Online Adaptation and Energy Minimization for Hardware
Recurrent Spiking Neural Networks

YU LIU” YINGYEZHE JIN, and PENG LI, Texas A&M University

The Liquid State Machine (LSM) is a promising model of recurrent spiking neural networks that provides an
appealing brain-inspired computing paradigm for machine-learning applications such as pattern recognition.
Moreover, processing information directly on spiking events makes the LSM well suited for cost- and energy-
efficient hardware implementation. In this article, we systematically present three techniques for optimizing
energy efficiency while maintaining good performance of the proposed LSM neural processors from both
an algorithmic and hardware implementation point of view. First, to realize adaptive LSM neural processors,
thus boost learning performance, we propose a hardware-friendly Spike-Timing Dependent Plastic (STDP)
mechanism for on-chip tuning. Then, the LSM processor incorporates a novel runtime correlation-based
neuron gating scheme to minimize the power dissipated by reservoir neurons. Furthermore, an activity-
dependent clock gating approach is presented to address the energy inefficiency due to the memory-intensive
nature of the proposed neural processors.

Using two different real-world tasks of speech and image recognition to benchmark, we demonstrate
that the proposed architecture boosts the average learning performance by up to 2.0% while reducing energy
dissipation by up to 29% compared to a baseline LSM with little extra hardware overhead on a Xilinx Virtex-6
FPGA.

CCS Concepts: « Computing methodologies — Neural networks; - Computer systems organization
— Neural networks; « Hardware — Neural systems;

Additional Key Words and Phrases: Liquid state machine, online adaptation, spike-timing dependent plas-
ticity, energy efficiency

ACM Reference format:

Yu Liu, Yingyezhe Jin, and Peng Li. 2018. Online Adaptation and Energy Minimization for Hardware Recurrent
Spiking Neural Networks. J. Emerg. Technol. Comput. Syst. 14, 1, Article 11 (January 2018), 21 pages.
https://doi.org/10.1145/3145479

1 INTRODUCTION

The human brain has the ability to perceive, memorize, and respond to the outside world. It
elegantly performs complex tasks such as describing the features of an image, understanding
sophisticated sentences, adapting to the changing environment, and undertaking complicated

*The first two authors equally contributed to this work.

A preliminary version of this article was presented at 2016 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH’16) [12].

This material is based upon work supported by the National Science Foundation under Grant No. 1639995 and the Semi-
conductor Research Corporation (SRC) under task # 2692.001.

Authors’ address: Y. Liu, Y. Jin, and P. Li, Department of Electrical and Computer Engineering, Texas A&M University, 400
Bizzell St., College Station, TX, 77843, USA; emails: {yliu129, jyyz, pli}@tamu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

© 2018 ACM 1550-4832/2018/01-ART11 $15.00

https://doi.org/10.1145/3145479

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

https://doi.org/10.1145/3145479
mailto:Permissions@acm.org
https://doi.org/10.1145/3145479

11:2 Y. Liu et al.

Input Layer Reservoir Readout Layer

(a) (b)
Fig. 1. (a) Dynamics in a liquid pond and (b) the liquid state machine.

decision-making problems with great energy and space efficiency. Therefore, the information-
processing and communication patterns in the nervous system offer promising models for
building the next-generation computing systems to address the performance and energy
challenges currently faced by the computing industry.

The past decades have witnessed an endeavor to develop brain-like computers in both
academia and industry. Recently, by using a cascade of many layers of nonlinear processing units,
deep-learning algorithms—particularly convolutional neural networks (CNNs) [15] and deep
neural networks (DNNs) [9]—have achieved tstate-of-the-art performance in a wide range of
application, including image classification [13], natural-language processing [6], and handwriting
recognition [5]. However, in order to deliver human-level performance on these deep networks,
enormous amounts of resources and training efforts are required.

Significant research efforts have been dedicated to exploring biologically realistic spiking neural
networks, which are anticipated to be power efficient and closely resemble brain behavior. There
has been increasing interest in the concept of reservoir computing, which provides a computational
model for exploiting the capability of recurrent neural networks [16, 18]. The liquid state machine
(LSM) is one specific form of reservoir computing. As shown in Figure 1(b), the LSM consists
of a reservoir, a set of randomly connected spiking neurons that models the complex recurrent
topologies of cortical microcircuits, and a readout layer that receives reservoir responses. In the
conventional LSM model, the reservoir synapses are fixed to relax the challenges of training. The
rich high-dimensional dynamics created in the recurrent reservoir by spike inputs is very much
like the long-lasting ripples triggered by throwing a pebble into a still pond (Figure 1(a)). With
those rich dynamics as inputs, a linear readout layer can be trained for the final classification
decision. The LSM is especially competent for classifying spatiotemporal patterns, such as speech
recognition [8, 11, 25, 30].

It was only recently that silicon-based spiking neural systems (SNNs) have started to emerge,
for instance, the NeuroPipe-Chip as a part of an accelerator board [22], the Neurogrid mixed-
analog-digital multichip system [2], and IBM’s TrueNorth chip [1]. However, those systems lack
integrated on-chip learning capabilities, in general. While SNNs hold a lot of promise due to their
closer resemblance to biological brains than older generations of artificial neural networks, the
training of SNNs is not well understood at this point. It is a challenge to develop robust gradient-
based training for SNNs, particularly recurrent SNNs.

To this end, the LSM is considered to be a good trade-off between the ability in tapping
the computational power of recurrent SNNs and engineering tractability. Several recent works
have investigated efficient hardware implementation of the LSM [12, 26, 27], with integrated
efficient bio-inspired on-chip spike-dependent learning mechanisms to tune the reservoir and
readout layer. For example, Zhang et al. [30] proposed a supervised probabilistic readout tuning

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:3

algorithm, Jin and Li [10] proposed a stochastic activity-based spike-timing dependent plasticity
(STDP) for tuning the reservoir, and Jin et al. [12] introduced a look-up table (LUT)-based
STDP approach for efficient low-resolution tuning of the reservoir in hardware. Structural
plasticity-based online reservoir optimization was proposed in [21]. Roy et al. [20] presented
the hardware implementation of the LSM using analog circuitry with the readout trained by
a gradient descent algorithm. Runtime energy management of LSM processors has also been
examined from the aspects of runtime programmable arithmetic precision, activity-driven power
gating, and activity-dependent reconfiguration [12, 27].

A preliminary version of the work in this article has been presented in [12]. In this article,
we systematically analyze opportunities for enhancing energy efficiency while maintaining good
learning performance of LSM neural processors from algorithmic and hardware implementation
perspectives and further improve our neural processor architecture by addressing several key is-
sues in terms of power efficiency.

The first key ingredient of the proposed energy-efficient self-adaptive LSM architecture is the
exploration of a hardware-efficient STDP mechanism, which is motivated by two considerations.
On the one hand, while the recurrent reservoir is in general difficult to train, the unsupervised
and local nature of STDP makes it well suited for on-chip reservoir training, supplementing the
training of the readout layer and improving learning performance [10, 14, 19, 29]. On the other
hand, it is observed that STDP can naturally lead to a sparse recurrent reservoir network during
the training process. This attractive self-organizing behavior is explored as an opportunity for
runtime energy reduction.

