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Abstract—Phasor Measurement Units (PMU) are playing an
increasingly important role in wide-area monitoring and control
of power systems. PMUs allow synchronous real-time measure-
ments of voltage, phase angle and frequency from multiple remote
locations in the grid, enabled by their ability to align to Global
Position System (GPS) clocks. Given that this ability is vulnerable
to GPS spoofing attacks, which have been confirmed easy to
launch, in this paper we propose a distributed real-time wide-area
oscillation estimation approach that is robust to GPS spoofing on
PMUs and their associated Phasor Data Concentrators (PDCs).
The approach employs the idea of checking update consistency
with histories and across distributed nodes and can tolerate
up to one third of compromised nodes. It can be implemented
in a completely decentralized architecture and in a completely
asynchronous way. The effectiveness of the approach is confirmed
by numerical simulations of the IEEE 68-bus power system
models.

Index Terms—Wide-area monitoring, Synchrophasors, GPS
spoofing, cyber attacks, distributed optimization

I. INTRODUCTION

Phasor Measurement Units (PMUs) are widely regarded as
one of the most important measurement devices in a power
system. By receiving highly accurate time information from
the Global Positioning System (GPS), spatially distributed
PMUs enable synchronized phasor measurements of voltages
and currents from widely dispersed locations in power systems
to monitor and control power system dynamics in real-time [1],
[2].

However, although the deployment of PMUs steadily in-
crease, several obstacles remain to be overcome before ef-
fective real time wide-area monitoring and control can be
established. First, existing PMUs are organized in a centralized
infrastructure, which is not only susceptible to single-point
failures, but also subject to computation and communication
bottleneck on the central data concentrator. For example, in the
Eastern Interconnection of the US grid, all PMU measurements
(more than 100,000 data points every second) are sent to
a super phasor data concentrator (PDC). As the number of
PMUs continuously grows, this centralized structure will not
be sustainable, and a distributed cyber-physical architecture
has to be constructed instead. Secondly, PMUs rely on GPS
signals to synchronize spatially distributed measurements. As
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recently confirmed in various field tests (e.g., [3]), PMU GPS
receivers are susceptible to spoofing attacks, which can deceive
a GPS receiver by counterfeit GPS signals and hence disturb
the time synchronization process of the receiver. Asynchro-
nized clocks lead to inaccurate time-stamping and hence make
measurements inaccurate or even unusable. Unless there is a
legitimate way to detect, localize, and mitigate GPS spoofing
attacks, they will lead to completely inaccurate monitoring and
incorrect control actions.

Recently, there have been a few efforts to address these
two problems separately. On the distributed architecture front,
[4] proposed a distributed wide-area oscillation monitoring
approach based on the Alternating Direction Method of Mul-
tipliers (ADMM). Employing ADMM’s strength in noise-
resilience and strong convergence [5], the proposed approach
enables the online estimation of oscillation modes through
distributed information exchange between phasor data con-
centrators (PDCs) located at the local control centers and
the Independent System Operator (ISO), in comparison to the
conventional centralized approaches for oscillation estimation
such as the mode metering approach [6], and the Hilbert-
Huang transform based approach [7]. On the GPS spoofing
attack front, plenty of results have been reported on general
spoofing detection (e.g, [8]). Progress has also been made to-
wards evaluating the feasibility and effect of GPS spoofing at-
tacks on PMU measurements and on power system operations
in general [9], [10]. However, these results, again, focus mostly
on centralized applications, and not on how the outcomes of
distributed estimation may be impacted by coordinated GPS
spoofing. They also require additional hardware for detection.
In this paper we propose a simple variant of distributed
ADMM by which one can estimate oscillation modes in the
presence of GPS spoofing at multiple PMU locations which
can dramatically change or gradually deviate the clocks of
PMUs from the actual time. Our detection mechanism is
purely algorithmic, and hence does not require extra detection
hardware, which is in disparate difference from most existing
GPS spoofing detection approaches requiring dedicated GPS
receivers or radios (e.g., software-defined radios) to measure
and analyze raw GPS signals [11], [12], [13], [14], [15],
[16]. Besides detecting spoofing, the proposed approach can
also robustly achieve correct oscillation estimation even in the
presence of attacks, as long as the number of spoofed PMUs is
less than one third of the total number of PMUs, an observation
which is reminiscent of the Byzantine general problem [17].
We develop three different algorithms. The first algorithm
considers attacks on synchronous estimation of oscillation
modes using local PDCs and a central PDC, while the second



algorithm extends it to asynchronous communication. The
third algorithm involves estimation using direct communica-
tion between the local PDCs. We illustrate the effectiveness of
all three algorithms using numerical simulations on the IEEE
68-bus power system model. Preliminary results on the first
algorithm were recently reported in [18], but the algorithms
and illustrations developed in this journal version are much
more detailed. The second and third algorithms are new.

