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A B S T R A C T

Toxic algal events are an annual burden on aquaculture and coastal ecosystems of California. The threat

of domoic acid (DA) toxicity to human and wildlife health is the dominant harmful algal bloom (HAB)

concern for the region, leading to a strong focus on prediction and mitigation of these blooms and their

toxic effects. This paper describes the initial development of the California Harmful Algae Risk Mapping

(C-HARM) system that predicts the spatial likelihood of blooms and dangerous levels of DA using a

unique blend of numerical models, ecological forecast models of the target group, Pseudo-nitzschia, and

satellite ocean color imagery. Data interpolating empirical orthogonal functions (DINEOF) are applied to

ocean color imagery to fill in missing data and then used in a multivariate mode with other modeled

variables to forecast biogeochemical parameters. Daily predictions (nowcast and forecast maps) are run

routinely at the Central and Northern California Ocean Observing System (CeNCOOS) and posted on its

public website. Skill assessment of model output for the nowcast data is restricted to nearshore pixels

that overlap with routine pier monitoring of HABs in California from 2014 to 2015. Model lead times are

best correlated with DA measured with solid phase adsorption toxin tracking (SPATT) and marine

mammal strandings fromDA toxicosis, suggesting long-term benefits of the HAB predictions to decision-

making. Over the next three years, the C-HARM application system will be incorporated into the NOAA

operational HAB forecasting system and HAB Bulletin.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Previously considered rare in phytoplankton communities,
toxic and/or extremely high-biomass blooms are now recognized
as high impact events reported to frequently affect aquaculture
operations, recreational zones, marine mammal and bird popula-
tions, and even open ocean ecosystems (D.M. Anderson et al.,
2012). A call for predictive capabilities for integrated environmen-
tal assessments, early warning systems, action plans, and
mitigation strategies was articulated at the West Coast Governors
Alliance Harmful Algal Bloom Summit (Lewitus et al., 2012) and is
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a major component of the strategic vision for a national Ecological
Forecasting Roadmap presented by NOAA (http://oceanservice.
noaa.gov/ecoforecasting/noaa-ecoforecasting-roadmap.pdf).
Domoic acid (DA) poisoning in marine mammal/bird populations
and the threat of Amnesic Shellfish Poisoning (ASP) in humans is
now considered to be the leading HAB and conservation issue for
much of the U.S. west coast (Kudela et al., 2008; Lewitus et al.,
2012; Trainer et al., 2012) since these events have the potential to
be devastating to aquatic life via bioaccumulation in the food web
(Fritz et al., 1992; Lefebvre et al., 1999; Scholin et al., 2000). There
are many as-yet unquantified indirect effects, such as those from
reduced demand for seafood following a publicized HAB event (Jin
et al., 2008) and negative ecosystem consequences in the water
column (Sekula-Wood et al., 2010).While DA events are unlikely to
be reported until a highly visible impact occurs, such as DA
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Table 1
Generalized linear models described in Anderson et al. (2011) that are employed in

the routine prediction of Pseudo-nitzschia blooms and domoic acid (DA) events for

the domain covering the California coast. Key variables estimated from either

MODIS-Aqua satellite data or ROMS hydrodynamic model output are remote-

sensing reflectance (Rrs) at various wavebands, month of the year (month),

chlorophyll (Chl), sea surface salinity (SSS), and sea surface temperature (SST).

HAB variable

(threshold)

Best-fit logistic GLM

Pbloom=e(logit)/[e(logit) + 1]

Pseudo-nitzschia

(104 cells mL�1)

logit =5.32–2.87*[Rrs (488/555)]�0.165*[Month]

pDA (500ng L�1) logit =�134.3+0.253[Chl] +4.0*[SSS]�502*[Rrs(555)]

cDA (10pg cell�1) logit =�90.0�0.35*[SST]�666*[Rrs(555)] +2.87*[SSS]
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poisoning of California sea lions or the closing of commercial
shellfish grounds, with each passing year since 1998, these reports
have becomemore numerous. Clearly, there are significant societal
and scientific benefits to predicting when and where these DA
events occur relative to susceptible populations of marine
mammals, birds, and consumable shellfish.

Due to the fact that optical signals of Pseudo-nitzschia

abundance and more importantly, DA, have not yet been
successfully isolated from the bulk chlorophyll signal using our
current constellation of multi-spectral ocean color satellite
sensors, other methods have been examined. McKibben et al.
(2012) assessed the use of a chlorophyll anomaly product for
isolating likely Pseudo-nitzschia spp. blooms in Oregon coastal
waters, akin to that applied operationally to Karenia brevis blooms
in the Gulf of Mexico (Stumpf et al., 2009). With an optimized
eight-day window to smooth gaps from cloudy pixels, this
anomaly method has been successfully applied to HAB detection
in Oregon and been included in the NOAA CoastWatch product list
(http://www.ngdc.noaa.gov). Several empirical model studies on
HABs in the California Current System (CCS) have also improved
our ability to apply near real-time information to the prediction of
Pseudo-nitzschia blooms as well as the presence of DA in surface
waters of California. Anderson et al. (2011) extended a previous
study from the Santa Barbara Channel at the northern extreme of
the Southern California Bight (C.R. Anderson et al., 2009) that
identified several variables to be good predictors of Pseudo-

nitzschia abundance and high DA concentrations in surface waters
south and east of Pt. Conception (Fig. 1). The first study employed
stepwise multiple linear regression to correlate hydrographic and
chemical shipboard datawith a broad range of Pseudo-nitzschia cell
densities and DA loads from inshore and offshore sites within the
Santa Barbara Channel from 2004 to 2006 (C.R. Anderson et al.,
2009). In the follow-on study, Anderson et al. (2011) created
similarmodels to predict the likelihood of a Pseudo-nitzschia bloom
or DA event from a longer dataset (Table 1), which included new
observations from 2009 to 2010 and used the more flexible
generalized linear model (GLM) method in place of the optimal
least squares approach (C.R. Anderson et al., 2010; Lane et al.,
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Fig. 1. Map of California coastal and offshore DA event probabilities for 31 October

2014. Red dots are HABMAP sampling locations where weekly HAB monitoring

provides phytoplankton community and phycotoxin data. The two sites in bold

(SCMW and Stearns Wharf) are the focus of the model performance analysis, while

the white dots are additional CeNCOOS shore stations for which there are archived

HAB data and on-going water quality observations.
2009). The significant predictor variables in the new GLMs agree
well with previous models (C.R. Anderson et al., 2009; Lane et al.,
2009), indicating a consistent set of environmental controls on
Pseudo-nitzschia blooms over time. An initial goal of the modeling
exercise was the creation of explicit ‘‘remote-sensing’’ (RS) models
thatwould exclude nutrients since their estimation in a forecasting
scenario would require sampling platforms other than satellite
remote sensing. These sampling systems are not routinely
deployed and are subject to considerable delays in data
availability. The RS models therefore predict toxic events solely
from remote-sensing reflectance values (measured with an in-
water radiometer), sea-surface temperature, and salinity (Table 1),
whereby surface temperature and salinity values can be estimated
from either satellite sensors or numerical model output produced
by regional circulation models (Anderson et al., 2011).

Satellite observations of sea surface temperature (SST) and
ocean color have the potential to detect long-term trends due to
their high temporal frequency and almost global coverage but are
limited by their relatively short duration and cloud cover (Frolov
et al., 2013), as well as being restricted to the upper third of the
euphotic zone (one optical depth). Thus, a major challenge to
developing an operational predictive capability for Pseudo-

nitzschia blooms has been the acquisition of temporally and
spatially coherent, real-time satellite data with which to compute
the empirical HAB models. Temporal and spatial averaging is
routinely used to reduce the gaps due to cloud cover; however,
averaging over scales larger than the decorrelation scale blurs the
mesoscale features and limits the utility of satellite data in decision
making or for interpretation of underlying bio-physical processes.
To quantify the combined effect of cloud cover and satellite
coverage on Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery, Frolov et al. (2013) compared the statistics of
temporal gaps between two consecutive pixels using a fluores-
cence line height (FLH) time series from 2002 to 2008 and also
estimated spatial decorrelation scales for the same dataset. The
shortest gaps between two consecutive pixels were off central
California and in the Santa Barbara Channel (3–4 days), while for
many places along the California coast (north of San Diego, off
Point Sur, and between CapeMendocino and Point Arena), satellite
coveragewas exceptionally poor in the first 4–10 kmdistance from
the coast (mean gap of 8 to 10 days). Thus, from the perspective of
operational or semi-operational use of ocean color to inform
decisions about extreme blooms or toxic events, historical and
existing ocean color sensors are inadequate.