While STDP is amenable to hardware realization, realizing STDP in a digital architecture with
low overhead poses a substantial challenge. A straightforward implementation with high resolu-
tion introduces high hardware overhead, while utilizing low-bit resolution by sparsely sampling
the STDP curve could harm the learning performance. To tackle the above problems, we pro-
pose the data-driven STDP that specifically targets efficient low-resolution hardware realization
by minimizing the discretization error and simplifying the hardware design.

The second key ingredient of the proposed LSM processor is the incorporation of a novel run-
time correlation-based neuron gating scheme to reduce the power dissipated by a large number of
reservoir neurons. Under the context of the liquid state machine, the rich dynamics in the reservoir
is typically crucial for achieving good learning performance. Consequently, energy consumed by
reservoir neurons greatly contributes to the overall energy consumption of LSM neural processors.
Our proposed correlation-based neuron gating mechanism monitors the correlated firing activities
across the reservoir and deactivates neurons whose firing events are highly correlated with their
presynaptic neuron(s) during runtime. This approach notably saves energy without any dramatic
performance degradation.

The third technique presented in this article addresses energy inefficiency due to the memory-
intensive nature of neural computation. Neural processors, including ones that are under consider-
ation, generally require a large number of memory resources for storing various parameters, such
as synaptic weights and internal neural states. Those memory elements heavily load the clock
distribution network and their clock-induced toggling activities take a significant portion of the
total power dissipation. We explore the regularity in the hardware structure and the process flow
of the proposed LSM processors, which provide well-defined boundaries to partition the memory
elements inside each neuron that are activated at different phases of neural processing. This leads
to an activity-based clock gating mechanism with a granularity of a partitioned memory group
inside each neuron.

We benchmark our proposed LSM through two real-world tasks (i.e., speech recognition and
image classification) by using an adopted TI46 speech corpus and CityScape urban scenes dataset.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:4 Y. Liu et al.

post ——F | LTP

\0 At (ms)
LTD

(a) (b)

Fraction

Fig. 2. (a) A typical STDP curve and (b) an equilibrium synaptic weight distribution obtained by the STDP
rule in a reservoir.

It has been demonstrated that the proposed LSM neural processor boosts the average learning
performance by up to 2.0% while reducing energy dissipation by up to about 29% compared to a
baseline LSM design with little additional hardware overhead on a Xilinx Virtex-6 FPGA.

2 ALGORITHMIC LEVEL OPTIMIZATION

In this section, we introduce the hardware-friendly STDP for reservoir tuning and the novel
correlation-based neuron gating method for energy reduction.

2.1 STDP for Reservoir Tuning

The STDP is a bio-inspired, unsupervised Hebbian learning mechanism realizing synaptic plastic-
ity based on the respective spiking timing orders of the presynaptic and postsynaptic neurons [3].
The potentiation of the synapse w;; happens when the presynaptic neuron j fires before the post-
synaptic neuron i. The reversed firing order (i.e., a presynaptic neuron fires after the postsynaptic
neuron) incurs the depression. The amount of weight modification Aw;; relies on the temporal
difference At = tpos; — tpr between each presynaptic and postsynaptic spike pair:

Awt = A (w) - e ifAt >0
Aw™ =A_(w) - e_‘%tI if At <0, (1)

where Aw* and Aw™ are the weight updates caused by long-term potentiation (LTP) and long-
term depression (LTD), and A (w) determines the strength of LTP/LTD, respectively. Typical STDP
characteristics are plotted in Figure 2(a).

Tuning a reservoir using STDP leads to two benefits: (1) a potential performance boost via the
self-adaptation of recurrent connections, which we will show in Section 6 with experimental re-
sults; and (2) a refined sparse topology of the reservoir, which is exploited by us to build an energy-
efficient hardware processor. To show the obtained sparse structure, we apply standard STDP and
plot the converged synaptic weight distribution of the reservoir (Figure 2(b)). Generally, as a com-
mon setting, only excitatory synapses in the reservoir are assumed to be changeable and adjusted
with STDP, whereas inhibitory synapses are fixed for the sake of stabilizing network dynamics.
Here, the resulting bimodal weight distribution indicates a considerable amount of zero-valued
and low-valued synapses, which can be turned off to save power without significantly impacting
recognition performance.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:5

. Weight Rounding

W= 1.3 |~ s W =2.1
—_— new = &«
0 3 6 9
wi w ow owf

STDP Discretization wi wi wf o w
Awd,
At=2 1] ~ s d
"'-_-l.?i 2 At Error = Iwrfeu? Wi l=2.1

Fig. 3. The naively realized digital STDP.

A cost-effective realization of a given STDP on a digital processor presents an interesting
challenge. A straightforward hardware implementation with high digital resolution closely
approximates continuous STDP computation thus attains good performance boost. However,
this approach results in a formidable cost, as all reservoir synaptic modules will integrate the
high-precision STDP curve. The straightforward realization of (1) also incurs infinitely small
weight modifications as the temporal difference At increases, not to mention that the number
of such updates can be huge. Innumerable synaptic events with tiny weight changes will be
triggered by these two effects, leading to high levels of cost and power inefficiency of hardware
LSM processors. On the other hand, solely cutting hardware overhead by using a low resolution
is likely to encounter an immediate performance drop.

2.2 Hardware-Friendly STDP for Reservoir Tuning

Implementing STDP with extremely-low-bit resolution while achieving good learning perfor-
mance is challenging. To this end, we first restrict the STDP activation time window by setting
a limit At; the spike temporal difference At such that no synaptic update is considered when
At > At;. In this way, we can reduce the number of small-valued weight updates. Furthermore,
to balance potentiation and depression, we add another constraint to that areas under LTD and
LTP portion of the STDP curve are identical. With these two constraints, we still need to main-
tain the good performance of a delicately designed continuous STDP by properly discretizing both
synaptic weights and the continuous STDP curve.

2.2.1 Naive Digital STDP Realization. One intuitive realization of a B—bit STDP is uniformly
discretizing the weight value into 28 levels: {wf , wg eees wgB } and similarly discretizing the weight
change Aw® of the continuous STDP rule within the activation window. In this and the following
sections, the weight and weight change with superscript d stand for discretized values, while those
with the superscript ¢ represent the continuous ones. As illustrated in Figure 3, a spike timing
difference At triggers a discretized synaptic change of Aw? determined by the discretized STDP

curve, which is then added up to the current (old) discretized weight ng ; and rounded into the
d

Wnew'

w round(wgld + Aw?(At))

new
round(round(w;, ;) + Aw?(AL)),

@)

c

where round(-) rounds its argument to its nearest discretized level and w¢, = (w¢,,,) is the current
old \Wnew

(new) continuous value if synaptic weights and STDP were implemented in real numbers.
A careful investigation of the above updating process uncovers two key disadvantages. On the
one hand, an adder is required to perform each add operation (see Figure 3), introducing large

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:6 Y. Liu et al.

