)} =¢(t) (5

=2r—

where k = argmaxye s k2 Ok(f;). After the firing of
oscillator i, we have ;" (t;) = 0. Under the PRF in (2),
one can get ¢ (1) = (1 — 1)@y (t;) for k € A,k # i and
the length of the containing arc becomes

5t(n) = Jnax 7éi{dhf ()} — o (1) = (Jx #i{%f (#:)}
=(1=De(t:) = (1-1)o(t:) (6)

Since 0 <1 <1 holds, one can easily get 8 (¢;) < &(;)
in this case (Note that the equality mark holds only
when 6(z;) = 0 is true, meaning that the network is
synchronized).

3) When the other N — 1 oscillators’ phases reside partially
in [0,7) and partially in (7,27], given ¢;(t;) = 27 rad,
we represent the set of oscillators with phases in [0, )



as .41 and the set of oscillators with phases in (7,27] as
5. One can easily get /UM = A and AN A5 =0.
The length of the containing arc at time instant #; can
be expressed as

o(t) =2”+]?€1%{¢k(fi)} - ieg}i%ﬁ%(hﬂ
=27+ ¢ (1) — 9;(t) ()

where  j = argminje 5 ;4¢;j(ti) and k=
argmaxic 4 @x(f;). After the firing of oscillator
i, we have ¢ () = 0. Under the PRF in (2),
we can get ¢, (t;) = (1 —I)¢(r;) for k € A and
¢/ (1) = ¢(1;) + 12w — ¢;(t;)) for j € A3, j # i. The
length of the containing arc becomes

min

8% (1) = 27+ max{¢,’ (t)} — _min
= (1=1)(2m + ¢z (1) — ¢;(1:))
= (1-1)8(1) -V

Since 0 <1 <1 holds, one can easily get 7 (¢;) < 6(t;)
in this case (Note that the equality mark holds only
when 6(¢) = 0 is true, meaning that the network is
synchronized).

i{‘l)f (t:)}

Summarizing the above analysis, we can get that the length
of the containing arc is non-increasing. In addition, if the firing
of an oscillator triggers a jump on another oscillator, then the
firing will reduce the length of the containing arc to 6 (¢) =
(1=0)6().

Next, we proceed to prove that the length of the containing
arc will decrease to 0. To this end, we first show that every
oscillator will fire at least once within a certain time period.
Without loss of generality, we set the initial time instant as
to = 0. Since the initial length of the containing arc is less
than 7 rad and it is non-increasing, as analyzed earlier, there
exists a time instant ¢; > T at which all oscillators’ phases
reside in (m,27]. At this time instant, noting that the PRF
in (2) is non-negative in (7,2n], we can get that exchanged
pulses can only advance or have no effect on a receiving
oscillator’s phase. Therefore, all oscillators will reach phase
27 rad and fire within the time interval [t,7; + T /2]. On the
other hand, since the PRF in (2) is non-positive in [0, 7], we
can get that exchanged pulses can only delay or have no effect
on a receiving oscillator’s phase residing in [0, 7]. So it takes
at least T'/2 time for an oscillator’s phase to evolve from 0 to
7 rad. Therefore, no oscillator can surpass phase point & rad
at time instant #; + 7/2. In other words, each oscillator fired
once within [t,#] + T /2] and all oscillators’ phases reside in
[0, 7] at time instant #; + T /2.

Next, we proceed to prove that there exists at least one
oscillator, whose firing can trigger jumps on all the other os-
cillators’ phases within the time interval [¢;,¢; + 7 /2]. Assume
to the contrary that no oscillator’s firing triggers a jump on
any other oscillators within [t;,#; +7/2]. So condition b) of
Mechanism 1 cannot be satisfied, which means that no greater
than A oscillators fired in any quarter period within the time
interval [t1,#; + T /2]. Hence, no greater than A oscillators fired
in the time interval [f;,#; + T /4] and the same is true for the
interval [ty +7 /4,1, + T /2]. Therefore, no greater than 24 < N

oscillators fired within [t;,#; + T /2], which contradicts the fact
that all oscillators fired once within [t,#; + T /2]. So we can
conclude that there exists at least one firing event that triggers
phase jumps on the other N — 1 oscillators within [¢;,7; + 7 /2].

Without loss of generality, we assume that oscillator i fires
att; € [t1,t; + T /2], which triggers phase jumps on all the other
N — 1 oscillators. Based on the above analysis, we have that
the length of the containing arc is decreased by the firing of
oscillator i when 6(t;) # 0.

At time instant #; + T /2, the phases of all oscillators
reside in [0, 7] and they will evolve freely toward (7,27]. By
repeating the above analyses, we can get that the length of the
containing arc will be decreased by the firing of at least one
oscillator in a firing round until it converges to 0. Therefore,
synchronization of the network can be achieved. [ ]

Next, we show that the initial phase distribution requirement
in Theorem 1 can be removed, i.e., under all-to-all topology,
the new synchronization mechanism can guarantee synchro-
nization even when the phases of oscillators are arbitrarily
distributed in [0,27].

Theorem 2: For an attack-free all-to-all network of N
PCOs, if the initial phases of all oscillators are randomly
distributed in [0,27], then Mechanism 1 can achieve perfect
synchronization as long as the coupling strength satisfies
1>05.

Proof: Without loss of generality, we set the initial time
instant as #op = 0. First, we will show that in any time interval
[t1,t1 +T] with #; > T, there exists one firing event from some
oscillator which can trigger phase jumps on all the other N —1
oscillators.

Assume to the contrary that no pulse can trigger a jump
within [¢;,#; +T]. One can get that the phase distance between
any two oscillators is invariant within [¢;,#; + T]. Then every
oscillator will evolve freely with natural frequency @ for a
full cycle and fire once during [f1,¢; + T]. In other words, N
oscillators fired within the interval [t;,7 + T].