One method for addressing these satellite data gaps employs
Data Interpolating Empirical Orthogonal Function (DINEOF)
routines (Alvera-[30_TD$DIFF]Azcárate et al., 2005; Beckers and Rixen, 2003)
to solve spatial and temporal EOFs using either single data sets (e.g.
chlorophyll) or covarying bio/geophysical data (e.g., chlorophyll,
SST), thereby statistically reconstructing the full dataset after
convergence on an optimized number of EOFs (Beckers and Rixen,
2003). This method has been used to reconstruct SST fields of

http://www.ngdc.noaa.gov/
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Fig. 2. C-HARM framework. Primary data streams or validation datasets for the HAB empirical models are shown in squares. Polygons highlight the computational steps

required to statistically reconstruct gaps in satellite imagery (DINEOF), merge data to compute nowcasts of HABs (HAB empirical models), and project the biological HAB data

forward in time (advection scheme) to generate 3-day forecasts. In situ and crowd sourced data streams are integrated into the forecast and analysis tool for near real-time

quality control and hindcast validation.
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satellite data (Alvera-[30_TD$DIFF]Azcárate et al., 2005; Beckers et al., 2006),
and there has been increasing interest and application of this
method for other variables, including chlorophyll (Alvera-Azcárate
et al., 2007; Mauri et al., 2007; Miles et al., 2009) and total
suspendedmatter (Nechad et al., 2011; Sirjacobs et al., 2008). Here,
we describe application of DINEOF to MODIS-Aqua (MODISA)
ocean color data to create continuous imagery for use in
operational forecasting of HABs in the CCS. The approach
capitalizes on the ability to use DINEOF to forecast biogeochemical
fields forward in time without the use of a coupled physical-
biological model. Instead, the forecast method suggested here
(Alvera-Azcárate et al., 2007) uses a multivariate approach to
estimate missing satellite data by combining numerical forecasts
of physical fields and near real-time estimates of remote sensing
parameters to forecast the ocean color fields up to three days in
advance. A prototype prediction system for Pseudo-nitzschia

blooms and DA events in the CCS (Fig. 2) has been running
routinely since February 2014 and is now available online via the
Central and Northern California Ocean Observing System (CeN-
COOS) website (Fig. 3). In this paper, the first year of California
Harmful Algae Risk Mapping (C-HARM) model-observation
matchups are evaluated for coherence in the temporal patterns
and performance metrics commonly used in decision-making.

2. Methods

2.1. ROMS forecasts

A state-of-the-art physical circulation model is crucial to
forecasting HABs in the coastal zone. As with the Anderson et al.
(2011) study, the model employed here is based on the Regional
Ocean Modeling System (ROMS), a community-based hydrody-
namic model designed for regional applications (Shchepetkin and
McWilliams, 2005) with a vertical, coordinate-following bottom
topography (Song and Haidvogel, 1994). The ROMS configuration
consists of a single domain covering the entire California coastal
ocean from north of Crescent City, CA to Ensenada, Mexico and
extending approximately 1000 km offshore at a resolution of
3.3 km. There are 40 unevenly-spaced sigma vertical layers with
the majority of these clustered near the surface to better resolve
processes in the mixed layer. The non-tidal lateral boundary
conditions for the ROMS domain are provided by the real-time
operational nowcast/forecast from the global 1/12o [1_TD$DIFF] HYCOM (see
http://hycom.org). The tidal forcing is added through lateral
boundary conditions that are obtained from a global barotropic
tidal model TPXO.6 (Egbert and Erofeeva, 2002). The atmospheric
forcing required by the ROMSmodel is derived from hourly output
from operational forecasts performed with the NCEP NAM 5-km
North American model. Every six hours, both in situ and remotely
sensed (from both satellite and land-based high-frequency radar)
observations (e.g., SST, sea surface height, surface current, vertical
profiles of temperature and salinity) are assimilated into ROMS
using the multi-scale (MS) three-dimensional variational (3DVar)
algorithm (Li et al., 2008, 2009) to produce nowcast fields. Every
day, a 72-hour forecast is produced using the nowcast at 03 UTC as
the initial condition. One of the earliest ROMS configurations is
centered on Monterey Bay and has been used to support a well-
described 2003 field experiment (Chao et al., 2008; Chao et al.,
2009; Doyle et al., 2009; Wang et al., 2009). The Integrated Ocean
Observing System (U.S. IOOS) regional associations for central
(CeNCOOS) and southern California (SCCOOS) now host the 3-km
CA ROMS nowcast and 72-hour forecast output. From the data
portal that is jointly hosted by UCLA and Remote Sensing Solutions,
Inc. (RSSI) (http://west.rssoffice.com/ca_roms), six hourly runs of
SST and sea surface salinity (SSS) and daily three-day forecasts are
acquired to compute the HAB empirical models with the same
forecasting horizon (Fig. 2).

2.2. Continuous ocean color imagery from DINEOF

Moderate Resolution Imaging Spectroradiometer on Aqua
(MODISA) data are acquired fromNASA’s Ocean Biology Processing
Group (http://oceancolor.gsfc.nasa.gov/) for the U.S. West Coast
region, processed from Level 1 to Level 2 with the standard l2gen

routine in SeaDAS (v. 7.0.2), and further subscened to the CA-ROMS
domain. The DINEOF routine (compiled from http://modb.oce.ulg.
ac.be/mediawiki/index.php/DINEOF) is applied to a time series of
MODISA imagery. In order to maximize the variability captured by

http://hycom.org/
http://west.rssoffice.com/ca_roms
http://oceancolor.gsfc.nasa.gov/
http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF
http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF
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Fig. 3. C-HARMwebdisplay. Routine nowcasts and forecasts of Pseudo-nitzschia blooms andDA events have been produced since February 2014 and broadcast to the public on

the CeNCOOS website http://www.cencoos.org/data/models/habs. Additional links to information and tutorial pages offer detailed descriptions of model construct and

interpretation, and the Previous Conditions page points to directories of archived imagery. Transition to the CeNCOOS interactive data portal took place in Spring 2015, and

time series of the predicted values can be obtained and downloaded for any pixel selected on the map.
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the EOF analysis and minimize the overall percentage of cloud
coverage, one month of MODISA imagery was chosen as a starting
point (t0) for seedingDINEOF, and this has been routinely increased
at each time step to include themost recent180 days, which runs in
reasonable time. Short-term (3-day) forecasts of chlorophyll (Chl)
and remote sensing reflectance (Rrs) at 488 and 555 nm are
generated by solving multivariate EOFs that simultaneously
include satellite ocean color fields and forecasted physical fields
(SSS, SST) from ROMS. The reconstructed dataset from this analysis
provides the forecasted fields (Chl, Rrs(0

+, l), SSS, SST) that are then
used to calculate the empirical HAB models at each grid point in
the model domain (351 � 391 � t) with a three-day lead time. A
very simple advection scheme is also employed and may prove to
[(Fig._4)TD$FIG]

Fig. 4. C-HARM web display. The Latest Conditions page contains expansion links to ( [16_TD$DIFF]A

modeled SST (8C) from the 3-km CA ROMS. Note that the pDA HAB probability model
be amore pragmatic alternative to the time-intensive multivariate
EOFs. Pixels of Chl and Rrs(0

+, l) are ‘‘advected’’ by multiplying by
the daily change in the east-west and north-south components
[u(dt) and v(dt)] of the 3-km surface current velocity projected by
ROMS after first mapping u and v from a model native grid to a
latitude-longitude grid (WGS84 coordinate reference system). The
DINEOF routine is then used to fill in gaps left by the movement of
advected pixels, most notably around the Channel Islands and the
northwestern corner of the domain as water is advected south.
Gap-filled Chl imagery is included on the HAB forecasting front
page as an additional end user product and as a visual aid for
interpreting the HAB model imagery (Fig. 4). While forecasts and
nowcasts are both produced, the skill assessment discussed in the
) gap-filled Chl imagery from DINEOF run on MODISA retrievals (mg m�3), and (B)

requires SSS forecasts (not displayed), which are also provided by ROMS.

http://www.cencoos.org/data/models/habs
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remainder of this contribution is focused on the nowcast
predictions.

