
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

RESTRAINING COMPLEXITY AND SCALE TRAITS FOR COMPONENT-BASED
SIMULATION MODELS

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
School of Computing, Informatics and Decision Systems Engineering

699 S. Mill Avenue
Arizona State University, Tempe, AZ, 85281, USA

ABSTRACT

From understanding our distant past to building systems of future, useful simulations demand “efficient
models”. Standing in the way is the twofold challenge of restraining complexity and scale of models. We
describe these traits in view of component-based model development. We substantiate the roles complexity
and scale play in view of modeling formalisms. We propose semi-formal modeling methods, in contrast to
formal, are suitable for qualifying/quantifying model complexity and scale. For structural abstractions, we
use class and component models. For behavioral abstractions, we use activity and state machines models.
Furthermore, we consider these traits from the vantage point of having families of component-based
models. We exemplify the concept and approach by developing families of DEVS models in the COSMOS
framework supporting DEVS-based activity and state machines models that persist in relational databases
across multiple model development sessions. We conclude by discussing future research directions for
real-time and heterogeneous model composability.

1 INTRODUCTION

It is well known that our world is continually growing in scale and complexity. Some early examples
include embedded software systems and computer networks which led to the Internet. Other examples are
manufacturing and logistics enterprises meeting the needs of societies at large. Transportation, medical,
and financial systems also have kept pace with ever more demand and thus have hugely grown in scale and
complexity. In recent years, there is unprecedent ways in which engineered systems are combined with
physical worlds including humans (see Figure 1). It is, therefore, not unexpected for scale and complexity of
systems to have undergone manyfold increases. Of course, dependency of these first-order increases results
in second and higher order increases in system scale and complexity traits. These kinds of “connected
systems” have already led to smart cities demanding driverless vehicles operating in infrastructures rich with
many kinds of sensors, actuators, and decision logics supported by computational and physical systems.
Models are the essential artifacts for exploring and building such systems.

A basic goal for models of systems is that their scales are as small as possible and at the same time
their complexities are minimal as much as possible. However, numerous challenges face state-of-the-art
modeling principles, methods, frameworks, and practices necessary for understanding, analyzing, designing,
implementing, evaluating, and operating Cyber-Physical Systems (Sztipanovits et al. 2011, Lee 2015) and
more broadly, Systems of Systems (Zeigler and Sarjoughian 2012). Development of sophisticated individual
and collective computational, physical and natural systems depends on fundamentally new ways of thinking
about modeling, simulation, model checking, verification, and validation. Among these, modeling is a
principal barrier which affects simulation, model checking, and evaluation. Additional capabilities are needed
in addition to those that have been developed over many years (e.g., (Davis and Bigelow 1998, Fujimoto
2000, Zeigler, Praehofer, and Kim 2000, Ptolemaeus 2014)). This is because concepts and information

Sarjoughian

that underlies all models have to be formulated into structures and behaviors for natural, physical, or
combinations thereof. The conceptual, mathematical, and computational representation of structure and
behavior vary significantly as measured in terms of their scale and complexity traits. Generally these
intertwined traits are bound to different kinds of structures and behaviors. These traits can also be ascribed
to and essential to the models representing existing and futuristic systems of systems which embody
Internet-of-Things, Cyber-Physical Systems, and built and natural environments.

In this paper, restraining complexity and scale of systems is aimed at model development lifecycle.
Complexity and scale from the standpoint of simulation and model-checking engines are peripherally
considered. Similarly complexity and scale for developing the experiments (e.g., Experimental Frame
(Zeigler, Praehofer, and Kim 2000)) required for evaluating models (i.e., verification and validation)
is examined from the vantage point of formal, visual, and persistence component-based structural and
behavioral modeling applied to set-theoretic DEVS simulation (Wymore 1993)(Zeigler, Praehofer, and Kim
2000). These are exemplified using DEVS-SUITE (ACIMS 2015b, Kim, Sarjoughian, and Elamvazhuthi
2009) and COSMOS (ACIMS 2015a, Sarjoughian and Elamvazhuthi 2009) frameworks. We do not directly
consider cases where the complexity and scale of simulation models undergo huge changes during execution.

Figure 1: Models as the core artifacts for simulation, model checking, and evaluation activities.

2 Model SCALE AND COMPLEXITY TRAITS

The concepts of scale and complexity are critical in developing models for the kinds of systems shown
in Figure 1. Scale and complexity are intrinsically distinct and are essential for quantifying/qualifying
the power of modeling methods. As key measures of model expressiveness, every theory, methodology,
and framework has scale and complexity traits. There are multiple meanings for scale. In the context
of this paper, scale refers to sizes of some system model or any parts thereof including their properties,
functions, and relations. As a quantitative measurement it can, for example, represent the number of parts
of a model. The number of parts may also be measured as a qualitative measurement when it becomes
impossible or impractical, for example, to count the number of parts or the number of ways the parts
may relate to one another. Broadly, complexity refers to the presence of hidden order in a system with
some well-formed boundary. Complexity may be said to have varying degrees of complicatedness – i.e.,
reducing a system’s complicatedness results in lessening the system’s complexity (Tang and Salminen
2001). Aside from scale, increasing the kinds of parts along with the choices of their relationships directly
affects a system’s complexity. Computational complexity theory classifies the degree of difficulty of finding
solutions to algorithms relative to their scales. Complexity is also considered for software in various ways
(Denvir, Herman, and Whitty 2012). Execution time and storage required to perform computation is one
kind of measurement. Another focuses on difficulty in code development, debugging, testing, and other
related tasks. More generally, architectural complexity can be used to define physical, computational, and
natural systems as illustrated in Figure 1. It is useful to represent architectural complexity in terms of the
following six attributes (Simon 1962, Sarjoughian 2002):

Sarjoughian

• Frequently, complexity takes the form of a hierarchy, whereby a complex system is composed of
interrelated subsystems that have in turn their own subsystems, and so on, until some lowest level
of elementary components is reached.

