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I. INTRODUCTION

Photoinitiated electronic energy transport and charge transfer play a central
role in a wide range of important chemical and biological processes. They
are the fundamental mechanisms for transporting the energy of an absorbed
photon to a reaction center in light-harvesting systems and for initiating a
wide range of photoinduced chemical processes, including vision, DNA
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mutation, and pigmentation. In general, the rate constant for a chemical
reaction expected to be in the Arrhenius form

k o e EalksT (1)

with E, as the activation energy for the reaction. Central to the theory of
condensed phase electron transfer is that the electronic transition from the
donor state (D) to the acceptor state (A) occurs on a timescale that is fast
compared to the nuclear motion. That is to say that the electron-transfer
(ET) reaction is initiated by the electronic transition at the donor geometry
followed by a nuclear wave packet motion on the acceptor potential energy
surface. This motion can be detected in various ultrafast spectroscopies and
has been observed in a number of organic and inorganic systems. Examples
include zinc porphyrins [1, 2], heme complexes [2—4], and other metallo-
proteins [5]. Vibrational coherence has been observed in the accompanying
solvent response in the nonadiabatic relaxation of the solvated electron [6].
In fact, in the case of the solvated electron, electronic coherence is dissi-
pated by the ballistic motion of the surrounding water molecules [7-10].

Vibrational coherence has been less commonly observed in simple coor-
dination complexes; one of the most compelling recent examples comes
from optical studies of [Fe(bpy);]>* reported by Chergui and coworkers
[11]. McCusker reports a 164 cm~! damped oscillation in the transient
kinetics following electronic excitation corresponding to Cr—O stretching
modes that define the “reaction coordinate” for intersystem crossing in
Cr(acac); [12]. Also, coherent vibrational motion appears to play an impor-
tant role in the charge-transfer dynamics in both artificial light-harvesting
systems [13] and organic polymer heterojunctions [14-17]. Lastly,
Weinstein et al. recently demonstrated that one can control the branching
ratio of an ET reaction by “pushing” specific nuclear motions by an IR
pulse following photoexcitation of donor—bridge—acceptor complexes
containing a coordinated central Pt atom [18, 19].

The seminal model for calculating nonadiabatic ET rates was devel-
oped by Marcus in the 1950s [20-22] and can be summarized in terms of
the sketch of the donor and acceptor potential energy curves as presented
in Fig. 1. Here, Q is a dimensionless coordinate representing collective
nuclear motion. For both the donor and acceptor states, we assume that the
electronic energy can be expanded about the respective equilibrium geome-
tries, and Vp and V, are diabatic potentials for the donor and acceptor
states, taking the nuclear configuration of the donor as the energy ori-
gin. The thermodynamic driving force AG® is given by the free energy
difference between the donor and acceptor minima. The activation energy
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Figure 1. Sketch of Marcus parabolas for a model energy or charge-transfer system.
Labeled are the key parameters used to compute the Marcus rate constant (Eq. (3)).

is given by the crossing point between V, and V4.
Ey = (A+AG")? /44

where A is the energy required to reorganize the environment following the
transfer of charge from the donor to the acceptor. In terms of Fig. 1, 4 is
the change in the electronic energy of the final electronic state when it is
brought to the nuclear configuration of the initial state. Since we assume
that the potentials are parabolic and identical, A is also the electronic energy
of the initial state in the nuclear configuration of the final state.

Generally, A — AG? > 0 as depicted in Fig. 1, giving an energy barrier
E, at the transition state (denoted as ). In the adiabatic regime in which
the coupling between electronic terms is comparable to the reorganization
energy, the transition occurs on just the lower electronic state. However, if
the electronic coupling is small, then the donor and acceptor states retain
their “identity” throughout. In this case, Landau—Zener theory can be used
to compute the probability for the interconversion of a donor and acceptor
via a single passage of the system through the point of intersection of the
donor and acceptor diabatic potential curves.

4772|VDA|2
hvlsp — s,

PDA=1—3XP[ (2)

where sy, and s, are the slopes of the donor and acceptor potentials at the
point of intersection, v is the velocity of the system through the intersection
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region, and Vp, is the diabatic coupling. One then arrives at the Marcus
equation

2r 1 _ 0.2
kmarcus = 7IVDA|2TBT/IE (HAGT /Adky T 3)

One of the most profound predictions of the theory is that as the driving
force increases, the transfer rate reaches a maximum. This “barrier-less”
regime occurs when 4 = AG°. As the driving force increases, the rates are
predicted to decrease. For freely diffusing donor and acceptor species, this
inverted behavior proved to be elusive for systems with large driving forces,
since in the diffusion limit every encounter between donor and acceptor
leads to electron transfer [23]. The existence of the inverted region was
demonstrated unequivocally by Miller et al. by tying together the donor
and acceptor via a chemical linkage or bridge [24].

Because of its simplicity, Marcus theory has been used successfully to
analyze a wide range of physical problems and is accepted as the “go-to”
theory when describing charge and energy transfer in the condensed phase.
However, there is a wealth of important dynamical information tucked
away within this expression.