2.3. Empirical HAB models

The remote-sensing-based empirical models employed in this
study are the same as those reported in Anderson et al. (2011)
where the methodology for developing the GLMs from in situ

radiometer and hydrographic observations is well described. Three
independent models predict (1) Pseudo-nitzschia blooms (thresh-
old = 104 cells L�1), (2) particulate DA events (pDA thresh-
old = 500 ng L�1), and (3) cellular DA events (cDA threshold
10 pg cell�1) using some combination of Rrs(0

+, l) at various
wavelengths (l), MODISA chlorophyll (Chl), salinity, temperature,
or time of year (Table 1). At each grid point, these models are
computed from the gap-filled MODISA ocean color retrievals and
the ROMS physical estimates, leading to spatial/temporal resolu-
tion of 3 km and daily. Given that these are logistic regression
models, the value is a probability or likelihood of encountering a
bloom and/or toxic state at a given grid point/pixel in the model
domain. A current estimate of HAB state (Fig. 3) is routinely

generated using gap-filled ocean color imagery (Fig. 4a) and the
most recent ROMS simulation (Fig. 4b) before the biogeochemical
fields are forward projected via advection and/or DINEOF.
Predictions up to three days forward (i.e. forecasts) are displayed
separately, while archived predictions are available as image files
in a set of directories (Fig. 3). The gap-filled ocean color imagery for
Chl and the ROMS SST images are also displayed alongside HAB
predictions (Fig. 4).

2.4. Routine ocean observing data

The task of verifying forecasts is essential to communicating
model accuracy, utility to decision makers, and informing model
improvement. The fact that there are appropriate biological field
observationswithwhich to compare ourmodel results is due to the
diligent efforts of the California Harmful Algal Bloom Monitoring
and Alert Program (HABMAP). Originally a grassroots collaboration
of academics and government resource managers, HABMAP is now
a component of the regional IOOS program that greatly increases
our ability to evaluate model output and compare nearshore
observations with potential offshore HAB activity in near real-time
(Frolov et al., 2013; Kudela et al., 2015). Seven stations from Santa
Cruz, CA to La Jolla, CA are sampled weekly for phytoplankton
community composition, and at a select few, for key HAB
phycotoxin concentrations (saxitoxin and DA). Data are shared
with the public in near real-time via the HABMAP (http://www.
habmap.info/) and SCCOOS websites (http://www.sccoos.org/
data/habs/index.php). The shore stations used for the bulk of
the analyses reported here are the Santa Cruz Municipal Wharf
(SCMW, 36857.480 N, 12281.020 W) in the northern part of
Monterey Bay and Stearns Wharf (34824.480 N, 119841.100 W) in
the Santa Barbara Channel (Fig. 1). Weekly particulate DA
measurements (LC-MS or ELISA) and light microscopy counts of
Pseudo-nitzschia spp. (total of seriata and delicatissima size classes)
from surface phytoplankton bucket samples are matched to daily
model output from 15 Feb 2014–10 Feb 2015. The longest record of
particulate DA for the 2014 to 2015model demonstration year is at
the SCMW shore station where we also compare time series of DA
from mussel tissue and from Solid Phase Adsorption Toxin
Tracking (SPATT) mesh bags (LC-MS, Lane et al., 2010b) with
HAB model predictions. In addition to phytoplankton and mussel
data, records of central CA marine mammal strandings (mostly
pinnipeds) associated with DA toxicosis from Jan 2007 to Sep
2014 are associated with DA measurements over that time period.
Given the uncertainty surrounding when a given animal actually
stranded before it was admitted, monthly means of mammal
strandings are compared with shore station and model data at the
SCMW to assess the relationship between stranding episodes and
the variability in nearshore DA levels and predicted DA events. For
model/observation match-ups, a time series of daily modeled
probabilities from the 3 � 3 model grid point that best approx-
imates the shore station coordinates is extracted from the netCDF
gridded data and compared to these measurements. For all match-
ups, we use the nowcasted netCDF data rather than any of the
forecast data to simplify the analyses.

2.5. Trend analysis

At present, it is challenging to comparemodeled probabilities to
binary outcomes in the observations without a clear understand-
ing of the relationship between the two over the CCS model
domain. As model and observation matchups become more
abundant through continued daily model runs and HABMAP
monitoring in CA,model calibrationwill become a useful option for
creating regionally relevant prediction points. Some of the
available methods for comparing patterns in the predicted values
with discrete weekly time series of Pseudo-nitzschia abundance
and DA concentration observed at the HABMAP shores stations are
described below.

2.5.1. Cross correlation functions

Cross-correlation functions (CCF)were computed between time
series of daily, modeled values andweekly in situmeasurements at
select shore stations to assess correlation and lead-lag relation-
ships between discrete observations and predicted probability
values. With CCF analysis, it is important not to violate
assumptions of stationarity. In lieu of a formal test for stationarity
(e.g. unit root test), stationarity in the time series was diagnosed by
plotting the autocorrelation function (ACF) and assessing the
steepness of the slope; a gradual decrease in the correlogram that
does not taper to zero is a first order measure of a non-stationary
process. If a linear trend exists in the time series, it is generally
sufficient to detrend the data by simply removing the linear trend.
In this case, the residuals of the linear regression of the data are
used in the CCF analysis in place of the original time series. In cases
of non-linear trends, stationarity can be achieved either by pre-
whitening or by applying an Autoregressive Integrated Moving
Average (ARIMA) model. An ARIMA model was applied to those
data that fit this category by first differencing the time series and
estimating the autoregressive, AR (p), integrated (d), and moving
average, MA (q) parameters. The autocorrelation (ACF) and partial
autocorrelation (PACF) plots of the differenced time series allow us
to determine the type of ARIMA (either AR or MA) and number of
terms that are needed for fitting the ARIMA (p,d,q) model (Box,
Jenkins, and Reinsel, 1994). The residuals from the ARIMA fit are
then cross-correlated with the second (observational) time series
to attain the CCF.

2.5.2. Kolmogorov–Smirnov (K-S) Test

A K-S test is a non-parametric statistical test to determine the
likelihood that two time series were drawn from the same
continuous probability distribution (Lehmann and Romano, 2006)
and tests for deviations from the null hypothesis in terms of
median, variance, and distribution. It is particularly powerful in
detecting differences in distribution shape (or pattern) sowe apply
it here to compare patterns in observed andmodeled time series. A
two-sample (or two-sided) K-S test was conducted on the
normalized time series of modeled and observed data for each
set of matchups (R v 2.15.3), generating a D statistic which is
evaluated with respect to a critical D value (Dcrit) at an alpha level
of 0.05 (p = a). If the D statistic is greater than the critical value, the

http://www.habmap.info/
http://www.habmap.info/
http://www.sccoos.org/data/habs/index.php
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null hypothesis that the samples are from a population with the
same distribution is rejected.

2.6. Skill assessment

A number of verification methods commonly used in the
meteorological community for dichotomous forecasts (Jolliffe and
Stephenson, 2012; Jolliffe and Stephenson, 2003) have already
been applied during the development and testing of the logistic
toxic Pseudo-nitzschia bloom GLMs, and these include measures of
sensitivity and specificity of the models along with cross-
validation and metrics of model skill (C.R. Anderson et al.,
2011). The same bloom thresholds used during model develop-
ment are applied here to transform 2014–2015 observations to a
binary value (10,000 cells L�1 for Pseudo-nitzschia spp. blooms and
500 ng L�1 pDA). For simplicity, the cellular DA model is left out of
the analysis and assumed to be secondary to the performance of
the pDA model.

