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Abstract—Phasor Measurement Units (PMU) are playing an
increasingly important role in wide-area monitoring and control
of power systems. PMUs allow synchronous real-time measure-
ments of voltage, phase angle and frequency from multiple remote
locations in the grid, enabled by their ability to align to Global
Position System (GPS) clocks. Given that this ability is vulnerable
to GPS spoofing attacks, which have been confirmed easy to
launch, in this paper we propose a distributed real-time wide-area
oscillation estimation approach that is robust to GPS spoofing on
PMUs and their associated Phasor Data Concentrators (PDCs).
The approach employs the idea of checking update consistency
with histories and across distributed nodes and can tolerate
up to one third of compromised nodes. It can be implemented
in a completely decentralized architecture and in a completely
asynchronous way. The effectiveness of the approach is confirmed
by numerical simulations of the IEEE 68-bus power system
models.

Index Terms—Wide-area monitoring, Synchrophasors, GPS
spoofing, cyber attacks, distributed optimization

I. INTRODUCTION

Phasor Measurement Units (PMUs) are widely regarded as

one of the most important measurement devices in a power

system. By receiving highly accurate time information from

the Global Positioning System (GPS), spatially distributed

PMUs enable synchronized phasor measurements of voltages

and currents from widely dispersed locations in power systems

to monitor and control power system dynamics in real-time [1],

[2].

However, although the deployment of PMUs steadily in-

crease, several obstacles remain to be overcome before ef-

fective real time wide-area monitoring and control can be

established. First, existing PMUs are organized in a centralized

infrastructure, which is not only susceptible to single-point

failures, but also subject to computation and communication

bottleneck on the central data concentrator. For example, in the

Eastern Interconnection of the US grid, all PMU measurements

(more than 100,000 data points every second) are sent to

a super phasor data concentrator (PDC). As the number of

PMUs continuously grows, this centralized structure will not

be sustainable, and a distributed cyber-physical architecture

has to be constructed instead. Secondly, PMUs rely on GPS

signals to synchronize spatially distributed measurements. As
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recently confirmed in various field tests (e.g., [3]), PMU GPS

receivers are susceptible to spoofing attacks, which can deceive

a GPS receiver by counterfeit GPS signals and hence disturb

the time synchronization process of the receiver. Asynchro-

nized clocks lead to inaccurate time-stamping and hence make

measurements inaccurate or even unusable. Unless there is a

legitimate way to detect, localize, and mitigate GPS spoofing

attacks, they will lead to completely inaccurate monitoring and

incorrect control actions.

Recently, there have been a few efforts to address these

two problems separately. On the distributed architecture front,

[4] proposed a distributed wide-area oscillation monitoring

approach based on the Alternating Direction Method of Mul-

tipliers (ADMM). Employing ADMM’s strength in noise-

resilience and strong convergence [5], the proposed approach

enables the online estimation of oscillation modes through

distributed information exchange between phasor data con-

centrators (PDCs) located at the local control centers and

the Independent System Operator (ISO), in comparison to the

conventional centralized approaches for oscillation estimation

such as the mode metering approach [6], and the Hilbert-

Huang transform based approach [7]. On the GPS spoofing

attack front, plenty of results have been reported on general

spoofing detection (e.g, [8]). Progress has also been made to-

wards evaluating the feasibility and effect of GPS spoofing at-

tacks on PMU measurements and on power system operations

in general [9], [10]. However, these results, again, focus mostly

on centralized applications, and not on how the outcomes of

distributed estimation may be impacted by coordinated GPS

spoofing. They also require additional hardware for detection.

In this paper we propose a simple variant of distributed

ADMM by which one can estimate oscillation modes in the

presence of GPS spoofing at multiple PMU locations which

can dramatically change or gradually deviate the clocks of

PMUs from the actual time. Our detection mechanism is

purely algorithmic, and hence does not require extra detection

hardware, which is in disparate difference from most existing

GPS spoofing detection approaches requiring dedicated GPS

receivers or radios (e.g., software-defined radios) to measure

and analyze raw GPS signals [11], [12], [13], [14], [15],

[16]. Besides detecting spoofing, the proposed approach can

also robustly achieve correct oscillation estimation even in the

presence of attacks, as long as the number of spoofed PMUs is

less than one third of the total number of PMUs, an observation

which is reminiscent of the Byzantine general problem [17].

We develop three different algorithms. The first algorithm

considers attacks on synchronous estimation of oscillation

modes using local PDCs and a central PDC, while the second
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algorithm extends it to asynchronous communication. The

third algorithm involves estimation using direct communica-

tion between the local PDCs. We illustrate the effectiveness of

all three algorithms using numerical simulations on the IEEE

68-bus power system model. Preliminary results on the first

algorithm were recently reported in [18], but the algorithms

and illustrations developed in this journal version are much

more detailed. The second and third algorithms are new.