A number of years ago, our group developed a time-convolutionless
master equation approach for computing state-to-state rates in which the
coupling between states depends on the nuclear coordinates [25]. This
approach incorporates a fully quantum-mechanical treatment of both the
nuclear and electronic degrees of freedom and recovers the well-known
Marcus expression in the semiclassical limit. The model is parameterized
by the vibrational normal mode frequencies, and the electronic energies
and energy derivatives at a reference configuration. The approach has been
used by our group to compute state-to-state transition rates in semiempir-
ical models for organic semiconducting light-emitting diodes and photo-
voltaics [17, 26-28].

We recently made a significant breakthrough in using this approach by
tying it to a fully ab initio quantum chemical approach for determining
the diabatic states and electron—phonon coupling terms, allowing unprece-
dented accuracy and utility for computing state-to-state electronic tran-
sition rates. Our methodology consists of two distinct components. The
first is the use of a diabatization scheme for determining donor and accep-
tor states in a molecular unit. The other is a projection scheme which
enables us to analyze the contribution of vibrations in reactions. Simi-
lar decomposition schemes have been presented in Ref. [29-31] and the
approach used here builds upon the method given in Ref. [32]. We recently
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benchmarked this approach against both the experimental rates and recent
theoretical rates presented by Subotnik er al. [33—35] and successfully
applied the approach to compute state-to-state transition rates in series of
Pt bridged donor—acceptor systems recently studied by Weinstein’s group
[18, 19, 36]. We review here these latter results along with the details of our
methods.

II. THEORETICAL APPROACH

We consider a generic model for n electronic states coupled linearly to a
phonon bath. Taking the electronic ground state of the system as a reference
and assuming that the electronic states are coupled linearly to a common
set of modes, we arrive at a generic form for the Hamiltonian, here written
for two coupled electronic states:

e 0 g1°q g°q P> 1,
H=| +( =1 12 +I({=—+2q"-Q-q).
<0 €2) <g21~q 224 2 21 4
4)

Here, the first term contains the electronic energies, €, and ¢, computed at
a reference geometry — typically that of the donor or acceptor state. The
second term represents the linearized coupling between the electronic and
nuclear degrees of freedom given in terms of the mass-weighted normal
coordinates q. The diagonal terms give the adiabatic displacement forces
between the reference geometry and the two states. If we choose one of the
states as the reference state, then either g;; or g,, will vanish. The remain-
ing two terms correspond to the harmonic motions of the nuclear normal
modes, given here in mass-weighted normal coordinates. In the normal
mode basis, the Hessian matrix, Q, is diagonal with elements correspond-
ing to the normal mode frequencies, .
We now separate Eq. (4) into diagonal and off-diagonal terms,

H=H,+V (5)

and recast the phonon operators in terms of the boson operators [a;, a;] =
&;- We then perform a polaron (shift) transform [25, 37, 38],

U= e Zoi In)(nl(a] -a;)

= X In)tale” B (6)
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under which the transformed Hamiltonian is written in terms of the diago-
nal elements

Hy=U"'H,U = Z €, ln)(n| + Z ha)iajal-, @)
n i
with the renormalized electronic energies,
2
g .
i —e — nm’ 8
=6 Z o ®)

and off-diagonal terms,

Cnnj=8mmj) , +
= Z Cumi <a;r +a; — %) ezj hoy (a; —a/)‘ )
i @i

In the transformed (or dressed) picture, the electronic transition from state
|n) to |m) is accompanied by the excitations of all the normal modes.

At this point, it is useful to connect the various terms in the phonon-
dressed Hamiltonian with specific physical parameters. First, the reorgani-
zation energy is given by

(gnnj - gmmj)2
A = Y, —2—0 = 2 ha;S; (10)
J

7 @

where {S;} are the Huang-Rhys factors for each phonon mode. These are
related to the Franck—Condon factor describing the overlap between the
v; = 1 vibronic state in one electronic state and the v; = 0 vibronic state in
the other. Likewise, the energy difference between the renormalized energy
gaps is related to the driving force of the state-to-state transition,

AE,, =&, —¢&,. (11)

nm

Transforming to the interaction representation and performing a trace over
the phonons give the spectral density in terms of the autocorrelation of
the electron—phonon coupling operators. Using the explicit form of the
electron—phonon coupling operators, one can arrive at a compact expres-
sion for the autocorrelation function of the electron—phonon coupling

Com(®) = Vi Viun (7)) (12)
= Z gnmigmnj((Anmi(ﬁi + l)eia),-r - Anml i i + Qnmt)

iy
X (Anmj(n + DT — A, e + Q)

8;(7i; + 1)E™T + 6,71, ) G (T (7), (13)

nmj j ‘nmj )
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Here, Vnm(t) is the electron—phonon coupling term in the Heisenberg repre-
sentation and (- - - ) denotes a thermal average over the vibrational degrees
of freedom. The remaining terms are constructed from the normal mode
frequencies {w;} and electron/nuclear couplings {g,,,;} viz.

