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Abstract

As technologies change, MG-RAST is adapting. Newly available software is being included to improve accuracy and perform-
ance. As a computational service constantly running large volume scientific workflows, MG-RAST is the right location to per-
form benchmarking and implement algorithmic or platform improvements, in many cases involving trade-offs between spe-
cificity, sensitivity and run-time cost. The work in [Glass EM, Dribinsky Y, Yilmaz P, et al. ISME J 2014;8:1–3] is an example; we
use existing well-studied data sets as gold standards representing different environments and different technologies to evalu-
ate any changes to the pipeline. Currently, we use well-understood data sets in MG-RAST as platform for benchmarking. The
use of artificial data sets for pipeline performance optimization has not added value, as these data sets are not presenting the
same challenges as real-world data sets. In addition, the MG-RAST teamwelcomes suggestions for improvements of the work-
flow.We are currently working on versions 4.02 and 4.1, both of which contain significant input from the community and our
partners that will enable double barcoding, stronger inferences supported by longer-read technologies, and will increase
throughput while maintaining sensitivity by using Diamond and SortMeRNA. On the technical platform side, the MG-RAST
team intends to support the CommonWorkflow Language as a standard to specify bioinformatics workflows, both to facilitate
development and efficient high-performance implementation of the community’s data analysis tasks.
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Introduction

The ever-increasing amount of DNA sequence data [1] has moti-

vated significant developments in biomedical research.

Currently, however, many researchers continue to struggle with

large-scale computing and data management requirements.

Numerous approaches have been proposed and are being pur-

sued to alleviate this burden on application scientists. The

approaches include focusing on the user-interface layer while

relying primarily on legacy technology [2]; reimplementing sig-

nificant chunks of code in new languages [3]; and developing

clean-slate designs [4]. Breakthroughs that appreciably reduce

computational burden, such as Diamond [5], are the exception.

While important, few if any of the solutions contribute to solv-

ing the central problem: data analysis is becoming increasingly

expensive in terms of both time and cost, with reference data-

bases growing rapidly and data volumes rising. In essence,

more and more data are being produced without sufficient re-

sources to analyze the data. All indicators show that this trend

will continue in the foreseeable future [1].

We strongly believe that a change in how the research com-

munity handles routine data analytics is required. While we

cannot predict the outcome of this evolutionary process, scal-

able, flexible and—most important—efficient platforms will, in

our opinion, be part of any ‘new computational ecosystem’. MG-

RAST [6] is one such platform that handles hundreds of submis-

sions daily, often aggregating >0.5 terabytes in a 24h period.

MG-RAST is a hosted, open-source, open-submission plat-

form (‘Software as a Service’) that provides robust analysis of

environmental DNA data sets (where environment is broadly

defined). The system has three main components: a workflow, a

data warehouse and an API (with a Web frontend). The work-

flow combines automated quality control, automated analysis

and user-driven parameter- and database-flexible analysis. The

data warehouse supports data archiving, discovery and integra-

tion. The platform is accessible via a Web interface [7], as well

as a RESTful API [8].

Analysis of environmental DNA (i.e. metagenomics) presents a

number of challenges, including feature extraction (e.g. gene call-

ing) from (mainly unassembled) often lower-quality sequence

data; data warehousing; movement of often large data sets to be

compared against many equally large data sets; and data discov-

ery. A key insight (see Lessons learned, L1) is that the challenges

faced here are distinct from the challenges facing groups that ren-

der services for individual genomes or even sets of genomes [9].

