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We investigate the effect of mass disorder, temperature, and pressure on the spectral thermal
conductivity of multicomponent crystalline solid solutions via molecular dynamics simulations. The
thermal conductivities of Lennard-Jones based solid solutions with one to five different atomic compo-
nents in the crystalline lattice are simulated at a range of uniaxial strain levels and temperatures. Our
results show that for multicomponent alloys, increasing only the mass impurity scattering by adding
atoms with different masses in the solid solution does not lead to significant changes in the spectral
contributions to thermal conductivity. However, increasing the impurity concentration or changing the
local force-field of the impurity atoms in the solid solution has a relatively significant impact on the
spectral contributions to thermal conductivity. The effect of chemical order in these alloys is shown to
drastically alter the temperature dependence due to the different scattering mechanisms dictating ther-
mal conductivities in the ordered and disordered states. Furthermore, in comparison to a homogeneous
solid, crystalline solid solutions (especially the disordered states) show a reduced pressure dependence
on thermal conductivity, which becomes more prominent as the number of components is increased.
This is attributed to the fact that while anharmonic effects in homogeneous solids lead to the large tem-
perature and pressure dependencies in their thermal conductivities, impurity scattering in solid solu-
tions leads to a largely reduced dependence on pressure and temperature. Published by AIP

Publishing. https://doi.org/10.1063/1.5010337

I. INTRODUCTION

In search of new functional materials, high entropy
materials have attracted much attention due to their unique
mechanical,'™ electrical, and magnetic properties.* These
materials are generally formed by mixtures of at least 5 dif-
ferent elements and demonstrate enhanced configurational
entropy, particularly at high temperatures.” Along with ther-
modynamic stability, these materials have shown improved
strength and toughness (including oxidation resistance at ele-
vated temperatures) due to their microstructure, which makes
them attractive candidates for high temperature, pressure,
and harsh environment applications.® An important factor for
consideration in these applications is the management of
heat and thermal transport properties of multicomponent
materials. In this regard, only a few studies have focused on
studying the lattice thermal conductivity of ternary and qua-
ternary alloys,”” and the effect of high pressure and temper-
ature on the lattice thermal conductivity of multi-atom
component solid solutions has largely been unexplored.

Recently, Rost ef al.'® have demonstrated the ability to
fabricate single phase, crystalline oxide solid solutions with up
to five or six different elements accommodating the lattice. The
crystallographic configuration of their multicomponent solid
solutions, which they refer to as “entropy stabilized oxides,” is
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comprised of an anion sublattice with multiple components fill-
ing up the cation species in a rocksalt configuration. With
respect to these multicomponent solid solutions, we have previ-
ously shown that the phonon thermal transport in non-metallic
crystalline alloys with five (or more) different elemental species
offers the ability to push the limits of traditionally assumed
phonon scattering theories, such as the virtual crystal approxi-
mation (VCA) approaches.'' However, critical questions
regarding the thermal properties of multicomponent solid solu-
tions still remain unanswered, such as: (i) how does the intro-
duction of mass impurities alter the phonon mode properties
and affect the spectral contributions to thermal conductivity,
(ii) how does chemical order-disorder transition in these alloys
dictate the various scattering mechanisms and thus the thermal
conductivities, and lastly, (iii) how do high pressures and tem-
peratures affect the thermal properties of disordered
multicomponent alloys in comparison to homogeneous crystal-
line systems?

Thus, in this study we gauge the effect of mass disorder
on the spectral thermal conductivity and its dependence on
temperature and pressure of multicomponent solid solutions.
We accomplish this by conducting molecular dynamics simu-
lations to predict the thermal conductivities of Lennard-Jones
(LJ)-based solid solutions (with one to five component atoms
in the crystalline system) at a range of uniaxial strain levels
and simulations conducted at different temperatures. We show
that for multicomponent alloys, increasing only the mass
impurity beyond a 2-component alloy by adding atoms with

Published by AIP Publishing.
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TABLE I. Compositions and Lennard-Jones parameters utilized for the various computational domains simulated.