(Continuous STDP simulation)

¥
Step 0.

1) Collect N number of synaptic events:
{at,AwS, wa‘,d,wn‘ew}k for k=1..N
2) Get the equilibrium weight distribution
¥

| Step 1. Weight discretization |
¥
| Step 2. STDP curve discretization |

¥
(__Hardware simple STDP)

Fig. 4. The proposed data-driven offline STDP design flow.

hardware overhead. On the other hand, the computation of w¢,,, in Figure 3 suffers from two types

of rounding error: discretization of the real-valued weight w® and quantization of the continuous
weight update Aw€. The specific example shown in Figure 3 explains this well. The continuous
weight update (Aw®) should be 0.8 when At = 2. Given the current weight (w¢, , = 1.3), the new

c

d _
C ew down tow?, =0

ld old
and the discretized weight update Aw? is 1. Finally, the discretized updated weight ng g FAWis

rounded to 0. Overall, the naive discretization of STDP produces a very large quantization error
of 2.1 under low-bit resolutions.

continuous weight wy,,, is 2.1. However, the weight discretization rounds w?

2.2.2 Proposed Data-Driven STDP Implementation. To minimize the above two aggregated
quantization errors, our key innovation is to discretize the synaptic weight and the STDP curve
collaboratively to match realistic synaptic events over a large set of STDP updates. The ideas be-
hind our data-driven STDP design are: (1) discretizing the continuous weights such that the equi-
librium weight distribution is well represented and (2) discretizing the STDP curve to match the
characteristics of the synaptic update given the temporal difference At and weight change Aw®.
The proposed data-driven discretization mechanism shown in Figure 4 optimizes both synaptic
weights and the STDP curve discretization. We formulate our design flow into steps and describe
them in detail.

Step 0: Profiling the continuous STDP. Simulate the reservoir with typical inputs and collect
synaptic events as sets of four values: {Aty, Awy, ngd,k’ Wyew,, }» k € [1, N]. The converged weight
distribution under the STDP is recorded as well.

Step 1: Characterizing the continuous weights. The goal here is to adequately represent the con-
tinuous weight distribution with a carefully chosen weighting scheme of B-bit integers. Therefore,

to obtain the optimal discretization scheme {\7\1}‘.1} G=1,..., ZB), we want to minimize the repre-

sentation error of each continuous weight w¢ given 28 unique weight levels over all collected
weights:

J
wil iV (3)

subject to w]d € [Wmins Wmaxl, Vj € [1,...,25],

minimize Z midn{(wl-C —wh)?)
- wé

where w]‘.is are the digitized weight values and min_a{(w{ — W;i)z} is the squared representation

error for the ith collected continuous weight under the current discretization scheme.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:7

W:ew =21
Weight Rounding STDP Discretization
3
W5ia= 1.3 Wa=2 2 Wi,=2
—_—, 1 —
.0 } i At=2 T |
0 2 6 9 At 0 2 6 9
wéowd o owg wy Wely ——>

Error = |we, - wi, |=0.1

new

Fig. 5. The weight updating process of the proposed data-driven STDP.

Although solving (3) in a mathematically exact manner is extremely difficult, the optimization
problem can be solved by exhaustive search since B is small.
Step 2: Discretizing the STDP curve. We optimize the discretized STDP rule based on the weight-

ing levels obtained from Step 1. Given {Aty, wgl @k of the kth synaptic event, instead of discretizing

the STDP curve to get the AW, our key idea is to map {Aty, wgl 4. directly to the new weight

value wgew’ , through an optimized LUT. This LUT is indexed by At and wgl 4> Where the spike tim-
ing difference At has been already discretized by the properly chosen emulation timestep. Com-
pared to the naive approach in Figure 3, the proposed method brings down the hardware overhead
by eliminating the add operation and merges multiple rounding steps into a single LUT, thereby
avoiding provoking multiple digitization errors. Figure 5 demonstrates the weight update process
of the proposed data-driven STDP using the same example of Figure 3 and shows that our approach
results in a much smaller overall discretization error of 0.1.

Specially, the use of the LUT is to minimize the discretization error over the continuous STDP
data collected in Step 0. Each LUT entry serves as a discretized resulting weight obtained under

the proposed STDP rule. With the quantized weight levels w]‘.is, we first map {At,w¢, ,wy,.,}

old’ new

d . . d -
to {At, wo s w¢ ..} for each recorded continuous synaptic event, where wo,, 1s chosen to be the

closest digitized weight level of w¢, .. In the LUT, this synaptic event is mapped to entry Ly, at the

mth row and nth column, which is indexed by {At, ng 4) (see Figure 5). After this mapping is done

for all collected data, each entry L,,, of the LUT now has its own set of the mapped continuous
events, noted as set(L,,). Our goal is to find an optimal value of each L,,, for discretizing w,,,,
such that the aggregated error over all w,,, s in set(L,,) is minimized:

. c 2
minimize Z(Wnew,k_Lij)

mn

k
subjectto L, € {wf, wg, R wde})
{wfww’k} € set(Lmn).

Essentially, the above optimal solution minimizes the summed squared root error for all continuous
STDP updates that fall into a certain LUT entry. Again, this optimization problem can be easily
solved offline due to the small design space.

2.3 Correlation-Based Neuron Gating

The rich dynamics in the reservoir is critical for good learning performance. However, the gener-
ation of such dynamically changing responses can be power consuming, since each active neuron

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:8 Y. Liu et al.

T L L
L O B O |
L N A A
L O A O B A |
| I R
L Y A B A |

wv

=
o

I
[N N | \ [
[I| \‘ \‘ II I| \‘ I‘ \‘ \I II I‘ \‘ \1 \‘ \I II

Neuron Index
N
o wv

N
wv

w
o

100 200 300 400 500

Time (ms)
Fig. 6. A raster plot of the reservoir response. Only a part of the reservoir response is shown for simplicity.
The firing events of two connected neurons 14 and 16 are highly correlated.

carries out a series of operations at each emulation timestep (see Section 3.2). Instead of randomly
pruning reservoir neurons, which might result in a significant performance hit, we propose a novel
runtime reservoir neuron gating approach based on the correlation between neuron firing activi-
ties with little impact on performance.

Our key observation is that two reservoir neurons or more may produce correlated firing activ-
ities, as depicted in the spike raster plot of Figure 6. Note that correlation between firing activities
reveals redundancy among the corresponding neurons with respect to the objective of discrimi-
nating different input samples. In other words, a redundant neuron that replicates the spike train
of another neuron does not contribute to the separability of different input patterns. In a pair of
connected neurons, activities of the postsynaptic neuron may be identified to be highly correlated
with the presynaptic one. If so, we bypass the computational steps of the postsynaptic neuron and
set its spike output according to its presynaptic counterpart.