PMU based state estimation for power systems is gaining

increased popularity [19], [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29] and results have also been reported on

state estimation in the presence of bad data caused by measure-

ment errors [30], [31], [32], [33], [34] or false-data-injection

attacks [35], [36], [37], [38], [39] including GPS spoofing

attacks [40], [41]. However, most of the existing results do

not apply to a decentralized architecture. Furthermore, to our

knowledge, none of these results address distributed oscillation

mode estimation in the presence of GPS spoofing.

II. PROBLEM STATEMENT

A. Background

We model a power system as a network of n synchronous

generators and nl load buses. Each synchronous generator is

modeled by a second-order swing equation and each load bus

is modeled by two algebraic equations for active and reactive

power balance. Based on Kron reduction and linearization, and

assuming that the mechanical power inputs of all generators

are fixed, the differential-algebraic model can be converted

into the following completely differential model [42]:
[

∆δ̇(t)
∆ẇ(t)

]

=

[
0n×n wsIn

M−1L −M−1D

]

︸ ︷︷ ︸

A

[
∆δ(t)
∆w(t)

]

(1)

y(t) =
[

∆θ1(t), . . . , ∆θp(t)
]T

= B∆δ(t) (2)

where M = diag(M1, . . . ,Mn) and D = diag(D1, . . . , Dn),
with Mi and Di denoting the inertia and mechanical damp-

ing of generator i, respectively. ∆δ = [∆δ1, . . . , ∆δn]T

denotes the small-signal angle deviation, and ∆w =
[∆w1, . . . ,∆wn]T denotes the small-signal frequency devi-

ation. L denotes coupling in the Kron-reduced form and

ws denotes the synchronous speed of the system. The mea-

surement ∆θi(t) in y(t) represents a phase-angle-deviation

measurement conducted at PMU i. It is a linear combination

(governed by matrix B) of the elements of ∆δ(t). Here we

consider phase angle deviations only. The eigenanalysis of A

will produce 2n eigenvalues λi = −σi ± jΩi with j =
√
−1,

which are called oscillation modes. Our aim is to estimate

oscillation modes, i.e., the eigenvalues of A from y(t) in real

time in a distributed way. Next we describe how this can be

achieved using ADMM based Prony algorithm.

B. ADMM based wide-area oscillation monitoring

From dynamical systems theory, the ∆θi(t) (1 ≤ i ≤ p) in

(2) can be expressed as

∆θi(t) =
n∑

k=1

(

rike(−σk+jΩk)t + r∗ike(−σk−jΩk)t
)

(3)

where rik are complex-valued scalar coefficients.

Suppose the measurement is conducted periodically with a

small enough measurement period T (according to Nyquist

Theorem, the sampling rate 1/T needs to be at least twice

of the fastest mode to guarantee a faithful reproduction of

the signal). Then applying Z-transform to a total of m
measurements yi(k) , ∆θi(kT ) (k = 1, 2, . . . ,m) yields

yi(Z) =
bi
0k + bi

1kZ−1 + bi
2kZ−2 + · · · + bi

2nkZ−2n

1 + a1Z−1 + a2Z−2 + · · · + a2nZ−2n
(4)

where bi
0k, · · · , bi

2nk and a1, · · · , a2n are coefficients.

The oscillation modes, i.e., λi = σi ± jΩi are determined

by the solutions to

1 + a1Z
−1 + a2Z

−2 + · · · + a2nZ−2n = 0 (5)

which in turn are completely determined by the coefficients

a1, a2, · · · , a2n. Therefore, the original problem of estimating

λi = σi ± jΩi is equivalent to estimating a1, a2, · · · , a2n,

which can be achieved using the following two-step Prony

algorithm [43]:

Step 1: Determine a1 through a2n through solving







yi(2n)
yi(2n + 1)

...

yi(2n + l)








︸ ︷︷ ︸

ci

=








yi(2n − 1) · · · yi(0)
yi(2n) · · · yi(1)

...
...

...

yi(2n + l − 1) · · · yi(l)








︸ ︷︷ ︸

Hi








−a1

−a2

...

−a2n








︸ ︷︷ ︸

a

(6)

where l is an integer satisfying 2n+ l ≤ m−1. Concatenating

ci and Hi in (6) for i = 1, 2, . . . , p, one can obtain a by

solving a least-squares problem:

min
a

‖Ha − C‖2
(7)

where H
T =

[
HT

1 , . . . ,HT
p

]
, C

T =
[

cT
1 , . . . , cT

p

]
, and

‖ • ‖ denotes the 2-norm.