Several hosted systems currently provide services in this

field: JGI IMG/M [10], EBI MG-Portal [11] and MG-RAST [6]. Myriad

stand-alone tools exist, including integrative user-friendly

interfaces [12]; feature prediction tools [5, 13]; tools that ‘bin’ in-

dividual reads using codon frequencies, read abundance and

cross-sample abundance [14–17]; and sets of marker genes

reducing the search space for analysis with associated visual-

ization tools [18]. MG-RAST seeks to select the best-in-class im-

plementations and provide a hosted resource-efficient service

that implements a balance between custom analysis and one-

size-fits-all recipes. The approach taken in MG-RAST to achieve

this goal is by defining parameters late—during download or

analysis—not a priori before running a set of analyses tools. The

analysis workflow in MG-RAST is identical across all data sets,

except for data set-specific operations such as host DNA re-

moval and variations in filtering to accommodate different

user-submitted data types.

While many approaches to metagenome analysis exist, we

chose an approach that allows large-scale analysis and massive

comparisons. The core principle for the design of MG-RAST was

to provide consistent analyses as deep and unbiased as possible

at affordable computational cost. Other approaches, such as

comprehensive genome and protein binning, adopted by IMG/

M, or the profile hidden Markov model-based approaches using

MG-Portal, do add value and provide valuable alternative ana-

lyses. These portals complement each other’s capabilities, and

we routinely share best practices with them. MG-RAST’s strong

suit is handling raw reads directly from a sequencing service. It

has been extended to handle assembled metagenomes and

metatranscriptomes as well. In its current form, however, it

does not support metagenomics assembly or a genome-centric

approach to metagenomics (i.e. binning).

Like many hosted applications (not just in bioinformatics),

MG-RAST started out as a traditional database-oriented system

using largely traditional design patterns. While expanding the

number of machines able to execute MG-RAST workflows, we

learned that data access input and output (I/O) is as limiting a

factor as the processing power or memory (see Lessons learned,

L2 and L8). MG-RAST has rapidly adapted [19–21] to meet the

needs of a growing user community, as well as the changing

technology landscape. We have run MG-RAST workflows on

several computational platforms, including OpenStack [22],

Amazon’s AWS [23], Microsoft’s Azure [24], several local clusters

and even laptops on occasion. In many ways, MG-RAST has

evolved to be the counterpoint to the now-abundant one-offs

that are routinely implemented in many laboratories for se-

quence analysis. It offers reproducibility and was designed for

efficient execution [9] (see Lessons learned, L9).

To date, MG-RAST has processed >295000 data sets from

23000 researchers. As of June 2017, over 1 trillion individual se-

quences totaling >40 terabase pairs have been processed, and the

total volume of data generated is well over half a petabyte of data.

A fair assessment is that we do a lot of the heavy lifting of high-

volume automated analysis of amplicon and shotgun metage-

nomes as well as metatranscriptomes for a large user community.

Currently, only 20% (44000) of the data sets in MG-RAST are pub-

licly available. Data are frequently shared by researchers with

only their collaborators. In future releases, we will introduce a ser-

ies of features to incentivize data publication.

The vast majority of the data sets in MG-RAST represent

user submissions; <3000 are data sets extracted from SRA by

the developers. Determining identity between any two data sets

is far from trivial if available metadata does not provide suffi-

cient evidence—one more reason to incentivize metadata (see

Lessons learned, L7). However, the developers are working

jointly with researchers at EBI to synchronize the contents of

EBI’s ENA with the contents of MG-RAST. Currently, to the best

of our combined knowledge, there is little overlap between the

data sets in SRA/ENA and those in MG-RAST.

The analysis shown in Figure 1 is typical for one class of user

queries. We note that in addition to requesting SEED annotations,

the user might also request annotations from the M5NR sub-

databases (i.e. namespaces) such as KEGG pathways [25], KEGG

orthologues [26], COG [27] and RefSeq [28]. Providing a smart data

product that can be projected with no computation onto other

namespaces (read annotation databases) saves a significant

amount of computational resources (see Lessons learned, L3).

Compared with previous versions of MG-RAST, the latest

version has increased throughput dramatically while using the

same amount of resources: �22 million core-hours annually are

used to run the MG-RAST workflow for user-based submissions.

In addition, the RESTful API has allowed a rethinking and

restructuring of the user interface (different model–view–

2 | Meyer et al.