Under the assumption that no pulse can trigger a jump on
any oscillator’s phase within [¢],#; + 7], we have that condition
b) of Mechanism 1 cannot be satisfied, i.e., no greater than
A oscillators fired in any quarter oscillation period within the
time interval [t1,7; + T]. Hence, no greater than A oscillators
fired in the time interval [t;,#; +7 /4] and the same is true for
intervals 1) + T /4,61 +T/2), [t1 +T/2,t; +3T /4], and [r; +
3T /4,t; + T]. Therefore, no greater than 44 < N oscillators
fired within [t,#; + T], which contradicts the assumption that
N oscillators fired within [r;,#; +T|. So at least one oscillator’s
firing will trigger all the other oscillators’ phases to jump in
[l‘ 1, + T] .

We assume that oscillator i's firing at t; € [ty,1; + T triggers
a jump on all the other N — 1 oscillators. Denoting ¢(t;) as
the phase of oscillator k € A4 = {1,2,--- ,N} at time instant
t;, one can get ¢; (1) =0 and ¢ (1;) = ¢x(t;) + F (¢x(t;)) for
ke AN k+#i. When [ > 0.5 is true, the PRF in (2) leads to
o (1) € (3m/2,27) for ¢y (t;) € (m,27) and ¢ (1;) € [0,7/2)
for ¢ (1) € [0, 7]. Hence, the phase of all oscillators reside in
(37/2,27]U[0,7/2) and the length of the containing arc is
less than 7 rad. Using Theorem 1, we have that all oscillators
will synchronize. [ ]



IV. STEALTHY BYZANTINE ATTACKS

The concept of Byzantine attacks stems from the Byzantine
generals problem [36]. It is used to describe a traitor comman-
der who sends or relays fake information to other commanders
to avoid the loyal ones from reaching agreement [26]. In the
case of PCO synchronization, Byzantine attacks are assumed
to be able to compromise an oscillator and completely take
over its behavior. So an oscillator compromised by Byzantine
attacks will emit pulses at arbitrary time instants. Apparently,
if an attacker keeps sending pulses continuously without rest,
it can effectively prevent legitimate oscillators from reaching
synchronization. However, such a manner of attacks will
also render themselves easily detectable, just as jamming of
communication channels being easy to detect, isolate, and
remove [37]. Therefore, we are only interested in “stealthy”
Byzantine attacks which cannot be detected by legitimate
oscillators in the pulse based interaction framework.

In all-to-all PCO networks, since all exchanged pulses
are identical with no embedded content such as source or
destination information, conventional content-checking based
attack-detection mechanisms such as [1] cannot be applied.
We propose to let each node detect potential attacks by
monitoring the number of pulses it receives within a certain
time interval. The basic rationale is as follows: In a given time
interval, if the number of received pulses is greater than the
maximally possible number of pulses emitted by all legitimate
oscillators, then it is safe to conclude that an attacker is present
who injected the superfluous pulses. To this end, we first
characterize the number of pulses that an oscillator can receive
within a certain time interval:

Theorem 3: For an all-to-all network of N legitimate PCOs
under Mechanism 1, one oscillator can receive at most N — 1
pulses within any time interval [t, + 7 /2] for t > 0.

Proof: Without loss of generality, we assume that oscil-
lator i emits a pulse and resets its phase to O at time instant
t, i.e., ¢i(t;) =27 rad and ¢ (/) = 0. Under Mechanism
1 and the PRF in (2), one can get that the phase evolution
of oscillator i from 0 to @ rad can only be decelerated (or
unaffected) by received pulses. Hence, it takes oscillator i at
least T/2 time to evolve from 0 to 7 rad, which, combined
with the fact that a node cannot jump from 7 rad to 27 rad
instantaneously (the value of PRF in (2) is —7 rad at phase
7 rad), further means that it takes oscillator i over T /2 to
evolve from O to 27 rad. In other words, within any time
interval [r,7+ T /2] for t > 0, oscillator i can emit at most
one pulse. Therefore, an oscillator can emit at most one pulse
during an arbitrary time interval [¢,7+ T /2] for t > 0.

Based on the above analysis, we know that for an all-to-
all network of N oscillators, at most N pulses can be emitted
during an arbitrary time interval [r,r + T /2] for + > 0. So an
oscillator can receive at most N — 1 pulses within an arbitrary
time interval [t,z 4T /2] for ¢ > 0. |

Based on Theorem 3, we have, under the pulse number
based detection mechanism, that any oscillator’s receiving
more than N — 1 pulses within an arbitrary time interval
[t,t +T /2] implies the presence of attacks.

From the above analysis, the condition for mounting stealthy
Byzantine attacks is given as follows:

Stealthy Byzantine Attack Model: For an all-to-all network
of N PCOs under Mechanism 1, one compromised oscillator
can launch stealthy Byzantine attacks as long as it injects
pulses with a time separation of length over T /2.

Remark 3: In this paper, the detection mechanism only
considers the minimal separation within which one oscillator
can receive at most N — 1 pulses (i.e., T/2) because it is
extremely hard to find a tight maximal separation during which
one oscillator can receive at least N — 1 pulses. Another reason
for not imposing a maximal separation is that in practice,
pulse dropout is unavoidable, which makes it impossible to
guarantee that each oscillator will receive at least N — 1 pulses
within a certain time interval.

V. SYNCHRONIZATION OF ALL-TO-ALL PCO NETWORKS
IN THE PRESENCE OF STEALTHY BYZANTINE ATTACKS

In this section, we address the synchronization of PCO
networks in the presence of stealthy Byzantine attacks. Among
N PCOs, we assume that M are compromised and act as
stealthy Byzantine attackers. Specifically, we will show that
the proposed pulse based interaction mechanism can synchro-
nize legitimate oscillators even in the presence of multiple
stealthy Byzantine attackers. More interestingly, we can prove
that legitimate oscillators can synchronize even when their
initial phases are randomly distributed in the entire oscillation
period [0,27]. Similar to Lemma 1, we first establish the
following property for PCO networks:

Lemma 2: For an all-to-all network of N PCOs among
which M are compromised and act according to the stealthy
Byzantine attack model in Sec IV, if the firing of an arbitrary
oscillator (either legitimate or malicious) triggers a phase jump
on a legitimate oscillator, then the firing can trigger phase
jumps on all legitimate oscillators.

