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Abstract

We present an input/output analysis of photon-correlation experiments whereby a quantum
mechanically entangled bi-photon state interacts with a material sample placed in one arm ofa Hong—
Ou-Mandel apparatus. We show that the output signal contains detailed information about
subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply
the method to an ensemble of emitters interacting with a common photon mode within the open-
system Dicke model. Our results indicate considerable dynamical information concerning sponta-
neous symmetry breaking can be revealed with such an experimental system.

1. Introduction

The interaction between light and matter lies at the heart of all photophysics and spectroscopy. Typically, one
treats the interaction within a semi-classical approximation, treating light as an oscillating classical electro-
magnetic wave as given by Maxwell’s equations. It is well recognized thatlight hasa quantum mechanical
discreteness (photons)and one can prepare entangled interacting photon states. The pioneering work by
Hanbury Brown and Twissin the 1950’s, who measured intensity correlations in light originating from thermal
sources, set the stage for what has become quantum optics [1-7]. Quantum photons playa central roleina
number of advanced technologies including quantum cryptography [8], quantum communications [9], and
quantum computation [10, 11]. Only recently has itbeen proposed that entangled photons can be exploited as a
useful spectroscopic probe of atomic and molecular processes [11-16].

The spectral and temporal nature of entangled photons offer a unique means for interrogating the dynamics
and interactions between molecular states. The crucial consideration is that when entangled photons are created,
typically by spontaneous parametric down-conversion (SPDC), there is a precise relation between the frequency
and wavevectors of the entangled pair. For example if we create two entangled photons from a common laser
source, energy conservation dictates that wiaser = w1 + w». Hence measuringthe frequency of either photon
will collapse the quantum entanglement and the frequency of the other photon will be precisely defined.
Moreover, in the case of multi-photon absorption, entangled 2-photon absorption is greatly enhanced relative
to classical 2-photon absorption since the cross-section scales linearly rather than quadratically with intensity.
Recentwork by Schlawin et al indicate that entangled photon pairs may be useful in controllingand
manipulating population on the 2-exciton manifold of a model biological energy transport system [17]. The
non-classical features of entangled photons have also been used as a highly sensitive detector of ultra-fast
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laser

Figure 1. Sketch of Hong—-Ou-Mandel apparatus (HOM) for 2-photon coincidence detection. The initial laser beam pass througha
spontaneous parametric down-conversion crystal (SPDC) creating an entangled photon pair which is splitinto idler (w)) and signal
(w,) modes. The two beams are subsequently reflected back towards a beam-splitter (BS) by mirrors M1 and M2 and the signal mode
further interacts with asampleat S. The modes are recombined by a beam-splitter (BS) and directed towards coincidence counters C1
and C2. Not shown in our sketch is an optional pumping laser for creating a steady-state exciton density in S.

emission from organic materials [18]. Beyond the potential practical applications of quantum lightin high-
fidelity communication and quantum encryption, by probing systems undergoing spontaneous symmetry
breaking with quantum photons one can draw analogies between bench-top laboratory based experiments and
experimentally inaccessible systems such as black holes, the early Universe, and cosmological strings [19, 20].

We begin with a brief overview of the photon coincidence experiment and the preparation of two-photon
entangled states, termed ‘Bell-states’. We then use the input/output approach of Gardner and Collett [21] to
develop a means for computing the transmission function for a material system placed in one of the arms of the
Hong—Ou—Mandel (HOM) apparatus sketched in figure 1. We provide a precise connection between a material
sample, described in terms of a model Hamiltonian, and the resulting signal in the context of the interference
experiment described by Kalashnikov et alin [16] using the Dicke model for an ensemble of two-level atoms as
input [22]. The Dicke model is an important test-case for a variety of quantum effects occurring in photonic and
plasmonic cavities [23]. It allows for a non-trivial steady state identified as a non-equilibrium phase transition to
a super-radiant regime. The modelis especially important since an analytical solution for this regime exists. For
this reason, we have adopted the Dicke model in our calculations.