Implementing this approach in hardware entails efficient monitoring of correlation of firing
activities, which we describe very briefly. For each pair of connected neurons, we compute the
Hamming distance of the spike trains between the two neurons and sum it up over consecutive
input samples as a measure of correlation:

p= Z Isp _3q|(3p»3q {0,1}"), (5)

where s, and s, are the binary firing event sequences of length n of two connected neurons p
and g, respectively, and N is the number of input samples. If the correlation measure p is smaller
than a predefined threshold p,j,, we consider the firing activities of two neurons as correlated.
Section 4.2 describes hardware implementation of this correlation-based neuron-gating scheme in
more detail.

3 HARDWARE IMPLEMENTATION ARCHITECTURE

In this section, we concisely describe the overall architecture of the LSM processors and the real-
ization of digital spiking neurons in the network.

3.1 Overall LSM Processor Architecture

Figure 7 depicts the overall architecture of the LSM neural processor. The reservoir and the read-
out layer of Figure 1 are realized by a reservoir unit (RU) and a training unit (TU), respectively.
Each reservoir (liquid) neuron is implemented with a liquid element (LE) in RU and the readout
(output) neuron is implemented with the output element (OE). External input spikes are sent to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:9

TU FSM ||

f 1}

Input

RU - TU
B ccicacory e “77” nhibitory LE . OE

Fig. 7. Overall architecture of an exemplary LSM neural processor.

their targeted LEs through a predefined crossbar interface. All LEs receive and process input spikes
in parallel, controlled by a global finite state machine (FSM) in the RU. The spikes generated from
LEs are registered and sent to all OEs through fully connected readout synapses. The FSM in the
TU controls the parallel operations of OEs. In addition, reservoir spikes are fed back to other LEs
following certain connectivity patterns defined by another crossbar interface.

The learning process of an LSM processor is performed in three separate phases in time order:
the reservoir training phase, the correlation-based gating phase, and the readout training phase.
First, in the reservoir training phase, the RU is trained by the proposed STDP algorithm until
the synaptic weight distribution converges. The gating phase then takes place, during which the
reservoir neurons fix their synaptic weights, take input spikes, and count the occurrence of corre-
lated presynaptic and postsynaptic responses throughout the phase. After all input patterns have
been fed to the neural processor, the gating decision will be made inside each neuron based on
the correlation-based neuron gating approach proposed in Section 2.3. At last, during the readout
training phase, the TU is trained by a biologically plausible supervised spike-based algorithm [30]
to perform the classification. The RU continues to be activated to provide spike inputs to the TU
while maintaining its synaptic weights and gating decisions during the readout training phase.

3.2 Implementation of Digital Spiking Neurons

The proposed LSM neural processors operate through a series of computational steps and require
a large number of storing elements inside each neuron. As shown in Figure 8, a digital neuron
element (LE or OE) contains three major functional modules for neural computing and the LE has
a correlation-based neuron-gating control module in addition. The unique architectural and func-
tional properties of the proposed LSM neural processor naturally lead to well-defined boundaries
between these modules in terms of execution and storage. At a certain emulation timestep, first,
the synaptic input processing module computes the second-order synaptic spike responses with
the arrival of spike inputs. Then, the action potential (spike) generation module updates the mem-
brane voltage with the synaptic responses and generates spikes based on the widely used leaky
integrate-and-fire (LIF) model. At last, the learning module tunes the afferent presynaptic weights
of the associated neuron.

The neuron-gating control module in an LE is activated only during the gating phase. During
the gating phase, at each emulation timestep, the gating module activates after the execution of the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:10 Y. Liu et al.

Learning
Synaptic Input Processing Action Potential (spike) W;_new W,
w; Generation Learning Algorithm [Addr \/le
g Implementation |w,_old .
‘gi W,

Neuron Gating (LE)

S]

s —
s,—| Correlation_based
nhibitory Neuron Gating

S%F(e Inputs . T : S~ Control sel_correlated

S _correlated

Leaky Integrate-and-Fire|

neural_ena

Fig. 8. Hardware implementation of a single digital neuron element (LE or OE). The neuron-gating module
resides only in the LE.

Wi_new

STDP [7 > |Weight
LUT |Wigld| mem

XN T-03-9T

Addr

[}
©
N
(%)
X
IR

- -

Sel[3:0]

Fig. 9. Implementation of the proposed STDP learning algorithm.

spike-generation module to examine the correlation between spikes at two ends of each synapse
and potentially turns off the three other modules within the same neuron during the readout
training and the inference phase. Implementation details of correlation-based neuron gating will
be described in Section 4.2.

LEs and OEs differ on learning module implementation in terms of learning functions, arithmetic
resolutions of digital synapses, and the realization of weight storage. A block memory (BRAM on
FPGAs) inside each OE is used to store all its presynaptic weights. LEs, on the other hand, make use
of distributed RAMs with much smaller sizes, which are realized by the LUTs on FPGAs because
of the lower synaptic bit resolution and the sparser connections in the reservoir.

4 CIRCUIT LEVEL OPTIMIZATION

In this section, we discuss the hardware implementation of the presented STDP mechanism, pro-
posed correlation-based neuron-gating scheme, and tactivity-dependent clock gating for boosting
the energy efficiency of the LSM processors.

4.1 Implementation of STDP

The learning unit in the LE implements the proposed hardware-friendly STDP reservoir-tuning
mechanism, as depicted in Figure 9. We adopt the combinational logic STDP implementation pro-
posed in [4] and further simplify it. In our proposed LSM architecture, the maximum fan-in of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:11

——— e e — ——— e ——
| Sell3:0] ! I
| cnt
| cnti_qq | Correla- cntl |
| tion [F2 |
[. E Counter| - |
[2% Memory|cntss :
I | SEI_I_correIated
I snost
I s&e 1 E I
| Spre 2 g & S_chreIated
. . o |
| . Z=E
I sDre 16 o} * I

Fig. 10. Implementation of the correlation-based neuron-gating control logic.

each reservoir neuron is set to 16, as it results in a good learning performance while maintaining
a reasonable connection density to avoid large overhead. The presynaptic shift registers (i.e., SRy
to SRy6) keep track of the presynaptic spike events and the postsynaptic shift register (i.e., SR¢)
is used for tracking firing events of the neuron itself where the STDP learning unit resides. The
depths of presynaptic and postsynaptic shift registers represent time windows At; for LTP and
LTD, respectively, as defined in Section 2.2.

When a neuron fires, the generated spike is injected into its affiliated shift register from the MSB
and shifted one bit to the right at every biological step of the neural system. The computation of At
for pre- and postsynaptic spike pairs and the update of the associated synaptic weights are executed
in serial. By examining the relative position of spikes in shift registers, the temporal difference At
between presynaptic and postsynaptic spikes can be easily computed. For example, when a “1”
appears on the MSB of SRy, meaning that the postsynaptic neuron just fires, we check from SR;
to SRy4 to identify the presynaptic neurons that fire beforehand. If there is a presynaptic spike to
be paired, the associated At is the location of this presynaptic spike in its shift register. Similarly,
we can capture potential post-before-pre firing pairs if there are spikes appearing on the MSB
of presynaptic shift registers. With At and the current weight value Wi,;4 of the corresponding
synapse, the new synaptic weight Wi,.,, is directly acquired from the predefined STDP LUT.