Proof: Noting that the topology of the network is all-to-
all, one can get that an oscillator’s pulse can be received by
all the other oscillators. Hence, Lemma 2 can be acquired by
following the same line of reasoning in Lemma 1. [ ]

Now we are in position to present the synchronization
condition of all-to-all PCO networks in the presence attacks.

Theorem 4: For an all-to-all network of N PCOs among
which M are compromised and act according to the stealthy
Byzantine attack model in Sec IV, if the number of compro-
mised oscillators M is no greater than |(N—1)/5] and the
initial length of the containing arc is less than 7/2 rad, then
all legitimate oscillators can be perfectly synchronized under
Mechanism 1.

Proof: We divide the proof into two parts. In part I, we
will prove that the length of the containing arc of legitimate
oscillators is non-increasing. In Part II, we prove that the
length of the containing arc of legitimate oscillators will
decrease to 0.

Part T (The length of the containing arc of legitimate
oscillators is non-increasing): It can be easily inferred that the
length of the containing arc of legitimate oscillators remains
unchanged if no legitimate oscillator jumps in phase. So we
only consider the case that an oscillator’s firing (say oscillator
i, either legitimate or malicious) triggers a jump on a legitimate



oscillator, say oscillator j where j # i. Based on Lemma 2, if
the firing of oscillator i triggers a phase jump on a legitimate
oscillator j, it will trigger phase jumps on all legitimate
oscillators.

We assume that oscillator 's firing time instant is ;. Since
oscillator i can be a legitimate oscillator or an attacker, we have
to show that in neither case will the length of the containing
arc of legitimate oscillators increase.

Case 1: Oscillator i is legitimate.

When oscillator i is legitimate, we have ¢;(f;) =27 rad,
i.e., the containing arc of legitimate oscillators includes point
27w rad at time instant #;. Since the number of legitimate
oscillators is N —M and the length of the containing arc of
legitimate oscillators is less than /2 rad, the phases of the
other N —M — 1 legitimate oscillators can only be distributed
in the following three ways at time instant #;, as depicted in
Fig. 4:

1) all the other N — M — 1 legitimate oscillators’ phases

reside in (37/2,2x];

2) all the other N — M — 1 legitimate oscillators’ phases

reside in [0,7/2);
3) the other N —M — 1 legitimate oscillators’ phases reside
partially in [0,7/2) and partially in (37/2,27].

Figure 4: Three possible phase distribution of all legitimate
oscillators when legitimate oscillator i fires at time instant #;.

Denoting 0(t;) as the length of the containing arc of
legitimate oscillators at time instant #;, one can easily obtain
1 (#;) < 8(1;) in all above three cases by following the same
line of reasoning in Theorem 1. Hence, we can get that the
firing of a legitimate oscillator cannot increase the length of
the containing arc of legitimate oscillators.

Case 2: Oscillator i is a stealthy Byzantine attacker.

According to Mechanism 1, upon receiving a pulse, legiti-
mate oscillator j will jump in phase when it either fired and
received at least A — 1 pulses in the past quarter period, or it did
not fire but received at least A pulses in the past quarter period.
In both cases, it can be inferred that at least A oscillators fired
in the quarter period immediately prior to ¢;.

Under the assumption that the number of compromised
oscillators satisfies M < A, we can get that at most M — 1 attack
pulses can be emitted in the quarter period prior to #;. Because
M—1<A—1is true and at least A pulses are emitted in the
past quarter period, one can obtain that at least one legitimate
oscillator fired in the quarter period immediately prior to .

Since the PRF in (2) is non-positive in [0,7/2], we can get
that exchanged pulses can only delay or have no effect on a
receiving legitimate oscillator whose phase resides in [0, 7/2].
So it takes at least 7 /4 time for a legitimate oscillator to evolve
from O to m/2 rad. Hence, at least one legitimate oscillator

(who fired in the past quarter period) has phase residing in
[0,7/2] at time instant ;. Since the length of the containing
arc of legitimate oscillators is less than 7/2 rad, the phases
of all N — M legitimate oscillators can only be distributed in
the following two ways at #;, as depicted in Fig. 5:
1) all N— M legitimate oscillators reside in [0,7), wherein
at least one legitimate oscillator resides in [0,7/2];
2) the N — M legitimate oscillators reside partially in
[0,7/2] and partially in (37/2,27].

1 20 4

Figure 5: Two possible phase distribution of all legitimate
oscillators when compromised oscillator i fires at time instant
t;.

Denoting 0(#;) as the length of the containing arc of
legitimate oscillators at time instant f;, next we show that
O(t;) cannot be increased by the firing of oscillator i in both
scenarios, i.e., 67 () < 8(f;) always holds.

1) When the phases of all N —M legitimate oscillators

reside in [0,7) at time instant #;, the length of the
containing arc can be described by

o(ti) = gg%{m(n)} _l?lei/?é{(bk(ti)}
= p(t;) — O (t;) )

where .43 is the index set of all legitimate oscillators,
k = argmingc_y; @4 (t;) and k = arg maxge_y; Ox(t;). After
the firing of oscillator i, one can get ¢, (1;) = (1 — 1)@ (t;)
for k € A43. Hence, the length of the containing arc of
legitimate oscillators becomes

8" (1) = g%{fi’[(h)} —klgi%{%f ok

= ¢ (t1) — ¢ (t:) = (1 = 1) (9x(t:) — Pu(t:))
= (1-1)8(t;) (10)

Sine 0 < /<1 holds, one can get 6" (#;) < 8(¢;) when-
ever 0(t;) is nonzero.

