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Abstract
We present an input/output analysis of photon-correlation experiments whereby a quantum
mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–
Ou–Mandel apparatus. We show that the output signal contains detailed information about
subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply
the method to an ensemble of emitters interacting with a common photon mode within the open-
system Dicke model. Our results indicate considerable dynamical information concerning sponta-
neous symmetry breaking can be revealed with such an experimental system.

1. Introduction

The interaction between light and matter lies at the heart of all photophysics and spectroscopy. Typically, one

treats the interaction within a semi-classical approximation, treating light as an oscillating classical electro-

magnetic wave as given by Maxwell̓s equations. It is well recognized that light has a quantum mechanical

discreteness(photons)and one can prepare entangled interacting photon states. The pioneering work by

Hanbury Brown and Twiss in the 1950̓s, who measured intensity correlations in light originating from thermal

sources, set the stage for what has become quantum optics[1–7]. Quantum photons play a central role in a

number of advanced technologies including quantum cryptography[8], quantum communications[9], and

quantum computation[10,11]. Only recently has it been proposed that entangled photons can be exploited as a

useful spectroscopic probe of atomic and molecular processes[11–16].

The spectral and temporal nature of entangled photons offer a unique means for interrogating the dynamics

and interactions between molecular states. The crucial consideration is that when entangled photons are created,

typically by spontaneous parametric down-conversion(SPDC), there is a precise relation between the frequency

and wavevectors of the entangled pair. For example if we create two entangled photons from a common laser

source, energy conservation dictates thatw w w= +laser 1 2. Hence measuring the frequency of either photon

will collapse the quantum entanglement and the frequency of the other photon will be precisely defined.

Moreover, in the case of multi-photon absorption, entangled 2-photon absorption is greatly enhanced relative

to classical 2-photon absorption since the cross-section scales linearly rather than quadratically with intensity.

Recent work by Schlawinet alindicate that entangled photon pairs may be useful in controlling and

manipulating population on the 2-exciton manifold of a model biological energy transport system[17]. The

non-classical features of entangled photons have also been used as a highly sensitive detector of ultra-fast
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emission from organic materials[18]. Beyond the potential practical applications of quantum light in high-

fidelity communication and quantum encryption, by probing systems undergoing spontaneous symmetry

breaking with quantum photons one can draw analogies between bench-top laboratory based experiments and
experimentally inaccessible systems such as black holes, the early Universe, and cosmological strings[19,20].

We begin with a brief overview of the photon coincidence experiment and the preparation of two-photon

entangled states, termed‘Bell-states’. We then use the input/output approach of Gardner and Collett[21]to
develop a means for computing the transmission function for a material system placed in one of the arms of the

Hong–Ou–Mandel(HOM)apparatus sketched infigure1. We provide a precise connection between a material

sample, described in terms of a model Hamiltonian, and the resulting signal in the context of the interference
experiment described by Kalashnikovet alin[16]using the Dicke model for an ensemble of two-level atoms as

input[22]. The Dicke model is an important test-case for a variety of quantum effects occurring in photonic and

plasmonic cavities[23]. It allows for a non-trivial steady state identified as a non-equilibrium phase transition to
a super-radiant regime. The model is especially important since an analytical solution for this regime exists. For

this reason, we have adopted the Dicke model in our calculations.

Our goal is to distinguish between the elementary excitations(i.e. thefluctuations)above the super-radiant
cooperative state and their signatures in the photon coincidence measurements. This is in contrast to

conventional techniques probing elementary excitations above the ground states of an ensemble of quantum

emitters. In a broader context, one can also model Frenkel excitons in molecular aggregates as a series of two-
level systems and placed into a homogeneous electricfield as a modified Dicke model thereby providing

connection to realistic material systems[24,25]. Lastly, in realistic experimental situations some deviations are
expected such asfield inhomogeneity, energetic disorder, appearance of higher-lying excited states(e.g., multi-

level systems), cascades, and complex many-body interactions. Such higher order interactions can be identified

by comparison with the predictions based upon the Dicke model.