Appi = w’ (14)
(gnni + gmmi)
Qi = T, (15)
i
Gum(T) = ¢/ T SO a6
fonl®) = DN 00,0 a7

Finally, 7; is the Bose population of vibrational normal mode i,

_ 1
= (18)

The spectral density and golden-rule rate can then be obtained by Fourier
transform

Sym(®) = / wdte""b’<%m(t>‘7mn(0>>. (19)
and
%Fm#}MM@%mww. (20)
0

A. Semiclassical Rate Expression

To arrive at a Marcus-like expression for the rate constant, it is conve-
nient to rewrite the diagonal and off-diagonal terms in terms of mass-scaled
coordinates

P’ @’ q?
Ho = Z €nll’l><l’l| + Zgnni|n><n|qi + 2 71 + Z #’ (21)
n ni i i

and an off-diagonal part V
V=2 Zumiln)(mlg; (22)

nmi
where the electron—phonon coupling is given as
gnmi = 26()ignnu" (23)

We now treat the coordinate and momentum operators as classical vari-
ables and obtain the golden-rule rate constants for the transition from state
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|[n) — |m) by averaging the golden-rule transition rates over the initial
equilibrium distribution of the coordinates corresponding to the equili-
brium ensemble for Hamiltonian H, assuming that the initial electronic
state of the system is |n)

Ky = 2”/d{qi}f({qi})lvnin({qi})|25(Un({qi}) -U,({4gi}), (24)
where {g,} denotes all coordinate variables and
flg)) = ZeUitad 25)

and

Vnm({CIi}) = Z gnmiLIi' (26)

Here, Z is the partition function and U, ({g;}) is the total (diabatic) energy
at nuclear configuration {g;}

2 2
@i 4;

5 27)

Un({qi}) =€ + Z gnniqi +
i i
Note that Eq. (24) differs from the usual expressions by the presence of
coordinate dependence in both the diagonal and off-diagonal coupling
terms, V,,,,({g;}). The integrations in Eq. (24) can be explicitly performed
1

giving

(28)

" AE,,, — dy)?
knm = |Hnm|2 z €X _( o ﬂnm) .
kgT 2, 4kgT A,

Here, the driving force and reorganization energy (between states n and m)
are given by AE,,, and 4,,,

g, . —&.
AEnm =€,—€,+ Z mméa)2 = P (29)
i i

(gnni B gmmi)2
A = 2 DRI (30)
Eq. (28) is similar to the Marcus expression in terms of relating the driv-
ing force and reorganization energy to the activation energy; however, the

crucial difference is that the electronic matrix element is now temperature

'Note that Eq. (28) provides a correction to the original expression given in Ref. [25]. In
our original paper, G,,, should have read P,,,.
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dependent due to being renormalized by the phonons,

N AE. P 2 2p2
|H,,|* = <<% +F,1m> + kgT <H,,m - ”’)) (31)

Wwith P,,,, F,,,, and H,,, given by
) gnml-(g,,z,z) ; Bomi) )
i B + Bnd)
Fo- Z 8umi g,;;)? Gomi). (33)
Hoyp= gi’;”. (34)

The latter of these is the unrenormalized electronic coupling. Lastly, it is
easily verified from Eqs (24) or (28) that the forward and reverse rates
satisfy detailed balance in that

k
o _ GPAE,, (35)

mn

B. Parameterization from Ab Initio Quantum Chemistry

The formalism presented above requires both diagonal (g,,) and off-
diagonal (g,,) derivative couplings between adiabatic states. However,
accurate nonadiabatic couplings are difficult at best to obtain for even
small molecules using state-of-the-art quantum chemical methods. A
workaround is to transform to a diabatic representation, whereby the
Hamiltonian is written as
Hy, = U THadiaU

_ ( &R+ T,(R), Vap ) (36)

B Vab e,(R)+T,(R)y, |-

Figure 2 shows a sketch of the adiabatic and diabatic potentials for a
model two-level system. While the adiabatic representation is precisely
defined in terms of electronic eigenstates, the diabatic representation
offers several advantages. First, the sharp derivative couplings that depend
on the nuclear velocity in the adiabatic representation are transformed
to smoother diabatic couplings, V,,, that depend only on the nuclear
positions. Second, the potential energy surfaces are smoother and the
avoided crossing is eliminated. A number of diabatization approaches
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Figure 2. Sketch of adiabatic and diabatic representations for a two-state system. Com-
pared to adiabatic representations, the diabatic representation has smoother energy surfaces
and couplings. Reprinted (adapted) with permission from Yang and Bittner [39]. Copyright
(2014) American Chemical Society.

have been developed and the reader is referred to Ref. [40] for a general
review.
The problem now is how to obtain the transformation matrix

U=< cos @ sin 6 > 37)

—sinf@ cos@

While a number of methods are available [40], A straightforward approach
is to eliminate derivative coupling mathematically by requiring

(¢i(r; R)| Vg |g;(r; R)) = 0. (38)

However, this is computationally very expensive — especially for complex
molecular systems, and exact solutions generally do not [41].

An alternative approach is to use physical intuition rather than a purely
mathematical constraint to define the diabatic states. The Edmiston—
Ruedenberg (ER) diabatization method is based on the idea that the
diabatic states can be obtained by maximizing the total electron repulsion
between localized states,

N,

fop = fsdrldr2<¢k|ﬁ(”1)|¢k> <d)k|ﬁ(r2)|¢k>‘

(39)
- Ir = 1

When the adiabatic (and diabatic) energy minima are far enough away from
the crossing points and the mixing angles between the diabatic and adia-
batic states is small, we can use the gradients of the adiabatic potentials to
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approximate the diabatic potentials. Thus, if we perform calculations at the
optimized geometry of the final acceptor state that is about Q, in Fig. 1),
we can write the Hamiltonian as

eV 00
Hdia,e = < v211 €122 ) + <0 1 > g22 -q +Hosc’ (40)

where H, . is the harmonic oscillator Hamiltonian for the vibrational
normal modes. The linear assumption amounts to performing a series
expansion of the full, multidimensional coupling term and keeping only
the lowest order terms. Systematic improvement can be made by including
higher-order (e.g., quadratic) off-diagonal couplings. However, this would
involve a substantial increase in the complexity of the theory. The linear
assumption is reasonable so long as the mixing angle is small [39, 42].