Downloaded from https://academic.oup.com/bib/article-abstract/doi/10.1093/bib/bbx105/4237462/MG-RAST-version-4-lessons-learned-from-a-decade-of
by Argonne Research Library user
on 02 October 2017



controller pattern) and, most important, the reproducibility of

results using containers.

Implementation

While MG-RAST started as an application built on a traditional

LAMP stack [30], we quickly realized that a single database could

not provide sufficient flexibility to support various underlying

components at the scale required. Instead, we chose to rely on

an open API [8] that provides the ability to change underlying

components as required by scale.

We note that MG-RAST is not a comprehensive analysis tool

offering every conceivable kind of boutique analysis. By making

some data-filtering parameters user adjustable at analysis or

download time, MG-RAST provides flexibility. Via the API, users

and developers can pipe MG-RAST data and results into their

in-house analysis procedures. Figure 1 shows an MG-RAST API

query for sequences with similarities to proteins with the SEED

Subsystem namespace annotation inosine-50 phosphate dehy-

drogenase from the soil metagenome mgm4662210.3 that is

streamed into a filtering and alignment procedure. A key fea-

ture of MG-RAST (see Lessons learned, L6) is its ability to adjust

database match parameter at query time—a function frequently

not recognized by researchers and in some cases missed even

by studies comparing systems [31].

MG-RAST has been designed to treat every data set with the

same pipeline. Given the expected volume and variety of data-

sets, per-data set optimization of parameters has not been a de-

sign goal. The system is optimized for robust handling of a wide

variety of input types, and users can perform optimizations

within sets of parameters that filter the pipeline results. The

automatic setting of, for instance, detection thresholds for dra-

matically different data types and research questions is not the

role of a data analysis platform. While this one-size-fits-all na-

ture of the processing might somewhat limit sensitivity and po-

tentially limit downstream scientific inquiry, these limitations

are counterbalanced by the vast scope of the consistently ana-

lyzed data universe that the uniformly applied workflows and

data management and discovery systems enable researchers to

access. We believe that relying on smart data products that en-

able adjustment of parameters after processing and using cus-

tom downstream analysis scripts more than compensate for

any reduction in sensitivity (see Lessons learned, L3 and L6).

Backend components

Figure 2 shows the current design of the MG-RAST backend

components, using various databases and caching systems

[32–35] as appropriate to support the API with the performance

needed.

Figure 1. MG-RAST data and analysis results can be reused for other purposes. Here, we show amuscle [29] alignment of (the prodigal translations) of filtered sequences from the

following unauthenticated API call: http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue¼10&type¼function&source¼Subsystems&filter¼Inosine-5.

Figure 2. Backend of MG-RAST version 4 using several database systems to enable efficient querying via the API.
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A major criterion for success of the workflow is the ability to

scale to the throughput levels required. Algorithmic changes

(e.g. adoption of Diamond [5]) can help, but the design of the

execution environment—most specifically its portability—is the

single key to scaling (see Lessons learned, L4 and L5).

Access to data

In computational biology, shared filesystems traditionally are

used to serve data to the computational resources. Sharing data

between multiple computers is necessary because the data typic-

ally require more computational resources than a single machine

can provide. Shared filesystems can render data accessible on sev-

eral computers. This approach, however, limits the range of avail-

able platforms or requires significant time for configuring access

or moving data into the platform. In addition, many shared file-

systems exhibit poor scaling performance for science applications.

Slow or inadequate shared filesystems have been observed by al-

most every practitioner of bioinformatics (see Lessons learned,

L2). This situation has forced the use of complex I/O middleware

to transform science I/O workloads into patterns that can scale in

various science domains, including quantum chromodynamics

and astrophysics [36], molecular dynamics [37], fusion science [38]

and climate [39].

Rather than adopting this approach, we conducted a detailed

analysis of our workloads, which revealed that individual compu-

tational units (e.g. cluster nodes) typically use a small fraction of

the data and do not require access to the entire data set.