4.2 Implementation of Correlation-Based Neuron Gating

Figure 10 depicts the correlation-based neuron-gating control unit inside the neuron-gating mod-
ule in Figure 8. The gating phase starts after the reservoir-training phase and the reservoir synapses
maintain the converged weight distribution. The correlation between the presynaptic and postsy-
naptic neuron is monitored whenever spike events appear on either end of an afferent synapse. In
Figure 10, S; represents one of the presynaptic spikes that is currently being checked while S, s,
is the postsynaptic spike. If the spike events differ on the two ends of a synapse, in other words,
either the presynaptic or postsynaptic neuron fires while the other one does not, the comparison
of S; with Sp,s; in leads to a logic “1” for As. Otherwise, a logic “0” is produced. The comparison
result As is then added to the current value of the corresponding correlation counter stored in the
memory. After all input patterns have been fed to the neural processor, in each neuron, the cor-
relation counters are compared with the correlation threshold p;j, defined in Section 2.3 serially.
If a correlation counter is found to be less than p,p, the gating-control signal sel orrelazeq i set
to 1, meaning that a correlated presynaptic neuron with the index corr_idx has been identified.
At the same time, the spike output S correlazeq of the current neuron is wired to the presynaptic

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:12 Y. Liu et al.

Time Time)
o o o o

. LE
t LESIP [LEAPG| o

Step
(Biological
Time)

LESIP |LEAPG

LE
Learning

Global Clock Buffer

t+1
. e o o

-

Flow diagram of reservoir training phase
1 Time Time)
- N e o 0
S .
g8 t LE SIP | LE APGILE Gating
@ o=
a t+1 LE SIP. lLEAPGl LE Gatingl
+ . o o o
Flow diagram of correlation-based gating phase
Time (Time) >
! o o o
StP APG Learning Gating SIP APG Learning a g = Esip | £ oeswe | CF OE
ZSEt APG APG | Leaning
= -
(a) a LE OE OE
t+1 LESIP | apg OESIP | APG | Leaning
+ N e o 0

Flow diagram of readout training phase

(b)

Fig. 11. (a) Clock distribution of the LSM. (b) SIP: Synaptic Input Processing, APG: Action Potential (Spike)
Generation.

spike of the identified presynaptic neuron. With one correlated presynaptic neuron found, other
correlation counters in the same neuron are not checked.

During the readout training and inference phase, a neuron that correlates with one of its presy-
naptic neurons is gated off in the sense that the three major functional modules—i.e., synaptic
input processing module, action potential (spike) generation module, and learning module—are
powered off. As mentioned before, the correlated presynaptic spike input is fed to the output of
this neuron.

4.3 Implementation of Activity-Dependent Clock Gating

Neural processors, including ones that are targeted, are typically memory intensive. The large
amount of storage spanning across the design heavily loads the clock distribution network and
their clock-induced toggling activities take a significant portion of the total power dissipation.
On the FPGA platform, for example, with a global clock driving extensive registers and on-chip
memories through a dedicated clock tree, more than 60% of the total processor dynamic power
would be dissipated by the clock tree and switching activities of the registers and memories.

To this end, we recognize that the architectural and functional regularity of the proposed LSM
processor mentioned in Section 3.2 provides well-defined boundaries within which storage ele-
ments reside. Each stage in the neural process flow (Figure 11(b)) corresponds to a module inside a
neuron element shown in Figure 8, which is active only during its corresponding stage. As shown
in Table 1, the four processing stages in LE and three processing stages in OE take various num-
bers of clock cycles and involve different subsets of the registers and memories. The nature of the
proposed LSM processors allows us to partition the on-chip storage in each neuron into different
groups that are activated at different stages, leading to a fine-grained activity-dependent clock
gating at the granularity of memory elements inside each neuron.

Figure 11(a) illustrates the clock distribution of the proposed LSM processor architecture. As
shown in the figure, memory elements inside each neuron are driven by leaf nodes of the clock
tree. On the FPGA, which is chosen as our demonstration platform, dedicated routing resources

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:13

Table 1. Numbers of FSM States, Memory Element Bits, and Cycle Occupancies Inside Neurons

of States | # of Memory Bits Stage Clock Cycles | Active Bits
Synaptic Input Processing 49 40
LE Action Potential Generation 3 11
14 247
Learning 32 36
Neuron Gating 80 160
Synaptic Input Processing 271 64
OE 10 1,166 Action Potential Generation 3 13
Learning 405 1,089

are responsible for distributing clock signals to ensure that they are delivered across the design
in low skew. In this circumstance, directly gating the clock signal may jeopardize the low-skew
performance ensured by the dedicated clock routing since it involves unconstrained flip flops and
LUTs. With this constraint in mind, instead, we lower the clock power contribution by utilizing
clock-enable (CE) signals to reduce the clock-triggered switching activities within memory ele-
ments. In each neuron, the memory elements inside the same module shown in Figure 11(a) share
a common CE signal. If the memory elements are implemented with registers, this CE signal will
be connected to the local CE signal of corresponding slices, which are the basic logic blocks of the
FPGA. For the memory-implemented storage elements, the CE signals directly enable or disable
the memory clock inputs. For both LEs and OEs, the activated stages of each module span across
several well-defined global FSM states. Therefore, the activity-dependent CE signal of each module
is encoded from the current state of the associated FSM.

One thing to mention is that the on-chip storage partitioning scheme is based on the unique ar-
chitectural and functional characteristics of the proposed LSM processors and largely independent
of the specific implementation platform. Therefore, the proposed activity-dependent clock gating
technique can be exploited by an LSM processor in general and similar power benefits would be
expected across different platforms. Moreover, the above clock-enabling approach does not reduce
the power dissipated by the clock tree itself due to the limitation on FPGA platforms. Since ASIC
implementations are not restricted by the aforementioned FPGA clock-routing constraints, direct
gating on the clock signal may be added on top of the proposed activity-dependent clock-enabling
approach to further optimize power consumption.

5 EXPERIMENTAL SETTINGS AND BENCHMARKS

Using the approaches described in [30], several digital LSMs are set up with different reservoir sizes
and readout synaptic resolutions and simulated by the software simulator to fully judge the per-
formance boost and sparsity resulting from the proposed STDP scheme. A 5-fold cross-validation
scheme is adopted to assess learning performance. When doing the classification, the recognition
decision is made by the LSM right after each testing sample is presented and the class label of the
readout neuron with the highest firing rate is deemed to be the classification decision. In order to
measure the impacts of proposed techniques on hardware overhead and energy consumption, we
implement a representative design of the proposed LSM neural processor architecture with 135
reservoir neurons and 26 readout neurons targeted on the Xilinx Virtex-6 FPGA platform.