2) When the N — M legitimate oscillators reside partially
in [0,77/2] and partially in (37/2,27], we denote .4 as
the set of legitimate oscillators with phases in [0, 7/2]
and 45 as the set of legitimate oscillators with phases
in (37/2,2x]. Then the length of the containing arc of
legitimate oscillators at time instant ¢ can be described
by

o(t) = ZEJFIEE%{‘Pk(ti)} - 1112}4[};{% ()}
=27+ @ (t:) — Pu(t:) (11)

where k = arg maxc, 4, O (i) and h = argmin,c s Op(t;).
After the firing of oscillator i, one can get ¢, (#;) = (1 —
l)¢k(li) for k € A4 and (I)Ij—(l‘,) = ¢h(ti) +l(2ﬂf— (Ph(l‘i))



for h € 5. Hence, the length of the containing arc of
legitimate oscillators becomes

8t (n)=2n +1£2%{¢"+ ()} — %?e]ei}%{ﬁ (#i)}
=21+ ¢ (1) — 9, (1))
= (1 =027+ ¢ (11) — du(ti))
=(1-0)8()

Sine 0 </ <1 holds, one can get §"(#;) < §(t;) when-
ever 6(1;) is nonzero.

(12)

In conclusion, the length of the containing arc of legitimate
oscillators is non-increasing. In addition, if the firing of an
oscillator triggers a jump on a legitimate oscillator, then the
firing will reduce the length of the containing arc of legitimate
oscillators to 61 (¢;) = (1 —1)8(1;).

Part II (The length of the containing arc of legitimate
oscillators will decrease to 0): To prove that the length of the
containing arc of legitimate oscillators will keep decreasing,
we only need to show that pulses which trigger phase jumps
on legitimate oscillators will keep occurring until the length
of the containing arc of legitimate oscillators reaches zero.
Because if none of legitimate oscillators’ phases are trapped in
some sub-interval within [0,27], then all legitimate oscillators
will keep firing repeatedly within one quarter period interval
from each other (note that as proven before, the containing
arc of legitimate oscillators is non-increasing and hence is
always less than /2 rad). Given that the number of legitimate
oscillators is N —M > A, it can be easily inferred that at least
the firing of one legitimate oscillator will trigger a phase jump
according to Mechanism 1 in Sec. II. Therefore, to prove that
the length of the containing arc of legitimate oscillators will
decrease to zero, it is sufficient to show that no legitimate
oscillator will stop from firing.

Given that once the phase of a legitimate oscillator surpasses
7 rad, it cannot be stopped from firing (because its phase
can only be advanced under the PRF in (2)). Further taking
into account the fact that pulses from stealthy attackers alone
(no greater than A) are not enough to trigger any phase shift
according to Mechanism 1 in Sec. II, we have that at least one
legitimate oscillator can fire repeatedly (Note that if no phase
jumps are triggered, then legitimate oscillators will evolve
freely and fire periodically).

Next, we proceed to prove that if one legitimate oscillator
can fire, i.e., can evolve into the interval (m,2x], then all
legitimate oscillators can evolve into (7r,27x]. Without loss of
generality, we assume that the legitimate oscillator which can
fire surpasses phase 7 rad at time instant #. Given that the
length of the containing arc of legitimate oscillators is always
strictly less than 7/2 rad, as proven before, we have that at
time instant #;, all legitimate oscillators have phases residing
in (n/2,31/2).

Noting that the phase of a legitimate oscillator having phase
in [0, 7] can only be delayed (or unaffected) by received pulses,
it can be easily inferred that after the most recent firing from
legitimate oscillators, it took all legitimate oscillators at least
T /4 to evolve to the current phase in (7/2,37w/2), during
which no legitimate oscillators sent any pulse. Therefore,

starting from ¢;, attack pulses will not affect the phase of
legitimate oscillators until at least one legitimate oscillator
reaches 27 rad to fire, which takes at least T'/4. So after the
at least 7 /4 time of free evolution, the phases of legitimate
oscillators become residing in (7,27], which means that all
legitimate oscillators will fire.

Therefore, we can conclude that the length of the containing
arc of legitimate oscillators will keep decreasing until it
reaches 0, i.e., the achievement of synchronization of legit-
imate oscillators. u

Next, we show that the initial phase distribution requirement
in Theorem 4 can be removed, i.e., Mechanism 1 can guarantee
synchronization in the presence of attacks even when all
legitimate oscillators’ initial phases are arbitrarily distributed
in [0,27].

Theorem 5: For an all-to-all network of N PCOs, within
which M oscillators are compromised and act as stealthy
Byzantine attackers, if the number of compromised oscillators
M is no greater than | (N —1)/5], then all legitimate oscillators
can be perfectly synchronized under Mechanism 1 from any
initial phase distribution when the coupling strength satisfies
1>0.75.

Proof: Without loss of generality, we set the initial time
instant to #p = 0. Similar to the proof of Theorem 2, we first
show that for any time interval [t;,7; + T] with #; > T, there
exists one firing event which can trigger a phase jump on a
legitimate oscillator.

Assume to the contrary that no pulse can trigger a phase
jump on a legitimate oscillator within [¢,#; + T]. One can get
that the phase distance between any two legitimate oscillators
is invariant within [¢,7; + T]. Since T is the natural period,
every legitimate oscillator will evolve freely for a full cycle on
the unit circle and fire once during [t1,#; +T]. In other words,
N — M legitimate oscillators fired within [¢t,#; + T]. On the
other hand, under the stealthy Byzantine attack model in Sec.
IV, every attacker can fire at most twice during [t,#; + T.
Hence, at least N — M oscillators fired during [¢;,#; + 7).