• The choice of what components in a system are primitive is relatively arbitrary and is largely up
to the discretion of the observer of the system.

• Intra-component linkages are generally stronger than inter-component linkages. This fact has the
effect of separating the high-frequency dynamics of the components - involving the internal structure
of the components - from low-frequency dynamics - involving interaction among components.

• Hierarchic systems are usually composed of only a few different kinds of subsystems in various
combinations and arrangements.

• A complex system that works is invariably found to have evolved from a simple system that worked
... . A complex system designed from scratch never works and cannot be “patched up” to make it
work. One has to start over, beginning with a simple working system.

• Heterogeneity has a direct relationship with a systems level of complexity.

Structure and behavior of any given system are two of its fundamental characteristics. Both scale and
complexity apply to both structure and behavior as shown in Figure 2. Each can be considered to have scales.
Considering systems that have parts and connections, its structural scale can be easily measured. Behavior
of a system may also be quantified. A systems primitive and compound operations can be considered
to represent its behavioral scale. Below, two examples will be detailed in terms of their structures and
behaviors characterized with scale & complexity traits.

As illustrated in Figure 2, structure, behavior, scale, and complexity may relate in a variety of ways to
one another. A simple classification is to relate structure and behavior pairwise with scale and complexity.
Structural and behavioral scale and complexity may be quantitative or qualitative measures. Considering
component-based models, structural scale and complexity can be usually measured quantitatively. Behavioral
scale and Complexity, however, are generally qualitative measures. A system can be small scale and have
low complexity for both its structure and behavior. Many of todays systems, however, are large scale and
have high complexity traits spanning both their structures and behaviors.

Figure 2: System structure and behavior characterized with scale and complexity traits.

2.1 Structure and Behavior Scales

A sensor has a trivial structure (i.e., a glass tube filled with mercury and having a finite set of numbers
printed on it). It also has a simple behavior (i.e., measuring temperature of some material placed in a
device). It has few parts and they do not interact with one another (e.g., the glass tube has no interaction
with the mercury and the measurements on the tube). It has one operation. Its structural scale can be
considered to be three. Its behavioral scale can be considered to be one. It is also obvious that this sensor
has simple structural complexity as well as behavioral complexity.Its structure and behavior have trivial
scale and complexity.

Sarjoughian

A switch in a networked system has many parts (e.g., buffers and a router) with compositional
(sub)structures. Each switch can have several input and output ports connected in a variety of patterns (e.g.,
mesh). Each switch has many tens of parts with numerous connections. For such systems, structural scale
refers to both the number of parts and their connections. Thus, the structural scale and complexity of this
kind of switch is higher than that of the sensor. A switch behaves in many, often complex ways by itself
and as part of a networked system. Behavioral scale of the switch involves those belonging to its parts.
The behaviors of these parts interact with another under strict physical and time restrictions. Although
parts such as buffers and routers behave in a limited number of ways, together they produce many kinds of
complex behaviors. Thus, structures and behaviors of switches and their composition in a network exhibit
high-scale and high-complexity.

2.2 Structure and Behavior Complexities

The sensors structure is simple. Its behavior is also simple. These observations are not surprising given
the sensors structure and behavior scales. As such sensor has trivial structural and behavioral complexity.
In contrast, the switch can have a complex structure depending on its parts and their connections to one
another. Complexity is low for a structure having very few kinds of parts and synthesized using basic
connectors in a uniform pattern such as mesh. If on the other hand the switch has many different types
of parts and they are connected in arbitrary patterns with varying kinds of connectors, complexity is high.
Behavioral complexity of the switch is complex as dispatching of packets arriving from some switches to
other switches depends on conditions of the sending and receiving switches and status of the connectors
between the switches. For example, if packets leave and arrive randomly and at different time instances,
then some packets may have to be stored for later dispatching. As the number of switches increases, the
behavioral complexity – for example, of a 10× 10 network – rapidly grows. Similarly, the number and
type of connectors can cause behavioral complexity to fall or rise.

The above concepts applies to systems such as coupled human-natural systems. Relatively small number
of agents representing humans have complex individual and collective behaviors. Very large landscapes
represented as cellular automata can have simple behaviors. In the domain of Internet-of-Things, computing
platforms having tens of processors have high scale and high complexity traits. Quantifying and qualifying
these traits are especially challenging to better understand, build, and operate heterogeneous systems. As
such, scale and complexity traits for developing heterogeneous component models can be tamed using
state-based and activity-based behavioral modeling methods (OMG 2017), but not in a straightforward
manner using mathematical formalisms

3 MACRO MODEL DEVELOPMENT AND EXECUTION LIFECYCLE

Understanding and predicting the structure and behavior of any non-trivial system of systems require having
a process such as shown in Figure 3. At the core of this process is conceptualization as a collection of
models (abstraction) targeted toward specific goals. Reaching each goal must eventually lead to satisfying
some requirements. The models are needed for simulation, and model-checking. That is to say, certain
models are suitable to be implemented and validated. Implementations for some other models are suitable
for verification. Figure 3 shows each abstraction is necessarily limited in purpose. This can be simply
understood by observing, for example, any mathematical specification. Each abstraction can lend itself
to one of many implementations, which means the abstraction is incomplete and necessarily must be
transformed to one or more other abstractions useful for implementation. Continuing with simulation
and validation stages, developing other abstractions becomes necessary. Similarly, model-checking and
verification demand some other abstractions that can satisfy their interrelated needs.