There is no single skill score or metric that can capture all
aspects of model performance, and it is a key focus of our research
to identify those that are most relevant to assessing the usefulness
of a HAB forecastmodel. Some commonmetrics are the probability
of detection (POD), false alarm ratio (FAR), and probability of false
detection (POFD) or false alarm rate. All provide some measure of
sensitivity or specificity in the model predictions. Their definitions
and use in evaluating HAB predictions are well described in
Anderson et al. (2010) and are repeated here in Table 2. To this list
we have added accuracy, which provides a measure of the
proportion of correct forecasts. A popular method of describing
model reliability for a dichotomous solution is the calculation of a
bias score that indicates the frequency with which the model
predicts a particular outcome (i.e. yes/no); the bias score is not
based on howwell themodel matches observations and thus is not
to be confused with a bias function. A good bias score equals one,
but it can range from zero to infinity (Table 2). For all the metrics
listed above, calculations are based on a contingency table that
categorizes ‘‘hits’’ as correctly predicted blooms (or DA events),
‘‘false alarms’’ as false positives, ‘‘misses’’ as false negatives, and
‘‘correct negatives’’ as correctly predicted non-blooms (Table 2).
When the metric scores are plotted across all possible thresholds
for determining the relevant probability at which HAB bulletins or
other alerts should be issued (i.e. the ‘‘prediction point’’ for issuing
a bloom forecast), an optimized prediction point can be achieved
with respect to any value of interest to resource managers or to
maximize or minimize a particular performance metric (Anderson
et al., 2010; Lane et al., 2009). It is important to note that the
chosen prediction point must meet the needs of the end-user; just
as there are multiple metrics that can be optimized, the prediction
point must also be chosen to optimize the metric of interest,
possibly at the expense of another metric. For example, a manager
may prefer a higher rate of false positives to minimize the chance
of a false negative.

The receiver operating characteristic (ROC) describes POD
(sensitivity) as a function of POFD (1-specificity) over the full range
Table 2
A description of the common performance metrics applied to the results of routine

HAB predictions for California in 2014–2015 made using the models in Table 1.

Performance Metric Calculation Range

Accuracy (hits + correct negatives[20_TD$DIFF])/total 0–1

Probability of Detection

(POD)

hits[20_TD$DIFF]/(hits +misses [21_TD$DIFF]) 0–1

False Alarm Ratio (FAR) false alarms[20_TD$DIFF]/(hits + false alarms[22_TD$DIFF]) 0–1

Probability of False

Detection (POFD)

false alarms[20_TD$DIFF]/(correct negatives +

false alarms[22_TD$DIFF])

0–1

Bias Score (BS) [23_TD$DIFF](hits + false alarms[24_TD$DIFF])/(hits +misses[21_TD$DIFF]) 0–1
of prediction points, i.e. the cumulative distribution function, and
is used in many fields to translate binary classifications into
decision-making criteria. It quantifies the relative accuracy of a
model to separate true positive and true negative outcomes
(Fawcett, 2004). The area under the ROC curve (AUC) reduces the
two-dimensional space to a scalar value that is a well-used metric
of model performance (e.g. Lane et al., 2009) and is essentially
equivalent to a Wilcoxon rank test (Fawcett, 2004). The AUC is
calculated using Simpson’s rule to approximate the integral of the
function (sintegral in R, Bolstad2 library). When values on the ROC
curve fall above the 1:1 line, they are in the realm of good
predictions, while those at or below the 1:1 line (particularly in the
lower right quadrant) are deemed as good or worse than random.
Similarly, AUC scores above 0.5 suggest a model that performs
better than random chance. Both the ROC curve and its AUC are
reported as a measure of the usefulness of the HABmodels, as best
as can be ascertained at the shore station pixel(s).

3. Results

3.1. Summary of major 2014 DA events

Interestingly, 2014 was a very high DA year, particularly in
Monterey Bay (MB), with record fishery alerts andmarinemammal
strandings. Modeled pDA probabilities from the SCMW pixel were
somewhat elevated in mid-March (>0.5) but broadly high for MB
as the region saw a spike in California sea lion (Zalophus
californianus) strandings fromMB (Fig. 5). A week later, predictions
targeted MB as a hot spot of HAB/DA likelihood (mapped in Fig. 5)
just as measured pDA at the SCMW shore station rose to
0.84 ng mL�1 and modeled pDA probabilities at the SCMW rose
to 0.8. This instance corroborates hypotheses that marine
mammals are good sentinels of the onset of DA events (Bargu
et al., 2012), particularly since these first DA-related strandings of
the year were all from the MB region. We should note the
discrepancy in themagnitude of the hot spot in the posted imagery
(maps in Fig. 5) versus the time series extracted from the netCDF
file (pDAmod in Fig. 5) since the latter reflects a year of MODIS
variability analyzed with DINEOF, whereas the imagery posted in
March 2014 was influenced by a fewer number of positive
excursions in the shorter DINEOF time series. In theweek following
the hot spot imagery (on 1 April 2014), the CA Dept. of Public
Health (CDPH) issued closures of recreational shellfish harvests
and a historical warning regarding fishing anchovies and sardines
in the MB due to dangerous levels of DA toxicity. The 1-week lag
time is consistent with past observations of delayed toxicity in
shellfish (Lane et al., 2010a) and corroborates the timing of the
predicted rise of DA.

The fall HAB event in 2014was focused on the Central-Southern
California transition zone where the CDPH issued a warning on
October 11 not to eat crabs, lobsters, and bivalves harvested in the
Santa Barbara Channel region, another well-known hot spot for DA
(C.R. Anderson et al., 2006; Trainer et al., 2000). Forecast maps
published on the CeNCOOSwebsite illustrated the increased risk in
this region (Fig. 6). In Monterey Bay, on the other hand, samples
taken within the Bay from a cruise of opportunity on 15–17
October verified that DA levels were extremely low while Pseudo-

nitzschia abundance was at moderate to bloom levels �103–104

cells L�1 (pers. comm., M. Blakely Peacock), as seen in the imagery
for 15 Oct (Fig. 6). DA event probabilities at Stearns Wharf in the
Santa Barbara Channel remained elevated relative to background
levels for another week (Fig. 6). The CDPH only lifted the advisory
for the Ventura County coastline on 21 February 2015, which may
reflect the persistence of DA in benthic environments (C.R.
Anderson et al., 2011; Kvitek et al., 2008; Sekula-Wood et al.,
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Fig. 5. Spring 2014 DA event in theMonterey Bay region. The upper panel describes the time evolution of marinemammal strandings fromDA toxicosis, particulate DA (pDA)

at the SCMW, and modeled pDA at the SCMW pixel (36.7 8N, 122.4 8W, red circle) and a pixel much further offshore in the CCS (36.08 N, 124.58 W, white circle). Grey bars

correspond to (1) the first reports ofmammal strandings fromTheMarineMammal Center (16–17Mar), (2) the rise in particulate DA (pDA) at the SCMWon 26Mar, and 3) the

CDPH advisory against harvesting anchovies or sardines from theMonterey Bay on 1 Apr. The bottom two images are particulate and cellular DA nowcast imagery displayed

on the CeNCOOS website for 26 Mar.
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2009), particularly if the low pDA probabilities are reflective of low
surface pDA values.

3.1.1. Santa Cruz Municipal Wharf

We first discuss the temporal trend in model and observa-
tional time series for the SCMW where there is the most
comprehensive record of Pseudo-nitzschia abundance and DA
from both phytoplankton and mussel tissue for 2014–2015
(Fig. 7). Predictions of Pseudo-nitzshia blooms at that SCMW pixel
over the course of 2014 were dynamic with rapid fluctuations
between low and high probabilities with a significant upward
linear trend (r = 0.37; p < 0.001; Fig. 7a), potentially related to the
increasing bloom conditions observed in the CCS later in 2015
(McCabe et al., accepted). The dramatic rise and fall in Pseudo-

nitzschia abundance between April and May at the SCMW is
reflected in the modeled probabilities, with predictions leading
the rise in abundance at the SCMW. The Pseudo-nitzschia group
disappeared from the SCMW samples in mid-July (Fig. 7a). After
July, however, the modeled time series maintains an elevated
mean value, albeit highly variable (Fig. 7a). The model correctly
captures the drop in Pseudo-nitzschia abundance between April
and May, and given that the GLM for Pseudo-nitzschia is driven by
month and Rrs(488/555), this large variation is most likely due to
large fluctuations in phytoplankton pigments during this spring
transition. The model does not capture the disappearance of
Pseudo-nitzschia at the SCMW after July. A K-S test quantifies this
mismatch between the patterns in the modeled and observed
time series at the SCMW (Dcrit = 0.26; D = 0.44, p < 0.01). The
resulting CCF [ARIMA (1,1,0)] of the predictions with respect to
SCMW abundance measurements shows a weakly significant
correlation at zero lag and one-day lead time as well as a negative
correlation at an eight-day lead (Fig. 8a).