Under the assumption that no pulse can trigger a jump on
any legitimate oscillator within [f],#; + T], we have that condi-
tion b) of Mechanism 1 cannot be satisfied, i.e., no greater than
A oscillators fired in any quarter oscillation period within the
time interval [r1,#; +T]. Hence, no greater than A oscillators
fired in the time interval [t;,#; + T /4] and the same is true
for intervals [ry +T /4,6 +T/2], [t1 +T/2,t1 +3T /4], and
[f1 + 3T /4,t; + T]. Therefore, no greater than 414 oscillators
fired within [t;,7; +T] and one can easily get

42 <N—-M (13)

which contradicts the assumption that at least N — M oscillators
fired within [t1,#; +T']. Therefore, at least one oscillator’s firing
can trigger a phase jump on a legitimate oscillator within
[t1,t1 +T]. Based on Lemma 2, we further know that the pulse
will trigger phase jumps on all legitimate oscillators.
Denoting ¢ (#;) as the phase of a legitimate oscillator
jumps in phase at time instant f;, one can get ¢, (;) =
O (t;) + F(@(;)). When [ > 0.75 is true, phase shift under
PRF in (2) leads to ¢, (1;) € (7m/4,27] for ¢x(t;) € (,27]
and ¢, (1;) € [0,7/4) for ¢(t;) € [0,7]. Hence, the phase of



all legitimate oscillators will reside in (77/4,27x]U [0, 7/4)
after this firing event and the length of the containing arc will
become less than /2 rad. Using Theorem 4, we have that all
oscillators will synchronize despite the presence of attackers.

|

Remark 4: The proof above also contains the reason for us
to set A to [(N—1)/5] in Mechanism 1: Our key idea for
attack resilience is to avoid attack pulses alone from being
able to trigger phase jumps on legitimate oscillators, so we
have to choose A that is no less than M, the number of
attackers. Further taking into consideration of (13), which is
necessary to guarantee global synchronization, we can have
A < N/5. Therefore, we set A = | (N —1)/5], the maximal
integer satisfying A < N/5, to make the Mechanism be able
to tolerate more attackers.

Remark 5: Tt is worth noting that existing resilient pulse-
based synchronization approaches in [33] and [34] cannot
guarantee perfect synchronization for all-to-all PCO networks
under the considered stealthy Byzantine attackers even when
the coupling strength is larger than 0.5, as illustrated by
the numerical simulations in Fig. 10 and Fig. 11. Hence,
our synchronization approach is highly non-trivial and more
resilient in enabling PCO synchronization in the presence of
such attackers.

Next, we analyze the convergence speed of Mechanism 1.
From the proof of Theorem 4 and Theorem 5, we know that
the speed at which the containing arc of legitimate oscillators
decreases to zero is proportional to the number of effective
pulses (i.e., pulses which can trigger jumps on all legitimate
oscillators’ phases) and the magnitude of phase jumps. Hence
we have the following results on the convergence speed of
Mechanism 1:

Theorem 6: Under the synchronization conditions in Theo-
rem 5, the time to synchronization of all legitimate oscillators
under Mechanism 1 is propositional to

A

I(N—M)

Proof: According to the proof of Theorem 4 and Theorem

5, we know that the speed at which the containing arc of
legitimate oscillators decreases to zero is proportional to the
number of effective pulses (i.e., pulses which can trigger jumps
on all legitimate oscillators’ phases) and the magnitude of
phase jumps. One can easily get that the number of effective
pulses is proportional to the number of legitimate oscillators,
i.e., N—M, but inversely proportional to A, and the magnitude
of phase jumps is proportional to the coupling strength / under
a given phase response function. Therefore, we can get that
the time to synchronization is proportional to (14). ]
Remark 6: From Theorem 6, and the synchronization
derivations in Theorem 5, we can get that if A were to allowed
to be chosen from {1,2,...,|(N—1)/5]} and is no less than
the number of attackers in the network, then synchroniza-
tion can also be achieved. Furthermore, combining Theorem
6 (which indicates that a larger A reduces synchronization
speed) and Remark 4 (which implies that a larger A leads to
resilience to more stealthy attackers), we have that a trade-
off exists between resilience to attackers and synchronization

(14)

speed if A in Mechanism 1 were allowed to be chosen from
{1,2,...,|(N—=1)/5]}. In this paper, we set A to |[(N—1)/5]
to guarantee resilience to more attackers.

VI. EXTENSION TO THE CASE WHERE N IS UNKNOWN

In this section, we extend our approach to the case where the
total number of oscillators, i.e., NV, is unknown to individual
oscillators. In this case, the exact number of compromised
oscillators that a network can tolerate, i.e., A in Mechanism
1, cannot be determined precisely by each individual oscil-
lator. As the implementation of Mechanism 1 requires the
knowledge of A, we have to revise it to accommodate the
fact that A is unavailable. Based on the observation that under
the stealthy attacker model in Sec. IV, each oscillator can
use the number of received pulses to estimate the number
of oscillators in a network, we revise Mechanism 1 to make
it applicable to cases where N is unknown to individual
oscillators. More specifically, we will prove that the revised
mechanism can still guarantee global synchronization in the
presence of compromised oscillators as long as their number
is no larger than 10% of the total number of oscillators in the
network.

The same as Mechanism 1, we allow each oscillator to
evolve freely for the first oscillation period [0,7T]. So each
oscillator’s phase will reach 27 rad at a certain time instant
within [0, 7] upon which the oscillator will emit a pulse. Note
that when the network is all-to-all, every oscillator will receive
the same number of pulses. Based on the number of received
pulses in the first oscillation period [0,T], we propose the
following mechanism:

New pulse based interaction approach (Mechanism 2):

1) The phase ¢; of oscillator i evolves from O to 27 rad
with a constant speed @ = lrad/second.

2) Once ¢; reaches 27 rad, oscillator i fires (emits a pulse)
and resets its phase to 0.

3) In the first oscillation period [0,7], each oscillator i
counts the number of received pulses, and stores this
number as P;.

4) When oscillator i receives a pulse at time instant ¢, it
shifts its phase according to (1) only when both of the
following conditions are satisfied:

a) an entire period 7 has elapsed since initiation;

b) in the past quarter period, oscillator i fired and re-
ceived at least |(P,—1)/5.5] — 1 pulses, or oscilla-
tor i did not fire but received at least [(P,—1)/5.5]
pulses within this past quarter period, where |e|
means the largest integer no greater than “e.”