The macro level model development and execution lifecycle can be divided into two lifecycles. One
has abstraction, implementation, simulation, and validation. Another has abstraction, implementation,

Sarjoughian

model-checking, and verification. For scalable, complex systems, these two processes individually and
together are necessary since neither is sufficient for exploring and building Systems of Systems.

Figure 3: Model development process cycle for simulation and model checking purposes.

4 MICRO MODEL DEVELOPMENT LIFECYCLE

Abstractions for systems can be created using informal, semi-formal, and formal methods. For each there
exist alternative abstractions. For example, the simple classification shown in Figure 4 distinguishes some
of the fundamental different ways of conceptualizing and specifying abstractions. It is useful to note
that the kinds of methods within and across each categories may have no or some direct relationships
to another. For example, a diagram could be a figure that has no (semi-formal or formal) syntax and
semantics. Considering formal methods, some continuous and discrete time models are composed to create
hybrid mathematical abstractions. Similarly, collection of modeling methods such as UML Activity, Class,
Component, and Statecharts are developed to create powerful computational abstractions. (In this paper,
when the scope of discussion is more general, we use State Machines instead of Statecharts.) Furthermore,
semi-formal and formal modeling methods (e.g., UML diagrams and DEV S) are proposed to be used using
meta-modeling framework (e.g., Model-Driven Architecture (MDA) and the Eclipse Modeling Framework).
It is also important to note that to date there exist no complete set of modeling methods that automatically
can specify arbitrary behavior of systems (e.g., Cyber-Physical Systems) with transformation from one of
abstraction to another.

Figure 4: A simple classification for component-based modeling approaches.

4.1 Formal Specifications

There exist a variety of methods for specifying behavior of dynamical systems. One early method is known
as Labelled Transition System (LTS) (Keller 1976). It is specified as 〈S,L,→〉 where S is a set of states, L
is a set of labels, and → is a set of state transitions. The state transitions form a labeled graph consisting

Sarjoughian

of {p `−→ q} where p,q ∈ S, and ` ∈ L. To account for time, Time Automaton (TA) (Alur and Dill 1994)),
a more expressive labeled graph, is proposed. Its specification is 〈Q,K,C,E,q0〉 where Q is a finite set
of states, K is a finite set of actions, C is a finite set of clocks, E ⊆ Q×K×B(C)×℘(C)×Q is a set of
transitions with B(C) being a set of Boolean constraints on clocks, and qo ∈Q being an initial state. Every
edge e = (q,k,g,r,q′) ∈ E where k ∈ ,g ∈ B(C) is a guard condition, and r is a clock reset.

Yet another modeling method is called Parallel Discrete Event System Specification (DEVS) (Zeigler,
Praehofer, and Kim 2000). This specification and its classic predecessor, unlike all other formal methods,
has a concept called elapsed time. As a consequence, state changes are classified into the distinct external and
internal transition functions. The specification 〈Xb,S,Y b,δext ,δint ,δcon f ,λ , ta〉, as in the Labeled Transition
System and Timed Automaton, allows defining state transitions. In this specification, input and output are
events occurring at arbitrary monotonic time instances. There may be some bag of output events (possibly
empty) Y b that can occur only after receipt of bag of input events (possibly empty) Xb. The external
transition function δext is specified as Q×Xb → Q where Q = (s,e),s ∈ S,e ∈ ta(s), internal transition
function δint) is specified as Q→Q, the output function λ is defined as Q→Y b, and time advance function
ta(s) ∈ℜ

+
[0,∞]. A state transition can be instantaneous or take a positive finite or infinite time period. The

confluent transition function δcon f defines resolving concurrent external and internal transition function
scheduling while guaranteeing the legitimacy property.

The DEVS modeling approach is grounded in the concept of encapsulating behavior of a system through
modular input and output ports. That is, changes to the state of a model is either internal or only through
events received through input ports. Similarly, state of a model is only accessible as events made available
through output ports. Thus, in DEVS and more generally System Theory, unlike LTS and TA, an atomic
model is strictly modular. Each of the LTS, TA, and DEVS modeling methods expressed as a mathematical
structure has its own (operational) semantics which we refrain from describing here (Keller 1976, Alur and
Dill 1994, Zeigler, Praehofer, and Kim 2000). Nevertheless, the main point to keep in mind is that such
mathematical structures must be complemented with execution algorithms that can account for ordering
of state transitions subject to input, state, and output such that their encompassing mathematical structures
are legitimate with respect to the cause-effect principle, concurrency, and monotonic passage of time.

A key observation to make is that encapsulation and IO modularity are key in taming scale and
complexity traits. This is possible because both the size (i.e., scale) and details (i.e., complexity) for
the input, state, transition, output, and timing parts can be individually formalized. This leads to taming
scale and complexity arising among these parts. In other words, the complexity of the sets, functions, and
relationships that define mathematical structure can be restrained. Scale and complexity of components
structure (sets) and behavior (functions and relationships) are controlled.

The above models serve as basic parts that can be assembled to specify composite (aka as coupled
and networked) models. Considering a set of LT S, they can be coupled with another as 〈(Am)p∈P,F〉
where Ap is a finite set of LT S assigned to a set of concurrent processors P, and F ⊆ Πp∈PSp is a set
of global final states. It is important to note that communication between LT S is abstracted to a set of
channels between processors defined as (m,n),m,n ∈ P. In the DEVS formalism atomic models can be
hierarchically coupled. Such digraph models have strict tree hierarchy where every leaf node is an atomic
model and all other models are coupled models. The mathematical structure for coupled DEVS model CM
is defined as 〈Xb,Y b,D,Md∈D,EIC, IC,EOC〉 where Xb and Y b are input and output event bags, D is a
finite set of unique names for the components contained in the CM, Md∈D the set of all unique atomic and
coupled models contained in the CM, and EIC, IC, EOC are external input coupling, internal coupling,
and external output coupling, respectively. As in the atomic DEVS model, behavior of coupled models is
governed with its own execution algorithm in combination with that of the DEVS atomic model execution
algorithm.