2. Quantum interference of entangled photons

We consider the interferometric scheme implemented by Kalashnikovet al[16]. A CW laser beam is incident on

a nonlinear crystal, creating an entangled photon pair state by SPDC, which we shall denote as a Bell state,

ð1Þ

wherew w( ),1 2is the bi-photonfield amplitude and w()†BSI i, creates a photon with frequencywiin either the
signal or idler branch. The ketñ∣0is the vacuum state andwwñ∣1 2denotes a two photon state. In general, energy
conservation requires that the entangled photons generated by SPDC obeyw w w= +L 1 2. Similarly,
conservation of photon momentum requires = +k k kL 1 2. By manipulating the SPDC crystal, one can generate
entangled photon pairs with different frequencies. As a result, the bi-photonfield is strongly anti-correlated in
frequency with

Figure 1.Sketch of Hong–Ou–Mandel apparatus(HOM)for 2-photon coincidence detection. The initial laser beam pass through a
spontaneous parametric down-conversion crystal(SPDC)creating an entangled photon pair which is split into idler(w1)and signal
(w2)modes. The two beams are subsequently reflected back towards a beam-splitter(BS)by mirrors M1 and M2 and the signal mode
further interacts with a sample at S. The modes are recombined by a beam-splitter(BS)and directed towards coincidence counters C1
and C2. Not shown in our sketch is an optional pumping laser for creating a steady-state exciton density in S.
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ð2Þ

wherewLis the central frequency of the bi-photonfield. This aspect was recently exploited in[15], which used a
visible photon in the idler branch and an infrared(IR)photon in the signal branch, interacting with the sample.

As sketched infigure1, both signal and idler are reflected back towards a beam-splitter(BS)by mirrors M1
and M2. M1 introduces an optical delay with transmission function wF()which we will take to be of modulo 1.
In the other arm, we introduce a resonant medium at S with transmission functionw(). Not shown in our
sketch is an optional pumping laser for creating a steady state exciton density in S. For the case of an isolated line
with resonance frequency atwo, the transmission functionw()can be written as

w
w w g

= -
- +

⎡

⎣
⎢

⎤

⎦
⎥()

( )
()

b
exp i

i
, 3

o

where a=b L T22,aLis the optical thickness(αis a Bouger coefficient), andg =- T1
2is the dephasing time of

the medium. The motivation for this paper is to provide a framework for a general system with more complex
dynamics.
Upon interacting with both the delay element and the medium, the Bell-state can be rewritten as

ð4Þ

Finally, the two beams are re-joined by a BS producing the mapping[26]

w w  w  w  w  w+ +( ) ( ) [ ( ) ( )][ ( ) ( )] ( )† † † † † †B B  A  A  A  A
1

2
i i ,  5I S1 2 1 1 2 1 2 2 1 2

whereby w()†Ai jcreates a photon with frequencywjin theithexit channel. This yields afinal Bell state:

ð6Þ

Thefirst two terms in this state correspond to the two possible outcomes where one photon is transmitted into
each of the outgoing channels. In other words, the signal photon is transmitted to detector C1 and the idler
photon is transmitted to detector C2 or vice versa. The other two terms correspond to the cases where both
signal and idler branch photons are transmitted to either C1 or C2. The coincidence detection discriminates the
former from the latter and we write the coincident term as

ð7Þ

We can then take the counting rate as proportional to the probability

ð8Þ

If we assume that the delay stage is dispersionless with wF = w() eti and take the symmetric case of
w w= +zL1 andw w= -zL2 ,

*
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2idelay

wheretdelayis the time lag between entangled photons traversing the upper and lower arms of the HOM
apparatus. In the absence of a sample, the coincidence count is exactly equal to zero whenz=0. It is important
to note that two photons traversing the idler and signal branches need to be of different frequencies in order to
have any observable effect. In fact, taking the limit that the bi-photon amplitude is extremely narrow aboutwL
gives =( )Pt 0c delay , which is the Hong–Ou–Mandel effect[27].

3. Results

A crucial component of our approach is the action of the sample at S which introduces a transmission function

w()S into thefinal Bell state. We wish to connect this function to the dynamics and molecular interactions within
the sample. To accomplish this, we use the input/output formulation of quantum optics and apply this to an

3
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ensemble of identical 2-level states coupled to a common photon mode[28]. The technical details of our
approach are presented in the appendices of this paper. In short, we begin with a description of the material

system described byNtwo-level spin states coupled to common set of photon cavity modes.