Step 2: Based on the vector a obtained from Step 1, solve

(5) to obtain the roots, say denoted by zi, i = 1, 2, . . . , 2n.

The oscillation modes λi can be obtained from λi = ln(zi)/T .

The above formulation requires a centralized architecture

in which all measurements are sent to a central PDC that

solves (7) to get λi. To obviate the problems with such an

architecture (e.g., communication/computation bottleneck and

single-point failure), [4] proposed a decentralized architecture

which models a power system as a network composed of N
utility companies or areas. Each area is equipped with one

aggregated PDC (cf. Fig. 1). It is worth noting that here “PDC”

is not just a data aggregator and could be any computing

agent that can process PMU data. It is also assumed to be

synchronized to GPS clocks. These local PDCs (located at

every area control center) receive local PMU measurements,

run a local least-squares estimation using these measurements

to generate a local estimate ai of the coefficient vector a,

and then share the estimated values with a central supervisory

PDC located at the ISO. Sharing with the central PDC is

crucial because each ai by itself may be insufficient to capture

inter-area oscillation modes. Communication via the central

PDC can also guarantee that all local PDCs reach the same

estimated value. In the distributed architecture, (7) can be
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Fig. 1. Distributed architecture for a 4-area power system network. It is worth
noting that the presented architecture is just for illustrative purposes, and the
approach is applicable to hierarchical PMU-PDC architectures suggested by
the synchrophasor standard IEEE C37.118.1 [44]. In fact, in a hierarchical
PMU-PDC architecture with local PDCs deployed on different levels, only
those PDCs having direct access to PMU measurements need to be involved
in the computation.

reformulated as a consensus problem over a network of N
local PDCs [4]:

min
a1,a2,...,aN ,z

N∑

i=1

‖Ĥiai − ĉi‖2, s.t. ai − z = 0 (8)

for i = 1, 2, . . . , N . Here Ĥi ,
[
HT

i,1 HT
i,2 · · · HT

i,Ni

]T
and

ĉi ,
[
cT

i,1 cT
i,2 · · · cT

i,Ni

]T
where Ni is the total number of

PMUs in area i, and Hi,j and ci,j are constructed as in (6)

from the time samples of the jth PMU in area i. Parameters

ai are the primal variables for area i. The global consensus

solution z is obtained when the local estimates ai of the N
local PDCs (i = 1, 2, · · · , N ) reach the same value.

The problem (8) can be solved using ADMM in

a distributed way (please refer to [4] for details):

Algorithm 1: Distributed oscillation estimation using ADMM

1) Each local PDC i initializes a0
i ,z

0, and w0
i .

2) At iteration k:

a) PDC i constructs Ĥk
i and ĉk

i .

b) PDC i updates ai according to

ak+1
i = ((Ĥk

i )T Ĥk
i + ρI)−1((Ĥk

i )T ĉk
i − wk

i + ρzk
i )

and sends ak+1
i to the central PDC. Here wi denotes the

Lagrange multipliers associated with (8) and ρ > 0 denotes

the penalty factor. ρ makes the Lagrangian differentiable

and generally has a large range of permissible values [4].

c) The central PDC calculates

zk+1 =
N∑

i=1

ak+1
i

N
(9)

and broadcasts zk+1 to all local PDCs.

d) PDC i updates wi as wk+1
i = wk

i + ρ(ak+1
j − zk+1).

Since the least-squares problem is convex, as k → ∞, zk

in (9) converges to z∗, the optimal solution to the original

problem (7) [5]. Moreover, the constraint ai = z guarantees

that all local PDCs get the same a1 = a2 = · · · = aN = z∗.

Note that irrespective of the fact whether the PDCs are

executing Algorithm 1 in a synchronous or asynchronous

fashion, every PDC must be equipped with a clock to keep

track of the time-stamping of their respective estimates.

Note that the Prony estimation in (6) is based on the as-

sumption that the incoming disturbance is an impulse function.

This assumption is valid for a power system, as testified by

the recent IEEE PES technical report on mode estimation [45].

Because of its short-livedness, a fault in a power system can

be considered as an impulse function, and the response of the

state variables can, therefore, be considered as the impulse

response. Hence, after 2n sampling instants, the zero dynamics

die away completely, and the measurements can be collected

in the H and c matrices for solely computing the characteristic

polynomial vector a, as described above.