Otherwise, the pulse has no effect on ¢;(z).

Next, we show that Mechanism 2 can guarantee synchro-
nization even when the total number of oscillators, i.e., N,
is unknown to individual oscillators. Under the assumption
that the portion of compromised oscillators is no larger than
10%, we first give a condition for local synchronization,
i.e., synchronization when the initial phases of legitimate



oscillators are constrained in a certain range, then we prove
that when the coupling strength is over 0.75, the network can
synchronize from an arbitrary initial phase distribution.

Theorem 7: For an all-to-all PCO network of N oscillators
where no more than 10% of all oscillators are compromised
and act as stealthy Byzantine attackers, if the initial length
of the containing arc of all legitimate oscillators is less than
7/2 rad, even with N completely unknown to individual oscil-
lators, all legitimate oscillators can be perfectly synchronized
under Mechanism 2.

Proof: Under Mechanism 2, no pulse will trigger a jump
on any legitimate oscillator’s phase within the first oscillation
period [0,T]. So every legitimate oscillator will evolve freely
for a full cycle, i.e., every legitimate oscillator will fire once
within the first oscillation period. In the meantime, according
to the stealthy Byzantine attack model in Sec. IV, every
stealthy Byzantine attacker can emit at most two pulses within
the first oscillation period [0,7]. Further more, under all-to-
all connection, the number of pulses each legitimate oscillator
receives within the first oscillation period, i.e., P;, is identical.

The proof follows the same line of reasoning as Theorem 4.
More specifically, using a same argument as Part I of the proof
of Theorem 4, we can obtain that if the number of attackers
in the network is no larger than the [(P —1)/5.5] in step
4). b) in Mechanism 2, then a pulse from neither a legitimate
oscillator nor a stealthy Byzantine attacker could expand the
containing arc of legitimate oscillators, i.e., the length of
the containing arc is non-increasing. Moreover, following the
same argument in Part II of the proof of Theorem 4, we
know that if [(P —1)/5.5] < |(N—1)/5] = A holds, then
at least the firing of one legitimate oscillator will reduce the
length of the containing arc of legitimate oscillators and no
legitimate oscillator will stop from firing until synchroniza-
tion is achieved. Therefore, to prove that synchronization of
legitimate oscillators will be achieved, it suffices to show
[0.IN]| < |[(P,—1)/5.5] < |[(N—1)/5] is true, where [0.1N |
is the maximal number of attackers in the network and |e]
denotes the largest integer no greater than “e.”

Based on the assumption that the portion of compromised
oscillators is no larger than 10% and every stealthy Byzantine
attacker can emit at most two pulses within the first oscillation
period [0,T], we have the following relationship:

N—1—[0.IN| <P,.<N—1+0.1N| (15)

Noticing |0.1N| < 0.1N, we further have

N—1-0IN<P,<N—1+0.IN
=09N—2<P—1<N—1+0.1(N—1)
=(09N—2)/55< (P,—1)/55<(N—1)/5

=[(0.9N—2)/5.5| < [(P.—1)/5.5| < [(N-1)/5] (16)

One can easily get |0.1N| < |(0.9N —2)/5.5] for N > 3.
(Note that under the attacker less than 10% assumption, the
network will contain no attackers when N < 3 and hence
every oscillator can use P, to precisely estimate the number

of oscillators in the network and achieve synchronization
according to Theorem 1.) Substituting the above inequality

into (16) lead to
0AN] < [(R—=1)/55] < [(N—-1)/5] =2

for N > 3. Therefore, we can get that all legitimate oscillators
can be perfectly synchronized under Mechanism 2. [ ]

Next, we show that the initial phase distribution requirement
in Theorem 7 can be removed, i.e., Mechanism 2 can guar-
antee synchronization in the presence of stealthy Byzantine
attacks even when all legitimate oscillators’ initial phases are
arbitrarily distributed in [0, 27].

Theorem 8: For an all-to-all PCO network of N oscillators
where no more than 10% of all oscillators are compro-
mised and act as stealthy Byzantine attackers, even with N
completely unknown to individual oscillators, all legitimate
oscillators can be perfectly synchronized under Mechanism
2 from any initial phase distribution as long as the coupling
strength satisfies / > 0.75.

Proof: Proof of Theorem 8 can be obtained following
Theorem 5 and Theorem 7 and is omitted. [ ]

Remark 7: It is worth noting that the maximally allowable
number of attackers in a PCO network is |0.1N| when the
network size N is unknown, which is less than the maximally
allowable number of composed oscillators A = [(N —1)/5]
when the network size N is known. This reduction of max-
imally allowable compromised oscillators is consistent with
our intuition that less knowledge of a PCO network reduces
the capability of attack-resilient synchronization design.

Next, similar to Theorem 6, we present the convergence
speed of Mechanism 2 where N is unknown to individual
oscillators:

Theorem 9: Under the synchronization conditions in Theo-
rem &, the time to synchronization of all legitimate oscillators
under Mechanism 2 is propositional to

L(F—1)/55]

I(N—[0.IN]) a7

Proof: Proof of Theorem 9 can be obtained following the
argument in Theorem 6 and is omitted. [ ]

VII. SIMULATIONS
A. Attack-Free Case

We first considered the situation without attackers. We
simulated an all-to-all network of 11 PCOs under Mechanism
1. The initial time was set to o = 0 and the phases of oscillators
were randomly chosen from [0, 7). Hence, the initial length of
the containing arc satisfied §(fp) < @. According to Theorem
1, the network will synchronize. This was confirmed by
numerical simulations in Fig. 6, which showed that the length
of the containing arc converged to zero.