In order to thoroughly assess the learning performance and energy benefits of our proposed
neural processor, we choose two nontrivial tasks of speech recognition and image classification.
The first adopted real-world benchmark is a subset of the TI46 speech corpus [24], which contains

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:14 Y. Liu et al.
A B [+] E F
- - -

|
ENEEEE
M N P R
“EL LT) :
-] T 1] v w X "___-"

Fig. 12. (a) The spatiotemporal information of each speech generated by preprocessing. (b) A street scene of
the CityScape dataset.

(a) (b)

Table 2. The Identifiers of the Image Instances Extracted from the CityScape Dataset

Class ID 0 1 2 3 4 5 6 7 8
Object Name | Sidewalk | Building | Wall | Fence | Pole | Traffic Light | Traffic Sign | Vegetation | Terrain
Class ID 9 10 11 12 13 14 15 16 17
Object Name Sky Person | Rider | Car | Train | Motorcycle Bicycle Bus Truck

ten spoken utterances of English letters from “A” to “Z.” There are 260 samples in this benchmark.
The continuous temporal speech signals are preprocessed by Lyon’s ear model [17]; Figure 12(a)
visualizes the input speech patterns acquired after the preprocessing stage. The preprocessed sig-
nals are then encoded into 78 spike trains using the BSA algorithm [23]. Each obtained input spike
train is sent to 32 randomly selected reservoir neurons with a fixed weight randomly chosen to
be 2 or -2; 26 readout neurons are required for this task. To the best knowledge of the authors,
the best reported performance on the same benchmark is 94.6% [10], when another STDP-based
reservoir tuning (i.e., AP-STDP) is used. However, we expect that the design complexity and the
overhead to implement AP-STDP on the hardware can be too costly, as we have a heuristic reser-
voir synaptic weight update scheme and stop-learning condition in the algorithm. Therefore, we
consider the proposed hardware-friendly STDP integrated on our LSM neural processor a better
trade-off between learning performance and hardware implementation complexity.

Figure 12(b) illustrates the second benchmark that we adopted from the CityScape dataset [7],
which contains images of the semantic urban scenes taken in several European cities. We select
18 different types of objects (see Table 2), segment them from the street scene and remap them
into images of size 15 X 15. There are 60 instances for each labeled object, therefore 1080 images
in total in the dataset. For a remapped image, 225 input spike trains are generated from a Poisson
process with the probability proportional to the pixel value of each image. Each input spike train
is connected to 4 randomly chosen reservoir neurons with a fixed weight to be 8 or -8 randomly.
Since only 18 readout neurons are employed for this task, the remaining 8 OEs are turned off when
this task is performed on the implemented hardware LSM processor.

6 EXPERIMENTAL RESULTS

Using the experimental settings in Section 5, we report the learning performance and the benefits
brought by various optimization techniques in terms of hardware overhead and energy dissipation.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:15

(b) old

Fig. 13. The optimal STDP lookup tables for (a) spoken English letter recognition and (b) segmented image
recognition.

Table 3. Performances of LSMs Without STDP Tuning

Spoken Letter Recognition
Bit Resolution of Readout Synapses

Reservoir Size 10 9 8 7 6 5

135 90% 90% 90.4% | 88.8% | 89.2% | 89.2%
90 87.7% | 86.5% | 85.8% | 86.9% | 84.2% | 84.2%
72 84.2% | 83.1% | 83.5% | 82.7% | 82.7% | 80.4%
63 86.9% | 86.2% | 88.1% | 85.9% | 85.8% | 82.7%
45 80.8% | 78.8% | 79.2% | 80.8% | 78.5% | 72.7%

Segmented Image Recognition
Bit Resolution of Readout Synapses

Reservoir Size 10 9 8 7 6 5

135 96.6% | 96.5% | 96.6% | 96.6% | 96.4% | 95.6%
90 96.0% | 96.1% | 95.9% | 95.9% | 95.2% | 95.2%
72 94.9% | 94.9% | 95.2% | 95.1% | 95.3% | 94.9%
63 93.7% | 93.6% | 93.8% | 93.4% | 93.5% | 92.3%
45 92.7% | 92.4% | 92.5% | 92.6% | 92.2% | 90.9%

6.1 Performance Boost of the Hardware STDP

We adopt the optimized continuous STDP curve from [12]. To realize a low-cost hardware
implementation, we digitize the reservoir synaptic weights with 2-bit resolutions and only
consider the weight changes with |At| < 3. Following the proposed offline design flow introduced
in Section 2.2.2, we collect a set of synaptic event data for two adopted benchmarks and design
the optimized hardware-friendly STDP. Figure 13(a) and Figure 13(b) show the optimal weight
discretization levels and visualize the STDP lookup table for the two applications, respectively.
Given the considered design space, the recognition performances of several digital LSMs
without and with the STDP reservoir tuning are reported in Table 3 and Table 4, respectively.
It shows that the best performance of the LSM neural processor without STDP tuning is 90.4%

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:16

Performance Boost (%)

Reservoir Size

I

(=T N

135
go\\ :
72
63 \v,/”g 7
45 9
10

Table 4. Performances of LSMs with STDP Tuning

Y. Liu et al.

Spoken Letter Recognition

Bit Resolution of Readout Synapses
Reservoir Size 10 9 8 7 6 5
135 91.9% | 91.9% | 93.1% | 92.7% | 91.8% | 91.2%
90 86.9% | 87.3% | 88.1% | 88.1% | 86.5% | 85.7%
72 86.1% | 87.3% | 87.7% | 86.9% | 85.8% | 82.7%
63 88.5% | 88.8% | 88.5% | 86.9% | 86.2% | 81.2%
45 82.3% | 81.9% | 81.5% | 81.5% | 81.5% | 74.2%

Segmented Image Recognition

Bit Resolution of Readout Synapses
Reservoir Size 10 9 8 7 6 5
135 97.5% | 97.9% | 97.7% | 97.4% | 97.2% | 96.8%
90 97.3% | 97.0% | 97.1% | 96.9% | 96.8% | 96.0%
72 96.8% | 96.5% | 96.8% | 96.6% | 96.9% | 95.6%
63 94.9% | 95.4% | 95.1% | 94.8% | 95.0% | 93.4%
45 93.8% | 93.9% | 94.0% | 93.9% | 93.2% | 92.2%

Readout Resolution (bit)

(a)

15

05

Performance Boost (%)
-

Reservoir Size

(b)

Readout Resolution (bit)

Fig. 14. The performance boosts for (a) spoken English letter recognition and (b) segmented image recogni-

tion by the proposed STDP scheme over the large design space.

for speech recognition and 96.6% for image recognition. When the STDP tuning applies, the best
performances obtained are improved to 93.1% and 97.9%, respectively. Figure 14 visualizes the
performance boosts achieved by the proposed STDP tuning scheme.