C. Problem setup

In the architecture shown in Fig. 1 every PMU and PDC

require precise time-stamping, which is achieved through local

GPS clocks. Spoofing of any of these clocks will severely

disturb the proper execution, convergence, and accuracy of

Algorithm 1. Spoofing of PMU clocks, for example, will cause

the PMU to generate asynchronous measurements with respect

to normal PMUs, leading to phase errors when measurements

are correlated. Spoofing of PDC clocks, on the other hand,

will lead to failures in keeping track of time-stamping of its

estimates, leading to errors when correlated with other normal

PDCs. Following [10] which showed that spoofed GPS clocks

lead to incorrect oscillation patterns (modes), we model the

influence of GPS spoofing as a deviation of ak
i in Algorithm

1, which corresponds to an oscillation mode error. Although

several authentication-based approaches have been proposed

(say, e.g., [8]) to defend against external GPS spoofers, an

attacker may still be able to compromise the oscillation

estimation in Algorithm 1 unless a detection algorithm exists.

Our goal is to develop such an algorithm. For convenience we

first assume that a central PDC coordinates the computations

in the distrusted PDCs, both in synchronous (Sec. III) and

asynchronous fashion (Sec. IV). The clock of the central PDC

is assumed to be unaffected by spoofing. This assumption will

be relaxed in Sec. V where we develop a fully decentralized

ADMM resilient to GPS spoofing.

III. DETECTION USING A CENTRAL PDC AND

SYNCHRONOUS COMMUNICATIONS

We first propose an online oscillation estimation approach

that is resilient to GPS spoofing attacks in the presence of a

central PDC and synchronous communications between PDCs.

The basic idea is to enforce certain update restrictions on the

local PDCs, i.e., the updated estimation at iteration k + 1
should be at most ε different from iteration k, where ε is
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a design parameter. This restriction can be imposed simply

by adding a saturation function to the update equation for

the local estimates. Our goal will be to show that under

the proposed framework, the restriction will be automatically

satisfied by the central PDC. Therefore, by checking the update

status at the central PDC, the ISO can decipher if local

PDCs are operating correctly. If the updates from any set of

local PDCs violate the update rule, the ISO will receive an

alarm that the clocks at these PDCs may have been spoofed.

Algorithm 2: Attack resilient ADMM with a central PDC and

synchronous communications

1) Each local PDC i initializes a0
i ,z

0, and w0
i .

2) At iteration k:

a) PDC i constructs Ĥk
i and ĉk

i .

b) PDC i updates ai according to

ãk+1
i = ((Ĥk

i )T Ĥk
i + ρI)−1((Ĥk

i )T ĉk
i − wk

i + ρzk
i )

ak+1
i = ak

i + satε(ã
k+1
i − ak

i )

and sends ak+1
i to the central PDC. Here ε is a positive

constant, and satε(•) is the saturation function defined for

every element of a vector as follows:

satε(x) =







ε if x > ε
x if ε ≥ x ≥ −ε
−ε if −ε > x

(10)

c) For ak+1
i received from each local PDC, the central PDC

uses the following two rules to detect if it is compromised:

I) ε based rule: the central PDC checks for every element

of ak+1
i the absolute difference from the corresponding

element of ak
i (the estimate from the same local PDC in

the previous iteration). If for some element, the absolute

difference is over ε, the central PDC determines that the

ith PDC is compromised and its data will be discarded for

all iterations onwards from the kth iteration.

II) median based rule: The central PDC checks for every

element of ak
i the absolute difference from the correspond-

ing element in the median vector ãk
i of all PDCs after the

transient period (the median is defined on each element

as ãk
i = median{ak

1 ,ak
2 , · · · ,ak

N}). If for some element,

the absolute difference is over δ, then the central PDC

determines that the ith PDC is compromised and its data

will be discarded for all iterations onwards from the kth

iteration.

Representing the set of all m compromised PDCs as B, the

central PDC calculates

zk+1 =
∑

1≤i≤N, i6∈B

ak+1
i

N − m
(11)

and broadcasts zk+1 to all local PDCs.

d) PDC i updates wi as wk+1
i = wk

i + ρ(ak+1
j − zk+1).

The constant ε in the above Algorithm 2 is a design para-

meter, which should be set to a value less than the spoofing-

caused deviation, which can be obtained based on published

results such as [9] and [10]. It should also be kept secret,

otherwise an attacker can try to evade the detection mechanism

by judiciously causing deviations smaller than ε. ε enforces a

certain level of consistency between the intermediate results

at step k and step k + 1, and will affect the convergence

trajectory, as illustrated in the numerical simulations in Sec.