å å

å

w
s w kyy

l
y y s s

= + -

+ + ++ -

ˆ ˆ ( )̂ ˆ

(̂ )̂(̂  ̂) ( )

†
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H

N

2
i
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j

o
zj

k

k k k

kj

kj
k k j j

sys ,

,

where s s{̂ ˆ},zj j, are local spin-1/2 operators for sitej,wois the local excitation energy, andlkjis the coupling
between thekth photon mode and thejth site, which we will take to be uniform over all sites. We introduceκas
the decay rate of a cavity photon. We allow the photons in the cavity(S)to exchange quanta with photons in the
HOM apparatus and derive the Heisenberg equations of motion corresponding to input and output photon
fields within a steady-state assumption. This allows us to compute(appendixA)the scattering matrix connecting
an incoming photon with frequencyνfrom thefield to an outgoing photon with frequencyνreturned to the
field viz.

n nY =-W W Y
- +

() ˆ ˆ () ( )
()† ()

, 11out out in in

whereW
ˆ()
in,outare Møller operators that propagate an incoming(or outgoing)state from-¥t tot=0 where

it interacts with the sample or fromt=0 to an outgoing(or incoming)state at+¥t and give theS-matrix
in the form of a response function

n d nd n dn n=á Y Y ¢ñ - ¢() () ( ) ( ) ( )† , 12out out

where thed nY ()out arefluctuations in the output photonfield about a steady-state solution. The derivation of
n()S for the Dicke model and its incorporation into equation(9)is a central result of this work and is presented
in appendixBof this paper. In general, n()S is a complex function with a series of poles displaced above the realν
axis and we employ a sync-transformation method to integrate equation(9). The approach can be applied to any
model Hamiltonian system and provides the necessary connection between a microscopic model and its
predicted photon coincidence.
In treating this as a scattering problem, we assume that the individual single photons impinging on the

sample are uncorrelated with previous and subsequent photons. That is to say that the intensity of laser is small

such that a single photon as left the cavity before the next entangled photon from the signal-arm of the HOM
apparatus interacts with the sample. Under this approximation, we can treat the matter/photon interaction

within a linear response approximation. A nonlinear theory must also include cross-correlation terms between

the in- and out-going photon components and the material.
Before discussing the results of our calculations, it is important to recapitulate a number of aspects of the

Dicke model and how these features are manifest in the photon coincidence counting rates. As stated already, we

assume that the sample is in a steady state by exchanging the photons in the HOM apparatus with photons
within the sample cavity and thatn()can be described within a linear-response theory. Because the cavity
photons become entangled with the material excitations, the excitation frequencies are split into lower photonic
(w-)and upper excitonic(w+)branches. Figure2shows the typical branching structure for the model for upper
and lower branch polariton modes.

At very low values oflk, the imaginary parts of the eigenvalues are equal andw w=+ -. In this over-damped
regime, photons leak from the cavity before the photon/exciton state has undergone a single Rabi oscillation. At

l k= 2k the system becomes critically damped and forl k< 2k and the degeneracy between the upper and

lower polariton branches is lifted. Aslkincreases above a critical value given by

l
ww k

w
= +

⎛

⎝
⎜

⎞

⎠
⎟ ()

4
1 , 13c

k o

k

2

2

the system undergoes a quantum phase transition whenw =- 0. Above this regime, excitations from the non-
equilibrium steady state become collective and super-radiant. For our numerical results, unless otherwise noted
we use dimensionless quantities, takingw w= =1.5o k for both the exciton frequency and cavity mode
frequency,k=0.1for the cavity decay. These give a critical value ofl=0.7517c . Also, within our model
calculations, unless otherwise stated, we assume the central frequency of the signal and idler laser modes to be
resonant with the cavityw w w= =L k o.

Wefirst consider the photon coincidence in the normal regime. Figures3(a),(b)show the variation of the
photon coincidence count when the laser frequency is resonant with the excitons(w w=k o). For low values of

lk, the system is in the over-damped regime and the resulting coincidence scan reveals a slow decay for positive

values of the time-delay. This is the perturbative regime or over-damped in which the scattering photon is
dephased by the interaction with the sample, but there is insufficient time for the photon to become entangled

4
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with the sample. Forl k> 2k , the scattering photon is increasingly entangled with the material and further

oscillatory structure begins to emerge in the coincidence scan.