PMU based state estimation for power systems is gaining
increased popularity [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29] and results have also been reported on
state estimation in the presence of bad data caused by measure-
ment errors [30], [31], [32], [33], [34] or false-data-injection
attacks [35], [36], [37], [38], [39] including GPS spoofing
attacks [40], [41]. However, most of the existing results do
not apply to a decentralized architecture. Furthermore, to our
knowledge, none of these results address distributed oscillation
mode estimation in the presence of GPS spoofing.

II. PROBLEM STATEMENT
A. Background

We model a power system as a network of n synchronous
generators and n; load buses. Each synchronous generator is
modeled by a second-order swing equation and each load bus
is modeled by two algebraic equations for active and reactive
power balance. Based on Kron reduction and linearization, and
assuming that the mechanical power inputs of all generators
are fixed, the differential-algebraic model can be converted
into the following completely differential model [42]:

[ ﬁi((?) ip ] { AAi(é))

A
y(t) = [ A0(t), ..., AG,(t)]" =BASEH) (2

where M = diag(M;,...,M,) and D = diag(Dy,...,D,),
with M; and D; denoting the inertia and mechanical damp-
ing of generator i, respectively. A§ = [Ady,...,Ad,]|T
denotes the small-signal angle deviation, and Aw =
[Awy, ..., Aw,]T denotes the small-signal frequency devi-
ation. L denotes coupling in the Kron-reduced form and
w, denotes the synchronous speed of the system. The mea-
surement A#;(t) in y(t) represents a phase-angle-deviation
measurement conducted at PMU 4. It is a linear combination
(governed by matrix B) of the elements of Ad(t). Here we
consider phase angle deviations only. The eigenanalysis of A
will produce 2n eigenvalues \; = —o; + j§; with j = /1,
which are called oscillation modes. Our aim is to estimate
oscillation modes, i.e., the eigenvalues of A from y(t) in real
time in a distributed way. Next we describe how this can be
achieved using ADMM based Prony algorithm.
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B. ADMM based wide-area oscillation monitoring

From dynamical systems theory, the Ad;(¢) (1 < i < p) in
(2) can be expressed as
29;(t) = Y (rrel =W eI ()
k=1

where r;;, are complex-valued scalar coefficients.

Suppose the measurement is conducted periodically with a
small enough measurement period 71" (according to Nyquist
Theorem, the sampling rate 1/T needs to be at least twice
of the fastest mode to guarantee a faithful reproduction of
the signal). Then applying Z-transform to a total of m
measurements y;(k) = Ab;(kT) (k =1,2,...,m) yields
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where b, -+ by, and ay, - -, ag, are coefficients.

The oscillation modes, i.e., \; = o; + j§2; are determined
by the solutions to
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which in turn are completely determined by the coefficients
ai, as, -+, agy,. Therefore, the original problem of estimating
Ai = o; £ j€; is equivalent to estimating aj, as, - - , aop,
which can be achieved using the following two-step Prony
algorithm [43]:

Step I: Determine a; through as,, through solving

yi(2n) yi(2n — 1) yi(O) | | —a
yi(2n +1) yi(2n) yi(1) —az
: - : : (6)
yi(2n + 1) yi(2n+1-1) yi(l) —aon
c; H,; a

where [ is an integer satisfying 2n+! < m — 1. Concatenating
c; and H; in (6) for ¢ = 1,2,...,p, one can obtain a by
solving a least-squares problem:

main||7'£a—C||2 (7N
Where HT _ [ H]T,yHg },CT — |: c{’_,.7c;1; ], and

|| ® || denotes the 2-norm.

Step 2: Based on the vector a obtained from Step I, solve
(5) to obtain the roots, say denoted by z;, ¢ = 1,2,...,2n.
The oscillation modes A; can be obtained from \; = In(z;) /7.

The above formulation requires a centralized architecture
in which all measurements are sent to a central PDC that
solves (7) to get \;. To obviate the problems with such an
architecture (e.g., communication/computation bottleneck and
single-point failure), [4] proposed a decentralized architecture
which models a power system as a network composed of N
utility companies or areas. Each area is equipped with one
aggregated PDC (cf. Fig. 1). It is worth noting that here “PDC”
is not just a data aggregator and could be any computing
agent that can process PMU data. It is also assumed to be
synchronized to GPS clocks. These local PDCs (located at
every area control center) receive local PMU measurements,
run a local least-squares estimation using these measurements
to generate a local estimate a; of the coefficient vector a,
and then share the estimated values with a central supervisory
PDC located at the ISO. Sharing with the central PDC is
crucial because each a; by itself may be insufficient to capture
inter-area oscillation modes. Communication via the central
PDC can also guarantee that all local PDCs reach the same
estimated value. In the distributed architecture, (7) can be
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Fig. 1. Distributed architecture for a 4-area power system network. It is worth
noting that the presented architecture is just for illustrative purposes, and the
approach is applicable to hierarchical PMU-PDC architectures suggested by
the synchrophasor standard IEEE C37.118.1 [44]. In fact, in a hierarchical
PMU-PDC architecture with local PDCs deployed on different levels, only
those PDCs having direct access to PMU measurements need to be involved
in the computation.

reformulated as a consensus problem over a network of N
local PDCs [4]:
N

min Z |H;a; — &%, st. ai—z=0 (8)
ai,az,...,aN,z i—1

fori=1,2,...,N. Here H; £ [HI\HT, - HgNi]T and
é = el ey cZNi]T where N; is the total number of
PMUs in area 7, and H; ; and c; ; are constructed as in (6)
from the time samples of the 5" PMU in area i. Parameters
a; are the primal variables for area i¢. The global consensus
solution z is obtained when the local estimates a; of the N
local PDCs (i = 1,2,---, N) reach the same value.