We obtain the diabatic couplings V;, and the mixing angle 6 via ER
localization and transform the electronic Hamiltonian from the adiabatic
basis to the diabatic basis viz.

_( cos@ —sinf e 0 cosf sinf
Hdia_( sind  cosé ) < 0 e ) < —sin@ cos@ > “D
The diabatic coupling is then given by

V= % sin20(e, — €). (42)
We then diagonalize the electronic part and transform the electron/nuclear
coupling back into the adiabatic basis. In doing so, we obtain the Hamilto-
nian in the form given in Eq. (4)

H=U"H,U
_ ( E, O > N sin’6 %sin 20 .
0 E % 20 co2o |2
+H,,. (43)

Alternatively, one can use the generalized Mulliken—Hush model
(GMH) [43, 44], which works well for linear systems, but does not gener-
alize easily to systems with more than two charge centers. Within GMH,
the diabatic mixing is given by

Vi, = (Ey — EDpro] ’
\/(/41 — )% + 4,
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where (E, — E;) is the vertical excitation energy, y; and yu, are the dipole
moments of the corresponding adiabatic states, and u,, is the transition
dipole moment between two states. ER localization can be seen as an exten-
sion of GMH that overcomes some drawbacks of GMH [34]. Both ER and
GMH require convergence of the initial and final reference states and have
be used to compute the coupling terms required for the TCLME approach
given above [36, 39, 42].

C. Determining the Optimal Electron—Phonon Coupling
Components

While the Marcus expression is elegant in its simplicity in requiring
three parameters that can be obtained experimentally, it masks a wealth
of details that underlie the quantum transition. Considerable insight into
the state-to-state dynamics can be revealed by examining the nuclear
motions driving and coupling the electronic states. Our approach is based
on earlier work by our group [32] and Burghardt et al. [29-31]. Central to
the theory is that there exists a collective nuclear displacement coordinate
that connects the initial geometry of the donor to the final geometry of
the acceptor. However, until this work, a general systematic approach for
determining such motions did not exist.

Generally speaking, this collective coordinate involves all nuclear
degrees of freedom. However, the form of the electronic Hamiltonian
in Eq. (4) suggests that there exists a subset of motions that are specific
modes that capture the majority of the electronic/nuclear coupling and
give a dominant contribution to the collective reaction coordinate. Within
the linearized approximation for the electronic/nuclear coupling, we can
write a force tensor

F=< gll g12 > (44)
21 82

where F - q is the electronic/nuclear coupling term in Eq. (4). If we
consider each unique element {g;;, g8} to be linearly independent,
but nonorthogonal force vectors, one can develop a projection operator
scheme to parse the N-dimensional linear vector space spanned by the
mass-weighted normal mode vectors into two subspaces: one spanned by
three vectors describing the coupling between the electronic states and
the other spanned by the remaining N — 3 dimensional space spanned by
motions that do not couple the electronic states. This subspace can be
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generated by defining a projection operator

!/
P=) Sy ®8 (45)
af

in which the summation is limited to linearly independent vectors. Here
S.s = &, - &4> Here ® denotes the outer product, and I is the unit operator.
This N X N matrix projects out all normal modes that are directly cou-
pled to the electronic degrees of freedom and its complement Q =1 —P
projects out all modes not directly coupled. By diagonalizing the matrix

K=P-Q-P+Q-Q-Q (46)

we obtain a transformation, M, between the normal coordinates and a
new set of orthogonal coordinates. BothP - Q -Pand Q- Q- Qare N XN
matrices. However, for a two-state system, the former will have exactly
3 nontrivial eigenvalues, {ap}, with corresponding eigenvectors, {Mp},
whereas the latter will have exactly N, = N — 3 nontrivial eigenvalues,
{a,}, and corresponding eigenvectors, {M,}. The full N X N transforma-
tion is formed by joining the nontrivial vectors from the two respective
subspaces M = {M,,,M,}. The transformed electron-phonon coupling
constants are given by projecting the couplings in the normal mode basis
onto the new basis.

g =M, g (47)

By examining the types of molecular motions that compose the M, sub-
space, we can gain a deeper understanding of the specific classes of internal
motion, which are directly involved with the ET process. In addition, we
can gain a computational advantage since presumably this reduced set of
modes gives the dominant contribution to the electron—phonon coupling
and autocorrelation function given as the kernel in Eq. (20).