Our goal is to distinguish between the elementary excitations (i.e. the fluctuations) above the super-radiant
cooperative state and their signatures in the photon coincidence measurements. This is in contrast to
conventional techniques probing elementary excitations above the ground states of an ensemble of quantum
emitters. In a broader context, one can also model Frenkel excitons in molecular aggregates as a series of two-
level systemsand placed into a homogeneous electric field asa modified Dicke model thereby providing
connection to realistic material systems [24, 25]. Lastly, in realistic experimental situations some deviations are
expected such as field inhomogeneity, energetic disorder, appearance of higher-lying excited states (e.g., multi-
level systems), cascades, and complex many-body interactions. Such higher order interactions can beidentified
by comparison with the predictions based upon the Dicke model.

2. Quantum interference of entangled photons

We consider the interferometric scheme implemented by Kalashnikoveral[16]. ACW laser beam isincidenton
anonlinear crystal, creating an entangled photon pair state by SPDC, which we shall denote as a Bell state,

(1) = [[ dundan F (w1, w2) Bl (w1) B} (w2)[0), (1)

where F(w, wy)is the bi-photon field amplitude and B ; (wy) creates a photon with frequency wj in either the
signal or idler branch. The ket |0) is the vacuum state and |, w,) denotes a two photon state. In general, energy
conservation requires that the entangled photons generated by SPDC obey w; = w; + w,. Similarly,
conservation of photon momentum requires k; = k; + k;. By manipulating the SPDC crystal, one can generate
entangled photon pairswith different frequencies. Asa result, the bi-photon field is strongly anti-correlated in
frequency with
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Iag) = f dzF(2)Bly(wr, — 2)Bl(wp, + 2)|0), 2)

where wy is the central frequency of the bi-photon field. This aspect was recently exploited in [15], which used a
visible photon in the idler branch and an infrared (IR) photon in the signal branch, interacting with the sample.

As sketched in figure 1, both signal and idler are reflected back towards a beam-splitter (BS) by mirrors M1
and M2. M1 introduces an optical delay with transmission function ® () which we will take to be of modulo 1.
In the other arm, we introduce a resonant medium at S with transmission function S(w). Not shown in our
sketchisan optional pumping laser for creatinga steady state exciton density in S. For the case of an isolated line
with resonance frequency at w,, the transmission function S(w) can be written as

. b
S(LJJ) = eXpI:-lm:l, (3)

where b = aL/2T;, aL is the optical thickness (« is a Bouger coefficient), and 7! = T is the dephasing time of
the medium. The motivation for this paper is to provide a framework for a general system with more complex
dynamics.
Upon interacting with both the delay element and the medium, the Bell-state can be rewritten as

[82) = [ dundusn F(wr,02) B} (w1) Bl (w2)®(w1) S (w2)[0). (4)

Finally, the two beams are re-joined by a BS producing the mapping[26]
B (w) Bl LAt AT T, AT (.
[ (wi)Bg (w2) — Y [A) (wi) + 14, (WD][A; (w2) + 1Ay (W), (5)

whereby A (w) createsa photon with frequency wj in the ith exit channel. Thisyields a final Bell state:

tow) = 5 [ dwndeF(r, wa) ( (4] 1) 4} w2) — Af(r) 4] (w2) ©

+ i (A] (@2)A] (1) + A (w1) A (@) ) D(w1)S(w2)]0).

The first two terms in this state correspond to the two possible outcomes where one photon is transmitted into
each of the outgoing channels. In other words, the signal photon is transmitted to detector C1 and the idler
photon is transmitted to detector C2 or vice versa. The other two terms correspond to the cases where both
signaland idler branch photons are transmitted to either C1 or C2. The coincidence detection discriminates the
former from thelatter and we write the coincident term as

o) = 5 [ o [ don (Flon n)@00)S(w2)~ Flwn, @) (er)) lonwn). )

We can then take the countingrate as proportional to the probability

P = [(aclad? = [ dwrden {1 F(n, wa)S@a)l? + 17wz, 00)S )

@®)
— 2Re [F7 (w1, w2) F (w2, w1)S™ (w2) S (w1) @™ (w1) @(w2)]} -
If we assume that the delay stage is dispersionlesswith ®(w) = e“* and take the symmetric case of
wy =w +zandwy = wp — z,
L I 2 2 418 2
Rltaam) = [ deAF@PUIS@r — P + IS+ 2)]
— 2Re[SM(wr — 2)S(wr, + z)e B}, &)

where tgelay is the time lag between entangled photons traversing the upper and lower arms of the HOM
apparatus. In the absence of a sample, the coincidence count is exactly equal to zerowhen z = 0.Itis important
to note that two photons traversing the idler and signal branches need to be of different frequencies in order to
have any observable effect. In fact, taking the limit that the bi-photon amplitude is extremely narrow about ;.
gives P.(fgelay) = 0, which is the Hong-Ou-Mandel effect [27].