The problem (8) can be solved using ADMM in

a distributed way (please refer to [4] for details):

Algorithm 1: Distributed oscillation estimation using ADMM

1) Each local PDC i initializes a?, z°, and w?.
2) At iteration k:

a) PDC i constructs H¥ and é.

b) PDC 7 updates a; according to

al*t = (HF)TH} + pI) " (H})T e — w} + pz})

and sends @’ to the central PDC. Here w; denotes the

Lagrange multipliers associated with (8) and p > 0 denotes
the penalty factor. p makes the Lagrangian differentiable
and generally has a large range of permissible values [4].
¢) The central PDC calculates
N af;+1

zk-‘rl _ ; 5 (9)

and broadcasts z**! to all local PDCs.
d) PDC i updates w; as w} ' = wF 4 p(al™ — M),

)

Since the least-squares problem is convex, as k — oo, zk

in (9) converges to z*, the optimal solution to the original
problem (7) [5]. Moreover, the constraint a; = z guarantees
that all local PDCs get the same a1 = as = --- = ay = z*.
Note that irrespective of the fact whether the PDCs are
executing Algorithm 1 in a synchronous or asynchronous
fashion, every PDC must be equipped with a clock to keep
track of the time-stamping of their respective estimates.

Note that the Prony estimation in (6) is based on the as-
sumption that the incoming disturbance is an impulse function.
This assumption is valid for a power system, as testified by
the recent IEEE PES technical report on mode estimation [45].
Because of its short-livedness, a fault in a power system can
be considered as an impulse function, and the response of the
state variables can, therefore, be considered as the impulse
response. Hence, after 2n sampling instants, the zero dynamics
die away completely, and the measurements can be collected
in the H and ¢ matrices for solely computing the characteristic
polynomial vector a, as described above.

C. Problem setup

In the architecture shown in Fig. 1 every PMU and PDC
require precise time-stamping, which is achieved through local
GPS clocks. Spoofing of any of these clocks will severely
disturb the proper execution, convergence, and accuracy of
Algorithm 1. Spoofing of PMU clocks, for example, will cause
the PMU to generate asynchronous measurements with respect
to normal PMUs, leading to phase errors when measurements
are correlated. Spoofing of PDC clocks, on the other hand,
will lead to failures in keeping track of time-stamping of its
estimates, leading to errors when correlated with other normal
PDCs. Following [10] which showed that spoofed GPS clocks
lead to incorrect oscillation patterns (modes), we model the
influence of GPS spoofing as a deviation of a¥ in Algorithm
1, which corresponds to an oscillation mode error. Although
several authentication-based approaches have been proposed
(say, e.g., [8]) to defend against external GPS spoofers, an
attacker may still be able to compromise the oscillation
estimation in Algorithm 1 unless a detection algorithm exists.
Our goal is to develop such an algorithm. For convenience we
first assume that a central PDC coordinates the computations
in the distrusted PDCs, both in synchronous (Sec. III) and
asynchronous fashion (Sec. IV). The clock of the central PDC
is assumed to be unaffected by spoofing. This assumption will
be relaxed in Sec. V where we develop a fully decentralized
ADMM resilient to GPS spoofing.

III. DETECTION USING A CENTRAL PDC AND
SYNCHRONOUS COMMUNICATIONS

We first propose an online oscillation estimation approach
that is resilient to GPS spoofing attacks in the presence of a
central PDC and synchronous communications between PDCs.
The basic idea is to enforce certain update restrictions on the
local PDCs, i.e., the updated estimation at iteration k + 1
should be at most e different from iteration k, where € is



a design parameter. This restriction can be imposed simply
by adding a saturation function to the update equation for
the local estimates. Our goal will be to show that under
the proposed framework, the restriction will be automatically
satisfied by the central PDC. Therefore, by checking the update
status at the central PDC, the ISO can decipher if local
PDCs are operating correctly. If the updates from any set of
local PDCs violate the update rule, the ISO will receive an
alarm that the clocks at these PDCs may have been spoofed.