Particulate domoic acid (pDA) at the SCMW follows a similar
pattern to Pseudo-nitzshia in that all the peaks occur in spring, and
modeled probabilities at this nearshore pixel are better aligned
with pDA observations in the early part of the year than after July
(Fig. 7b). The time series trend is negative (r = �0.51; p < 0.001),
however. The K-S test also reflects the diverging patterns of
modeled and observed time series at the SCMW over the course of
the year (Dcrit = 0.26; D = 0.41, p < 0.01). The inability of the
models to capture the summer-fall variability at the SCMW is
possibly due to nearshore conditions in summer being especially
uncoupled from the regional signal, a pattern that emerged from a
separate analysis of crosshore Pseudo-nitzschia and DA in the Santa
Barbara Channel from 2009 to 2013 (Umhau et al., [32_TD$DIFF]submitted [33_TD$DIFF]for
publication). The CCF analysis for the nearshore pixel relative to
the SCMW observations indicates several significant lead times
(e.g. 5, 19, and 26 days) even after applying ARIMA (0,1,0) (Fig. 8b).

The relationship betweenmussel DA and phytoplankton pDA at
the SCMW is fairly close, as indicated by a two-sided Kendall rank
correlation test that yields significant agreement (t = 0.41,
p < 0.05). There is a significant five-day lead between the pDA
model at the SCMW pixel and mussel DA (Fig. 9a). A K-S test
also reflects a stronger relationship between the mussel DA
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Fig. 6. Fall 2014DA event in the Santa Barbara Channel region. The upper panel describes the time evolution ofmodeled pDA at the StearnsWharf pixel (red circle in the 11Oct

image, 34.48 N, 119.68 W) and a pixel southwest of the Santa Barbara Channel (white circle in the 11 Oct image, 33.58 N, 121.08 W). Grey bars correspond to (1) the CDPH

advisory against harvesting benthic invertebrates such as crabs and lobster on 11 Oct, and (2) the timing of an offshore cruise of opportunity in Monterey Bay 15–17 Oct that

validated the low DA and relatively high Pseudo-nitzschia in that region at the time (black andwhite circles on inset map). The bottom three images are pDA nowcast imagery

for the 11 Oct and pDA and Pseudo-nitzschia for the 15 Oct displayed on the CeNCOOS website (inset maps expanded for Monterey Bay).
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observations and modeled pDA at the SCMW pixel for this shorter
time period (Dcrit = 0.34; D = 0.36, p = 0.006). An alternative record
of DA that has been shown to be a better tool for monitoring
phycotoxins than sentinel shellfish sampling due to the incredibly
high depuration rates of bivalves such as mussels is SPATT resin
beads (Lane et al., 2010b), which have been deployed in mesh bags
and recovered for DA extraction at one to two week intervals since
2008 at the SCMW (Fig. [34_TD$DIFF]7b). In this case, the mean modeled pDA
was used during the two week SPATT deployment and matched to
the midpoint date of the SPATT deployment. There is a significant
9 to 12-day lead shown by the CCF (r � 0.40) between the mean
pDA time series (data untransformed in this case due to the sine-
cosine wave decay in the ACF) at the SCMW pixel and SPATT-
measured DA (HP20-type resin; Fig. [35_TD$DIFF]9b). The K-S test indicates a
significant similarity in the time series patterns (Dcrit = 0.37;
D = 0.36, p = 0.013).

The CCF for marine mammal strandings averaged over a month
suggests that pDA predictions lead the peaks in strandings by five
days at the SCMW pixel (r = 0.48, Fig. 9c) and are negatively
associated with the model at a five-day lag. The patterns fail to
indicate similarity with a K-S test (Dcrit = 0.15; D = 0.28, p < 0.01).
This outcome suggests the model does potentially capture time
and space scales relevant to California sea lion foraging patterns
and may provide adequate lead-time to assist marine mammal
rescue efforts.
3.1.2. Stearns Wharf

Further south in the Santa Barbara Channel, predicted Pseudo-

nitzschia bloom probabilities from the Stearns Wharf pixel are
highly variable but with a flatter mean over the study period than
at the SCMW (Fig. 10a). The CCF shows that the strongest
relationship between modeled [ARIMA(1,1,0)] and observed data
occur when the model either leads by 20 days or lags by two days
(r = 0.25), and that at lag zero, they are negatively correlated
(Fig. 11a).

Spring peaks in pDA levels at Stearns Wharf do not coincide
with elevated pDA probabilities except for the mid-June increase
when probabilities rise abruptly (Fig. 10b). Significant correlations
in the CCF occur when the model [ARIMA (1,1,0)] leads
observations by 8 and 15 days (Fig. 11b) and lags by roughly
30 days. The K-S test suggests similarities in the shape of nearshore
observations and themodel at StearnsWharf (Dcrit = 0.26;D = 0.33,
p < 0.05).

3.1.3. All California HAB stations

Routine measurements of Pseudo-nitzschia spp. abundance in
southern and central California are combined into one analysis for
a California-wide assessment (Fig. 12). There is a significantly
increasing trend (r = 0.37; p < 0.001) in the modeled probabilities
over the 2014–2015 timeframe as the ecosystem moved towards
the massive HAB event of spring-summer 2015 all along the
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Fig. 7.Modeled bloom/event probabilities at the SCMW. (A)Weeklymicroscopic counts of Pseudo-nitzschia seriata and delicatissima size classes (combined; cells � 103 [17_TD$DIFF] L�1; K.

Negrey) from 19 February 2014 to 7 January 2015 are represented as discrete points (closed circles) in comparison with daily modeled values at the SCMW pixel (solid line).

The solid dark line is the linear trend for the PNmodel time series (r = �0.51, p < 0.001). (B)Weeklymeasurements of particulate DA (pDA) by LC–MS (ng mL�1; R. Kudela and

K. Negrey) from 19 February 2014 to 7 January 2015 are represented as discrete points (closed squares) in comparison with daily modeled values (solid line). In addition to

phytoplankton pDA, measurements of DA frommussel tissue collected at the SCMW (open circles), DA recovered from SPATT-HP20mesh bags (open triangles), andmonthly

mean counts of marinemammals admitted to TheMarineMammal Center with DA toxicosis (open stars) are compared with pDA andmodeled DA events at the SCMW (solid

line). Gaps in data collection are shown as empty space. The solid dark line is the linear trend for the pDA model time series (r = �0.51; p < 0.001).
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U.S. west coast (McCabe et al., [31_TD$DIFF]accepted). Departures from the
mean model state are shown in the upper panel of Fig. 12. Scripps
Pier and Cal Poly Pier (in San Luis Obispo) diverge the most from
themean state, suggesting that the timing of conditions supportive
to HAB development at these sites may be uncoupled from the
timing in other parts of southern and central California. There are
many weakly significant spikes in the CCF [ARIMA (0,1,0)] for all
nearshore stations, but none point to a near-term lead between
model and bloom observations (Fig. 13a). Abundance of Pseudo-
nitzschia spp. does significantly lag the nowcasts by three days
(Fig. 13a).