It is crucial to notice that the vectors given in Eq. (43) are not linearly
independent. Consequently, special care must be taken to generate the
reduced subspace. To facilitate this, we develop an iterative Lanczos
approach, taking the normalized vector v; = g,, as a starting point. As
above, we initialize each step indexed by k, by defining a projection
operator

P =v, Qv (48)
and its complement Q, = I — P,. for the kth mode. We also construct

P, =) P (49)
k



180 XUNMO YANG et al.

as the total projection operator for all k < N modes. We then project the
Hessian matrix Q into each subspace viz.

szpk'Q.Pk&Qq:Qk'Q'Qk (50)

and diagonalize each to obtain eigenvalues and eigenvectors {a,, M, } and
{aq, Mq }, respectively. As above, Qp and Qq are N X N matrices. The first
set will have a single nontrivial eigenvalue and the second set will have
N — k nontrivial eigenvalues. As above, we collect the nontrivial eigenvec-
tors associated with each to form the orthogonal transformation matrix

M, = {M,,M,}, (51)

and again transform the full Hessian Q into this new vector space to form
the N x N matrix Q’. At each step in the iteration, the transformed Hessian,
Q', is in the form of a k X k tridiagonal submatrix in the upper-left part of
the matrix and a diagonal submatrix in the lower-right. For example, after
k = 3 iterations, the Hessian matrix takes the form:

a, b 0 0
bl az b2
0 by a3 g1 CGya 0 Oy
c a 0
Q, — k+1 k+1 . (52)
Ck+2 Xp42
0 Cy 0 ay

We note that only the kth mode is coupled to the N — k remaining modes.
Since all of the transformations are orthogonal, diagonalizing Q' at any
point returns the original Hessian matrix.

To continue iterating, we take the kth row of Q' and zero the first k
elements

e = {0, O’Ck+l’ck+2’ ,CN}.
This is the coupling between the upper tridiagonal block and the lower
diagonal block. We thus obtain a new vector
Vipi=e-M

which is then reintroduced into the iteration scheme.

For the first iteration, v, is parallel to the bare electron—phonon coupling
vector g,, and the associated frequency is v, - Q - v,. The subsequent iter-
ations introduce corrections to this via phonon—phonon coupling mediated
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via the electronic couplings. For example, for the k = 3 iteration, we would
determine the active vector space in terms of the upper-left 3x3 block of
the matrix in Eq. (52).

a b, O
Qg == b] (12 bz (53)
0 b, a3

Diagonalizing Qg returns a set of frequencies and associated eigenvec-
tors that are then used to compute the electron—phonon couplings in this
reduced active space. After N — 1 iterations, Q' is a fully tridiagonal matrix
and diagonalizing this returns the original normal mode basis.

At any point along the way, we can terminate the iteration and obtain
a reduced set of couplings. Since the Lanczos approach uses the power
method for finding the largest eigenvector of a matrix, it converges first
upon the vector with the largest electron/nuclear coupling — which we
refer to as the “primary mode.” Subsequent iterations produce reduced
modes with progressively weaker electron/nuclear couplings and the entire
process can be terminated after a few iterations. After k-steps, the final
electron—phonon couplings are then obtained by projecting the original set
of couplings (in the normal mode basis) into the final vector space. For
small systems, we find that accurate rates can be obtained with as few as
two or three modes and that in many cases over 90% of the contribution to
the rate comes from the first or “primary” mode identified by the projection
approach [39, 42].

The method described above falls into the general class of “Mori chain”
approximations, which provide hierarchical approximations to the memory
kernel in Langevin dynamics [45, 46]. Furthermore, the approach belongs
to the general class of power iteration methods that include the PageRank
algorithm used by Google [47] and the “WTF” method used by Twitter to
give users’ recommendations of who to follow [48].

III. INELASTIC ELECTRONIC COUPLING IN
DONOR-BRIDGE-ACCEPTOR COMPLEXES

The Weinstein group at the University of Sheffield reported recently upon
a series of donor-bridge—acceptor (DBA) molecular triads whose ET
pathways can be radically changed — even completely closed — by infrared
light excitation of specific intramolecular vibrations [18, 19, 49]. The
triads consist of a phenothiazine-based (PTZ) donor linked to a naphtha-
lene monoimide (NAP) acceptor via a Pt-acetylide bridging unit [49]. The
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Figure 3. (a) Chemical structures of the donor (P), bridge (-Pt-), and acceptor (NAP)
complexes considered here. (b) Triplet energy along a linear interpolation coordinate con-
necting the 3NAP minimum energy geometry and the CT minimum energy geometry.
Adapted from Yang et al. [36]. (See color plate section for the color representation of this

figure.)

structures of the triads are given in Fig. 3(a). All three systems undergo a
similar sequence of electron transfer processes following UV excitation:
electron transfer from the Pt-acetylide center to the NAP acceptor, result-
ing in a charge-transfer state, D — Bt — A~, which due to strong spin—orbit
coupling efficiently populates triplet charge-transfer state, CT. Further
electron transfer leads to a fully charge-separated state (CSS) D* — B — A~
with the electron and hole localized on the acceptor and donor units,
respectively. The charge-transfer state can also undergo charge recombi-
nation to form a localized triplet exciton on the NAP unit *°NAP), or the
ground state. Both CSS and *NAP decay to the singlet ground state on the
nanoseconds and submillisecond time scales, respectively. We also show
in Fig. 3(b) the triplet energy along a linear interpolation coordinate con-
necting the *NAP minimum energy geometry to the CT minimum energy
geometry. Between the two is a significant energy barrier reflecting the
relative rotation of the NAP and the PTZ groups about the CC-Pt—CC axis.