VI. However, it is worth noting that numerical simulations also

confirm that ε does not affect the final estimate value if set

in an appropriate range. More interestingly, we can show that

the above “ε based rule” can also be used for local PDCs to

determine if the central PDC is comprised. More specifically,

each local PDC can check if the absolute difference between

each element of zk+1 and the corresponding element of zk

is over ε: If the answer is negative for all elements, then the

central PDC is not compromised; otherwise, the central PDC

is compromised. The rationale can be easily obtained from the

update rule of zk in (11), which confines zk+1 to be within

ε from zk if all ak+1
i are within ε from ak

i .

The “median based rule” is used to capture attackers which

use extremely small deviations to evade the “ε based rule”. It

is motivated by the fact that all ak
i will converge to the same

value after some transient period. (The number of iterations

for the transient period can be obtained from simulations or

theoretical analysis [5].) That is, when there are no attacks, all

ak
i will converge to the same value, and thus after the transient

period every ak
i will be within a small distance δ from the

median ãk
i ; when a PDC’s ak

i is manipulated by an attacker

to gradually deviate from the correct value, it can be detected

when the accumulated deviation from the corrected value

reaches δ. δ can be set according to the tolerable difference

among ak
i after the transient period. This “median based rule”

is also effective in capturing attacks which hold some ak
i to a

constant value, as confirmed by the simulation results in Fig.

14 and Fig. 15.

Remark 1: The ε based detection mechanism is affected

by neither the model nor the dynamics. As long as every

PDC follows the rule correctly, transient events or model

uncertainties will not trigger the detection mechanism and

cause false alarms, and hence will not be misclassified as

attacks.

Remark 2: In the case where IEEE 1588 (PTP) protocol

is used to synchronize multiple PMUs and the local PDC in

a substation, a GPS spoofing attack on the PTP grandmaster

clock with GPS synchronization will affect all PMUs in the

substation. Our approach is applicable to this case because

it treats a local PDC and all associated PMUs as a single

node in the algorithm (also cf. Fig. 1). Of course, the above

scenario may lead to the problem of localizing attacks within

a substation, which is out the scope of this paper.

IV. DETECTION USING A CENTRAL PDC AND

ASYNCHRONOUS COMMUNICATIONS

In Algorithm 2, all local PDCs are assumed to be able to

perform their respective optimization steps with equal speeds,

and the communication latencies between the local PDCs and

the central PDC are also equal, i.e., the computation and

communication among all PDCs are synchronous. However,

in reality, different PDCs may not be able to conduct com-

munication and computations in perfect synchronization due
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to differences in their processing speeds and heterogenous

communication latencies caused by routing and queuing. To

address this asynchrony, one can force the central PDC to wait

until it receives intermediate communication results from all

local PDCs. However, this approach slows down each iteration

to accommodate the link subject to the largest end-to-end

communication delay, which may lead to unacceptably slow

convergence. Fortunately, the recently proposed asynchronous

ADMM algorithm provides a way to overcome this issue

[46], [47]. Based on [46], [47], we proposed an asynchronous

oscillation monitoring algorithm in the absence of GPS attacks

[4]. To that algorithm, we now add attack resilience by using

a similar crosscheck mechanism as in Algorithm 2. The basic

idea of the algorithm is as follows: At each iteration, the

central PDC is allowed to use only the more recent results of a

subset of the local PDCs to detect attacks and perform updates.

Denote the subset of local PDCs as active PDCs and the time

instant at which the central PDC updates zk+1 as T k+1. The

central PDC then broadcasts (zk+1, T k+1) to every local PDC.

Upon receiving T k+1, each local PDC i then constructs Ĥk+1
i

and ĉk+1
i by setting 2n + l in (6) to the sample index that is

closest to the time instant T k+1. Note that ∆θ(2n + l) may

not be the most recent measurement sample while constructing

the Ĥk+1
i and ĉk+1

i matrices. However, to ensure that all

PDCs use the same time-window of the measurements to form

Ĥk+1
i and ĉk+1

i , they all use the same value of 2n + l
as decided globally by the central PDC at every iteration

k+1. The attack-resilient algorithm can be written as follows:

Algorithm 3: Attack resilient ADMM with asynchronous

communications

1) The central PDC initializes T 0 and sends it to all local

PDCs.

2) Each local PDC i initializes a0
i ,z

0, and w0
i .

3) At iteration k:

a) Given T k, PDC i constructs Ĥk
i and ĉk

i using 2n + l
decided from T k according to (6).

b) PDC i updates ai according to

ãk+1
i = ((Ĥk

i )T Ĥk
i + ρI)−1((Ĥk

i )T ĉk
i − wk

i + ρzk
i )

ak+1
i = ak

i + satε(ã
k+1
i − ak

i )

and sends ak+1
i , wk

i , and k to the central PDC. Here

satε(•) is the saturation function and is defined as in (10)

for a given positive constant ε.

c) For ak+1
i received from each active local PDC, the central

PDC uses the following two rules to detect if it is compro-

mised:

I) ε based rule: the central PDC checks for every element

of ak+1
i the absolute difference from the corresponding

element of ak
i (the estimate from the same local PDC in

the previous iteration). If for some element, the absolute

difference is over ε, the central PDC determines that the

ith PDC is compromised and its data will be discarded for

all iterations onwards from the kth iteration.