Algorithm 2: Attack resilient ADMM with a central PDC and
synchronous communications

1) Each local PDC i initializes a?, z°, and w?.
2) At iteration k:

a) PDC i constructs H¥ and ¢,

b) PDC ¢ updates a; according to

~k+1 kT Frk —1¢( Frk\T pk k k
a;"t = ((HY) Hf +pI)”'((H)" €] — wy + pzf)
a" ! = a¥ 4 sat (aFtt — ab)

and sends a¥™! to the central PDC. Here € is a positive

constant, and sat.(e) is the saturation function defined for
every element of a vector as follows:

e if > €
sat.(z) = x if e>x>—¢ (10)
—e if —€e>x
¢) For af“ received from each local PDC, the central PDC

uses the following two rules to detect if it is compromised:

I) € based rule: the central PDC checks for every element
of af“ the absolute difference from the corresponding
element of a¥ (the estimate from the same local PDC in
the previous iteration). If for some element, the absolute
difference is over ¢, the central PDC determines that the
it" PDC is compromised and its data will be discarded for

all iterations onwards from the k'" iteration.

II) median based rule: The central PDC checks for every
element of a¥ the absolute difference from the correspond-
ing element in the median vector a¥ of all PDCs after the
transient period (the median is defined on each element
as a¥ = median{a¥,ak,---  ak}). If for some element,
the absolute difference is over ¢, then the central PDC
determines that the i*"* PDC is compromised and its data
will be discarded for all iterations onwards from the k"
iteration.

Representing the set of all m compromised PDCs as B, the
central PDC calculates

g+l

Z N —m

1<i<N, i¢gB

SR+

Y

and broadcasts zF*1 to all local PDCs.

d) PDC i updates w; as wr™! = wh 4 plaktt — ZF+),

The constant € in the above Algorithm 2 is a design para-
meter, which should be set to a value less than the spoofing-
caused deviation, which can be obtained based on published
results such as [9] and [10]. It should also be kept secret,

otherwise an attacker can try to evade the detection mechanism
by judiciously causing deviations smaller than ¢. ¢ enforces a
certain level of consistency between the intermediate results
at step k£ and step k + 1, and will affect the convergence
trajectory, as illustrated in the numerical simulations in Sec.
VI. However, it is worth noting that numerical simulations also
confirm that € does not affect the final estimate value if set
in an appropriate range. More interestingly, we can show that
the above “e based rule” can also be used for local PDCs to
determine if the central PDC is comprised. More specifically,
each local PDC can check if the absolute difference between
each element of z**! and the corresponding element of z*
is over e: If the answer is negative for all elements, then the
central PDC is not compromised; otherwise, the central PDC
is compromised. The rationale can be easily obtained from the
update rule of z* in (11), which confines z**! to be within
¢ from z* if all ™" are within ¢ from a”.

The “median based rule” is used to capture attackers which
use extremely small deviations to evade the “e based rule”. It
is motivated by the fact that all a* will converge to the same
value after some transient period. (The number of iterations
for the transient period can be obtained from simulations or
theoretical analysis [5].) That is, when there are no attacks, all
af will converge to the same value, and thus after the transient
period every a will be within a small distance § from the
median @¥; when a PDC’s a} is manipulated by an attacker
to gradually deviate from the correct value, it can be detected
when the accumulated deviation from the corrected value
reaches §. d can be set according to the tolerable difference
among a! after the transient period. This “median based rule”
is also effective in capturing attacks which hold some a¥ to a
constant value, as confirmed by the simulation results in Fig.
14 and Fig. 15.

Remark 1: The e based detection mechanism is affected
by neither the model nor the dynamics. As long as every
PDC follows the rule correctly, transient events or model
uncertainties will not trigger the detection mechanism and
cause false alarms, and hence will not be misclassified as
attacks.

Remark 2: In the case where IEEE 1588 (PTP) protocol
is used to synchronize multiple PMUs and the local PDC in
a substation, a GPS spoofing attack on the PTP grandmaster
clock with GPS synchronization will affect all PMUs in the
substation. Our approach is applicable to this case because
it treats a local PDC and all associated PMUs as a single
node in the algorithm (also cf. Fig. 1). Of course, the above
scenario may lead to the problem of localizing attacks within
a substation, which is out the scope of this paper.

IV. DETECTION USING A CENTRAL PDC AND
ASYNCHRONOUS COMMUNICATIONS

In Algorithm 2, all local PDCs are assumed to be able to
perform their respective optimization steps with equal speeds,
and the communication latencies between the local PDCs and
the central PDC are also equal, i.e., the computation and
communication among all PDCs are synchronous. However,
in reality, different PDCs may not be able to conduct com-
munication and computations in perfect synchronization due