The UV pump-IR push experiments performed on these triads showed
that IR-excitation of bridge vibrations after the initial UV pump radically
changes the relative yields of the intermediate states. Subsequent excitation
of the -CC-Pt—CC-localized vibrations by a timed IR pulse in the CT state
of the PTZ-complex 2 at 1 ps after the UV pump decreases the yield of the
CSS state, whilst increasing that of the 3NAP state. IR-excitation in the
course of electron transfer has caused a 100% decrease in the CSS yield
in 1, approximately 50% effect in 2, and no effect in 3.
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This demonstration of control over excited state dynamics strongly
suggests that the acetylide stretching modes are significantly involved in
the electron/nuclear coupling in these systems and play central roles in
the electron-transfer process. The transferred charge can undergo either
further separation to form the full CSS, or recombine to form a localized
excitation, *NAP. Both eventually decay to ground state. Weinstein et al.
showed that if a judiciously chosen IR pump is applied to excite the C=C
bond after the initial UV excitation, the yield of intermediate states can
be radically changed. For example, when an IR pump with frequency
= 1940 cm™' is applied to excite the C=C in PTZ-CH,-Pt-NAP, 1 ps
after the UV pump, the yield of the electron transfer state decreases from
32% to 15%, while that of the 3NAP increases from 29% to 46%. The
most striking observation is that when a 1908 cm~! IR pulse is applied
to PTZ-CH,-Pt-NAP 2 ps after UV excitation, the CT — CSS step is
completely switched off [18, 19, 49].

Quantum chemical analysis indicates that the electron-transfer rate
is largely influenced by chemical modification of the PTZ donor. From
PTZ-CH,-Pt-NAP to PTZ-Pt-NAP, to OMe-PTZ-Pt-NAP, the donor
strength increases, which increases the energy gap between CT and CSS
states. The driving force (AG) for the CT — CSS transfer also increases
from 0.2 eV in PTZ-CH,-Pt-NAP, to 0.4 eV in PTZ-Pt-NAP, to 0.6 eV
in OMe-PTZ-Pt-NAP. Large AG accelerates the CT decay and hence
decreases the lifetime of the CT state. Comparing PTZ-Pt-NAP and
PTZ-CH,-Pt-NAP, CT transfer to both charge separation and recombina-
tion slows down by a factor of about 5 (the lifetime of CT increases from
3.3 to 14 ps and CSS from 190 ps to 1 ns). By appending methoxy groups
to the PTZ, the donor strength is increased, and the reaction is accelerated.
As a result, the lifetime of CT in OMe-PTZ-Pt-NAP is further reduced
to 1 ps. Weinstein et al. proposed that the effect of infrared control is
caused by the fact that the distance between CT energy minimum and
the intersection of CT and CSS potential energy surfaces is small. For
all three molecules, two PESs intersect where the C=C bond is slightly
longer than the equilibrium length. When the C=C bond gets excited,
it elongates and helps molecules to pass the intersection. If the energy
gap between intersection and equilibrium geometry is much larger than
C=C vibrational energy, the dynamics is barely affected; if the energy
gap is small, the vibrational excitation can radically change the dynamics
[18, 19, 49].
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A. Theoretical Model

We focus our attention on the PTZ system and anticipate that the other
systems in this study will exhibit a similar behavior due to the overall sim-
ilarity of the various donor groups [36]. For purposes of facilitating the
calculations, the molecular structures are simplified such that the P(Bu);
moieties and octyl chain of the NAP group were truncated to -PH; and a
single methyl group, respectively. In all quantum chemical calculations, we
used the SDD pseudo-potential for Pt and 6-31G(d,p) for the other atoms.
We also used the polarizable continuum model (PCM) to account for the
dichloromethane solvent as used in Ref. [18, 19, 49]. The transition dipole
moments and electron/hole distribution surfaces were calculated using the
Multiwtn (v3.3.8) program [50]. An energy level diagram based on our
calculations is sketched in Fig. 4(a) together with the corresponding elec-
tron/hole distribution plots.

To obtain the diabatic potentials and couplings, we perform a geometry
optimization of both the lowest triplet *NAP) and the third triplet excited
states (CT). As discussed below, we use the optimized states as reference
geometries for determining the diabatic coupling within the GMH approx-
imation [43, 44]. The normal modes and vibrational frequencies were
obtained by harmonic expansion of the energy about the CT state. Once
we have determined the diabatic states and couplings, we use the TCLME
approach from Ref. [25] to compute the time-correlation functions and
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Figure 4. Energy level diagram for the triplet states of PTZ at the *NAP and CT state
geometries. The electron/hole distributions for the CT and CSS are shown to the right (light
gray = electron, dark gray = hole). Adapted from Yang et al. [36]. (See color plate section
for the color representation of this figure.)
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TABLE I
Comparison between Experimental and Computed State-to-State Transition Rates for PTZ
CT geom. SNAP geom.