3. Results

A crucial component of our approach is the action of the sample at S which introduces a transmission function
S(w) intothe final Bell state. We wish to connect this function to the dynamics and molecularinteractions within
the sample. To accomplish this, we use the input/output formulation of quantum optics and apply thistoan

3



10P Publishing

Quantum Sd. Technol. 3 (2018) 015003 HLietal

ensemble of identical 2-level states coupled to acommon photon mode [28]. The technical details of our
approach are presented in the appendices of this paper. Inshort, we begin with a description of the material
system described by N two-level spin states coupled to common set of photon cavity modes.

A=Y =2
j

ANg 1
+ 3 =2k + IEF + 57, (10)

n ) LA ta
0z + 2 Awy — ik) Yy ¥i
k

where {&; , &ji} are local spin-1/2 operators for site j, i, is the local excitation energy, and Ay isthe coupling
between the kth photon mode and the jth site, which we will take to be uniform over all sites. We introduce x as
the decay rate of a cavity photon. We allow the photons in the cavity (S) to exchange quanta with photonsin the
HOM apparatus and derive the Heisenberg equations of motion corresponding to input and output photon
fields within a steady-state assumption. This allows us to compute (appendix A) the scattering matrix connecting
an incoming photon with frequency v from the field to an outgoing photon with frequency vreturned to the
field viz.

A=) T A)
Wout(1) = _Qout Qin Win(v), (11)
A . . .
where anlmt are Moller operators that propagate an incoming (or outgoing) state from t — —ocotot = O where
it interacts with the sample or from ¢ = 0 to an outgoing (or incoming) state at t — +~c and give the S-matrix
in the form of a response function

SW) = (0¥ (1) () 6w — V1), (12)

where the §U,(1) are fluctuations in the output photon field about a steady-state solution. The derivation of
S(v) for the Dicke model and its incorporation into equation (9) is a central result of this work and is presented
in appendix B of this paper. In general, S(1/) isa complex function with a series of poles displaced above the real
axis and we employa sync-transformation method tointegrate equation (9). The approach can be applied to any
model Hamiltonian system and provides the necessary connection between a microscopic model and its
predicted photon coincidence.

In treating this as a scattering problem, we assume that the individual single photons impinging on the
sample are uncorrelated with previous and subsequent photons. That is to say that the intensity of laser is small
such that a single photon as left the cavity before the next entangled photon from the signal-arm of the HOM
apparatus interacts with the sample. Under this approximation, we can treat the matter /photon interaction
withina linear response approximation. A nonlinear theory must also include cross-correlation terms between
the in- and out-going photon components and the material.

Before discussing the results of our calculations, it is important to recapitulate a number of aspects of the
Dicke model and how these features are manifest in the photon coincidence countingrates. As stated already, we
assume that the sample is in a steady state by exchanging the photons in the HOM apparatus with photons
within the sample cavity and that S(1/) can be described within a linear-response theory. Because the cavity
photons become entangled with the material excitations, the excitation frequencies are split into lower photonic
(«)and upper excitonic (w, ) branches. Figure 2 shows the typical branching structure for the model for upper
and lower branch polariton modes.

At very low values of A, the imaginary parts of the eigenvalues are equal and w, = w_.Inthis over-damped
regime, photons leak from the cavity before the photon/exciton state has undergone a single Rabi oscillation. At
Ar = /2 the system becomes critically damped and for \; < /2 and the degeneracy between the upper and
lower polariton branches islifted. As Ay increases above a critical value given by

(13)

the system undergoes a quantum phase transition when «.. = 0. Above this regime, excitations from the non-
equilibrium steady state become collective and super-radiant. For our numerical results, unless otherwise noted
we use dimensionless quantities, taking w, = w; = 1.5 for both the exciton frequency and cavity mode
frequency, x = 0.1 for the cavity decay. These give a critical value of A, = 0.7517. Also, within our model
calculations, unless otherwise stated, we assume the central frequency of the signal and idler laser modes to be
resonant with the cavity wp = wy = w,.