to differences in their processing speeds and heterogenous
communication latencies caused by routing and queuing. To
address this asynchrony, one can force the central PDC to wait
until it receives intermediate communication results from all
local PDCs. However, this approach slows down each iteration
to accommodate the link subject to the largest end-to-end
communication delay, which may lead to unacceptably slow
convergence. Fortunately, the recently proposed asynchronous
ADMM algorithm provides a way to overcome this issue
[46], [47]. Based on [46], [47], we proposed an asynchronous
oscillation monitoring algorithm in the absence of GPS attacks
[4]. To that algorithm, we now add attack resilience by using
a similar crosscheck mechanism as in Algorithm 2. The basic
idea of the algorithm is as follows: At each iteration, the
central PDC is allowed to use only the more recent results of a
subset of the local PDCs to detect attacks and perform updates.
Denote the subset of local PDCs as active PDCs and the time
instant at which the central PDC updates z*+1 as 7%+ The
central PDC then broadcasts (z**1, T**1) to every local PDC.
Upon receiving 7%+, each local PDC i then constructs H f“
and éf“ by setting 2n + [ in (6) to the sample index that is
closest to the time instant 7%+!. Note that A#(2n + [) may
not be the most recent measurement sample while constructing
the HF™' and &' matrices. However, to ensure that all
PDCs use the same time-window of the measurements to form
fIikH and éf“ , they all use the same value of 2n + [
as decided globally by the central PDC at every iteration
k+1. The attack-resilient algorithm can be written as follows:

Algorithm 3: Attack resilient ADMM with asynchronous
communications

1) The central PDC initializes 7° and sends it to all local
PDCs.

2) Each local PDC i initializes a?, 2, and w?.

3) At iteration k:

a) Given T*, PDC i constructs H¥ and & using 2n + [

decided from T* according to (6).
b) PDC ¢ updates a; according to

a;ytt = (H)THY + pI)™ (Hf) e} — w} + pzf)
aftt = af +sat (aFt! — ab)

and sends a’t!, wk,

i and k to the central PDC. Here
sat(e) is the saturation function and is defined as in (10)
for a given positive constant e.

¢) For af“ received from each active local PDC, the central

PDC uses the following two rules to detect if it is compro-

mised:

I) € based rule: the central PDC checks for every element
of af'H the absolute difference from the corresponding
element of a¥ (the estimate from the same local PDC in
the previous iteration). If for some element, the absolute
difference is over ¢, the central PDC determines that the
it" PDC is compromised and its data will be discarded for

all iterations onwards from the k" iteration.

II) median based rule: The central PDC checks for every
element of a¥ the absolute difference from the correspond-
ing element in the median vector a¥ of all PDCs after the

transient period (the median is defined on each element
as a¥ = median{a¥,a, - ak}). If for some element,
the absolute difference is over §, then the central PDC
determines that the i*" PDC is compromised and its data
will be discarded for all iterations onwards from the k"
iteration.

Representing the set of all m compromised PDCs as B, the
central PDC calculates

gkt
2=y : (12)
= S N-m
1<i<N,i¢gB
where af“ = a¥ and wf'“ = w? for all non-active

PDCs whose most recent updates are not available at the
central PDC.

d) The central PDC broadcasts z¥*1, k + 1, and T%*! to all
local PDCs.

f) PDC i updates w; as w; ™" = wF+p(al™ —2"+1) for all

(2
active PDCs and as w"™! = w! for all non-active PDCs.

g

In Algorithm 3, the central PDC exchanges the iteration
numbers k£ and k + 1 with the local PDCs in steps b) and
d) to keep track of the order of the received data. Since the
iteration number is independent of the absolute time, this addi-
tional information exchange (compared with the synchronous
communication case) is insensitive to GPS spoofing attacks
and will not increase the vulnerability of the system. However,
when compared to Algorithm 2, the local PDCs also have
to transmit w to the central PDC. This additional informa-
tion exchange is sensitive to GPS spoofing attacks since w
is affected by the absolute time. The above algorithm can
guarantee convergence to the global minimum if none of the
local PDCs is permanently dormant. In other words, each PDC
must be active infinitely often with probability 1 [46]. This
ensures that oscillation estimation can be solved in real-time,
despite asynchronous updates caused by, e.g., heterogenous
computation speeds or heterogenous communication latencies.
It is worth noting that if an attack occurs on a dormant node,
it cannot be detected by the central PDC until the dormant
PDC wakes up and communicates with the central PDC twice
consecutively (the detection requires the consistency between
two consecutive iterations).

Because in Algorithm 3 the central PDC only uses the
data from the subset of active local PDCs that feed measure-
ments to the central PDC fast enough (with small enough
communication latencies), there is a trade-off between the
number of active PDCs and the lag in oscillation estimation.
Given that the number of useable active PDCs correlates
positively with the accuracy of estimation, we can also say
that there is a trade-off between the estimation error and
the estimation lag. Incorporating more PDCs into the active
PDC subset leads to more useable measurement data and thus
reduced estimation error, but results in large waiting time (for
measurement data from local PDCs to arrive) and thus a large
lag in oscillation estimation. Whereas incorporating less PDCs
in the active PDC subset tends to reduce the lag in estimation
but increases estimation error. Numerical simulations in Fig.
19 also confirmed this trade-off.
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Fig. 2. Decentralized architecture for a 4-area power system network.