3.2. Contingency plots of skill assessment

Figs. 13–15 show the outcome of each selected metric (Table 2)
for comparing a binary classification with modeled/forecasted
probabilities over all possible prediction points. The Pseudo-

nitzschia model yields a high rate of false positives across all HAB
monitoring stations. For this reason, the optimized prediction
point (0.52) for California is a minimization of the false alarm rate
(FAR) with respect to the probability of detection (POD). Their
optimized value (i.e. where the two lines cross) is 67% and total
accuracy is 43% (Fig. 13b). The maximal accuracy of the Pseudo-

nitzschia model at all HAB stations is 67%. At the SCMW site
specifically, the prediction point was optimized for POD and
accuracy since the false positive rate was lower, yielding an
optimal prediction point of 0.68 where accuracy and POD = 38%
(Fig. 14a). The pDAmodel at SCMWappears to bemore constrained
than the Pseudo-nitzschia model in that it yields a lower false
positive rate. Given this, we optimized relative to accuracy and
POD to maximize the sensitivity. This shared value is 68% at an
optimal prediction point of 0.6 (Fig. 14b). The maximum bias score
when the prediction point is zero is four for the Pseudo-nitzschia

model and nine for the pDA model at both sites (maxima not
shown on plots). If the prediction points were optimized with
respect to the BS instead of the POD, higher accuracies and
reliability would be achieved using more conservative prediction
points. At Stearns Wharf, the Pseudo-nitzschia model was
optimized relative to FAR and POD as before, yielded an optimal
threshold of 0.55 with POD and FAR = 57% (Fig. 15a). There are
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Fig. 8. Santa CruzMunicipalWharf (SCMW). Cross-correlation functions (CCF) describe the correlational relationship between the SCMWobservations and the nearest SCMW

model pixel over a range of lead-lag time scales. Negative lags occur when the model leads observations. The dashed lines show the 95% confidence interval.
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Fig. 9. Santa Cruz Municipal Wharf (SCMW): Particulate DA model-observation matchups for mussel tissue and SPATT sampling. Cross-correlation functions (CCF) describe

the correlational relationship between the pDAmodel at the SCMW pixel and (A) mussel tissue DA from the SCMW, (B) Solid Phase Adsorption Toxin Tracking (SPATT) HP20

resin bags deployed at the SCMW DA from the SCMW, and (C) monthly mammal strandings over a range of lead-lag times. Negative lags occur when the model leads

observations. The dashed lines show the 95% confidence interval.
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Fig. 10. Modeled bloom/event probabilities at Stearns Wharf. (A) Weekly microscopic counts of Pseudo-nitzschia seriata and delicatissima size classes (combined; cells � 105

L�1; H.McNair) from 17 February 2014 to 12 January 2015 are represented as discrete points (closed circles) in comparisonwith dailymodeled values at the wharf (solid line)

and at an offshore pixel (dashed line) at 33.58N, 1218W. Bloom level is considered to be 0.1 � 105 cells L�1. The solid dark line is the linear trend for the PNmodel time series

(r = 0.04; ns). (B) Weekly measurements of particulate DA (pDA) by ELISA (ng mL�1; D. Caron) from 17 February 2014 to 4 August 2014 are represented as discrete points

(closed squares) in comparison with daily modeled values at the wharf (solid line) and at an offshore pixel (dashed line) at 33.58N, 1218W. Gaps in data collection are shown

as empty space. DA concentrations above 500 ng L�1 are considered alert level. The solid dark line is the linear trend for the pDA model time series (r = 0.10; ns).
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Fig. 11. Stearns Wharf. Cross-correlation functions (CCF) describe the correlational relationship between the Stearns Wharf observations and the nearest model pixel over a

range of lead-lag time scales. Negative lags occur when the model leads observations. The dashed lines show the 95% confidence interval.
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Fig. 12.Modeled bloom/event probabilities at All Stations. Weekly microscopic counts of Pseudo-nitzschia seriata and delicatissima size classes (combined; cells � 105 L�1; H.

McNair) from 17 February 2014 to 12 January 2015 are represented as discrete points (closed circles) in comparison with daily modeled values (solid line). Bloom level is

considered to be 0.1 � 105 cells L�1. The solid line in the lower panel is the linear trend line (r = 0.37; p < 0.001).
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Fig. 13. Contingency plots, ROC Curves for All Stations compare Pseudo-nitzschia binary observations (transformed using bloom threshold) with modeled probabilities at the

nearest pixel for each monitoring station. (A) Contingency plot metrics are accuracy, probability of detection (POD), false alarm rate (FAR), probability of false detection

(POFD), and bias score (BS); the vertical line is the optimized prediction point (0.52). (B) ROC curve; the value in the box is the area under the curve (AUC). A value near

0.5 suggests a model that performs comparable to random chance. (C) Cross-correlation functions (CCF) describe the correlational relationship between the Pseudo-nitzschia

observations at all stations and the nearestmodel pixel over a range of lead-lag time scales. Negative lags occurwhen themodel leads observations. The dashed lines show the

95% confidence interval.
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Fig. 14. Contingency plots and ROC Curves to assess model performance at the SCMW. (A) Pseudo-nitzschia and (B) pDA binary observations (transformed using bloom/event

thresholds) are compared withmodeled probabilities at the SCMWpixel. Metrics used are accuracy, probability of detection (POD), false alarm rate (FAR), probability of false

detection (POFD), and bias score (BS); the vertical line is the prediction point�0.68 for Pseudo-nitzschia and 0.6 for pDA. ROC curves compare (C) Pseudo-nitzschia and (D) pDA

binary observations (transformed using bloom/event thresholds) with modeled probabilities at the SCMW pixel. Values in boxes are the area under the curve (AUC), and

values along the ROC curve show positions of various prediction points along the range 0–1 used to model POFD vs. POD.
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relatively few actual DA events at Stearns Wharf over the time
period, and there is a high percentage of correct negatives. When
optimized relative to accuracy and specificity (each at 92%), the
optimal threshold is 0.63.

The results of plotting the ROC suggest that the pDA model at
the SCMWperforms better than random chance because the AUC is
0.77 (Fig. 14d). The optimized prediction point is solidly in the
upper middle to left quadrant, indicative of a moderately ‘‘liberal’’
classifier (Fawcett, 2004). In other words, it is considered a useful

model since the points on the curve fall almost entirely in the
upper triangle region above the 1:1 line, and the AUC is greater
than 0.5. The ROC for the Pseudo-nitzschiamodel across all stations
almost overlies the 1:1 line (Fig. 13c), i.e. it is a borderline case. At
the SCMW and Stearns Wharf, the ROC for the Pseudo-nitzschia

model is almost entirely below the 1:1 line (Figs. 14 and 15c),
meaning it is performing worse than random (AUC = 0.33). Even
the optimized prediction point falls below the 1:1 line, although if
it were optimized relative to the BS, this score would fall in the
upper right quadrant where the model performs somewhat better
than chance. For the pDA model at Stearns Wharf, the ROC is well
below the 1:1 line with an AUC of 0.04, reflecting the poor
performance of the model at this site as well as the very few DA
events that took place over the study period.

3.3. Partitioning sources of error between DINEOF and ROMS

Lastly, we evaluate error generated by the input variables used
to compute the empirical HAB models. The DINEOF reconstruction
of near-daily MODISA data introduces error to the ocean color
imagery, and these error fields for the reconstruction are obtained
from cross-validation of the DINEOF fit (standard in the DINEOF
routine), thereby producing both the fully reconstructed data and
information about the error covariance for the same data. Given
that the expected error for the reconstructed Chl and Rrs(0

+
[31_TD$DIFF], l)

fields rarely exceeds one standard deviation from the mean in our
routine runs (data not shown), the error introduced by the DINEOF
routine is likely not a significant error source for our predictions.