Returning to the scale and complexity traits, they can also be ascribed to coupled models structure
and behavior. Considering the DEVS coupled model, structure refers to its parts, inputs, and output, and
hierarchical structure. Its behavior refers to its couplings as the behavior of coupled models is the result of

Sarjoughian

input to input, output to input, and output to output event exchanges. The number of atomic and coupled
models, levels of hierarchy, and couplings constitute structural scale and complexity. The number and
frequency of event exchanges along with the content of events constitute behavioral scale and complexity.

5 Complexity and Scale Traits of Parallel DEVS Models

Given the above modeling formalisms, we will use DEV S to show scale and complexity traits for atomic
and composite models. We use this modeling formalism with the DEVS-SUITE modeling framework to
define scale and complexity measures for DEVS-based class and component structural models. To define
scale and complexity measures, we use DEVS-based Statecharts and Activity behavioral models with the
COSMO modeling framework. Furthermore, we show scale and complexity traits for family of models
using CoSMoS. Table 1 shows these using structural and behavioral modeling frameworks for quantifying
and qualifying scale and complexity of atomic and coupled Parallel DEVS specifications.

Table 1: Structural and behavioral specification methods & frameworks for DEVS mathematical models.

Type Structure Specifications Behavior Specifications
Model [FRAMEWORK] Model [FRAMEWORK]

Individual Model Class [DEVS-SUITE] Statecharts, Activity [COSMOS]

Family of Models Component [COSMOS] Statecharts, Activity [COSMOS]

5.1 Experimental-Frame-Processor Model

To show complexity and scale traits for component-based models, we detail structures and behaviors of
atomic and coupled Parallel DEVS models shown in Figure 5. A system suitable for exemplifying structures
and behaviors from scale and complexity vantage points (see Figure 2) is a hierarchical coupled model
(named EFP) that has one atomic model and a coupled model. The atomic model is ProcessorQueue
and the coupled model is (ExperimentalFrame). This model has one Generator (GeneratorFixed)
model and one Transducer (Transducer) model. The former generates tasks at fixed time intervals.
The latter measures Turnaround (Ta) and Throughput (T h) for the processor with queue. The structure
and behavior specified for this Experimental-Frame-Processor (named EFP) with its atomic and coupled
models contain all the elements formalized for any DEVS atomic and coupled models. A component view
of this model is developed in the DEVS-Suite (see Figure 5). The EFP model belongs to a family of
models developed with CoSMoS (see Figure 5).

5.1.1 Processor-Queue Model

It is straightforward to define coupled DEVS models given I/O modularity and strict hierarchy. However,
the same cannot be said about atomic models as exemplified with an atomic processor model called
ProcessorQueue having a FIFO queue (see Listing 1). We developed this new mathematical model to
shed light on complexity and scale traits of atomic Parallel DEVS formalism. This processor can handle
arrival and storage of multiple input events received at any given time instance. The queue is used to store
jobs when the processor is busy in processing another job. We note that the queue is one of the state
variables for the ProcessorQueue model. Even though the queue has both structure and behavior, from
the standpoint of the mathematical specification in Listing 1, it is abstracted to a ”state variable” having
q̄,q′ and q′′ values. The queue can have no input event (q̄), one input event (q′), or a finite number of input
events (q′′) at any instance of time. Received input events are added to the end (tail) of either an empty
or a non-empty queue. Given an empty queue, it will have at least one input after receiving any input.
Any processed input is removed from the front (head) of a non-empty queue. A queue with one input (q′)
becomes empty (q̄) once the event is processed in the δext or δint transition functions.

Sarjoughian

OBSERVATION — The structural and behavioral artifacts included or excluded in any semi-formal and
formal modeling method are determining factors for restraining scale and complexity traits. For example,
considering the ProcessorQueue, we can note that operations (i.e., actions add, remove, and query) on
the queue are not explicitly specified. Only the state of the queue, not the queue itself, is represented.
In Parallel DEVS, the what state changes, but not the how to, are specified. The order of state changes
within and between δext and δint transition functions are unspecified. Consequently, operations such as
assignments and functions needed to change the state of the model in the transitions functions cannot be
explicitly specified. It should also be noted that time assignment for each of the transition functions is
defined holistically (i.e., an amount of time is allocated for all the operations that together define a state
change).

Processorqueue = (Xb,S,Y b,δext ,δint ,δcon,λ , ta) where
Xb = {(p,v)|p ∈ IPorts,v ∈ Xin}

IPorts = {“in”} is an arbitrary input port name
Xin =VX is an arbitrary set of input variable names and values

S = {“passive”,“busy”}×ℜ
+∞

>0 ×{q̄,q
′,q′′}

Y b = {(p,v)|p ∈ OPorts,v ∈ Yout}
OPorts = {“out”} is an arbitrary output port name
Yout =VY is an arbitrary set of out variable names and values

δext((phase,σ , q̄),e,((“in”,x1), ...,(“in”,xn))),xi ∈ Xin
= (“busy”, processingTime,q′|q′′) if phase is “passive” and queue is empty

δext((phase,σ ,q′|q′′),e,((“in”,x1), ...,(“in”,xn))),xi ∈ Xin
= (“busy”,σ − e,q′′) if phase is “busy” and queue is not empty

δint(phase,σ ,q′)
= (“passive”,∞, q̄) if phase is “busy” and queue has one input

δint(phase,σ ,q′′)
= (“busy”, processingTime,q′|q′′) if phase is “busy” and queue more than one input

δcon((s, ta(s)),((“in”,x1), ...,(“in”,xn))),xi ∈ Xin) = δext(δint(s),0,((“in”,x1), ...,(“in”,xn))))

λ (phase,σ ,q|q′) = (“out”,y j),y j ∈ Yout , if phase = “busy”

ta(phase,σ ,q′) = ∞ if queue has one input
ta(phase,σ ,q′′) = ℜ

<∞
>0 if queue has more than one input

Listing 1: Atomic processor-queue DEVS model.