Consequently, we chose to centralize data into a single point and

access it in a RESTful way, thus providing efficient access while

requiring no configuration for the vast majority of computing sys-

tems. A single object store can support distributed streaming ana-

lysis of data acrossmany computers (see Lessons learned, L8).

The SHOCK object store [40] provides secure access to data

and, most important, to subsets of the data. A computational

client node can request a number of sequence records or sets of

records meeting specific criteria. Data are typically streamed at

significant fractions of line speed, and as results are frequently

returned as indices that are much smaller than the original data

files, writing is extremely efficient. Furthermore, the data are

primarily write-once, which significantly simplifies the design

of the object store with respect to data consistency.

Data in SHOCK is available to third parties via a RESTful API,

and thus, SHOCK supports the reuse of both data and results.

Execution format

Executing workflows across a number of systems requires that

the code be made available in suitable binary form on those

platforms. Among the emerging challenges, reproducibility is a

key problem for scientific disciplines that rely on the results of

sequence analysis at scale without the ability to validate every

single computational step in depth.

Virtual machines have been used to provide stable and port-

able execution environments [41] for a number of years.

However, because of many technical details (e.g. significant

number of binary formats required to cover all platforms) and

significant overhead [42] in execution, containers provide a

more suitable platform for most scientific computations.

In particular, the relatively recent advent of binary Linux

containers (notably, Docker) in computing affords a novel way

to distribute execution environments. Containers reduce the set

of requirements for any given software package to one: a con-

tainer. We have devised a scalable system [43] to execute

scientific workflows across a number of containers connected

only via a RESTful interface to an object store. With increasing

numbers of systems supporting containerized execution [44]

and with compatibility mechanisms [45] emerging to support

legacy installations, Linux containers are quickly becoming the

lingua franca of binary execution environments (see Lessons

learned, L5). As with all of MG-RAST, the recipes for building the

containers (‘Dockerfiles’) are available as open source on github,

and the binary containers are available on DockerHub. The re-

sulting containers are not specific to the MG-RAST systems, and

the binary containers and the recipes are available to third par-

ties for their adoption.

Current MG-RAST workflow

MG-RAST has been used for tens of thousands of data sets. This

extensive use has led to a level of stability and robustness that

few sequence analysis workflows can match.

The workflow (version 4.01) consists of the following logical

steps:

1. Data hygiene

Providing quality control and normalization steps that also

include mate pair merging with ea-utils fastq-join [46–48].

The focus, however, is on artifact removal and host DNA re-

moval [48, 49].

2. Feature extraction

Using a predictor that has been shown to be robust against

sequence noise (FragGeneScan [50]) to predict potentially

protein-coding features, and using a purposefully simple

similarity-based approach to predict ribosomal RNAs using

VSEARCH [51]. The similarity-based predictions use a ver-

sion of M5RNA [52] that was clustered at 70% identity to find

candidate ribosomal RNA sequences.

3. Data reduction

Clustering of predicted features at 90% identity (protein cod-

ing) and 97% (ribosomal RNA). Features overlapping with

predicted ribosomal RNA (rRNA) sequences are removed. For

each cluster, the longest representative is used.

4. Feature annotation

Using similarity-based mapping of cluster representatives

using super nonredundant M5NR [52] with a parallelized

version of BLAT [53] for candidate proteins and ribosomal

RNAs. This creates ‘annotations’ with M5NR database identi-

fiers only.

5. Profile creation

Mapping the M5NR identifiers to several functional name-

spaces (e.g. RefSeq or SEED), hierarchical namespaces (e.g.

COG and Subsystems), pivoting into functional and taxo-

nomic categories, and thus creating a reduced fingerprint

(‘profile’) for each namespace and hierarchy.

6. Database load

Uploading profiles to the various MG-RAST backend data-

bases that support the API.

We note that the approach taken to sequence analysis is dif-

ferent from the state of the art for more or less complete micro-

bial genomes [54].