We first consider the photon coincidence in the normal regime. Figures 3(a), (b) show the variation of the
photon coincidence count when the laser frequency is resonant with the excitons (wy = w;). For lowvalues of
Ak, the system is in the over-damped regime and the resulting coincidence scan reveals a slow decay for positive
values of the time-delay. This is the perturbative regime or over-damped in which the scattering photon is
dephased by the interaction with the sample, but there is insufficient time for the photon to become entangled

4



10P Publishing

Quantum Sd. Technol. 3 (2018) 015003

HLietal

Refw]

0.8 1.0

’

Im[e]

-0.05
-0.10

—0.15

0.746 0.748

A = r/2, corresponding to the splitting occurring at A, = 0.05.

(b)

0.750

Imlw]\_:- == —I
. _.",.:’/(\"I‘

Relw]

0.752
Ak

Figure 2. Upper and lower polariton branches. (a) The eigenvalues of equation (B8) for w; = w, = 1.5and & = 0.1withincreasing
Ak (in scaled units). (b) The zoom-in view around the critical coupling point A. == 0.7517 where the phase transition occurs. A general
feature of this model is that both photon and exciton-like modes (w_ and w; branches, respectively) decayatthe same rate once
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Figure 3. Photon coincidence rates versus coupling. We compare here the computed (relative) coincidence counting rates as A
increases from weak (a) to strong coupling (b). As throughout this work we take A, = 0.7517 as per equation (13). Each scan is shifted
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with the sample. For )\ > r/2, the scattering photon is increasingly entangled with the material and further
oscillatory structure begins to emerge in the coincidence scan.

In the strong coupling regime, P.(t) becomesincreasingly oscillatory with contributions from multiple
frequency components. The origin of the structure is further revealed upon taking the Fourier cosine transform
of P.(t) (equation (9)) taking the bandwidth of the bi-photon amplitude to be broad enough to span the full
spectral range. The first two terms in the integral of equation (9) are independent of time and simply give a
background count and can be ignored for purpose of analysis. The third term depends upon the time delay and is
Fourier-cosine transform of the bi-photon amplitude times the scattering amplitudes,
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Figure 4. Pole structure of the response function. (a) Contour plot of P(w) (equation (14)) varying the coupling A for wp = wr.
Superimposed are the locations of the (real) poles of the spectral response S*(w; — w)S(wp + w). (b) Expansion of the intersection
between w_branches in the critical regime showing the rapid variation of the response in this region. (c), (d) {(w) for the off-
resonant cases where w; = 1.75and w; = 1.0. In each case the pole structureis shifted by the center frequency wy.

P(w) = |Aw)PSKwr — w)S(wr + w). (14)

As we show in the appendix B, S(w) hasa series of poles on the complex plane that correspond to the
frequency spectrum of fluctuations about the matter-radiation steady state as given by the eigenvalues of M;in
equation (B8). In figures 4(a), (c), (d) we show the evolution of pole-structure of S*(w; — z)S(wr + z) (solid
black) superimposed over the Fourier-cosine transform of the coincidence counts (7(w)) with increasing
coupling \; for cases where the central laser frequency wy isresonant or off-resonant with the cavity (S). The
location of poles can be readily understood in terms of eigenfrequencies of the polariton branches (see figure 2)
with origins at +(w;, + w,)and £(w; — w,).

Both upper and lower polariton branches contribute to the scattering function and hence to the overall
response indicating the entanglementbetween excitonic and photonic modes within the sample. However, the
lion’s share of the contribution to the response revealing that both excitonic (w; ) and photonic (1) branches
contribute to the overall photon coincidence countingrates.