In the strong coupling regime, ()Ptc becomes increasingly oscillatory with contributions from multiple

frequency components. The origin of the structure is further revealed upon taking the Fourier cosine transform

of ()Ptc (equation(9))taking the bandwidth of the bi-photon amplitude to be broad enough to span the full

spectral range. Thefirst two terms in the integral of equation(9)are independent of time and simply give a

background count and can be ignored for purpose of analysis. The third term depends upon the time delay and is

Fourier-cosine transform of the bi-photon amplitude times the scattering amplitudes,

Figure 2.Upper and lower polariton branches.(a)The eigenvalues of equation(B8)forw w= =1.5k o andk=0.1with increasing
lk(in scaled units).(b)The zoom-in view around the critical coupling pointl»0.7517c where the phase transition occurs. A general
feature of this model is that both photon and exciton-like modes(w-andw+branches, respectively)decay at the same rate once
l k= 2k , corresponding to the splitting occurring atl=0.05k .

Figure 3.Photon coincidence rates versus coupling. We compare here the computed(relative)coincidence counting rates asλ
increases from weak(a)to strong coupling(b). As throughout this work we takel=0.7517c as per equation(13). Each scan is shifted
vertically for clarity.
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*    w  w  w w w w= - +() ∣()∣ ( )( ) (). 14c L L
2

As we show in the appendixB,w()has a series of poles on the complex plane that correspond to the
frequency spectrum offluctuations about the matter-radiation steady state as given by the eigenvalues ofsin

equation(B8).Infigures4(a),(c),(d)we show the evolution of pole-structure of * w w- +( )( )z zL L (solid
black)superimposed over the Fourier-cosine transform of the coincidence counts(w()c )with increasing

couplinglkfor cases where the central laser frequencywLis resonant or off-resonant with the cavity(S). The
location of poles can be readily understood in terms of eigenfrequencies of the polariton branches(seefigure2)
with origins at w w +( )L oand w w -( )L o.

Both upper and lower polariton branches contribute to the scattering function and hence to the overall

response indicating the entanglement between excitonic and photonic modes within the sample. However, the
lion̓s share of the contribution to the response revealing that both excitonicw+( )and photonicw-( )branches
contribute to the overall photon coincidence counting rates.
A closer examination of the pole structure in the vicinity of the phase transition reveals that two of thew-()k

modes become degenerate over a small range oflkbut with different imaginary components indicating that the

two modes decay at different rates. This is manifest infigure4(b)by the rapid variation and divergence in the

* w w- +( )( )z zL L aboutlc[29]. While the parametric width of this regime is small, it depends entirely
upon the rate of photon exchange between the cavity and the laserfield(κ).

4. Discussion

We present here a formalism and method for connecting the photon coincidence signals for a sample placed in a
HOM apparatus to the optical response of the coupled photon/material system. Our formalism reveals that by

taking the Fourier transform of the ()Ptc coincidence signal reveals the underlying pole structure of the

entangled material/photon system. Our idea hinges upon an assumption that the interaction with the material
preserves the initial entanglement between the two photons and that sample on the entanglement introduces an

Figure 4.Pole structure of the response function.(a)Contour plot ofw()c (equation(14))varying the couplingλforw w=o L.
Superimposed are the locations of the(real)poles of the spectral response * w w w w- +( )( )L L .(b)Expansion of the intersection
betweenw-branches in the critical regime showing the rapid variation of the response in this region.(c),(d)w()c for the off-
resonant cases wherew =1.75L andw =1.0L . In each case the pole structure is shifted by the center frequencywL.

6

Quantum Sci. Technol.3(2018)015003 HLiet al



additional phase lag to one of the photons which we formally introduce in the form of a scattering response
function. The pole-structure in the output comes about from the further quantum entanglement of the signal

photon with the sample.