Using data from MG-RAST

A key problem of current big data bioinformatics is the barrier

to reuse of data and results. Comparing results of an expensive

computational procedure with results from another laboratory

can be problematic if the procedures used are not identical
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(potentially compromising integrity of the study). Another com-

mon approach is to not reuse existing results but to do an ex-

pensive reanalysis of both data sets, thus duplicating the work

originally performed. One key problem with this approach is

that data-driven science is no longer reviewable, as no reviewer

can be expected to retrace the steps of the investigators while

duplicating their computational work. If the data and results

(also intermediate results) were available as reproducible enti-

ties, the problem of data uncertainty and costly recomputations

would disappear.

This exceptional waste of computer time is acceptable de-

fault behavior in a discipline that is rich in computation and

poor in data. In a data-rich ecosystem, however, either the

terms of engagement have to change or the percentage of the

research budgets allocated to computational resources has to

dramatically increase. One of the key goals of MG-RAST is to

provide a wealth of data sets and the underlying analysis

results. Both the Web-based user interface and the RESTful API

make these results accessible. To get closer to our goal of trans-

parent and reproducible MG-RAST data analysis, we already

execute all workflow steps in containers. The missing building

block—which we are currently working on and which will

enable every interested party to easily to execute, compare or

modify our analysis pipeline—is support for the Common

Workflow Language (CWL) [55] in our workflow engine.

We think that producing data with a CWL workflow adds more

value because it adds executable provenance (see Lessons

learned, L4). Executable provenance is critical, as it allows recre-

ation of the results on a wide variety of computational platforms.

Using profiles generated by MG-RAST

Profiles are the primary data product generated by MG-RAST,

and they feed into the Web user interface and the various other

tools. They encode the abundance of entities in a given sample

combining information from several databases. Most important,

profiles include information on the quality of the underlying ob-

servation (e.g. results of sequence similarity search) (Figure 3).

Profiles are a compressed representation of the environmental

samples, allowing large-scale comparisons.

Another critical feature is the ability to adjust matching par-

ameters (e.g. minimal alignment length required for inclusion)

at analysis time, allowing data reuse without the need for

recomputing the profile with different cutoffs. With this ‘smart

data product’, data consumers can switch between reference

databases and parameter sets without recomputing the under-

lying sequence similarity searches (see Lessons learned, L3).

Metadata—making data discoverable

A key component of data reuse is the much-discussed ‘meta-

data’ (or ‘data describing data’). With tens of thousands of data

sets available, the ability to identify the relevance of data sets

has become critical. Approaches include ‘simple’ machine-

readable encoding of data items such as pH, temperature and

location and the use of controlled vocabularies to allow unam-

biguous encoding of, for example, anatomical organs via [56] or

geographical features using the ENVO ontology [57].

Machine-readable metadata, such as the concepts cham-

pioned by the Genomic Standards Consortium (GSC) [58], is key.

GSC metadata is intentionally kept as simple and lightweight as

possible while trying to meet the needs of the data producers and

data consumers. Despite its simplicity, however, for the occasional

user (e.g. a scientist depositing data), it is still cumbersome. Tools

such as Metazen [59] help bridge the gap between data scientists

and occasional users. MG-RAST implements the core MIxS [60]

checklist, as well as all available environmental packages [61].

GSC-compliant, machine-readable markup of data sets at

the time of upload to or deposition in online resources offers a

unique opportunity. Data become discoverable, and analysis is

made easier. MG-RAST incentivizes the addition of metadata by

offering priority access to the compute resources to data sets

with valid GSC metadata (see Lessons learned, L7).

Web user interface

Not all scientists spend a significant fraction of their time on

the command line or enjoy using the command line to solve

their bioinformatics questions. Extracting and displaying the

relative abundance of proteins from proteins classified as part

of the subsystem class ‘Protein Metabolism’from the phylum

Proteobacteria are simple via the Web interface (Figure 4) but re-

quire many command line invocations.