II) median based rule: The central PDC checks for every

element of ak
i the absolute difference from the correspond-

ing element in the median vector ãk
i of all PDCs after the

transient period (the median is defined on each element

as ãk
i = median{ak

1 ,ak
2 , · · · ,ak

N}). If for some element,

the absolute difference is over δ, then the central PDC

determines that the ith PDC is compromised and its data

will be discarded for all iterations onwards from the kth

iteration.

Representing the set of all m compromised PDCs as B, the

central PDC calculates

zk+1 =
∑

1≤i≤N, i6∈B

ak+1
i

N − m
(12)

where ak+1
i = ak

i and wk+1
i = wk

i for all non-active

PDCs whose most recent updates are not available at the

central PDC.

d) The central PDC broadcasts zk+1, k + 1, and T k+1 to all

local PDCs.

f) PDC i updates wi as wk+1
i = wk

i +ρ(ak+1
j −zk+1) for all

active PDCs and as wk+1
i = wk

i for all non-active PDCs.

In Algorithm 3, the central PDC exchanges the iteration

numbers k and k + 1 with the local PDCs in steps b) and

d) to keep track of the order of the received data. Since the

iteration number is independent of the absolute time, this addi-

tional information exchange (compared with the synchronous

communication case) is insensitive to GPS spoofing attacks

and will not increase the vulnerability of the system. However,

when compared to Algorithm 2, the local PDCs also have

to transmit w to the central PDC. This additional informa-

tion exchange is sensitive to GPS spoofing attacks since w

is affected by the absolute time. The above algorithm can

guarantee convergence to the global minimum if none of the

local PDCs is permanently dormant. In other words, each PDC

must be active infinitely often with probability 1 [46]. This

ensures that oscillation estimation can be solved in real-time,

despite asynchronous updates caused by, e.g., heterogenous

computation speeds or heterogenous communication latencies.

It is worth noting that if an attack occurs on a dormant node,

it cannot be detected by the central PDC until the dormant

PDC wakes up and communicates with the central PDC twice

consecutively (the detection requires the consistency between

two consecutive iterations).

Because in Algorithm 3 the central PDC only uses the

data from the subset of active local PDCs that feed measure-

ments to the central PDC fast enough (with small enough

communication latencies), there is a trade-off between the

number of active PDCs and the lag in oscillation estimation.

Given that the number of useable active PDCs correlates

positively with the accuracy of estimation, we can also say

that there is a trade-off between the estimation error and

the estimation lag. Incorporating more PDCs into the active

PDC subset leads to more useable measurement data and thus

reduced estimation error, but results in large waiting time (for

measurement data from local PDCs to arrive) and thus a large

lag in oscillation estimation. Whereas incorporating less PDCs

in the active PDC subset tends to reduce the lag in estimation

but increases estimation error. Numerical simulations in Fig.

19 also confirmed this trade-off.
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Fig. 3. Distributed architecture for a 5-area power system network.

N using the most recent available vales of av for v belonging

to its predecessors and successors. PDC i also updates the

dual variables wvi for v belonging to Pi. Therefore, if a PDC

is compromised by an attack, its successors can immediately

detect the attack as the successors are affected right away in

the current iteration. However, its predecessors can only detect

the attack in the next iteration as the value of a PDC will

affect its predecessors only in the next iteration. Furthermore,

because in each iteration, the estimation in each PDC is only

affected by a subset of all other PDCs, the convergence speed

of estimates from different PDCs to the same value is reduced

compared with the centralized case, in which the estimation in

each PDC is affected by every other PDC (through the central

PDC). This is clear from the simulation results (compare Fig.

9 for the centralized case and Fig. 21 for the decentralized

case).

Remark 3: It is worth noting that a potential drawback of

decentralized schemes is that the required extra communica-

tions between local PDCs may increase the communication

overhead. The extra communication links could also become

targets for a coordinated attack.

VI. NUMERICAL SIMULATIONS

We used the IEEE 68-bus system to verify the proposed

approach. We divided the entire system into five areas (cf.

Fig. 3) with each area having one local PDC and three PMUs.