5.2 Structural Specifications

The concept of component-based modeling is the basis for realizations of numerous frameworks and tools.
As a semi-formal approach, it complements mathematical abstractions such as those in the previous section
that are too abstract to lend themselves for restraining model complexity and scale traits. This can be seen
by examining, for example, the DEVS, LTS, and TA formalisms. As shown above, developing a simple
model (e.g., EFP) quickly becomes impractical if its scale and/or complexity increase. Considering scale,
it is easy to see as the number of atomic and coupled models grow, it becomes more and more difficult to
know whether the model is constructed correctly. This is not unexpected since mathematical abstractions
do not simply lend themselves to, for example, identifying inconsistencies in a hierarchical coupled DEVS
model. It is also straightforward to see as the behaviors of Processorqueue, GeneratorFixed, and
transducer increase in kind and variation, so does the behavior of EFP. Furthermore, it is necessary

Sarjoughian

to develop a family of models through incremental and/or iterative steps. For example, a model of a
processor without queuing may be initially developed. This model then may be specialized to two different
kinds. One kind processes received tasks in a FIFO discipline while another processes the same tasks in
LIFO discipline. This basic scenario quickly overwhelms the micro model development process shown in
Figure 4.

5.3 Individual Model

The complexity and scale for structures of atomic and composite models can be quantified. Atomic model
structural scale is represented as the number of inputs (Xb), states (S), outputs (Y b). Atomic model structural
complexity is associated with the types of inputs (Xb), states (S), outputs (Y b). The ProcessorQueue has
two input ports, one output port, and three states. The input and output (tasks), in contrast to state, have no
structural complexity. The scale and complexity characteristic for input and output also hold for composite
models. In contrast, queue has simple structural complexity. Composite model structural scale is represented
by the number components (D,Md∈D) and couplings (IC,EIC,EOC). For the ExperimentalFrame
model, it has two components, three (one input and two output) ports, and four (one external input, two
internal, and two external output) couplings. Composite model structural complexity is considered to be
the formation of couplings (feedback and feed-forward) across levels of model hierarchy. The coupled
ExperimentalFrame and EFP models have feed-forward and feedback couplings.

It is also useful to note that Model Driven Architecture lends itself for restraining model complexity
and scale through meta-model abstraction levels known as M3, M2, M1, and M0. A realization of the
DEVS-SUITE (called EMF-DEVS (Sarjoughian and Markid 2012)) for structural modeling has been
proposed and developed using Eclipse different Ecore models that enforce DEVS constraints (e.g., input
data type matching for the external transition function δext , detecting input/output coupling mismatches, and
direct feedback). An advantage of Ecore M1 and M2 meta-models extended from M3 include a disciplined
approach to domain-specific abstraction extended from domain-neutral meta-models. The MDA also
provides a strong basis for generating M0 concrete models. There exist some important similarities and
differences in the kind of structural complexity and scale supported in DEVS-SUITE, COSMOS, and
EMF-DEVS. A discussion on these and their totality for taming model complexity and scale is beyond
the scope of this paper.

5.3.1 Family of Models

The concept of having a disciplined approach to developing families of models instead of adopting ad-hoc
approaches is important for restraining structural scale and complexity traits of models. It is straightforward
to observe that even though modularity of atomic and coupled model components (i.e., input/output ports
and couplings) is necessary, it is insufficient when specialized structures (i.e., components having alternative
input/output ports and couplings and parts) is also needed.

Toward this goal, the Template Model, Instance Template Model, and Instance Model concepts are
introduced in the COSMOS framework. The Template Model is defined to be either primitive or composite
with input/output ports. Every Composite Template Model has a hierarchy of length two. The Instance
Template Model allows any Composite Template Model to have a hierarchy of length greater than two and
specifies multiplicity for Instance Models. The Instance Model defines instantiations of Instance Template
Models. These models conform to the system-theoretic modularity principle. For DEVS, requirements
such as absence of direct-feedback in all models is checked and disallowed. Instance models are generated
by the modeler selecting specializations for primitive and composite Instance Template Models.

The COSMOS unified visual, logical, and persistence modeling framework supports taming structural
model development scale and complexity traits (Sarjoughian and Elamvazhuthi 2009). Both of these traits
can be seen in the EFP model. The tree and component views together enable modelers to develop one or
more kinds of EFPmodels. These visualized models are guaranteed to conform to the Parallel DEVS formal

Sarjoughian

Figure 5: Complementary COSMOS and DEVS-SUITE frameworks for component-based modeling.

models. Moreover, it is important to note that visual and persistence model representations corresponding
to logical model representation have different structural scale and complexity characteristics. For example,
as depicted in Figure 5, in the component view, ports and couplings are straightforward to develop visually
(there are no crossings of couplings; components are placed diagonally) compared with SimView in DEVS-
SUITE (ACIMS 2015b) and other modeling frameworks such as ANYLOGIC (Anylogic 2017), DesignDEVS
(Maleki, Woodbury, Goldstein, Breslav, and Khan 2015), and PTOLEMY II (Ptolemaeus 2014). However,
in COSMOS only one atomic model or one coupled model with its immediate parts can be manipulated
(e.g., adding DEVS Statecharts models for any atomic model) in the component view. Specializations of
atomic/coupled models as well as the family of these models is supported in the tree view.