Encoded in the time-delay signals is important information concerning the inner-workings of a quantum
phase transition. Hence, we conclude that entangled photons with interferometric detection techniques provide

a viable and tractable means to extract precise information concerning light–matter interactions. In particular,

the approach reveals that at the onset of the symmetry-breaking transition between normal and super-radiant
phases, two of the eigenmodes of the light–matter state exhibit distinctly different lifetimes. This signature of an

intrinsic aspect of light–matter entanglement may be observed in a relatively simple experimental geometry with

what amounts to alinearlight-scattering/interferometry set up.
Atfirst glance, it would appear that using quantum photons would not offer a clear advantage over more

standard spectroscopies based upon a semi-classical description of the radiationfield. However, the

entanglement variable adds an additional dimension to the experiment allowing one to preform what would
ordinarily be a nonlinear experiment using classical light as a linear experiment using quantized light. The recent

works by Kalashnikovet althat inspired this work are perhaps the proverbial tip of the iceberg[15,16].
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Appendix A. Input/output formalism

Our theoretical approach is to treatSas a material system interacting with a bath of quantum photons. We shall
denote our‘system’as those degrees of freedom describing the material and the photons directly interacting with

the sample, described byHsysand assume that the photons within sample cavity are exchanged with external

photons in the bi-photonfield under the rotating-wave approximation,

ò k y y+ = -  -
-¥

¥

{ () () ()( () () )} ( )† † †H H zBzBz z Bz Bz zi d, A1r rs k k k k k k

where d d¢ = -¢¢ ¢[ () ( )] ( )†Bz B z z z,k k kk are boson operators for photons in the laserfield, andy y d= ¢[ ]†,k k kkare
boson operators for cavity photons in the sample that directly interact with the material component of the
system.

The Heisenberg equations of motion for the reservoir and system photon modes are given by

k y¶ =-  +() () () ( )Bz zBz zi A2t k k k

and

 òy y  k¶ =- -[ ] () ( ) ( )H zBzt z
i
, ; d,  A3t k k ksys

where the integration range is over allz. We can integrate formally the equations for the reservoir given either the
initial orfinal states of the reservoirfield
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We shall eventually take  -¥ti and  +¥tf and require that the forward-time propagated and reverse-
time propagated solutions are the same at some intermediate time t. If we assume that the coupling is constant
over the frequency range of interest, we canwrite

k g p=( ) ( )z 2 , A5

where γ is the rate that energy is exchanged between the reservoir and the system. This is the (first)Markov
approximation.

Using these identities, one can find theHeisenberg equations for the cavitymodes as

 òy y
g
p

¶ = - -
-¥

+¥
[ ] ( ) ( )H B z t z

i
,

2
; d , A6t k k ksys

whereHsys is theHamiltonian for the isolated system.We can now cast the externalfield in this equation in terms
of its initial condition:
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Let us define an inputfield in terms of the Fourier transformof the reservoir operators:

òy
p

= -
-¥

+¥
- -( ) ( ) ( )( )t z B z

1

2
d e . A8k

z t t
ko,in

i i

Since these dependupon the initial state of the reservoir, they are essentially a source of stochastic noise for the system.
Inour case,we shall use these as a formalmeans to connect thefields inside the sample to thefields in the laser cavity.

For the term involving g p2 , the integral over frequency gives a delta-function:

ò pd= - ¢
-¥

¥
- ¢ ( ) ( )( )z t td e 2 A9z t ti
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ò d y
y
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o

This gives the forward equation ofmotion.


y y gy

g
y¶ = - + -[ ] ( ) ( ) ( )H t t

i
,

2
. A11t k k k ksys ,in

Wecan also define an outputfield by integrating the reservoir backwards from time tf to time t given afinal
state of the bath,Bkf.
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k
i if

f

This produces a similar equation ofmotion for the output field


y y gy

g
y¶ = - - +[ ] ( ) ( ) ( )H t t

i
,

2
. A13t k k k ksys ,out

Upon integration:

òy
p

n n= n

-¥

+¥
- -( ) ( ) ( )( )t B

1

2
d e . A14k

t t
kf,out

i f

At the time t, both equationsmust be the same, sowe can subtract one from the other

y y gy+ = ( )A15k k k,in ,out

to produce a relation between the incoming and outgoing components. This eliminates the nonlinearity and
explicit reference to the bathmodes.