The simulated measurements are obtained using the Power

Systems Toolbox [4]. The synchronous generators are assumed

to be 6th order for the sake of practicality. A three-phase

fault is simulated at the line connecting buses 1 and 2. The

measurements are down-sampled, making the sampling period

T = 0.2s. Our objective is to estimate the post-fault inter-

area oscillations. As there are 16 generators, our algorithm

should ideally solve a 96th order polynomial. However, many

of these 96 modes are negligible and it was shown in [4]

that 40 modes suffice to capture the inter-area oscillations. We

used ρ = 10−9 in the simulation. The proposed algorithms are

lightweight in computation. In fact, in our Matlab simulations

on a computer with Intel 1.7 GHz CPU and 8 GB memory,

it took approximately 2.56 milliseconds to run our algorithm

for 50 iterations.
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Fig. 4. zk in the central PDC and ak
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in local PDCs in Algorithm 2.
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Fig. 5. zk in the central PDC and ak

i
in local PDCs in Algorithm 1.

A. Simulation results in the presence of a central PDC and

synchronous communications

We first checked the convergence property of the proposed

algorithm 2 in the absence of attacks. We set ε to 0.2 to run the

simulations. Fig. 4 shows the evolution of the first 4 elements

of zk on the central PDC and the first element of ak on the

five local PDCs. It can be seen that they converge to the same

steady-state values as in the original ADMM algorithm (cf.

Fig. 5). The selected estimated modes σ and Ω in (3) (the solid

lines in Fig. 6) also converge to the actual values obtained from

the Power System Toolbox (represented by dashed lines in Fig.

6). In the simulations, the absolute time for each iteration was

on the sub-millisecond level. The total running time for all 50

iterations was around 16 milliseconds.

We then evaluated the performance of the proposed al-

gorithm in the presence of an attack on PDC 1. Following

[3] showing that GPS spoofing leads to a constant drift, we

assume that a constant drift ∆ = 0.2 occurred on PDC 1’s

estimate of ak
i at iteration no. 26. The estimated modes with

the original algorithm are given in Fig. 8. It can be seen that

the attack leads to erroneous estimation. Whereas with the
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Fig. 6. Four estimated oscillation modes using the proposed Algorithm 2.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

σ

Iteration (k)

 

 
σ1 σ2 σ3 σ4

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

Ω

Iteration (k)

 

 

Ω1 Ω2 Ω3 Ω4

Fig. 7. Four estimated oscillation modes using the original Algorithm 1.
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Fig. 8. Estimated modes in Algorithm 1 in the presence of an attack.

proposed algorithm, the attacked PDC was quickly detected

and isolated, which guarantees a correct estimation (cf. Fig.

9).

We also simulated the influence of ε on the estimation error
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Fig. 9. Estimated modes in Algorithm 2 in the presence of an attack.
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Fig. 10. The influence of the magnitude of ε in Algorithm 2 on the final
estimation error of σ.

of σ. The results are given in Fig. 10. It can be seen that

the proposed algorithm 2 is insensitive to the magnitude of

ε in correctly estimating the oscillation modes, although it’s

convergence speed decreases with a decrease in ε.

To test the effectiveness of the algorithm in the presence of

multiple attacks, we also ran Algorithm 2 when both PDC 1

and PDC 5 were compromised with a constant offset value 0.2.

In the simulation, the offset on the outputs of PDC 1 and PDC

5 was initiated at iterations 25 and 35, respectively. Algorithm

2 successfully detected and isolated both compromised PDCs,

and correctly estimated the oscillation modes, as shown in Fig.

11.

We also evaluated the effectiveness of the “median based

rule” in detecting attackers that can evade the “ε based rule” by

using very small deviations. According to simulation results,

we found that the transient period is less than 10 iterations.

So we activated the “median based rule” after 10 iterations

with δ set to 0.01. To emulate attacks with small deviations,

we induced a 0.005-per-iteration offset to the first element of

ak
1 starting from iteration number 26. The evolution of ak

1 is

shown in Fig. 12. The detection mechanism successfully cap-

tured this attack at iteration number 29, and hence guaranteed

the correct estimation of the oscillation modes, as shown in



9

0 10 20 30 40 50
0

0.2

0.4

Iteration (k)

σ

 

 
σ1
σ2
σ3
σ4

0 10 20 30 40 50
2

3

4

5

6

Ω

Iteration (k)

 

 

Ω1

Ω2

Ω3

Ω4

Fig. 11. Estimated modes in Algorithm 2 in the presence of two attacks on
PDC 1 and PDC 5, respectively.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1
st

el
em

en
t
o
f
a
k i

Iteration (k)

 

 

a
k
1(1) a

k
2(1) a

k
3(1) a

k
4(1) a

k
5(1)

Fig. 12. ak

i
in local PDCs with ak

1
subject to attack-induced small deviations

(0.005/iteration) starting from iteration number 26.
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Fig. 13. Four estimated oscillation modes using the proposed Algorithm 2
with ak

1
subject to attack-induced small deviations (0.005/iteration) starting

from iteration number 26.