A second source of error from DINEOF could be introduced by
the length of time interval used to run the reconstruction. It is not
entirely clear if the smaller degree of variability present in a shorter
time series (particularly one with a high percentage of gaps due to
clouds or other flagged data) skews the EOFs towards spurious
patterns or if the opposite is true. Fig. 16 compares the DINEOF Chl
data reconstruction performed in 180-day intervals, where for the
last 10-day period DINEOF was run on the previous 180 days (days
1–180, 2–181, etc.), versus a 365-day interval (days 1–365). This is
tested using either a 3 � 3 box around the SCMW or extracting the
nearest 1 � 1 pixel relative to the SCMW. Sequentially adding days
for ten days does very little to change the output. Log-transformed
Chl values for this shorter interval (red lines in Fig. 16a) generally
track the 365-day runs (solid and dashed blue lines in Fig. 16a)
until the end of the record. Shifting from a 3 � 3 window to the
nearest pixel approach (red lines in Fig. 16b) shows convergence of
the 180-day intervals with the 365-day interval (solid blue line) in
that samepixel space. Several of those 180-day intervalswithin the
ten-day period that was tested exhibit no variability (i.e. flat line).
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Fig. 15. Contingency plots and ROC Curves to assess model performance at Stearns Wharf. (A) Pseudo-nitzschia and (B) pDA binary observations (transformed using bloom/

event thresholds) are comparedwithmodeled probabilities at the SCMWpixel. Metrics used are accuracy, probability of detection (POD), false alarm rate (FAR), probability of

false detection (POFD), and bias score (BS); the vertical line is the optimized prediction point–0.55 for Pseudo-nitzschia and 0.63 for pDA. ROC curves compare (C) Pseudo-

nitzschia and (D) pDA binary observations (transformed using bloom/event thresholds) with modeled probabilities at the SCMWpixel. Values in boxes are the area under the

curve (AUC), and values along the ROC curve show positions of various prediction points along the range 0–1 used to model POFD vs. POD.
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This can occur when data close to land are included, since small
errors in the satellite navigation or in viewing angle result in the
pixels being classified as land (NaN values), resulting in a flat line.

The 3-km ROMS temperature and salinity fields can be
evaluated with physical measurements from the SCMW in the
same manner as the HAB empirical models. Direct comparison of
the closest ROMS grid point with the SCMW time-series shows
[36_TD$DIFF]reasonable agreement for salinity (Fig. 16c) and temperature
(Fig. 16d), although many of the large drops in salinity below
30 psu from winter/spring storms are missed by ROMS, likely due
to the lack of terrestrial freshwater input to the model. Using as
much in situ data from the SCMWas possible, we calculate the pDA
model (‘‘observed’’) and compare those outcomes with our routine
pDA predictions that use ROMS salinity and DINEOF chlorophyll
(‘‘model’’). We plot the outcomes of alternately substituting the
DINEOF chlorophyll with observed chlorophyll (‘‘pDA CHL) and the
ROMS salinity field with observed salinity (‘‘pDA Salt’’). The results
suggest that the pDA model is more sensitive to substitutions of
ROMS salinity (r2 = 0.37, slope = 0.71) than DINEOF-filled ocean
color values (r2 = 0.16, slope = 0.58). This sensitivity analysis
demonstrates the disproportionate effect that salinity has on the
pDA model outcomes relative to chlorophyll (Fig. 17).

4. Discussion

4.1. Skill assessment at shore stations

Model skill was evaluated using a suite of performance metrics
for dichotomous predictions using the best available observational
data from shore stations in several important locations. This
analysis demonstrates that the model provides information that is
in relative agreement with shore station data but with significant
differences that require continual evaluation and offshore sam-
pling in order to ascertain the scales of variability captured by the
model versus the nearshore monitoring. In other words, while
these HABMAP monitoring data represent the most consistent
source of HAB observations in the CCS, there are obvious problems
with employing them in model evaluation given the limitations in
spatial (and temporal) scales. For instance, the spatial resolution of
the final HAB model predictions is constrained by the lowest
resolution input product, which is the 3-km CA ROMS model, such
that these moderate-resolution modeled matchups (nearest
pixels) are only rough approximations of HAB activity in the
nearshore zone. Spatialmismatch between in situ observations and
interpolated 3-km satellite imagery is indeed an impediment to
validation studies of this sort (Carvalho et al., 2011). Unfortunately,
there is no consistent source of offshore data for comprehensive
skill assessment. Nevertheless, we must assess the model relative
to the HAB shore station data that are the baseline for monitoring
ecosystem health in coastal California (Kudela et al., 2015).

Given the spatial mismatch just mentioned and the many
sources of error that contribute to the HAB model signal, it is
somewhat surprising that there is any skill between the model-
observationmatchups generated by our approach. However, we do
see some degree of sensitivity and specificity as well as integration
of several scales of variability, even at the individual pixel level.
The Pseudo-nitzschia model is less accurate than the pDA model
due to its high false-positive rate. Model sensitivity (or POD in
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Fig. 16. DINEOF-reconstructed chlorophyll (A) extracted from a 3 � 3 box around the location of the SCMW using consecutive 180-day intervals for 10 days (red lines);

extracted from a 1 � 1 pixel closest to the SCW using 365 days to run DINEOF (solid blue lines); and extracted from a 3 � 3 box around the SCMWusing 365 days of data but

truncated to the first 180 days (dashed blue lines). In (B), the blue lines remain the same, but the red lines are now the closest 1 � 1 pixel to the SCWandmore closely track the

solid blue line. The right panel shows matchups between SCMW and ROMS (C) salinity (r = 0.25, p� 0.001) and (D) temperature (r = 0.78, p� 0.001), where blue = SCMW

(calibrated thermometer; YSI-3100), green = SCW (YSI Sonde-6600), and red = ROMS (nearest 3 km grid point).
[(Fig._17)TD$FIG]

Fig. 17. Sensitivity of the HAB statistical model to estimated or simulated variables. Particulate DA probability at the SCMW for the study period is calculated with observed

parameters (x-axis) measured at the SCW (salinity, chlorophyll) and DINEOF-filled Rrs(555) values. These values are plotted against pDA probability calculated using ROMS

salinity andDINEOF-filled ocean color values (filled square, ‘‘model’’), as shown for previous figures; substituting ROMS salinitywith laboratory-measured salinity froma YSI-

3100 at the SCW (open square, ‘‘SALT’’); and substituting DINEOF-filled Chl values with filter-pad measured Chl from the SCW (asterisk, ‘‘CHL’’). Dashed and solid lines are

linear fits to the data, and R2
[18_TD$DIFF] values are reported in the legend; slopes (y/x) are reported on the line itself. The model is most sensitive to substitution of observed salinity in

place of simulated salinity as compared with Chl.
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Figs. 13–15) describes the fraction of DA events correctly predicted
and is above 50% at the optimized prediction point shown in
Fig. 14b. The overall problems with model performance when
assessed at the pixel level relative to very nearshore, pier-sampling
matchups is corroborated by in situ observations from the Santa
Barbara Channel where Pseudo-nitzschia and pDA at Stearns Wharf
rarely align with offshore levels in the middle of the channel
(Umhau et al., submitted [33_TD$DIFF]for publication). Future analyses of all
offshore datasets in the CA region will allow us to fully evaluate
alongshore variations in model performance and refine the GLMs.

The SCMW appears to be capturing a mammal-stranding signal
at a two-week lead time despite the fact that the stranding data are
grouped for the entire central/northern CA region (Fig. 7b). The
peaks in strandings generally correspond with times when pDA is
present at the SCMW, although there are many instances when
strandings occur in the absence of nearshore pDA measured at
SCMW. This suggests a possible offshore (or even subsurface)
source of DA to these stranded animals that is not explicitly
captured by the inputs to the empirical models, but might be
driving the broader spatial signal in the low to moderate-
resolution input fields. It may also point to failures of the model.
This is consistent with studies examining the subsurface initiation
or seeding of Pseudo-nitzschia spp. blooms in coastal California
(Seegers et al., 2015). It may also point to failures of the model. The
5-day lead-time between predicted pDA and mussel tissue at the
SCMW (Fig. 9a) also signifies that C-HARM could provide a useful
warning tool to aquaculture and recreational shellfish growers
who stand to benefit from advanced warning of DA contamination.

Since SPATT represents a time-integrative (but spatially
discrete) detection method of dissolved toxin (Lane et al., 2010;
MacKenzie, 2010), it is not surprising that model variability more
resembles SPATT variability than that of the sentinel mussel
species, Mytilus californianus. Lane et al. (2010) showed that ‘‘DA-
signaling’’ by SPATT preceded CDPH detection of dangerous levels
of DA in mussels by eight weeks and is often uncoupled from
temporally and spatially discrete measures of pDA at the SCMW.
However, the exact lead-lag relationship between particulate DA,
SPATT DA, mussel DA, and modeled DA is more difficult to discern
in the present study given the complicated results of the cross
correlation functions (Fig. 9). Both SPATT and the model appear to
capture a larger, regional signal than traditional samplingmethods
and may be more tightly coupled with one another than either of
them is with other discrete sampling methods. Ultimately, all
sources of information, frommodels to in situ sampling need to be
considered as a whole for sound decision-making.