V. DECENTRALIZED DETECTION WITHOUT A CENTRAL
PDC

Algorithms 2 and 3 need a central PDC to update z at each
iteration and to broadcast the vector back to the local PDCs.
Although this communication architecture preserves the data
privacy between all PDCs, it is not resilient to a single point
failure of the central PDC under extraneous attacks. To solve
this problem, we have to resort to a completely decentralized
version of architecture 1 as shown in Fig. 2. In this architec-
ture, each active PDC at each iteration communicates directly
with a subset of other active PDCs. Therefore, the need for
a central PDC no longer exists. In the absence of a central
PDC, the communication patten among PDCs can be described
by a communication graph G = (V, E) where each node in
V ={1,2,..., N} corresponds to one PDC and E is the edge
set with each edge e;, € F corresponding to a communication
link between PDCs ¢ and v. In this paper, we assume that the
communication graph G is time-invariant and connected with
a path existing between any pair of nodes. We also assume
that the communication is synchronous and instantaneous (no
latency) among local PDCs. To present the algorithm, we give
a graph reformulation of the optimization problem (8):

N
min Y ||H;a; — &7,

a1,a2;..,aN ~
i=1

st. a; —a, =0 for e, € £

13)

Since the communication graph is connected, the reformulated

problem (13) is equivalent to (8). To facilitate the description
of the algorithm, we define the predecessor set P; and succes-
sor set S; of a PDC i as

P, 2 {veyy € E,v <i}, S;={vlew € E,o>i} (14)

and we denote the number of elements in the sets P;
and S; by np, and ng,, respectively. We now pro-
pose a decentralized attack-resilient oscillation monitor-

ing algorithm based on the decentralized ADMM in
[46], [4] which can guarantee that the estimated oscilla-
tion modes on all local PDCs converge to same values:

Algorithm 4: Attack resilient ADMM without a central
PDC

1) Each local PDC i initializes a?, w9, for e,; € E.

2) At iteration k, every PDC ¢ (1 <i¢ < N):

a) Receives the update of af*! for all v € P,. For each
received aﬁ*l, PDC ¢ uses the following two rules to detect
if it is compromised checks every element of the deviation
of ak*! from aF.

I) € based rule: PDC ¢ checks for every eleme

Yongc

the absolute difference from the corresponding

ak (the estimate from the same local PDC in ti replace "checks every

iteration). If for some element, the absolute di
over ¢, PDC i determines that the v** PDC is co
and its data will be discarded for all iteratior
from the k'" iteration.

II) median based rule: PDC ¢ checks for every
al the absolute difference from the correspondi
in the median vector @* of all PDCs inv € 1, .. __
transient period (the median is defined on each element as

a¥ = median{a®,v € P}, note that here we require that

k=
P; includes at least three PDCs). If for some element, the
absolute difference is over §, then PDC 7 determines that
the v*"* PDC is compromised and its data will be discarded

for all iterations onwards from the k" iteration.

If the deviation is over ¢, PDC 7 determines that the
corresponding PDC is compromised and its data will be
discarded for all iterations onwards from the k'" iteration.

b) Constructs HY and éP.

¢) Updates a; according to

a; " = (HH)THF + p(ny, +ns,) )"k}

(2

r = ((HHTE + ) wi, — Y wy

veES; v inP;
k k
+p()_ aitt + ) al).
veP; vES;

k1 _ gk 4 oot gkl _ ok
a;" =aj +sat(a;" — ay)

Here sat.(e) is the saturation function and is defined as in
(10) for a positive constant e.
d) Updates all w,,; for v € P; as:

k+1 _ K k+1 k+1
Wy; = Wy; — p(av —a; )

e) Sends af“ to all PDCs which are either in P; or in S;.

f) Sends w ™ to v € P,.

g) Receives af*! and wf'' from all v € ;. For each
a,’,f“ received from the successors, PDC ¢ checks every
element of the deviation of a®*! from a¥. If the deviation

is over €, PDC ¢ determines that the corresponding PDC is

compromised and its data will be discarded for all iterations

onwards from the k'" iteration.

In the above algorithm, at each iteration k, the primal vari-
ables af‘ are updated sequentially starting from PDC 1 to PDC



Fig. 3. Distributed architecture for a 5-area power system network.

N using the most recent available vales of a, for v belonging
to its predecessors and successors. PDC : also updates the
dual variables w,,; for v belonging to P;. Therefore, if a PDC
is compromised by an attack, its successors can immediately
detect the attack as the successors are affected right away in
the current iteration. However, its predecessors can only detect
the attack in the next iteration as the value of a PDC will
affect its predecessors only in the next iteration. Furthermore,
because in each iteration, the estimation in each PDC is only
affected by a subset of all other PDCs, the convergence speed
of estimates from different PDCs to the same value is reduced
compared with the centralized case, in which the estimation in
each PDC is affected by every other PDC (through the central
PDC). This is clear from the simulation results (compare Fig.
9 for the centralized case and Fig. 21 for the decentralized
case).

Remark 3: It is worth noting that a potential drawback of
decentralized schemes is that the required extra communica-
tions between local PDCs may increase the communication
overhead. The extra communication links could also become
targets for a coordinated attack.