A closer examination of the pole structure in the vicinity of the phase transition reveals that two of the w{~
modes become degenerate over a small range of \; but with different imaginary componentsindicating that the
two modes decay at different rates. This is manifestin figure 4(b) by the rapid variation and divergence in the
SMwr — z)S(wr + z) about A [29]. While the parametric width of this regime is small, it depends entirely
upon the rate of photon exchange between the cavity and the laser field (k).

4. Discussion

We present here a formalism and method for connecting the photon coincidence signals for a sample placedina
HOM apparatusto the optical response of the coupled photon/material system. Qur formalism reveals that by
taking the Fourier transform of the P.(¢) coincidence signal reveals the underlying pole structure of the
entangled material/photon system. Qur idea hinges upon an assumption that the interaction with the material
preserves the initial entanglement between the two photons and that sample on the entanglement introduces an

6
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additional phase lag to one of the photons which we formally introduce in the form of a scattering response
function S. The pole-structure in the output comes about from the further quantum entanglement of the signal
photon with the sample.

Encoded in the time-delay signals is important information concerning the inner-workings ofa quantum
phase transition. Hence, we conclude that entangled photons with interferometric detection techniques provide
aviable and tractable means to extract precise information concerninglight—matter interactions. In particular,
the approach reveals that at the onset of the symmetry-breaking transition between normal and super-radiant
phases, two of the eigenmodes of the light-matter state exhibit distinctly different lifetimes. This signature ofan
intrinsic aspect of light—matter entanglement may be observed in a relatively simple experimental geometry with
what amounts to a linearlight-scattering /interferometry set up.

At first glance, it would appear that using quantum photons would not offer a clear advantage over more
standard spectroscopies based upon a semi-classical description of theradiation field. However, the
entanglement variable adds an additional dimension to the experiment allowing one to preform what would
ordinarily be a nonlinear experiment using classical light as a linear experiment using quantized light. The recent
works by Kalashnikov et al that inspired thiswork are perhaps the proverbial tip of the iceberg [15, 16].
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Appendix A. Input/output formalism

Our theoretical approach is to treat S as a material system interacting with a bath of quantum photons. We shall
denote our ‘system’ asthose degrees of freedom describing the material and the photons directly interacting with
the sample, described by H,y, and assume that the photons within sample cavity are exchanged with external
photons in the bi-photon field under the rotating-wave approximation,

Ho+Ho=h [ (B[@B) - e @]Bi(2) — Bl @)¥0)dz, (A1)

where [B,(2), B;, (z")] = & 6(z — z') are boson operators for photons in the laser field, and [¢, -t,-i‘I] = {yrare
boson operators for cavity photons in the sample that directly interact with the material component of the

system.
The Heisenberg equations of motion for the reservoir and system photon modes are given by

O;Bi(z) = —izB(z) + k(2)Uy (A2)

and
,. i
Ot = ~—[¥is Hil f #(2)By(z; )dz, (A3)

where the integration range is over all z. We can integrate formally the equations for the reservoir given either the
initial or final states of the reservoir field
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. ¢ i
e “UIB(z; 1) + k(z) | dse 20 qYy(s) fort > ¢
Bk(Z; t) _ ti y (A4)
DBz ) — w(2) [ dse =) fort <y
t

We shall eventually take t; — —oc and t; — +o00 and require that the forward-time propagated and reverse-
time propagated solutions are the same at some intermediate time . If we assume that the coupling is constant
over the frequency range of interest, we can write

k(z) = Jv/27, (A5)

where yis the rate that energy is exchanged between the reservoir and the system. This is the (first) Markov
approximation.
Using these identities, one can find the Heisenberg equations for the cavity modes as

i Y +00
Ot = —— L, Hysl = - [ Bz 0)ds, (A6)
where H,

sys is the Hamiltonian for the isolated system. We can now cast the external field in this equation in terms

of its initial condition:
i Y e
Outh =~ [ty Hysl = 55 [ =008 (2)dz
— 00

¥ +o0 t ,
_ f dz f 2= () dt. (A7)
2 J-x ti
Let us define an input field in terms of the Fourier transform of the reservoir operators:
biin() = ——= [ dee =008 (), (A8)
’ 21 J-o0