Rates (ps™!) CT— CSS CT- 3NAP CT- 3NAP CSS— 3NAP
Exp. 0.0879 0.097 0.097 1.84E-3
Marcus 0.846 0.2043 1002.82 8.250E-11
Marcus (mean V) 365.7 12.75 95.23 5.04E-6
TCLME 0.725 0.0562 12.89 3.022E-8
TCLME + PLM 0.627 0.0488 21.6 0.500E—4
TCLME (mean V) - 2.79 8.931 1.51E-3

The experimental rates for each process are obtained from Ref. [19] and we assume a
common temperature of 300K for the experiments and calculations.
Adapted from Yang et al. [36].

state-to-state golden-rule rates as discussed above. We also use the projec-
tion technique to determine an optimal set of normal modes and determine
the number of such optimal modes that are required to converge the time-
correlation functions to a desired degree of accuracy. We then use both
the CT and *NAP minima as reference states for computing the diabatic
potentials and couplings necessary for computing rates and modes. Those
obtained at the CT minimum can be used to compute transitions originat-
ing in from the CT state, while those obtained at the *NAP minimum can
be used for transitions terminating in the NAP state.

We now compare ET rates as computed using both Marcus theory and
the TCLME approach. Table I summarizes both the experimental and com-
puted state-to-state rates for the PTZ system. For the TCLME approach,
we examine the convergence of both the time-correlation functions and
the rate constants with respect to the number of nuclear modes included
in the summation in the construction of the electron—phonon coupling in
Eq. (9). For our purposes, an “exact” calculation involves including all
nuclear vibrational modes. In our previous work, we showed that both C(¥)
and the total transfer rate constant, k,,,,, calculated using only the first few
projected modes provide an excellent agreement with the exact quantities
computed using the full set of normal modes, as well as the experimental
rates, when parameterized using accurate quantum chemical data [39, 42].

B. Marcus Theory Rates

The Marcus expression provides a succinct means for computing transition
rates from the driving force AG®, diabatic coupling V,;, and reorganization
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TABLE II
Driving force AG®, reorganization energy 4, diabatic coupling V, mean diabatic coupling Vv,
and AGOV (driving force calculated with V), for different transitions

’NAP geom. (0 eV) CT geom. (0.818 eV)
CSS—3NAP CT—*NAP CT—*NAP CT—-CSS
AG® (eV) 0414 -0.913 -0.781 -0.20
A(eV) 1.01 0.271 1.38 1.08
V(eV) 2.56E—4 0.345 1.34E-2 9.22E-3
7 (eV) 6.34E—2 0.106 0.106 0.192
AGOV (eV) 0.414 —-0.851 -0.770 N/A

Adapted with from Yang et al. [36].

energy 4 in Eq. (1). In Table II, we provide a summary of the parameters
computed for the transitions we are considering. The two columns under
the heading labeled *NAP correspond to parameters computed using the
3NAP minimum as a reference geometry while those under the heading
labeled CT correspond to parameters computed using the CT reference
geometry.

The Marcus rates provide a useful benchmark for our approach. More-
over, the parameters in this table portend a difficulty in using the NAP
geometry as a reference. For example, for the CSS — 3NAP transition, the
driving force is in the wrong direction since it predicts that the CSS state
lies lower in energy than the 3NAP state, which is inconsistent with both
experimental observations and our quantum chemical analysis in Fig. 4.

C. TCLME Rates

To compute the rates using the TCLME expression (Eq. (20)), we begin by
computing the electron/nuclear correlation function and compare its con-
vergence with respect to the number of Lanczos modes. Recall that the
Lanczos modes are determined by an iterative ranking algorithm that iden-
tifies superpositions of normal modes that optimize the electron—phonon
coupling. The method is akin to the short-iterative Lanczos method devel-
oped by Park and Light for quantum dynamics [51].

Figure 5 gives a summary of these numerical tests in which we compute
C,(®) versus time with an increasing number of Lanczos modes. In
all cases, we compare to the “exact” result in which all nuclear modes
were used. The top two figures (Fig. 5a and b) use the *NAP as the
reference geometry. In these cases, convergence of C,,,(f) with respect
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Figure 5. Correlation functions of various numbers of projected modes, compared to
the exact correlation, for (a) CSS — *NAP at *NAP geometry, (b) CT — *NAP at *NAP
geometry, (c) CT — 3NAP at CT geometry, and (d) CT — CSS at CT geometry. Adapted
with from Yang et al. [36]. (See color plate section for the color representation of this

figure.)

to the number of modes proved to be problematic for both transitions
considered. Correspondingly, the rates computed using this geometry also
compare poorly against the observed experimental rates, although they
are an order of magnitude closer than Marcus rates. We speculate that
this may signal a breakdown in the Condon approximation, which ensures
separability between nuclear and electronic degrees of freedom.

Given the complexity and size of the system, overall the numerical rates
computed using the exact TCLME approach are in quantitative agreement
with the experimental rates, particularly for those using the CT geome-
try as a reference point (cf. Fig. 5c and d). We note that fewer projected
modes (30-50) are needed to converge the correlation function out to the
first 50 fs when using the CT-geometry. Furthermore, while the Marcus rate
for the CT — CSS transition agrees with the exact TCLME result, it misses
the CT — 3NAP experimental rate by four orders of magnitude whereas
the TCLME rate is in much better agreement with the experimental rate.
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If we compare the exact TCLME rate, which uses the full set of normal
modes in constructing the C,,,(¢) correlation function, to the rate computed
using only the PLM (TCLME + PLM), for both the CT — CSS and CT
to 3NAP rates, the single mode approximation is within 86% of the exact
result. This indicates that while multiple vibrational normal modes con-
tribute to the electronic coupling, the linear combination identified by the
projection algorithm carries the vast majority of the electron—phonon cou-
pling. This is consistent with our previous study of triplet energy transfer

in small donor-bridge-acceptor systems [39, 42].