A fundamental and unique capability of the framework is that models are stored separately in database,
XML, and programming code. All Instance Models are generated automatically and are guaranteed to be
unique relative to their XML partially generated simulation code. The partially generated parallel DEVS
simulation models (referred to as Simulatable models) via the COSMO modeling framework require having
Non-Simulatable models. The essential difference between these kinds of models is that simulatable models,
unlike non-simulatable, strictly conform to the DEVS formalism and execution algorithms. This separation
further helps with taming model complexity and scale traits. The UML modeling methods such as class
and component models are foundational for the DEVS-SUITE. Example, non-simulatable models are bag,
hashmaps, and queue. These models are integral for design and implementation of the atomic model
elements (e.g., state set S, internal transition function δint , time advance function ta(s)) and composition
of hierarchical models.

Given the relational database for a family of models, its structural scale and complexity for atomic or
composite Template Model, Instance Template Model, and Instance Model categories and all their parts
can be determined. The classification of Template Model, Instance Template Model, and Instance Model
with support for visual modeling and persistence is important for restraining scale and complexity of model
development. This extends taming complexity and scale for individual models to families of models. For

Sarjoughian

example, variants of the Experimental-Frame-Processor model known as multi-processing systems are can
be developed (Zeigler, Praehofer, and Kim 2000). In particular, Divide&Conquer, Pipeline, and
Multiserver models can be developed through specializing a coordinator atomic model having
common input/output ports and certain functionalities such as producing outputs. As shown in Figure 5,
three coordinators corresponding to the variants of the Experimental-Frame-Processor can be specified.
The structural complexity and scale of these models are straightforward to find from the model database
repository.

The DEVS-SUITE as a simulator needs an IDE such as Eclipse. Compared with COSMOS, it provides
animation, but allows a restricted tree component view. Hierarchical white/black box coupled models with
atomic model components can be configured to display state information as well as animating message
exchanges between any two atomic and/or coupled models. Although the simulation execution engine is
scalable (e.g., executing many thousands of implemented models), its scale and complexity traits from the
standpoint of developing families of models incrementally and iteratively are as limited as other frameworks.
A variety of factors and, in particular, choice of programming languages and communication style (creating,
sending/receiving, reading, and destroying compound messages as compared with using primitive data type
with global read and write access) can strengthen or weaken model abstractions. Although not shown in
Figure 5, the simulator is equipped with TimeView supporting run-time generation of linear and superdense
time trajectories through independent tracking of input, output, and states for any number of atomic and
coupled models (Sarjoughian and Sundaramoorthi 2015). As such, this simulator lends itself to restraining
scale and complexity simulation model execution, experimentation, and debugging.

5.4 Behavioral Specifications

As in structural modeling, behaviors for dynamical systems may be described using informal, semi-formal,
and formal models. Each of these has its own benefits. Semi-formal visual modeling languages are
attractive, particularly to the domain experts who do not prefer textual description or drawings. Yet others
may prefer to ground their models in mathematics. It is useful to note behaviors for structural models are
coded. However, as systems grow in scale and complexity, code and even pseudo code are not suitable
means for developing abstractions.

The Statecharts (a variant of the UML State Machines) and UML Activity are visual languages for
modeling a systems behavior. They can be used for functions in atomic models and couplings in composite
models. At the heart of the Statecharts is the notion of discrete states and the transitions between any
two states. Parallel DEVS, unlike, Statecharts provides a formal basis for representing and manipulating
time relative to input, output, and state transitions. Statecharts, however, provides a semi-formal visual
language. Neither DEVS nor Statecharts is concerned with persistence modeling (i.e., storing and accessing
models) as defined in COSMOS. The behavioral specifications lacking in atomic and coupled DEVS and
Statecharts are fulfilled using Activity modeling.

5.4.1 Statecharts Specification

Considering DEVS, behavior for any atomic model is defined abstractly in terms of δext ,δint ,δcon f ,λ and ta
functions. In Statecharts, the behavior is specified in terms of specific state changes including the order in
which the changes can occur. Considering δext , any state transition for two states (S), due to arrival of input
events on input ports (Xb), is specified in terms of a guard condition, actions, and time in Statecharts (see
Figure 6). Similarly, any state transition in δint is specified in terms of a guard condition, actions, and time.
Self-state transitions are allowed for both external and internal transition functions. It should be noted that
formal δext and δint do not represent actions and guard conditions. Atomic model state-behavioral scale is
given by the number of elements of the DEVS Statecharts. Atomic model state-behavioral complexity is
given by the number of external and internal transitions into and out of each state, the number of actions

Sarjoughian

per state transition, the number of outputs allowed for each state, the number of concurrent inputs and
outputs, and the number of interleaving of the internal and external state transitions.

Returning to the ProcessorQueue model, its state can be abstracted to be {“passive”,“busy”}
instead of the 3-tuple given in Listing 1. This Statecharts is shown in Figure 6. The state of the
non-simulatable queue is not represented. With this set of states, there are two external and two inter-
nal state transitions (see ProcessorQueueSimple Statecharts). Other behavioral artifacts such as
the number of guard conditions and actions can also be known. Another abstraction for state set is
{“passiveEmptyQueue”,“busyNonEmptyQueue”} where “passiveEmptyQueue” , “passive”× “empty”
and “busyNotEmptyQueue” , “busy”× “notEmpty” are two composite states. For this abstraction, more
state transitions are needed for each of the composite states. With this abstraction, the “passiveEmptyQueue”
can show change from “busy” to “passive” followed by “nonEmpty” to “empty”. Timing for different
state-based behaviors can also be determined. Such different Statecharts reveal both behavioral complexity
and scale traits of atomic models. This is, in part, due to incrementally and iteratively specifying behaviors
where the ProcessorQueueSimple Statecharts has a smaller scale and lower complexity relative to
processorQueueComplex. Since these Statecharts are stored in a database, it is trivial to find their
scale and complexity traits.