Since these depend upon the initial state of the reservoir, they are essentially a source of stochastic noise for the system.
In our case, we shall use these as a formal means to connect the fields inside the sample to the fields in the laser cavity.
For the term involving /2, the integral over frequency gives a delta-function:

| Z dze (=) = 276(t — ') (A9)
then
j: de'6(t — thyur(t') = @ for (t, < t < ty). (A10)
This gives the forward equation of motion.
Outn = =l Hosl + JTukin(®) — Lo (A1)

We can also define an output field by integrating the reservoir backwards from time #¢to time ¢ given a final

state of the bath, Bys.
. J . /
By = eflz(t*tf)ka — Zl ff eflz(t*t)wk(t/)dt/. (A12)
m t

This produces a similar equation of motion for the output field

Outbe = =[x, Hl = T¥kou(t) + Su(0) (A13)
Upon integration:
1 +00 i
Prou(®) = = [~ due 0By ) (AL4)

At the time ¢, both equations must be the same, so we can subtract one from the other
wk,in + ql)k,out = ﬁ¢k (AIS)

to produce a relation between the incoming and outgoing components. This eliminates the nonlinearity and
explicit reference to the bath modes.

Wenowwrite U = {1y, w};, S1, Sy, -+ }asavector of Heisenberg variables for the material system { Sy, S, -}
and cavity modes {1/, 1/} }. Taking the equations of motion for the all fields to be linear and of the form

AV = Mip - ¥ + (7, (A16)
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where My, is a matrix of coefficients which are independent of time. The input vector Wi, isnon-zero for only
the termsinvolving the input modes. We can also write a similar equation in terms of the output field; however,
we have to account for the change in sign of the dissipation terms, so we denote the coefficient matrix as Mouyt.
In this linearized form, the forward and reverse equations of motion can be solved formally using the Laplace
transform, giving

(Min — i2)¥(2) = — /7 ¥is(2), (A17)
(Mout — 12)¥(2) = + /7 Tout(2)- (A18)

These and the relation ¥, + Yoyt = /7' ¥ allows one to eliminate the external variables entirely:
Wout(z) = —(Mout — iz)(Min — iz)” lmin(z)- (A19)

This gives a precise connection between the input and output fields. More over, the final expression does not
depend upon the assumed exchange rate between the internal ¥ and external By (z) photon fields. The
procedure is very much akin to the use of Moller operators in scattering theory. To explore this connection,

A (+ . . . . . . . .
define Q.i(n Jasan operator which propagates an incoming solution at Foc to the interaction at time ¢t = O and its

AE) . . . . . .
reverse {2, which propagates an out-going solution at 00 back tothe interaction at time t = 0.

A(E)T a(E)
Qin,c:lut Q'in,out =1 (A20)
and
~ (£) .
Qin = (JMin F ]z)—l, (A21)
~ (£) .
Qogt = Mout + iz) L. (A22)
Thus, we can write equation (A19) as
~ (=) T Al+)
Tou(z) = — O O T(2). (A23)

To compute the response function, we consider fluctuations and excitations from a steady-state solution:
W(t) = Uy + 5T(1). (A24)

The resulting linearized equations of motion read
diéllf(r) = M6%(1) (A25)
t

implying a formal solution of
6U(t) = eMt5T(0). (A26)

From this we deduce that the eigenvalues and eigenvectors of M; give the fluctuations in terms of the normal
excitations about the stationary solution. Using the input /output formalism, we can write the outgoingstate (in
terms of the Heisenberg variables) in terms of their input values:

Whui(z) = _(‘-’Mout,s - iZI)(J,V[in,s - iZI)_l(S]I’in(z)a (A27)

where as given above, §U(z) is a vector containing the fluctuations about the stationary values for each of the
Heisenbergvariables. The Miy sand Mgy, s are the coefficient matrices from the linearisation process. The
input field satisfies (6vi (z) 60, (z')) = 6(z — z’)and all other termsare zero. Thus, the transmission function
is given by

§(z — 21)8(z) = (5 (2) om (2"))- (A28)

In other words, the S(z) is the response of the system to the input field of the incoming photon state producing
an output field for the out-going photon state.