Wenowwrite y yY = { }† S S, , , ,k k 1 2 as a vector ofHeisenberg variables for thematerial system { }S S, ,1 2

and cavitymodes y y{ }†,k k . Taking the equations ofmotion for the allfields to be linear andof the form

 g¶ Y = Y + Y· ( ), A16t in in
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whereinis a matrix of coefficients which are independent of time. The input vectorYinis non-zero for only
the terms involving the input modes. We can also write a similar equation in terms of the outputfield; however,
we have to account for the change in sign of the dissipation terms, so we denote the coefficient matrix asout.
In this linearized form, the forward and reverse equations of motion can be solved formally using the Laplace
transform, giving

 g- Y =- Y( )()  () ( )z z zi , A17in in

 g- Y =+ Y( ) () () ( )z z zi . A18out out

These and the relation gY +Y = Yin out allows one to eliminate the external variables entirely:

 Y =-  -  - Y-() ( )( ) () ( )z z z zi i . A19out out in
1
in

This gives a precise connection between the input and outputfields. More over, thefinal expression does not
depend upon the assumed exchange rate between the internalykand external ()Bzk photonfields. The
procedure is very much akin to the use of Møller operators in scattering theory. To explore this connection,

defineW
ˆ()
inas an operator which propagates an incoming solution at ¥ to the interaction at timet=0 and its

reverseW
ˆ()
outwhich propagates an out-going solution at ¥ back to the interaction at timet=0.

W W  =
 ˆ ˆ ( )
()† ()

I A20in,out in,out

and

W =
 -ˆ ( ) ( )
()

zi , A21in in
1

W = 
 -ˆ ( ) ( )
()

zi . A22out out
1

Thus, we can write equation(A19)as

Y =-W W Y
- +

() ˆ ˆ () ( )
()† ()

z z. A23out out in in

To compute the response function, we considerfluctuations and excitations from a steady-state solution:

dY =Y + Y() () ( )t t. A24ss

The resulting linearized equations of motion read

d dY = Y() () ( )
t

t t
d

d
A25s

implying a formal solution of

d dY = Y() () ( )t e 0. A26ts

From this we deduce that the eigenvalues and eigenvectors ofsgive thefluctuations in terms of the normal
excitations about the stationary solution. Using the input/output formalism, we can write the outgoing state(in
terms of the Heisenberg variables)in terms of their input values:

 d dY =-  -  -  Y-() ( )( ) () ( )z zI zI zi i , A27s sout out, in,
1

in

where as given above,dY()zis a vector containing thefluctuations about the stationary values for each of the
Heisenberg variables. The sin,and sout,are the coefficient matrices from the linearisation process. The
inputfield satisfiesdy dy dá ¢ñ= - ¢() ( ) ( )†z z  z zin in and all other terms are zero. Thus, the transmission function
is given by

d dy dy-¢ =á ¢ñ( ) () () ( ) ( )†z z z z z . A28out out

In other words, the()zis the response of the system to the inputfield of the incoming photon state producing
an outputfield for the out-going photon state.

Appendix B. Dicke model for ensemble of identical emitters

Let us consider an ensemble ofNidentical two-level systems corresponding to local molecular sites coupled to a
set of photon modes described byyk.
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



å å  å

w
s wyy

l
y y s s= +  +  + ++ -ˆ ˆ ˆˆ (̂ )̂(̂  ̂) ( )

† †
H

N2
, B1

j

o
zj

k

k k k

kj

kj
k k j j,

,

where s s{̂ ˆ},zj j, are local spin-1/2 operators for sitej,wois the local excitation energy, andlkjis the coupling
between thekth photon mode and thejth site, which we will take to be uniform over all sites. Defining the total
angular momentum operators

å ås s= =
ˆ ˆ ˆ ˆJ Jandz

j

zj

j
j,

and

= + ++- -+
ˆ ˆ (̂  ̂ ˆ̂ )J J JJ JJ 2z
2 2

as the total angular momentum operator, this Hamiltonian can be cast in the form in equation(B1)by mapping
the total state space ofNspin 1/2 states onto a single angular momentum state vector ñ∣J M, .

 


å åw wyy
l
y y= +  +  +  ++ -

ˆ ˆ ˆˆ (̂ )̂(̂ )̂ ( )
† †

H J
N

J J. B2oz

k

k k k

k

k
k k

Note that the ground state of the system corresponds to -ñ∣J J, in which each molecule is in its electronic ground
state. Excitations from this state create up toNexcitons within the system corresponding to the state +ñ∣J J, .
Intermediate to this are multi-exciton states which correspond to various coherent superpositions of local
exciton configurations. For each value of the wave vectorkone obtains the following Heisenberg equations of
motion for the expectation values of the operators

y
w ky

l¶

¶
= - - - ++ -

ˆ
( )̂ (̂ )̂ ( )

t N
J Ji i , B3k

k k
k

y
w ky

l¶

¶
= -  +  ++ -

ˆ
( )̂ (̂ )̂ ( )