For coupled models, behavior is defined in terms of the behaviors for all its atomic models as well as the
EIC, IC, and EOC couplings. It should be noted that hierarchical decomposition cannot cause any changes
in behavior of coupled models, although increasing model hierarchy levels adversely affects the time it
takes to simulate it. Coupled model state-behavioral scale is directly related to those of atomic models.
This is due to strict input/output modularity in DEVS and closure under coupling. This means Statecharts
for atomic models that are coupled together are orthogonal to each other. Coupled model state-behavioral
complexity increases exponentially relative to the frequency of input/input, output/input, and output/output
interactions subject to the structural complexity and scale of atomic and coupled models.

Figure 6: A DEVS Statecharts model for the DEVS atomic processor-queue model.

5.4.2 Activity Specification

Although Statecharts is fundamental for behavioral modeling, it is insufficient, in part, due to limitations in
specifying ordering among actions for the δext and δint transition functions as well as the λ and ta functions.
Unlike Statecharts, Activity models support specifying arbitrary control structures. A DEVS-based Activity
diagram can be used to specify details of the atomic Parallel DEVS model functions (Alshareef, Sarjoughian,
and Zarrin 2016). Its modeling elements include action nodes, input and output pins, object and flow
controls, and expansion regions. These elements are adapted from UML to conform to the semantics (e.g.,

Sarjoughian

receiving multiple input events at an instance of time) of Parallel DEVS formalism. Although activity
modeling can be used for atomic and coupled Parallel DEVS models, it is aimed at atomic models.

Given the formalized ProcessorQueue (see Listing 1), a partial DEVS Activity model is developed
for it (see Figure 7). This activity model is for the external transition function that can receive a bag of
input values via the input port in. Using the decision node DN-2, all input values (tasks) are added to
the FIFO queue q. The ReadValue and add value to q are action nodes. Once all the input values
are stored, one of two possibilities exist. When the phase is passive, the front of the q is read using action
node read value from q. Then, the task is processed using the action node set task. The changes
to phase and sigma state variables are specified using the action nodes SetPhase and SetSigma. The
order of these two actions are inconsequential. When the phase is busy, sigma is updated using the action
node set sigma. The implementation of this external transition function Activity model requires fewer
lines of code compared to the one shown in Listing 2. More elements, including action and decision nodes,
are needed to develop the Activity model for the DEVS-SUITE code shown in Listing 2.

As in the DEVS Statecharts, DEVS activity models are useful for restraining complexity and scale
traits of atomic and composite models. Atomic model activity-behavioral scale is given by the number of
elements of DEVS Activity models. Atomic model activity-behavioral complexity can be given using the
number of decision-making nodes for actions included in feed-forward and feedback sequences of action
and other kinds of nodes. Activity models for external, internal, output, and time advance functions can
have smaller scales and reduced complexity, for example, by excluding unnecessary decision and action
nodes. We note that the behavior in each of the δext ,δint , and λ functions is sequential. As discussed for
taming structural complexity and scale traits, as well as Statecharts, behavior of any coupled model is
derived from its parts and couplings. That is, although Activity models may be used for coupled models,
they do not play a central role, as they do for atomic models, in revealing complexity and scale traits, in
part, given the COSMOS modeling concepts and framework.

Figure 7: An external transition function Activity model for the DEVS atomic processor-queue model.

p u b l i c vo id d e l t e x t (double e , message x) {
/∗ e : e l a p s e d t i m e ; x : a bag o f i n p u t messages ∗ /

i f (p h a s e I s (” p a s s i v e ”)) {
f o r (i n t i = 0 ; i < x . s i z e () ; i ++)

i f (messageOnPor t (x , ” i n ” , i)) {
t a s k = x . g e t V a l O n P o r t (” i n ” , i) ;
q . add (t a s k) ;
h o l d I n (” busy ” , p r o c e s s i n g T i m e) ;

}

Sarjoughian

t a s k = (e n t i t y) q . f i r s t () ;
}
e l s e i f (p h a s e I s (” busy ”)) {

f o r (i n t i = 0 ; i < x . s i z e () ; i ++)
i f (messageOnPor t (x , ” i n ” , i)) {

t a s k = x . g e t V a l O n P o r t (” i n ” , i) ;
q . add (t a s k) ;
s igma = sigma − e ;

} } }

Listing 2: An external transition function implementation for the DEVS atomic processor-queue model.

6 CONCLUSION

Formal modeling methods are aimed at abstract representations of systems. However, the levels of
abstraction in formal models, in general, do not lend themselves for knowing their complexity and scale
traits. Toward overcoming this limitation, we propose complementing them with semi-formal modeling
methods. Complexity and scale characteristics can be defined for semi-formal structural and behavioral
models. This paper shows system-theoretic modeling, supported by MDA design approach and UML
models, can afford developing component-based models that have reduced complexity and smaller scales.
Such models are important for developing simulation for numerous types of systems, and more broadly
Systems of Systems. Considering the DEVS modeling formalisms, models specified using it can be
transformed to structural and behavioral models. In particular, the DEVS Statecharts and Activity models
can represent details that are absent in the atomic and coupled DEVS models. The COSMOS framework is
well-suited for qualifying/quantifying complexity and scale of parallel DEVS models. The former supports
creating families of atomic and composite component models with rich state and action specifications while
conforming to the system theory and specifically the DEVS formalism. Importantly, individual elements
of activity, component, and state machines models can be stored in relational databases, thus enabling
evaluation of complexity and scale traits of simulation models. The latter supports model execution, thus
allowing evaluation of the run-time complexity and scale of models implemented in target simulators. A
simple coupled Parallel DEVS model with its atomic models is used to characterize these traits for class
and component structural models as well as activity and state machines behavioral models. The foundation
developed in this paper for restraining complexity and scale should be applicable to heterogeneous and
real-time component-based models.