For these users, MG-RAST provides a graphical user interface

(GUI) implemented in JavaScript/HTML5. The GUI provides guid-

ance for nontrivial procedures such as data upload and validation,

data sharing and data discovery, as well as data analysis Figure 5A.

Data export in various formats is also supported Figure 5B.

User’s view of MG-RAST

Every user has a different view of the data in MG-RAST. All users

have access to the public metagenomics data, but shared or pri-

vate data available to the user are linked to the user’s login in-

formation. Each data set has a unique identifier and

information on visibility; until the data are made publicly

Figure 3. MG-RAST profile encoding abundance and matching parameter information as well as information on the observed entities.
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available, temporary identifiers are used to minimize the num-

ber of data sets mentioned in the literature without being pub-

licly available. Figure 6 provides a comparison of public and

private data sets and highlights the sharing and data organiza-

tion capabilities of the platform.

A key design feature of MG-RAST is to allow private data

sets; users are in charge of uploading, sharing and releasing the

data. Once submitted, data are private to the submitting user.

The submitting user is reminded to share their data at their ear-

liest convenience.

In addition to data, the processing pipeline and the data

warehousing, MG-RAST provides an analytical tool set. It is im-

plemented as a user-friendly Web application and consuming

the profiles generated by the MG-RAST pipeline.

Future work

As technologies change, MG-RAST is adapting. Newly available

software is being included to improve accuracy and perform-

ance. As a computational service constantly running large-

volume scientific workflows, MG-RAST is the right location to

perform benchmarking and implement algorithmic or plat-

form improvements, in many cases involving trade-offs be-

tween specificity, sensitivity and run-time cost. The work in

[62] is an example. We use existing well-studied data sets as

gold standards representing different environments and

different technologies to evaluate any changes to the pipeline.

Currently, we use well-understood data sets in MG-RAST as a

platform for benchmarking. The use of artificial data sets for

pipeline performance optimization has not added value be-

cause these data sets do not present the same challenges as

real-world data sets do.

The MG-RAST team welcomes suggestions for improve-

ments of the workflow. We are currently working on versions

4.02 and 4.1, both of which contain significant input from the

community and our partners that will enable double barcoding

and stronger inferences supported by longer-read technologies

and will increase throughput while maintaining sensitivity by

using Diamond and SortMeRNA.

On the technical platform side, the MG-RAST team intends to

support the CWL as a standard to specify bioinformatics workflows,

to facilitate both development and efficient high-performance im-

plementation of the community’s data analysis tasks.

Lessons learned

L1. Analyzing large-scale environmental DNA is different from

genomics.

Because of the absence of high-quality assembled data (in

most projects) and the lack of good models for removing con-

taminations upstream, a metagenomics portal site has to take

over quality control and normalization and become good at it.

Figure 4. Relative abundance of protein functional classes (‘Subsystems’) in Proteobacteria (‘RefSeq Phylum’) displayed as a waterfall diagram for data sets in study

mgp128 as displayed by the version 4.0MG-RAST graphical user interface.

Figure 5. (A) Heatmap and clustering of the occurrence of Corynebacteria in study mgp128 as displayed by the MG-RAST web frontend. (B) Data export options available

for the data and visualization, including sequences and abundance in tabular and JSON format.
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L2. Data I/O is as limiting as CPU and RAM.

A bad tradition in bioinformatics is ignoring the cost of I/O.

Large-scale distributed systems need to model the I/O cost ex-

plicitly and design their solution to include I/O cost as well as

CPU cost.

L3. Using smart data products helps avoid costly recomputa-

tions and empowers downstream tool builders.

The bad tradition of downloading raw data and creating

spreadsheets with results is not sustainable. While bioinfor-

matics is not yet able to fully rely on disseminating data as re-

search objects [63], we need to move toward them.

L4. The use of reproducible workflows such as CWL [55, 64] is

a crucial requirement for any service generating data meant for

reuse.