Appendix B. Dicke model for ensemble of identical emitters

Let us consider an ensemble of Nidentical two-level systems corresponding to local molecular sites coupled to a
setof photon modes described by .
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Awp . . afa /\kj
—25,; + > Aty U + —(’Lk + ’Lk)(G’ +0j), (B1)
-3 B il PO
where {&; , &ji} are local spin-1/2 operators for site j, i, is the local excitation energy, and Ay isthe coupling
between the kth photon mode and the jth site, which we will take to be uniform over all sites. Defining the total
angular momentum operators

fz = 2 a'z,j and f; = 2 a;l:
j j
and
P=T+ 0 +100/2

as the total angular momentum operator, this Hamiltonian can be castin the form in equation (B1) by mapping
the total state space of N'spin 1/2 states onto a single angular momentum state vector |[J, M).

H = hwof, + Z f?wkbk P+ Z J_ (Uk + Wi + L) (B2)

Note that the ground state of the system corresponds to |J, —J) in which each molecule is in its electronic ground
state. Excitations from this state create up to N excitons within the system corresponding to the state |J, +J).
Intermediate to this are multi-exciton states which correspond to various coherent superpositions of local
exciton configurations. For each value of the wave vector k one obtains the following Heisenberg equations of
motion for the expectation values of the operators

6‘1 . ~ . - -

—(;": = (—iwg — KUk — 1A—%U+ + ), (B3)
~t

oy . A . 3 7

% = (iwg — .*c)'{;'-‘;: + 1%U+ + /), (B4)

=

= Ziw 2i
8r o)T:l: + Iz Z 'J_
O N e e an
—Z =i — [ @k + Uy), B6
where r is the decay of photon ¥y into the reservoir. These are nonlinear equations and we shall seek stationary
solutions and linearize about them. The linearized equation for the fluctuations reads

(u+:,k) (B5)

diaqf(r) — M5U(t) (B7)
t
with
[ —(k — i) 0 iAg idk 0 1
0 —(Kk + iwy) —iAk —iXk 0
M= 2T 2\ —iw, 0 20T+ 7)) |, (B8)
—2inT —2iMd 0 ity —2i\e (@i + D)
i =T iME =T i@ + 00 —iN@x + Y 0 |

where J; +, Uy, and a:r denote the steady-state solutions. Where we have removed N from the equations of
motion by simply rescaling the variables. The cavity photon decay x = =+ /2 forthe input and output equations
of motion, respectively. The model has both trivial and non-trivial stationary solutions corresponding to the
normal and super-radiant regimes. For the normal regime,

Tk = 1_.;-.‘; =T.s=0 (B9)

and
I = i%, (B10)

which correspond to the case where every spin s excited or in the ground state. Since we are primarily interested
in excitations from the electronic ground state, we initially focus our attention to these solutions.

10
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Non-trivial solutions to these equations predict that above a critical value of the coupling A > )\, thesystem
will undergo a quantum phase transition to form a super-radiant state. It should be pointed out that in the
original Dicke model, above the critical coupling, the system is no longer gauge invariant leading to a violation of
the Thomas—Reiche—Kuhn (TRK) sum rule. Gauge invariance can be restored; however, the system no longer
undergoes a quantum phase transition [30]. However, for a driven, non-equilibrium system such as presented
here, the TRK sum rule does not apply and the quantum phase transition is a physical effect.

The non-trivial solutions for the critical regime are given by

4
R e IR E B11)
N2
L= j:%[l - (;—;) ] , (B12)
2
I— _%[;_) . (B13)
k

The (imaginary) eigenvalues of M; gives4 non-zero and 1 trivial normal mode frequencies (for x = 0),
which we shall denote as

wh = —%(w% + w? £ J(wf — w)? + 16X wiws). (B14)
Onealso obtains the critical coupling constant
Ac = m(l + “—Z] (B15)
4 Wi

Figure 2 gives the normal mode spectrum for a resonant system with wy = w, = 1.5and k = 0.1 (inreduced
units).