VI. NUMERICAL SIMULATIONS

We used the IEEE 68-bus system to verify the proposed
approach. We divided the entire system into five areas (cf.
Fig. 3) with each area having one local PDC and three PMUs.
The simulated measurements are obtained using the Power
Systems Toolbox [4]. The synchronous generators are assumed
to be 6" order for the sake of practicality. A three-phase
fault is simulated at the line connecting buses 1 and 2. The
measurements are down-sampled, making the sampling period
T = 0.2s. Our objective is to estimate the post-fault inter-
area oscillations. As there are 16 generators, our algorithm
should ideally solve a 96" order polynomial. However, many
of these 96 modes are negligible and it was shown in [4]
that 40 modes suffice to capture the inter-area oscillations. We
used p = 10~? in the simulation. The proposed algorithms are
lightweight in computation. In fact, in our Matlab simulations
on a computer with Intel 1.7 GHz CPU and 8 GB memory,
it took approximately 2.56 milliseconds to run our algorithm
for 50 iterations.

&N
“
5 sl
S o
=
(&)
ol
A 0 L L L L L L L L L
ha 5 10 15 20 25 30 35 40 45 50
Iteration (k)
2
v | ——d) —ab(1) —d§(1) —af(1) —db(1)
5 1.5f ]
g
e I ]
=2
© 05f |
- 0 L L L L
0 10 20 30 40 50
Iteration (k)

Fig. 4. 2z* in the central PDC and a,f in local PDCs in Algorithm 2.

Y

3

g 0.5

e

[}

°

<

45 0 1 1 1 1

& 10 20 30 40 50

Iteration (k)

o 2 k k k k k

S af(1) a3(1) as(1) aj(l) as(1)

© 1.5¢f B

g

g 17 1

<

S o5f 1
0 L L L L
0 10 20 30 40 50

Iteration (k)

Fig. 5. z* in the central PDC and af in local PDCs in Algorithm 1.

A. Simulation results in the presence of a central PDC and
synchronous communications

We first checked the convergence property of the proposed
algorithm 2 in the absence of attacks. We set € to 0.2 to run the
simulations. Fig. 4 shows the evolution of the first 4 elements
of z* on the central PDC and the first element of a”* on the
five local PDCs. It can be seen that they converge to the same
steady-state values as in the original ADMM algorithm (cf.
Fig. 5). The selected estimated modes ¢ and €2 in (3) (the solid
lines in Fig. 6) also converge to the actual values obtained from
the Power System Toolbox (represented by dashed lines in Fig.
6). In the simulations, the absolute time for each iteration was
on the sub-millisecond level. The total running time for all 50
iterations was around 16 milliseconds.

We then evaluated the performance of the proposed al-
gorithm in the presence of an attack on PDC 1. Following
[3] showing that GPS spoofing leads to a constant drift, we
assume that a constant drift A = 0.2 occurred on PDC 1’s
estimate of a¥ at iteration no. 26. The estimated modes with
the original algorithm are given in Fig. 8. It can be seen that
the attack leads to erroneous estimation. Whereas with the
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Fig. 8. Estimated modes in Algorithm 1 in the presence of an attack.

proposed algorithm, the attacked PDC was quickly detected
and isolated, which guarantees a correct estimation (cf. Fig.
9).

We also simulated the influence of € on the estimation error
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Fig. 9. Estimated modes in Algorithm 2 in the presence of an attack.
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Fig. 10. The influence of the magnitude of € in Algorithm 2 on the final
estimation error of o.

of 0. The results are given in Fig. 10. It can be seen that
the proposed algorithm 2 is insensitive to the magnitude of
€ in correctly estimating the oscillation modes, although it’s
convergence speed decreases with a decrease in e.

To test the effectiveness of the algorithm in the presence of
multiple attacks, we also ran Algorithm 2 when both PDC 1
and PDC 5 were compromised with a constant offset value 0.2.
In the simulation, the offset on the outputs of PDC 1 and PDC
5 was initiated at iterations 25 and 35, respectively. Algorithm
2 successfully detected and isolated both compromised PDCs,
and correctly estimated the oscillation modes, as shown in Fig.
11.

We also evaluated the effectiveness of the “median based
rule” in detecting attackers that can evade the “e based rule” by
using very small deviations. According to simulation results,
we found that the transient period is less than 10 iterations.
So we activated the “median based rule” after 10 iterations
with § set to 0.01. To emulate attacks with small deviations,
we induced a 0.005-per-iteration offset to the first element of
a¥ starting from iteration number 26. The evolution of a¥ is
shown in Fig. 12. The detection mechanism successfully cap-
tured this attack at iteration number 29, and hence guaranteed
the correct estimation of the oscillation modes, as shown in
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aj(1) —ak(1) |

af(1) —aj(1) —ab(1)

0.8 1

k
i

1st element of a!

0.4t :

0 Il Il Il Il
0 10 20 30 40 50

Iteration (k)

Fig. 12. a,f in local PDCs with a’f subject to attack-induced small deviations
(0.005/iteration) starting from iteration number 26.
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Fig. 13. Four estimated oscillation modes using the proposed Algorithm 2

with a’f subject to attack-induced small deviations (0.005/iteration) starting

from iteration number 26.