D. Primary Mode Approximation

As discussed earlier, our ranking algorithm allows us to rapidly deter-
mine the vibrational motions that optimize the electron/nuclear couplings.
In addition to providing an accurate way to compute rate constants, they
provide additional insight into actual dynamics. Here, we shall focus on
the transitions originating from the CT geometry. Generally speaking, the
highest ranked mode, termed the “primary Lanczos mode” (PLM), cap-
tures much of the short-time dynamics of the transitions. In Fig. 5, we
show the electronic coupling correlation functions computed using differ-
ent numbers of projected modes for all four transitions. For the CT —
3NAP transition, the primary mode resembles the exact initial dynamics
for the first 10 fs and roughly 10 or so modes are sufficient to converge
the correlation function out to times longer than the correlation time. In
Table I, we see that for the CT geometry, the primary mode approximation
is sufficient to obtain accurate rate constants. On the contrary, it takes con-
siderably more modes to recover the full correlation function for transition
originating from the NAP geometry.

Figure 6(a—d) shows the projection of the primary mode identified
for each transition onto the normal vibrational modes of the originating
state, that is, the primary modes calculated at CT geometry are projected
onto the normal modes of the CT state, and those at the SNAP geometry
are projected onto the normal modes of the *NAP state. In all four
cases, the primary mode is dominated by symmetric and antisymmetric
contributions from the C=C displacements. While both transitions involve
acetylene bond-stretching motions, the CT — CSS transition involves
only the symmetric combination, whereas the CT — 3NAP involves both
the symmetric and antiasymmetric combination. It is tempting to conclude
from this that the secondary IR push used in the experiments preferentially
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Figure 6. Component projection of the primary mode onto the normal modes for the
following transitions: (a) CSS — 3NAP, (b) CT — 3NAP calculated at ’NAP geometry.
(¢)CT — 3NAP, and (d) CT — CSS calculated at CT geometry. The embedded molecule
shows the atomic displacement vectors of primary mode. Adapted from Yang et al. [36].
(See color plate section for the color representation of this figure.)

excites the antisymmetric mode and thus selectively enhances the CT —

3NAP transition. In fact, the computed IR oscillator strength of the
antisymmetric mode is an order of magnitude greater than the symmetric
mode. Similarly, from experiment, the antisymmetric normal mode
extinction coefficient is three times larger than that for the symmetric
normal mode. However, the time scale for the IR excitation is sufficiently
long enough that both symmetric and antisymmetric CC modes are
expected to be equally populated by the IR push pulse.

In the CT — 3NAP transition, both types of acetylene stretching
motions (symmetric and antisymmetric) contribute more or less equally
to the electronic coupling while in the CT — CSS transition, only the
symmetric acetylene motion carries the majority of the coupling. This
mechanism can be rationalized by the way the vibrational populations
enter into our expression for electron/nuclear coupling correlation function
in Eq. (13). In principle, the expression was derived assuming a thermal
population of the vibrational modes. However, if we assume that the role
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of the IR pulse is to excite the C=C stretching modes by one vibrational
quantum, then the value of n; appearing in Eq. (13) for those modes
should be increased to n; + 1. Consequently, driving these modes with
the IR pulse increases the total electronic coupling, consistent with the
experimental observation that IR excitation following formation of the CT
states accelerates the CT — 3NAP transition relative to the CT —CSS
transition.

IV. DISCUSSION

We present here a review of our work in developing new tools for analyzing
electronic transitions in complex molecular systems. Central to our work
is the notion that one can systematically identify a subset of vibrational
modes that capture the majority of the electronic coupling to the nuclear
motions. These primary modes capture the short-time dynamics with suffi-
cient accuracy for computing the salient correlation and response functions
necessary for evaluating the golden-rule rates for state-to-state transitions.
While not a central theme to this review, our time-convolutionless master
equation method can be used for computing multistate transitions and in
cases where the state-to-state rates are time-dependent [26, 32].

Our approach offers several distinct advantages over other methods.
First, and certainly foremost, we use as input parameters molecule specific
information derived directly from accurate ab initio quantum chemical
methods. We also include in this the influence of the solvent and in prin-
ciple can include coupling to multiple electronic states. Thus, the spectral
density used in our approach should accurately reflect the spectral density
of the true physical system. We believe that the key to understanding
and ultimately controlling ET pathways in a complex molecular species
is through vibronic coupling. The approach we have delineated in this
article offers a systematic way to deduce a subset of nuclear motions
that are most responsible for driving electronic transitions. When paired
with the TCLME approach for computing the state-to-state transitions,
we can obtain rate constants that are in quantitative agreement with
experimental rates and probe deeper into the dynamics to understand
which specific types of nuclear motions are involved in a given transition.
The algorithm illustrated here in the example of photoinduced charge
transfer should be of considerable utility for understanding of a multitude
of light-induced reactions where several electronic states are involved in
ultrafast transformations.
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