To verify Theorem 2, we randomly distributed the initial
phases across the entire oscillation period [0,27] and simulated
the network under coupling strength / = 0.51. The evolution
of the containing arc was presented in Fig. 7, which confirmed
that Mechanism 1 can achieve synchronization even when the
initial phases are randomly distributed in the entire phase space
[0,27].
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Figure 6: Phase evolution and the length of the containing
arc of 11 PCOs under Mechanism 1 in the absence of attacks.
The initial phases of all oscillators were randomly chosen from
[0,7). The coupling strength was set to [ =0.2.
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Figure 7: Phase evolution and the length of the containing
arc of 11 PCOs under Mechanism 1 in the absence of attacks.
The initial phases of all oscillators were randomly chosen from
[0,27]. The coupling strength was set to [ = 0.51.

B. In the Presence of Stealthy Byzantine Attacks

Using the same network, we ran simulations in the presence
of stealthy Byzantine attacks. We assumed that 2 of the 11
oscillators were compromised and acted as stealthy Byzantine
attackers. The initial time was set to fp = O and the initial
phases of the 9 legitimate oscillators were randomly distributed
in [0,77/2). Hence, the initial length of the containing arc was
less than 7 /2 rad.

The phase evolution of the 9 legitimate oscillators under
Mechanism 1 is given in Fig. 8 (b) and Fig. 9 (b), with
the firing time instants of attackers denoted by asterisks
on the x-axis. The results confirmed that Mechanism 1 is
resilient to stealthy attacks. However, conventional pulse base
synchronization approaches in [33] and [34] failed to achieve
synchronization, as illustrated in Fig. 8 (a) and Fig. 9 (a),
respectively, which confirmed the advantages of the new
mechanism.

Theorem 5 indicates that Mechanism 1 can achieve synchro-
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Figure 8: Phase evolutions of an all-to-all network of 11
PCOs, two of which are compromised with firing time in-
stants represented by asterisks. Plot (a) and (b) present the
phase evolutions of the 9 legitimate oscillators under the
conventional pulse based interaction mechanism in [33] and
Mechanism 1, respectively. The coupling strength was set to
1=0.3.
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Figure 9: Phase evolutions of an all-to-all network of 11
PCOs, two of which are compromised with firing time in-
stants represented by asterisks. Plot (a) and (b) present the
phase evolutions of the 9 legitimate oscillators under the
conventional pulse based interaction mechanism in [34] and
Mechanism 1, respectively. The coupling strength was set to
1=0.3.

nization in the presence of stealthy Byzantine attacks even
when the initial phase distribution is not restricted, i.e., the
phases are randomly distributed in [0,27]. To verify Theorem
5, we set [ = 0.76 and simulated the network. Results in
Fig. 10 (b) and Fig. 11 (b) confirmed Theorem 5. Phase
evolution under the same condition was also simulated under
the conventional pulse based synchronization approaches in
[33] and [34], respectively. The results in Fig. 10 (a) and Fig.
11 (a) showed that neither of the conventional approaches
can achieve synchronization, which further confirmed the
advantages of Mechanism 1.

We also ran simulations when the network size was un-
known to individual oscillators. For an all-to-all network of
20 oscillators, we assumed that two were compromised and
acted as stealthy Byzantine attackers. The initial time was set
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Figure 10: Phase evolutions of an all-to-all network of 11
PCOs, two of which are compromised with firing time in-
stants represented by asterisks. Plot (a) and (b) present the
phase evolutions of the 9 legitimate oscillators under the
conventional pulse based interaction mechanism in [33] and
Mechanism 1, respectively. The coupling strength was set to
[=0.76.
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Figure 11: Phase evolutions of an all-to-all network of 11
PCOs, two of which are compromised with firing time in-
stants represented by asterisks. Plot (a) and (b) present the
phase evolutions of the 9 legitimate oscillators under the
conventional pulse based interaction mechanism in [34] and
Mechanism 1, respectively. The coupling strength was set to
[ =0.76.

to fp = 0 and the initial phases of the legitimates oscillators
were randomly distributed in [0, 77/2). Hence, the initial length
of the containing arc is less than 7 /2. According to Theorem 7,
all legitimate oscillators will synchronize. This was confirmed
by numerical simulations in Fig. 12 (a), which showed that
Mechanism 2 was resilient to stealthy Byzantine attacks even
when the number of oscillators is unknown to individual
oscillators.

Moreover, with the total number of oscillators N is unknown
to individual oscillators, Theorem 8 indicates that Mechanism
2 can achieve synchronization in the presence of stealthy
Byzantine attacks even when the phases of legitimate oscil-
lators are randomly distributed in [0,27x]. Results in Fig. 12
(b) confirmed Theorem 8.

We also numerically compared the attack-resilience and the
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Figure 12: Phase evolutions of an all-to-all network of 20
PCOs, two of which are compromised with firing time instants
represented by asterisks. The network size is unknown to
individual oscillators. Plot (a) shows the phase evolutions of
the 18 legitimate oscillators under Mechanism 2 with coupling
strength / = 0.3 and the phases of all legitimate oscillators
distributing randomly within [0, £/2). Plot (b) shows the phase
evolutions of the 18 legitimate oscillators under Mechanism 2
with coupling strength / = 0.76 and the phases of all legitimate
oscillators distributing randomly within [0,27].

convergence speed of Mechanism 1 if A were allowed to
be chosen from 1,2,...,|(N —1)/5]. We considered all-to-all
PCO networks within which zero/one/two/three oscillator(s)
were compromised and A was set to 1, 2, and 3, respectively.
The initial phases of legitimate oscillators were randomly
chosen from [0,27] and the coupling strength was set to
1 =0.76. Synchronization was defined to be achieved when the
length of the containing arc became and remained less than
1 x 1076, The mean synchronization probabilities and times to
synchronization of 10,000 runs under random attackers were
shown in Fig. 13 and Fig. 14 (when 100% synchronization is
not achieved, only synchronized runs were considered in the
time-to-synchronization statistics). It can be seen that when
M < A holds, synchronization of legitimate oscillators can be
guaranteed and a larger A renders a longer synchronization
time; when M > A holds, a larger A leads to a higher
synchronization probability but a lower convergence speed.
Similar simulation results were obtained for Mechanism 2 but
omitted here due to space limits.