Fig. 13.

The “median based rule” was also confirmed effective
in capturing attacks holding some a’ to a constant value.
More specifically, in the simulation, we assumed that the first
element of a¥ was attacked and stopped updating starting from

[—al(1) —dj(1) —dj(1) —af(1) —db(1)
0.8F =
N
2 o06f i
=
()
g
()
T 0.4 4
0.2r |
0 ‘ ’ ‘ ‘
0 10 20 30 40 50

Iteration (k)
Fig. 14. af in local PDCs with a’f subject to an attack holding it to a
constant value starting from iteration number 26.
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Fig. 15. Four estimated oscillation modes using the proposed Algorithm 2

with a’f subject to an attack holding it to a constant value starting from

iteration number 26.

iteration number 26, i.e., the first element of a’f was set to
the first element of a?® for all k = 27,28,... (cf. Fig. 14).
The “median based rule” successfully detected this attack and
guaranteed a correct estimation, as illustrated in Fig. 15.

Besides GPS spoofing, GPS signal loss can also affect
phasor angle measurements [48] and thus affect oscillation
mode estimation. Therefore, we also ran the “median based
rule” under phasor angle drifting rate 0.0002 rad/s obtained
from real power grid measurements [48]. According to the
relationship in (6), we obtained numerically that such a
drifting rate could induce 0.0002-per-iteration offset to the first
element of a¥. The drift was set to start at iteration number
26, and was detected at iteration number 97 (cf. the evolution
of @} in Fig. 16). The estimated oscillation modes are given
in Fig. 17, which confirmed the resilience of the approach to
GPS signal loss.

B. Simulation results in the presence of a central PDC and
asynchronous communications

We also simulated Algorithm 3 in the presence of a cen-
tral PDC and asynchronous communications. To emulate the
asynchronous communication patterns, we chose active PDCs
randomly with each PDC having a equal probability of 0.5 for
being active. In the absence of attacks, the algorithm correctly



-

o o
© ©
. .

k

i

e

3
.

» ()] o
L

1st element of a¥

o o o o

w
.

o
(M)
.

o
e
T
L

0 . . . . .
0 50 100 150 200 250 300
Iteration (k)

Fig. 16. af in local PDCs with a,]f subject to GPS-signal-loss-induced small
deviations (0.0002/iteration) starting from iteration number 26.

0.6 ‘
W —— ] — ) — 3 — |
04l 1
& (7~
0.2 i
0 L L
0 50 100 150
Iteration (k)
6 :
I—Ql — )y — )y —Q4|
5 o
c4fE ]
3, 4
|
2 1 1
0 50 100 150

Iteration (k)

Fig. 17. Four estimated oscillation modes using the proposed Algorithm 2

with a’f subject to GPS-signal-loss-induced small deviations (0.0002/iteration)

starting from iteration number 26.

estimated the oscillation modes. In the presence of an attack
on PDC 1, the algorithm quickly detected the attack and
isolated PDC 1, and hence could still successfully estimate
the oscillation modes (cf. Fig. 18).

We also numerically verified the trade-off between estima-
tion error and estimation lag for Algorithm 3. In the simulation
the communication latencies were uniformly distributed be-
tween 0 and 7 iterations. We defined a local PDC to be within
the active subset when the latency on its communication link
to the central PDC (which is time varying) is no larger than
i iterations (1 = 1,2,---,7), leading to a lag (delay) of @
iterations in the oscillation estimation. The total estimation
error of the four most significant oscillation modes under
different lags ¢ at iteration number 50 is plotted in Fig. 19.
It is evident that there is a trade-off between estimation error
and estimation lag.
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Fig. 18. Estimated oscillation modes in Algorithm 3 in the presence of an
attack.
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Fig. 20. Decentralized communication pattern.

C. Simulation results in the absence of a central PDC

We also simulated Algorithm 4 in the absence of a central
PDC. The communication architecture is given in Fig. 20. In
the absence of attacks, the algorithm correctly estimated the
oscillation modes. In the presence of an attack on PDC 5, the
algorithm quickly detected the attack and isolated PDC 5, and
hence could still successfully estimate the oscillation modes
(cf. Fig. 21).

VII. CONCLUSION

We proposed a real-time distributed wide-area oscillation
estimation approach that is resilient to GPS spoofing attacks.
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The approach can be used in the presence of asynchronous
communications due to heterogenous computational speeds
and heterogenous communication latencies. It can also be used
in a completely decentralized scenario without a central PDC.
In fact, the approach is essentially based on designed distrib-
uted agreement and could potentially be adapted as solutions to
other types of attacks on distributed optimization and control
of a power system. For example, the fault-current injection
attacks in [39] affect multiple PMU measurements and can
likely be tackled under the proposed detection framework.
Numerical simulations confirmed that the proposed algorithms
can detect small attacks and guarantee correct estimation in the
presence of attacks.
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