An additional and important consideration is that our choice of
threshold or prediction point clearly alters model form and
sensitivity/specificity (Figs. 15–17) and is always subject to future
adjustment to assess its relevancy to ecosystem response. As
observational data are constantly assimilated into our statistical
models for re-tuning, there will be no single, static optimized
probability threshold but rather a dynamic assessment built into
the protocol for issuing HAB alerts and bulletins across the
different CA subregions.

4.2. Sources of error

Model skill is ultimately dependent on several factors, including
error in the input variables, error in the statistical habitat models
andmismatch (spatial, temporal, and scale) betweenmodel results
and observations models (GLMs), as already discussed. Our
method of merging DINEOF-filled MODIS imagery and ROMS
fields introduces several sources of error before the HAB empirical
models are even computed. First, the ocean color imagery itself
represents an imperfect estimation of Rrs(l, 0

+
[32_TD$DIFF]) in the coastal zone

that varies depending on the satellite sensor. Kahru et al. (2014)
recently compared Chl retrievals for the CCS from SeaWiFS,
MODIS-Terra, MODIS-Aqua, MERIS, and VIIRS sensors relative to
available in situ Chl observations for the region. All sensors, with
the exception of MERIS, displayed low accuracy at estimating Chl
concentrations above 1 mgm�3, a value that often distinguishes
coastal environments from pelagic/oligotrophic zones. In the case
of MODISA, Chl retrievals and in situ measurements were related
by an R2 of 0.32 and a 28% underestimation rate in the medium to
high Chl range (Kahru et al., 2014). While the imagery is excellent
for its large spatial coverage and operational reliability, we must
contend with the downstream influence on HAB model predic-
tions.

The application of DINEOF introduces error to the ocean color
data in that the gap-filling procedure is an imperfect interpolation
method but one that can be quantified in terms of an uncertainty
estimate generated from the iterative EOF solution (Beckers et al.,
2006). The uncertainty for both the reconstructed Chl and remote
sensing reflectance fields is within a standard deviation of the
mean value and well below the error exhibited for the actual
MODISA retrievals (Kahru et al., 2014). The same DINEOF methods
compared well with a coupled physical-biological model in the
Pacific Northwest (Giddings et al., [37_TD$DIFF]2014), providing further indirect
evidence that the interpolation scheme does not introduce
substantial error. Another factor influencing variability in the
HAB predictions is the time window used during DINEOF data
reconstruction. There is some evidence that a long time domain
containing some heavily clouded imagery can produce spurious
temporal variability, but that the data reconstruction can be
improved by filtering out spikes in the temporal covariance matrix
before the EOF decomposition (Alvera-Azcárate et al., 2009). In our
sensitivity analysis, the shorter (180-days; red lines in Fig. 16) and
longer (365-days; blue lines in Fig. 16) time windows did not
significantly diverge from one another until the end of the 180 day
record, suggesting that a shorter time domain preserves the
majority of the temporal variability captured by the longer time
domain while also allowing improved computational efficiency. In
terms of the influence on spatial variability, Beckers et al. (2006)
suggest a nested DINEOF method in which a large-scale (up to
global) reconstruction is first created, and then the anomaly
(reconstruction minus observed values) is reconstructed at higher
spatial and temporal resolution, followed by reconstruction at
even higher resolution, etc. Since each reconstruction is influenced
by the scale of patterns inherent in the raw data, this method
would sequentially include more small-scale features. Exploration
of these methods is part of our on-going investigation into the
appropriate use of DINEOF for operational modeling. This
ultimately involves trade-space constraints between improving
model output and (potentially dramatically) increasing computa-
tional cost.

Lastly, the ROMS nowcast and forecast fields also have
uncertainties. This uncertainty has been gradually reduced over
the past few years with the improvement of data assimilation
algorithms and increase in observational data sets. The RMS
difference of SST between the ROMS nowcast and satellite
measurements is about 0.4 8C during the winter seasons but
increased to 0.8 8C during the summer due to the lack of satellite-
retrieved SST when there are clouds. The model uncertainty of
temperature below the ocean surface is significantly larger simply
because of the lack of subsurface data. Using the independent data
from CalCOFI that are not assimilated into ROMS, we have
estimated the ROMS nowcast uncertainty to be on the order of 1 8C
for temperature and 0.2 psu for salinity (data not shown). It is
expected that a more sophisticated data assimilation scheme
(e.g., ensemble Kalman Filter or 4DVAR) would further reduce
model uncertainty. Improvements to ROMS are underway,
and these include coupling the hydrodynamic model with a
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biogeochemical/ecosystem model (e.g., CoSiNE) with the goal of
providing nowcast and forecast fields for biogeochemical variables
to the HAB forecasts.

4.3. The Decision-Making Context

Manymethods of determiningmodel skill categorize amodel as
poor quality if it does not capture event scale activity in a particular
location despite the veracity of the regional signal. However, the
model is likely quite valuable to a decision-maker, particularly if it
provides offshore, spatial information that would otherwise not be
available tomanagers and provides complementary information to
nearshore monitoring data. According to Murphy (1993), in
addition to consistency and quality, the ‘‘goodness’’ of a model
is measured by its value, or its ability to aid the decision-maker in
achieving some benchmark improvement. Without a high-resolu-
tion, observational record with which to evaluate the true spatial
and temporal skill of our C-HARM system, it is difficult to quantify
the added value brought to bear by having such a regionally
comprehensive, predictive capability. For instance, the newly
launched Catalina Sea Ranch located in the San Pedro Basin is the
first offshore aquaculture operation within the United States
exclusive economic zone (http://www.catalinasearanch.com/). It
stands to reason that a model with the ability to predict DA events
in the waters surrounding this cultivation site will be an asset to
business decisions, in this context. At the state level, the CDPH,
which is mandated to monitor biotoxins in the commercial and
recreational shellfish supply, will hopefully be able to better
allocate sampling resources to regions with high alert levels,
particularly if the model signals an event outside of the normal
targeted sampling zones. Marine mammal resource managers
already report extensive use of the routine model product to guide
their efforts and assess past risk likelihoods for stranded animals at
the regional level. It will behoove us to continue to assess the skill
of the predictions in both nowcast and forecast mode to
demonstrate its performance over a variety of time and space
scales.

4.4. Towards an operational forecasting system

With the completion of a yearlong pilot study to establish a HAB
prediction and forecasting system for coastal California, we have
demonstrated the capacity to routinely produce spatially explicit
outlooks of the HAB horizon for neurotoxic Pseudo-nitzschia

blooms. In fact, truly operational HAB forecasts in the United
States only exist for Karenia brevis in the Gulf of Mexico at the time
of this writing. The NOAA Harmful Algal Bloom Operational
Forecast System issues routine K. brevis and brevetoxin conditions
reports for coastal Florida and Texas (http://tidesandcurrents.noaa.
gov/hab/) along with metadata in HAB Bulletins that collate the
observational, satellite, model, and public health information
relevant to making forecasts of bloom and respiratory irritation
risk (Stumpf et al., 2009). While some of the methods differ for the
CCS and Gulf of Mexico, the most notable being the use of a Chl
anomaly product for detecting K. brevis biomass (Stumpf et al.,
2003), the fundamental approach ofmerging available information
from multiple platforms to create a forecast is similar to that
described in this paper. The Ecological Forecasting Roadmap was
established by NOAA to guide the next generation of ecological
forecasting services and places a strong emphasis on HABs (NOAA,
2012). The goal is to include [38_TD$DIFF]C-HARM in the suite of HAB
forecasting programs on the verge of transition from Research and

Development to Operations in regions such as[39_TD$DIFF] those in the Pacific
Northwest (Trainer and Suddleson, 2005), Lake Erie (Wynne et al.,
2013), Chesapeake Bay (Brown et al., 2012), and Gulf of Maine
(Kleindinst et al., 2014; McGillicuddy et al., 2011). As with these
efforts, assessing model skill relative to the current baseline is
a fundamental task for initiating a robust early warning system
for HABs[7_TD$DIFF].
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