Appendix C. Evaluation of integrals

The integral for the photon coincidence can be problematic to evaluate numerically given the oscillatory nature
of the sinc function in #{(z). Toaccomplish this, we define a sinc-transformation based upon F(z) using the
identity

. sinz) 1 [
sinc(z) - > J:] e (C1)
which yields
I N
Fa) =3 f_ e dk. (C2)
From thiswe can re-write each term in equations (9) in the form
10 = [~ ddF@)PS e — S + 2)e™, (©3)
1 gl 1
== dk dk'G(k — K/, 1), C4
- I 1 | K ) (Ca)
whereby we denote
9@ 0= [ Y dz e Parling¥ () — 2)S(wy + 2). (C5)

The integrand is highly oscillatory along the z-axis; however, for non-zero k — k' = g, G becomes a Gaussian
integral under coordinate transformation obtained by completing the square:

—ibgz? + 2itz = —ibq(z2 — Zbiz] (C6)
q

-]

11



10P Publishing

Quantum Sd. Technol. 3 (2018) 015003 HLietal

u(g <) Im(z) u(g > 0)

left poles “\ /,’/right poles
X X Xy, x[x kX xx
ﬂ;‘2r |

Re(z)
Figure 5. Integration axes and coordinate rotation for integrals C10-C13.
2
2
. t t
=—ibglz — —| — —. (C8)
bg ibg

For q > 0, wetake u = (/i) (z — ;—q), and for g < 0,wetake u = (—i/i) (z — é) Solving for zyields:
z=(—ii)u + ﬁ andz = (\i)u + ;—q, respectively. In short, the optimal contour of the Gaussian integral is
obtained by rotating by /4 from the real-axis in the anticlockwise direction for thecase of g > 0 and by 7/4 in
the clockwise direction for the case of g < 0as indicated in figure 5.

The spectral response S¥(w; — z)S(wy + z) hasa number of poles on the complex z plane above the real-z
axis. We now use the residue theorem to evaluate the necessary poles which result as the contour rotates from the
real axis to the complex +7 /4 axis. The 8 second order poles, { g,}, are defined by roots of the denominators
D(w; — z)and D(w; + z)andlocated r/2 above the real axis atlocations symmetrically placed around the
origin. For the counter-clockwise rotation (g > 0), poles included to the right of the real crossing point will be
added and those to the left will be ignored (Pr(#)) ; whereas for a clockwise rotation (g < 0), the left-hand poles
will be subtracted and the right-hand poles will be ignored (7;(#)).

For the unique case g = 0, all poles are summed (Pu(z)).

P(t) =271 lim %[(z — p,)2S*(w — 2)S(wy + z)eiba+2izt], (C9)

n Z—)pllr

Thus, we obtain

G(q > 0, 1) = e%‘éfm due_bq“zs*[u)j_ — (—ivD)u — i]S[wL 4 (—ivD)u + é]

bq
+ Pr(t), (C10)
G(g=0, t > 0) = Ful(s), (C11)
G(g=0,t<0)=0, (C12)
it e ] - t ~ t
G(g<0,t)=c¢en f duetbau 8*[wL — (\ﬁ)u — —]S(wL + WDu+ —]
o bq bq
— Pu(®), (C13)

whereby 7, P, and Py are summed over the left, right, or all poles, respectively. The resulting expressions are
analytic (albeit lengthy) and defined by exponentials and low order polynomials. Completion of the kand k’
integrals yield an exact expression for the response.

Appendix D. Analytical form of S(z)

In the non-critical regime, we find the response S(z) in a closed form as
T

S(z) = — (Sp + Szz% 4 Suz* + S¢z + Szzb), (D1)
D(z)?
where
So = wi(rAwl + 2k2(160; — 4N fwiw, + wiwd) + wiwiws — 40P, (D2)
Sy = —2wp(rtw, — KA@M wk — 2whwp + W) + wi(Wh + wd(wkwo — 4XD), (D3)
Sy = Kt + 2k (w? — 2w?) — 8N, + Wi + 4wi? + W (D4)

12
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Se = 2(k> — wi — W), (D5)
Sg=1, (D6)
D(z) = [(z2 — wp)(wi + (k5 + i2)?) + 4\Fwkwol. (D7)

The four complex-valued roots of D(z) = 0 correspond to the eigenvalues of the M; matrix in equation (B8). It
is possible using Mathematica to obtain a closed-form expression in the super-radiant regime; however, the
resulting expression is very lengthy and we do not reproduce it here.
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