To better illustrate the power of the proposed hardware-friendly STDP mechanism, we compare
it with the naive discretized STDP approach mentioned in Section 2.2.1 and three other LUT-based
rules (C1 to C3), in which the LUT entries are filled randomly. The averaged performance boost
achieved by all considered rules are reported in Figure 15. The results show that the proposed
STDP produces an average performance boost of 2% and 1.2% for speech and image recognition,

respectively, outperforming all other STDP rules.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:17

2
I Proposed
g [INaive
35_ 1.5 [[«
= [Jc2
o . c3
0
w
w
=
0.5
e
o
T
a
o
-0.5

Speech Recognition Image Recognition
Fig. 15. The average performance boosts over the considered design space attained by different STDP rules.

Table 5. The Reservoir Synaptic Reductions of the Proposed STDP

Spoken Letter Recognition
Reservoir Size | 135 90 72 63 45
Reduction 27.2% | 28.9% | 28.7% | 29.2% | 27.5%
Segmented Image Recognition
Reservoir Size | 135 90 72 63 45
Reduction 21.9% | 20.2% | 22.6% | 23.9% | 18.0%

6.2 Sparsity of the Proposed Architecture

In our work, the reservoir sparsity achieved by the proposed STDP rule is measured by the per-
centages of zero-valued synaptic weights after reservoir tuning. The results are shown in Table 5
of LSM processors with various reservoir sizes.

With the proposed reservoir-tuning scheme applied, we examine recognition performance
boosts compared to the baseline of a representative LSM processor with 135 reservoir neurons
and 10-bit readout resolution. Performance boosts with different numbers of bypassed reservoir
neurons are plotted in Figure 16. As seen here, up to 30% of reservoir neurons whose activities are
correlated can be powered off without any dramatic drop in performance, which potentially helps
to improve the overall energy efficiency.

6.3 Hardware Overhead and Energy Consumption of the Proposed Architecture

To illustrate the impacts on hardware overhead and energy consumption of the techniques men-
tioned in this article, we implement three LSM neural processors that incorporate different combi-
nations of the proposed energy optimization techniques. Among them, the “baseline LSM” design
serves as a reference that is constructed with a fixed reservoir and does not implement any en-
ergy optimization technique; the “adaptive LSM” design integrates the hardware-friendly STDP
to form an adaptive reservoir and the activity-dependent clock-gating; the “adaptive LSM with
correlation-based gating” neural processor incorporates all three techniques described in this arti-
cle. Table 6 shows the comparison of hardware resource utilization in terms of slice flip flops (FFs)
and slice LUTs as well as their percentages of usage with respect to the available resources on the
targeted FPGA board. It is evident that with the implementation of proposed techniques, we still

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:18 Y. Liu et al.
2& T
— ~ =X =Speech Recognition
X 15 b % =(&—Image Recognition
E M= =3 X
r.'% IG"--‘ ~
@ ""'-.ﬁ ~
[¥] L -~
5 05 e >
E " o — i
- L — 794..“_““
= I e
g 0 x c\‘
.
-0.5 : " . y L2
0 10 20 30 40 50

Bypassed Neurons (%)

Fig. 16. The performance boosts achieved by the proposed STDP under different levels of gated correlated
neurons.

Table 6. Comparison on Hardware Resource Utilization

FF LUT
Percentage | Percentage
FFs LUTs of Usage of Usage

Baseline LSM 10519 40274 3% 26%
Adaptive LSM 10920 (+3.8%) | 48419 (+20.2%) 3% 32%
Adaptive LSM with | 10938 (+4.0%) | 50317 (+24.9%) 3% 33%
Correlation-Based
Gating

have efficient hardware utilization with respect to the available resources on the targeted FPGA
board.

Based on activity-based simulation data, we compare the dynamic power of the three neural
processors clocked at 100MHz in Table 7. The adaptive LSM with a correlation-based gating neural
processor has 20% reservoir neurons gated, which boosts performance noticeably, by up to 1.2%
over the baseline. Since the baseline LSM processor has a fixed reservoir, the reservoir-training
phase does not apply to it. Note that the power consumption of a correlation-based gating phase
itself is nonnegligible. However, applying the correlation-based gating largely benefits readout
training and classifying power. Considering that readout training takes the majority of training
time, total training energy will be significantly reduced with a smaller readout training power,
which is demonstrated in Table 8.

Using the power data from Table 7, we calculate energy consumption for training and classi-
fying a representative sample (a speech sample of one letter in spoken letter recognition and an
image of one segmented object instance in segmented image recognition) of the three LSM neural
processors. To get good learning performance, 25 epochs of reservoir training and 250 epochs of
readout training are conducted for each sample in both applications. The correlation-based gating
and the inference phase are executed for only one iteration. The training energy is the sum of the
energies consumed for the reservoir training, correlation-based gating and the readout training
stages.

From Table 8, it is clear that the cooperation of three techniques introduced in this article can
effectively reduce the energy consumption of the LSM neural processor considerably. The results

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss

Table 7. Comparison on Average Power Dissipation (Unit: mW)

Spoken Letter Recognition

Correlation-Based
Gating

Reservoir | Correlation | Readout | Classifying
Training Gating Training
Baseline LSM / / 232 249
Adaptive LSM 224 / 186 209
Adaptive LSM with 226 362 166 185

Segmented Image Recognition

Correlation-Based
Gating

Reservoir | Correlation | Readout | Classifying
Training Gating Training
Baseline LSM / / 242 246
Adaptive LSM 222 / 196 193
Adaptive LSM with 214 387 169 170

Table 8. Comparison on the Energy Consumed for Training and
Classifying a Single Speech or Image Sample (Unit: m))

Spoken Letter Recognition

Gating

Correlation-Based

Training Classifying
Baseline LSM 269.51 0.53
Adaptive LSM 216.71(~19.6%) | 0.44(—16.9%)
Adaptive LSM with | 194.09(~28.0%) | 0.39(—26.4%)
Correlation-Based
Gating

Segmented Image Recognition

Training Classifying
Baseline LSM 246.26 0.46
Adaptive LSM 202.78(—17.6%) | 0.36(—21.7%)
Adaptive LSM with | 175.42(—28.8%) | 0.32(—30.4%)

11:19

have shown that the proposed LSM neural processor is up to 29% more energy efficient for training
and 30% more energy efficient for classifying than the baseline.

We are aware that the Xilinx design tools offer a standard intelligent clock gating in general [28]
by preventing logic not used in a given clock cycle from toggling. To better illustrate the energy
efficiency of the proposed clock-gating approach, we apply the standard clock gating provided
by Xilinx ISE and our proposed activity-dependent clock gating, respectively, on top of the LSM
processor that has the adaptive reservoir and the correlation-based gating scheme and compare

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

11:20 Y. Liu et al.