Fig. 13.

The “median based rule” was also confirmed effective

in capturing attacks holding some ak
i to a constant value.

More specifically, in the simulation, we assumed that the first

element of ak
1 was attacked and stopped updating starting from
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Fig. 14. ak

i
in local PDCs with ak

1
subject to an attack holding it to a

constant value starting from iteration number 26.
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Fig. 15. Four estimated oscillation modes using the proposed Algorithm 2
with ak

1
subject to an attack holding it to a constant value starting from

iteration number 26.

iteration number 26, i.e., the first element of ak
1 was set to

the first element of a26
1 for all k = 27, 28, . . . (cf. Fig. 14).

The “median based rule” successfully detected this attack and

guaranteed a correct estimation, as illustrated in Fig. 15.

Besides GPS spoofing, GPS signal loss can also affect

phasor angle measurements [48] and thus affect oscillation

mode estimation. Therefore, we also ran the “median based

rule” under phasor angle drifting rate 0.0002 rad/s obtained

from real power grid measurements [48]. According to the

relationship in (6), we obtained numerically that such a

drifting rate could induce 0.0002-per-iteration offset to the first

element of ak
1 . The drift was set to start at iteration number

26, and was detected at iteration number 97 (cf. the evolution

of ak
1 in Fig. 16). The estimated oscillation modes are given

in Fig. 17, which confirmed the resilience of the approach to

GPS signal loss.

B. Simulation results in the presence of a central PDC and

asynchronous communications

We also simulated Algorithm 3 in the presence of a cen-

tral PDC and asynchronous communications. To emulate the

asynchronous communication patterns, we chose active PDCs

randomly with each PDC having a equal probability of 0.5 for

being active. In the absence of attacks, the algorithm correctly
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Fig. 16. ak

i
in local PDCs with ak

1
subject to GPS-signal-loss-induced small

deviations (0.0002/iteration) starting from iteration number 26.
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Fig. 17. Four estimated oscillation modes using the proposed Algorithm 2
with ak

1
subject to GPS-signal-loss-induced small deviations (0.0002/iteration)

starting from iteration number 26.

estimated the oscillation modes. In the presence of an attack

on PDC 1, the algorithm quickly detected the attack and

isolated PDC 1, and hence could still successfully estimate

the oscillation modes (cf. Fig. 18).

We also numerically verified the trade-off between estima-

tion error and estimation lag for Algorithm 3. In the simulation

the communication latencies were uniformly distributed be-

tween 0 and 7 iterations. We defined a local PDC to be within

the active subset when the latency on its communication link

to the central PDC (which is time varying) is no larger than

i iterations (i = 1, 2, · · · , 7), leading to a lag (delay) of i
iterations in the oscillation estimation. The total estimation

error of the four most significant oscillation modes under

different lags i at iteration number 50 is plotted in Fig. 19.

It is evident that there is a trade-off between estimation error

and estimation lag.
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Fig. 18. Estimated oscillation modes in Algorithm 3 in the presence of an
attack.
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Fig. 19. Total estimation error in four most significant oscillation modes
under different lags of estimation.

Fig. 20. Decentralized communication pattern.

C. Simulation results in the absence of a central PDC

We also simulated Algorithm 4 in the absence of a central

PDC. The communication architecture is given in Fig. 20. In

the absence of attacks, the algorithm correctly estimated the

oscillation modes. In the presence of an attack on PDC 5, the

algorithm quickly detected the attack and isolated PDC 5, and

hence could still successfully estimate the oscillation modes

(cf. Fig. 21).

VII. CONCLUSION

We proposed a real-time distributed wide-area oscillation

estimation approach that is resilient to GPS spoofing attacks.
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Fig. 21. Estimated modes in Algorithm 4 in the presence of an attack on
PDC 5.

The approach can be used in the presence of asynchronous

communications due to heterogenous computational speeds

and heterogenous communication latencies. It can also be used

in a completely decentralized scenario without a central PDC.

In fact, the approach is essentially based on designed distrib-

uted agreement and could potentially be adapted as solutions to

other types of attacks on distributed optimization and control

of a power system. For example, the fault-current injection

attacks in [39] affect multiple PMU measurements and can

likely be tackled under the proposed detection framework.

Numerical simulations confirmed that the proposed algorithms

can detect small attacks and guarantee correct estimation in the

presence of attacks.
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