Providing a detailed, portable, executable recipe for how the

data were generated is important to data consumers. In add-

ition, making the recipes available supports improvement to

the workflows by third parties.

L5. Containers should be used to capture the execution

environment.

Containers (e.g. Linux containers) capture the environment

in a reproducible format.

Workflows without their environment are less than useful.

L6. Data reuse is critical for saving computational cost.

While the reproducibility resulting from reproducible execu-

tion environments is great, providing intermediate results adds

significantly more value to reviewers and fosters reuse of com-

putational results for a variety of purposes such as building

software to improve existing components (e.g. feature pre-

dictors) or use the data for scientific projects.

L7. Metadata is invaluable and should be required.

Users require encouragement to provide metadata. We aim

to make users submit metadata as early as possible, and to

incentivize users, we provide high-quality tools that make

metadata collection easy.

L8. The complexity of shared filesystems should be avoided

whenever possible.

Relying on RESTful interfaces instead of shared filesystems

provides cross-cloud execution capabilities, allowing us to run

on almost any computational platform including the cheapest

computational platform available.

L9. Portals are the right place for performance engineering.

While many biomedical informatics groups are computa-

tionally proficient, the convergence of large-scale processing

and domain expertise makes portal sites an ideal location for

optimization. Running many workflows thousands of times and

providing services to many other groups is a good platform for

accumulating expertise.

Discussion

As more environmental DNA sequence data become available

to the research community, a new set of challenges emerges.

These challenges require a change in approach to computing at

the community level. We describe a domain-specific portal that,

like its European companion system [11], acts as an integrator

of data and efficiently implements domain-specific workflows.

The lessons learned about building scale-out infrastructure

dedicated to executing bioinformatics workflows and the result-

ing middleware systems [19, 20, 40, 59, 65] will benefit both the

community of users and researchers attempting to build effi-

cient sequence analytics workflows.

Reproducible efficient execution of domain-specific workflows

is a central contribution of the MG-RAST system. Provisioning of

data and results via a Web interface and a RESTful API is another

key aspect. Encouraging data reuse by provisioning both data and

Figure 6. Public study (with permanent unique identifier mgp128) and private study set with temporary identifier. A study groups multiple data sets, provides a single

identifier and allows sharing via simply providing an email address for the person the data are to be shared with.
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results (as well as intermediate files) via a stable API is a key func-

tion that serves the community of bioinformatics developers, who

can use precomputed data that are well described by a workflow,

rather than implementing their own (frequently subpar prepro-

cessing steps), and thus can focus on their key mission.

By providing preanalyzed data (using an open recipe that is

available to the community for discussion and improvement),

MG-RAST can help reduce the current ‘method uncertainty’,

where individual data sets analyzed with different analysis

strategies can lead to dramatically different interpretations.

The role of MG-RAST is not one-size-fits-all. Rather than

being the one and only analysis mechanism, MG-RAST is a well-

designed high-performance system on top of an efficient scale-

out platform [66] that can take some of the heavy lifting off the

shoulders of individual researchers. Researchers can add their

own custom boutique analyses at a fraction of the computa-

tional and development cost, allowing them to focus on their

specific problem and thus maximizing overall productivity.

With the state of the art of sequencing technology shifting,

MG-RAST will adapt to extract maximum value by, for example,

explicitly supporting value-added information from longer se-

quences with multiple features, for example for taxonomy call-

ing. We also anticipate that the currently used alignment-based

methods will be supplemented by profile-based methods for

performance reasons within a few years.

Key Points

• Analyzing the growing volume of biomedical environ-

mental sequence data requires cost-effective, reprodu-

cible and flexible analysis platforms and data reuse and

is significantly different from analyzing (almost) com-

plete genomes.
• The hosted MG-RAST service provides a Linux

container-based workflow system and a RESTful API

that allow data and analysis reuse.
• Community portals are the right location for perform-

ance engineering, as they operate at the required scale.
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