ACKNOWLEDGMENTS

This research is partially supported with NSF grants #DEB-1313727 and #CNS-1639227.

REFERENCES

ACIMS 2015a. “CoSMoS”. Available at https://acims.asu.edu/software/cosmos/.
ACIMS 2015b. “DEVS-Suite”. Available at https://acims.asu.edu/software/devs-suite/.
Alshareef, A., H. S. Sarjoughian, and B. Zarrin. 2016. “An Approach for Activity-Based DEVS Model Spec-

ification”. In Proceedings of the Symposium on Model-Driven Approaches for Simulation Engineering,
1–8. SCS.

Alur, R., and D. L. Dill. 1994. “A Theory of Timed Automata”. Theoretical Computer Science 126 (2):
183–235.

Anylogic 2017. Available at https://www.anylogic.com.
Davis, P. K., and J. H. Bigelow. 1998. “Experiments in Multiresolution Modeling (MRM)”. Technical

report, RAND Corp Santa Monica, CA, USA.

https://acims.asu.edu/software/cosmos/
https://acims.asu.edu/software/devs-suite/
https://www.anylogic.com

Sarjoughian

Denvir, T., R. Herman, and R. Whitty. 2012. Formal Aspects of Measurement: Proceedings of the BCS-FACS
Workshop on Formal Aspects of Measurement, South Bank University, London, 5 May 1991. Springer
Science & Business Media.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems. Wiley New York.
Keller, R. M. 1976. “Formal Verification of Parallel Programs”. Comm. of the ACM 19 (7): 371–384.
Kim, S., H. S. Sarjoughian, and V. Elamvazhuthi. 2009. “DEVS-Suite: A Simulator Supporting Visual

Experimentation Design and Behavior Monitoring”. In Proceedings of the Symposium on Theory of
Modeling and Simulation-DEVS Integrative M&S, 29–36. SCS.

Lee, E. A. 2015. “The Past, Present and Future of Cyber-Physical Systems: A Focus on Models”. Sensors 15
(3): 4837–4869.

Maleki, M., R. Woodbury, R. Goldstein, S. Breslav, and A. Khan. 2015. “Designing DEVS Visual Interfaces
for End-User Programmers”. Simulation: Transactions of The Society for Modeling and Simulation
International 91 (8): 715–734.

OMG 2017. “Unified Modeling Language”. Available at http://www.omg.org/spec/UML/.
Ptolemaeus, C. 2014. System Design, Modeling, and Simulation: Using Ptolemy II. http://ptolemy.org/.
Sarjoughian, H. S. 2002. “On the Role of Quality Attributes in Specifying Software/System Architecture

for Intelligent Systems”. In NIST Speical Publication, 429–434: Nat. Inst. of Standards & Technology.
Sarjoughian, H. S., and V. Elamvazhuthi. 2009. “CoSMoS: A Visual Environment for Component-based

Modeling, Experimental Design, and Simulation”. In Proceedings of the International Conference on
Simulation Tools and Techniques, 1–9. ICST.

Sarjoughian, H. S., and A. M. Markid. 2012. “EMF-DEVS Modeling”. In Proceedings of the Symposium
on Theory of Modeling and Simulation-DEVS Integrative M&S, 1–9. SCS.

Sarjoughian, H. S., and S. Sundaramoorthi. 2015. “Superdense Time Trajectories for DEVS Simulation
Models”. In Proceedings of the Symposium on Theory of Modeling and Simulation-DEVS Integrative
M&S, 249–256. SCS.

Simon, H. A. 1962. “The Architecture of Complexity”. Proceedings of the American Philosophical Soci-
ety 106 (6): 467–482.

Sztipanovits, J., X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, B. Goodwine, J. Baras,
and S. Wang. 2011. “Toward a Science of Cyber-Physical System Integration”. Proceedings of the
IEEE 100 (1): 29–44.

Tang, V., and V. Salminen. 2001. “Towards a Theory of Complicatedness: Framework for Complex Systems
Analysis and Design”. In International Conference on Engineering Design, 1–8.

Wymore, A. W. 1993. Model-based Systems Engineering. CRC press.
Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems. Second ed. Academic press.
Zeigler, B. P., and H. S. Sarjoughian. 2012. Guide to Modeling and Simulation of Systems of Systems.

Springer Science.

AUTHOR BIOGRAPHY

HESSAM S. SARJOUGHIAN is an Associate Professor of Computer Science and Computer Engineering
in the School of Computing, Informatics, and Decision Systems Engineering (CIDSE) at Arizona State
University (ASU), Tempe, AZ, and co-director of the Arizona Center for Integrative Modeling & Simulation
(ACIMS). His research interests include model theory, poly-formalism modeling, collaborative modeling,
simulation for complexity science, and M&S frameworks/tools. He is the director of the ASU Online
Masters of Engineering in Modeling & Simulation program in the Fulton Schools of Engineering at ASU.
He can be contacted at sarjoughian@asu.edu.

http://www.omg.org/spec/UML/
http://ptolemy.org/
mailto://sarjoughian@asu.edu

	INTRODUCTION
	Model SCALE AND COMPLEXITY TRAITS
	Structure and Behavior Scales
	Structure and Behavior Complexities

	MACRO MODEL DEVELOPMENT AND EXECUTION LIFECYCLE
	MICRO MODEL DEVELOPMENT LIFECYCLE
	Formal Specifications

	Complexity and Scale Traits of Parallel DEVS Models
	Experimental-Frame-Processor Model
	 Processor-Queue Model

	Structural Specifications
	Individual Model
	 Family of Models

	Behavioral Specifications
	 Statecharts Specification
	 Activity Specification

	CONCLUSION