We also numerically compared the performance of Mech-
anisms 1 and 2 with the mechanisms in [33] and [34] under
random attacks, which was addressed in [33]. Random attack-
ers inject pulses randomly in their own pace irrespective of
legitimate oscillators’ phases. Note that random attacks may
not be stealthy. The initial phases of legitimate oscillators
were randomly chosen from [0,27] and the coupling strength
was set to [ = 0.3. The attacker(s) sent pulses with a random
period uniformly distributed in [T /4, 9T /4]. Synchronization
was defined to be achieved when the length of the containing
arc became and remained less than 1 x 107°. In the pres-
ence of one attacker, the synchronization probabilities under
Mechanism 1, Mechanism 2 and the approaches in [33] and
[34] were given by the red curves in Fig. 15 and Fig. 16,
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Figure 13: Comparison of synchronization probability and
synchronization time under Mechanism 1 when A was set to 1,
2, and 3 in the presence of 0 or 1 attacker. The initial phases of
legitimate oscillators were randomly chosen from [0,27] and
the coupling strength was set to / = 0.76. Synchronization of
the network was defined to be achieved when the length of
the containing arc became and remained less than 1 x 107°.
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Figure 14: Comparison of synchronization probability and
synchronization time under Mechanism 1 when A was set to 1,
2, and 3 in the presence of 2 or 3 attackers. The initial phases
of legitimate oscillators were randomly chosen from [0,27]
and the coupling strength was set to [ = 0.76. Synchronization
of the network was defined to be achieved when the length of
the containing arc became and remained less than 1 x 107°.

respectively. It can be seen that Mechanism 1 and 2 are more
robust in enabling synchronization in the presence of random
attacks. However, they render a longer synchronization time
when compared with the conventional pulse based interaction
mechanism in [34], as illustrated by the blue curves in Fig. 15
and Fig. 16. Similar conclusions were obtained for the two-
attacker case, as illustrated in Fig. 17 and Fig. 18.
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Figure 15: Comparison of Mechanism 1 and the conventional
pulse based interaction mechanisms in [33] and [34] in terms
of synchronization probability (red solid marker lines) and
synchronization time (blue hollow marker lines) in the pres-
ence of one attacker.
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Figure 16: Comparison of Mechanism 2 and the conventional
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C. General Interaction Topologies

The new pulse based interaction approach (Mechanisms 1
and 2) also shows promising resilience to random attacks
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Figure 18: Comparison of Mechanism 2 and the conventional
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even under non-all-to-all interaction topologies. One can easily
get that perfect synchronization of legitimate oscillators in a
general strongly-connected PCO network cannot be achieved
when some legitimate oscillators are affected by attackers
whereas others are not. This is because malicious pulses can
exert nonzero phase shifts on affected legitimate oscillators
and make them deviate from the non-affected legitimate ones.
So similar to [33], we numerically studied the synchronization
error of strongly-connected PCO networks under random

attacks. The synchronization error was quantified as follows:

Synchronization Error = max {min(27 — |¢; — ¢;|,|9: — ¢;|) }
L€

where 4 is the index set of all legitimate oscillators.
One can get that synchronization is achieved only when
Synchronization Error =0 holds.

We compared the synchronization errors of the proposed
Mechanisms 1 and 2 with the mechanisms in [33] and [34]
under a network of 20 oscillators distributed on a 50m x 40m
rectangle. All the oscillators are fixed in the rectangle with
position represented by the blue dots in Fig. 19. Two oscilla-
tors in the network can communicate with each other if and
only if their distance is less than 30 meters. The initial phases
of all oscillators were randomly chosen from [0,27] and the
coupling strength was set to / =0.5.

Fig. 20 shows the synchronization errors of our approaches
(Mechanisms 1 and Mechanism 2) and existing synchroniza-
tion approaches in [33] and [34]. In Fig. 20, each data point
was obtained under 10,000 runs. In each run, all approaches
used the same initial phase distribution (randomly chosen
from [0,27]) and are subject to identical malicious pulse pat-
terns (time interval between two consecutive malicious pulses
randomly chosen from [T /4,9T /4]). The vertical error bars
denote standard deviations. It can be seen that in the presence
of one attacker, our approach (Mechanisms 1&2) provides not
only less average synchronization error but also less standard
deviations. Fig. 21 shows the results in the presence of two
attackers, which also confirmed that the proposed approach
(Mechanisms 1&2) led to reduced average synchronization
errors and standard deviations compared with existing results
in [33] and [34]. It is worth noting that Mechanism 2 led
to a slightly larger synchronization error than Mechanism 1.
This reduction of synchronization performance is consistent
with our intuition that less knowledge (the network size N is
unknown to individual oscillators in Mechanism 2) reduces
the capacity of attack-resilient synchronization design.

m
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16 17 18 19 20
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Figure 19: The positions of the 20 oscillators used in simula-
tion.

VIII. CONCLUSIONS

Due to unique advantages over conventional packet-based
synchronization approaches in terms of simplicity, scalability,
and energy efficiency, pulse based synchronization has been
widely studied. However, few results are available to address
the attack-resilience of pulse base synchronization. In this
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Figure 20: Comparison of Mechanisms 1 and 2 with the
conventional pulse based interaction mechanisms in [33] and
[34] in terms of synchronization error when oscillator 7 in
Fig. 19 was compromised. The coupling strength was set to
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paper, we propose new pulse based interaction mechanisms
to improve the attack resilience of PCO networks. More
interestingly, we show that the new mechanism can enable
synchronization in the presence of multiple stealthy Byzantine
attackers even when the initial phases of legitimate oscilla-
tors are unrestricted, i.e., randomly distributed in the entire
oscillator period. This is in distinct difference from most of
the existing attack-resilience algorithms which require a pri-
ori (almost) synchronization among all legitimate oscillators.
The approach is also applicable when the total number of
oscillators are unknown to individual oscillators. Numerical
simulations confirmed the analytical results.
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