Table 9. Comparison of the Energy Reduction of Standard Clock
Gating and the Proposed Clock Gating

Spoken Letter Recognition

Training Classifying
Standard Clock Gating | 227.31 0.45
Proposed Clock Gating | 194.09 0.39
Segmented Image Recognition
Training Classifying
Standard Clock Gating | 213.76 0.34
Proposed Clock Gating | 175.42 0.32

Note: Both designs have a trainable reservoir and correlation-based neuron gating
(Unit: mJ).

the energy results in Table 9. The results show that our proposed clock gating outperforms the
standard clock gating in energy efficiency. It is reported that the clock gating implemented by the
Xilinx tool applies CE signals only to the weight storage elements (i.e., weight registers in LEs
and BRAMs in OEs), which suggests that the unique regularities of the LSM architecture are not
recognized and exploited. In comparison, the proposed clock-gating method takes full advantage
of the unique architectural and functional properties of the LSM processor and implements fine-
grained CE signals for all storage elements in each neuron.

7 CONCLUSION

In this article, we propose an energy-efficient LSM processor with several novel optimization
techniques from both algorithmic and hardware design perspectives. Among these, a hardware-
friendly STDP approach is presented for refining the reservoir and boosting learning performance;
a correlation-based neuron-gating scheme enables online reconfiguration for improving energy ef-
ficiency with little performance degradation; and an activity-dependent clock gating is leveraged
for additional energy saving. Using two different types of real-world applications to benchmark,
we have shown that the proposed LSM processors achieve efficient reservoir tuning with low-bit
resolution, deliver good learning performance, and outperform the baseline design in terms of
learning performance and energy efficiency on an FPGA platform.

REFERENCES

[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yutaka
Nakamura, Pallab Datta, Gi-Joon Nam, and others. 2015. TrueNorth: Design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 34,
10, 1537-1557.

[2] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R. Chandrasekaran, Jean-Marie
Bussat, Rodrigo Alvarez-Icaza, John V. Arthur, Paul A. Merolla, and Kwabena Boahen. 2014. Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulations. Proceedings of IEEE 102, 5, 699-716.

[3] Guo-qiang Bi and Mu-ming Poo. 2001. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual
Review of Neuroscience 24, 1, 139-166.

[4] Andrew Cassidy, Andreas G. Andreou, and Julius Georgiou. 2011. A combinational digital logic approach to STDP.
In IEEE International Symposium on Circuits and Systems (ISCAS’11). IEEE, 673-676.

[5] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jiirgen Schmidhuber. 2010. Deep, big, simple neural
nets for handwritten digit recognition. Neural Computation 22, 12, 3207-3220.

[6] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the 25th International Conference on Machine Learning. ACM, 160-167.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

Online Adaptation and Energy Minimization for R-SNNss 11:21

(7]

(8]
(9]
[10]
(11]

[12]

(13]
(14]
[15]
(16]
(17]
(18]

(19]

(28]
[29]

(30]

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. 2016. The cityscapes dataset for semantic urban scene understanding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16).

Arfan Ghani, T. Martin McGinnity, Liam P. Maguire, and Jim Harkin. 2008. Neuro-inspired speech recognition with
recurrent spiking neurons. In Artificial Neural Networks-ICANN 2008. Springer, 513-522.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural
Computation 18, 7, 1527-1554.

Yingyezhe Jin and Peng Li. 2016. AP-STDP: A novel self-organizing mechanism for efficient reservoir computing. In
International Joint Conference on Neural Networks (IJCNN’16). IEEE, 1158-1165.

Yingyezhe Jin and Peng Li. 2017. Performance and robustness of bio-inspired digital liquid state machines: A case
study of speech recognition. Neurocomputing 226, 145-160.

Yingyezhe Jin, Yu Liu, and Peng Li. 2016. SSO-LSM: A sparse and self-organizing architecture for liquid state machine
based neural processors. In IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH’16). IEEE,
55-60.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems. 1097-1105.

Andreea Lazar, Gordon Pipa, and Jochen Triesch. 2009. SORN: A self-organizing recurrent neural network. Frontiers
in Computational Neuroscience 3, 23.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proceedings of IEEE 86, 11, 2278-2324.

Mantas Lukos§Evi¢lus and Herbert Jaeger. 2009. Reservoir computing approaches to recurrent neural network train-
ing. Computer Science Review 3, 3, 127-149.

Richard F. Lyon. 1982. A computational model of filtering, detection, and compression in the cochlea. In IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP’82), Vol. 7. IEEE, 1282-1285.

Wolfgang Maass, Thomas Natschlager, and Henry Markram. 2002. Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Computation 14, 11, 2531-2560.

David Norton and Dan Ventura. 2006. Preparing more effective liquid state machines using Hebbian learning. In
International Joint Conference on Neural Networks (IJCNN06). IEEE, 4243-4248.

Subhrajit Roy, Amitava Banerjee, and Arindam Basu. 2014. Liquid state machine with dendritically enhanced read-
out for low-power, neuromorphic VLSI implementations. IEEE Transactions on Biomedical Circuits and Systems 8, 5,
681-695.

Subhrajit Roy and Arindam Basu. 2016. An online structural plasticity rule for generating better reservoirs. Neural
Computation 28, 11 (2016), 2557-2584.

Tim Schoenauer, Sahin Atasoy, Nasser Mehrtash, and Heinrich Klar. 2002. NeuroPipe-Chip: A digital neuro-processor
for spiking neural networks. IEEE Transactions on Neural Networks 13, 1, 205-213.

Benjamin Schrauwen and Jan Van Campenhout. 2003. BSA, a fast and accurate spike train encoding scheme. In
Proceedings of the International Joint Conference on Neural Networks, Vol. 4. IEEE Piscataway, NJ, 2825-2830.

TI46. The TI46 Speech Corpus. Retrieved November 11, 2017 from http://catalog.ldc.upenn.edu/LDC93S9.

David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, and Jan Van Campenhout. 2005. Isolated word recognition
with the liquid state machine: A case study. Information Processing Letters 95, 6, 521-528.

Qian Wang, Yingyezhe Jin, and Peng Li. 2015. General-purpose LSM learning processor architecture and theoretically
guided design space exploration. In IEEE Biomedical Circuits and Systems Conference (BioCAS’15). IEEE, 1-4.

Qian Wang, Youjie Li, and Peng Li. 2016. Liquid state machine based pattern recognition on FPGA with firing-activity
dependent power gating and approximate computing. In IEEE International Symposium of Circuits and Systems
(ISCAS’16). TEEE, 361-364.

Xilink. Xilinx Intelligent Clock Gating. Retrieved November 11, 2017 from https://www.xilinx.com/support/
documentation/application_notes/xapp790-7-series-clock-gating.pdf.

Fangzheng Xue, Zhicheng Hou, and Xiumin Li. 2013. Computational capability of liquid state machines with spike-
timing-dependent plasticity. Neurocomputing 122, 324-329.

Yong Zhang, Peng Li, Yingyezhe Jin, and Yoonsuck Choe. 2015. A digital liquid state machine with biologically in-
spired learning and its application to speech recognition. IEEE Transactions on Neural Networks and Learning Systems
26, 11, 2635—-2649.

Received April 2017; revised July 2017; accepted September 2017

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 1, Article 11. Pub. date: January 2018.