†
†

t N
J Ji i , B4k

k k
k

åw
l
y y

¶

¶
= +


ˆ

ˆ ˆ (̂ ˆ) ( )
†J

t
J J

N
i 2i , B5o z

k

k
k k

l
y y

¶

¶
= - +- +

ˆ
(̂ )̂(̂ ˆ) ( )

†J

t N
J Ji ,  B6z k

k k

whereκis the decay of photonŷkinto the reservoir. These are nonlinear equations and we shall seek stationary
solutions and linearize about them. The linearized equation for thefluctuations reads

d dY = Y() () ( )
t

t t
d

d
B7s

with



k w l l

k w l l

l l  w l y y

l l w l y y

l l l y y l y y

=

- -

- + - -

- +

- - - +

- -  + - +- +  - +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

( )

( )

( )

( )

( ) ( ) (  ) (  )

( )
†

†

J J

J J

J J J J

i 0  i  i  0

0 i i i  0

2i 2i i 0 2i

2i 2i 0 i 2i

i i i  i  0

, B8s

k k k

k k  k

kz kz o k k k

kz kz o k k k

k k k k k k k k

where Jz,,yk, andy
†
kdenote the steady-state solutions. Where we have removedNfrom the equations of

motion by simply rescaling the variables. The cavity photon decayk g= 2for the input and output equations
of motion, respectively. The model has both trivial and non-trivial stationary solutions corresponding to the
normal and super-radiant regimes. For the normal regime,

y y= =  = ( )
†
J 0 B9k k s,

and

= ( )J
N

2
, B10z

which correspond to the case where every spin is excited or in the ground state. Since we are primarily interested
in excitations from the electronic ground state, we initially focus our attention to these solutions.
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Non-trivial solutions to these equations predict that above a critical value of the couplingl l> c, the system
will undergo a quantum phase transition to form a super-radiant state. It should be pointed out that in the

original Dicke model, above the critical coupling, the system is no longer gauge invariant leading to a violation of

the Thomas–Reiche–Kuhn(TRK)sum rule. Gauge invariance can be restored; however, the system no longer
undergoes a quantum phase transition[30]. However, for adriven, non-equilibriumsystem such as presented

here, the TRK sum rule does not apply and the quantum phase transition is a physical effect.

The non-trivial solutions for the critical regime are given by

y
l

w k

l

l
=

-
-
⎛

⎝
⎜
⎞

⎠
⎟ ( )

i
1 , B11k

k

k

c

k

4

l

l
= --

⎛

⎝
⎜⎜

⎛

⎝
⎜
⎞

⎠
⎟
⎞

⎠
⎟⎟ ( )J

1

2
1 , B12c

k

412

l

l
=-

⎛

⎝
⎜
⎞

⎠
⎟ ( )J

1

2
. B13z

c

k

2

The(imaginary)eigenvalues ofsgives 4 non-zero and 1 trivial normal mode frequencies(fork=0),

which we shall denote as

w w w w w lww=- +  - + ( ( )  ) ( )
1

2
16 . B14k o  k o  k k o

2 2 2 2 22 2

One also obtains the critical coupling constant

l
ww k

w
= +

⎛

⎝
⎜

⎞

⎠
⎟ ( )

4
1 . B15c

k o

k

2

2

Figure2gives the normal mode spectrum for a resonant system withw w= =1.5k o andk=0.1(in reduced
units).

Appendix C. Evaluation of integrals

The integral for the photon coincidence can be problematic to evaluate numerically given the oscillatory nature

of the sinc function in()z. To accomplish this, we define a sinc-transformation based upon()zusing the
identity

ò= =
-

()
()

( )z
z

z
ksinc

sin 1

2
e d C1kz

1

1
i

which yields

 ò=
-

() ( )z k
1

2
e d. C2kbz

1

1
i 2

From this we can re-write each term in equations(9)in the form

*   ò w w= - +
-¥

¥

()  ∣()∣ ( )( ) ( )It z z z zd e , C3L L
zt2 2i

ò ò= ¢ - ¢
- -

( ) ( )k k k kt
1

4
d d  , , C4
1

1

1

1

whereby we denote

*  ò w w= - +
-¥

¥
- +( ) ( )( ) ( )qt z z z, d e . C5bz q tz

L L
i 2i2

The integrand is highly oscillatory along thez-axis; however, for non-zero -¢=k k q,becomes a Gaussian
integral under coordinate transformation obtained by completing the square:

- + =-  -
⎛

⎝
⎜

⎞

⎠
⎟ ( )bqz tz bq z

t

bq
zi 2i i  2 C62 2

=- - -
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎞

⎠
⎟
⎤

⎦
⎥
⎥

( )bq z
t

bq

t

bq
i C7

2 2
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=- - -
⎛

⎝
⎜

⎞

⎠
⎟ ( )bq z
t

bq

t

bq
i

i
. C8

2 2

For >q 0, we take= -( )( )u zi
t

bq
, and for<q 0, we take= - -( )( )u zii

t

bq
. Solving forzyields:

= - +( )z uii
t

bq
and = +( )z ui

t

bq
, respectively. In short, the optimal contour of the Gaussian integral is

obtained by rotating byp4from the real-axis in the anticlockwise direction for the case of >q 0and byp4in
the clockwise direction for the case of <q 0as indicated infigure5.
The spectral response * w w- +( )( )z zL L has a number of poles on the complexzplane above the real-z

axis. We now use the residue theorem to evaluate the necessary poles which result as the contour rotates from the
real axis to the complex p 4axis. The 8 second order poles,r{}n, are defined by roots of the denominators
w -( )D zL and w +( )D zL and locatedk2above the real axis at locations symmetrically placed around the

origin. For the counter-clockwise rotation(>q 0), poles included to the right of the real crossing point will be
added and those to the left will be ignored(()tR ); whereas for a clockwise rotation(<q 0), the left-hand poles

will be subtracted and the right-hand poles will be ignored(()tL ).

For the unique caseq=0, all poles are summed(()tall ).

*  åp r w w= - - +
r

- +() [( ) ( ) ( ) ] ( )t
z
z z z2i lim

d

d
e .  C9

nz
n L L

bz q zt2 i 2i

n

2

Thus, we obtain

*  



ò w w> = - -  -  + -  +

+

-¥

¥
-

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟(  ) ( ) ( )

() ( )

q t  u u
t

bq
u

t

bq

t

0, e d e i i i i

, C10

bqu
L L

R

t
bq
i2 2

 = > =( ) () ( )q t  t0, 0 , C11all

 = < =( ) ( )q t0, 0 0, C12

*  



ò w w< = - -  + +

-

-¥

¥
+

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( )

() ( )

q t  u u
t

bq
u

t

bq

t

0, e d e i i

, C13

bqu
L L

L

t
bq
i2 2

wherebyL,L, andallare summed over the left, right, or all poles, respectively. The resulting expressions are
analytic(albeit lengthy)and defined by exponentials and low order polynomials. Completion of thekand¢k
integrals yield an exact expression for the response.

Appendix D. Analytical form of()z

In the non-critical regime, wefind the response()zin a closed form as


p

=-  + + + +()
()
( ) ( )z

Dz
S Sz Sz Sz Sz, D1o2 2

2
4
4

6
6

8
8

where

w kw k l lww ww w ww l= +  - + + -( ( ) ( ))  ( )S 2 16 4 4 , D2o o  k  k k o k o k k o k0
2 4 2 2 4 2  2 2 2  22

w kw k lw ww w w w w ww l=- - - + + + -( (  ) ( )(  ))  ( )S 2 4 2 4 , D3o o k k k o o k k o k o k2
4 2 2 2 3  2 2  2

k k w w  lww w ww w= + - - + + +( ) ( )S 2 2 8  4  , D4o k o k k o o4
4 2 2 2 2 4 2 2 4

Figure 5.Integration axes and coordinate rotation for integralsC10–C13.
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k w w= - -( ) ( )S 2 , D5k o6
2 2 2

= ( )S 1, D68

w w k lww= -  + +  +() [( )( ( )) ] ( )Dz z zi 4  . D7o k k k o
2 2 2 2 2

The four complex-valued roots of =()Dz 0correspond to the eigenvalues of thesmatrix in equation(B8).It
is possible using Mathematica to obtain a closed-form expression in the super-radiant regime; however, the
resulting expression is very lengthy and we do not reproduce it here.
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