Label Composition Energy parameter (meV) Length parameter (A)
1-component (mu)100% 6 =103 0. = 3.405
2-component (m )(1 A)( Ay £ = 10.3 0. = 3.405
3-component (mu) (12 (Ma) o (mB) & = 10.3 0. = 3.405
4-component (M) (1 (M) 3 (mB) 3 (M) 3 g = 10.3 0. = 3.405
5-component (mu) (1 _y (mA)\/4( B)«/4(’”C)x/4(mD),l/4 g =103 0. = 3.405

& = 8.7 Gu = 3.75
5-component (mass and bond) (mu) (1 (M) 4 (MB) /4 (MC) 14 (MD) 14 enn = 10.3 onn = 3.405

Ehi — 9.5 Ohi = 3.35

different masses in the solid solution does not lead to a signifi-
cant change in the spectral contributions. However, increasing
the impurity concentration or changing the local force-field of
the impurity atoms in the solid solution has a relatively signifi-
cant impact on the spectral contributions to thermal conduc-
tivity. Furthermore, the thermal conductivity of ordered alloys
(comprising a host sublattice) is shown to demonstrate a pro-
nounced temperature dependence in comparison to their disor-
dered counterparts, which is ascribed to the different
scattering mechanisms responsible in dictating thermal con-
ductivities in these alloys. In comparison to a homogeneous
solid, solid solutions (especially in the chemically disordered
state) show reduced pressure dependence as well, which
becomes more prominent as the number of components is
increased. This is attributed to the fact that while anharmonic
effects in homogeneous solids lead to the large temperature
and pressure dependence in thermal conductivity, impurity
scattering in solid solutions leads to a largely reduced depen-
dence on pressure and temperature.

Il. METHODOLOGY

We employ non-equilibrium molecular dynamics
(NEMD) simulations and the recently formulated spectral
analysis technique to study the effect of mass impurities on the
spectral thermal conductivity for a range of pressure and tem-
perature of multicomponent solid solutions. As we are inter-
ested in studying the general effects as opposed to material
specific properties, we employ the widely used Lennard-Jones
(LJ) potential to describe the interatomic interactions. The 6—12
LJ potential is given as U(r) = 4¢[(a/r)"* — (¢/r)®], where U
is the interatomic potential, r is the interatomic separation, and
o and ¢ are the LJ-length and -energy parameters, respectively.
The cutoff distance is set to 2.5¢ for all the simulations and the
time step is set to 1 fs throughout the simulations. All the MD
simulations are performed using LAMMPS. 2

To begin, the length and energy parameters are modeled
for argon with ¢ = 3.405 A and & = 10.3meV, respectively.
The lattice constant is set to ag = 1.56¢ and the atoms are
arranged in a fcc lattice. For all simulations, the size of the
computational domains is 10ap X 10ag x 80ay with periodic
boundary conditions applied in all directions. When conduct-
ing NEMD simulations, periodic boundary conditions are
only applied in the x- and y-directions, whereas fixed bound-
aries with 2 monolayers of atoms at each end are placed in the
z-direction. To accommodate mass impurities in a homoge-
neous crystal, the impurity masses are equally (and randomly)

distributed throughout the host crystalline lattice at the pre-
scribed alloy fraction. For our simulations, the mass of the
host lattice is set to my = 20 gmol ' and the impurity atoms
are introduced at 20 g mol ' mass increments (where impurity
atom masses range from 40 to 100 gmol " and are labeled
ma = 40gmolfl, mp = 60gmolfl, mc = SOgmolfl, and
mp = 100 gmol ") from 2 to 5 different atomic masses com-
prising the impurity atoms distributed in equal amounts. The
impurity alloy concentration, x, and the parameters used for
the various domains are listed in Table I, where “x’ represents
all atomic species. For the 5-component solid solution with
both mass and bond defect, we increase ¢ and decrease ¢ by
15% for the impurity atom interactions in comparison to the
values for the atoms in the host lattice; perturbations of ¢ and ¢
by 15% for the impurity atoms were chosen arbitrarily as
shown in Table I; however, we note that in alloys such as FePt,
the energy parameter can vary as much as ~15% and the
length parameter can vary by as much as ~12%; note, even in
these metallic FePt alloys, the phonon contribution to thermal
conductivity can be non-negligible.”® The interaction parame-
ters between the host and the impurity atoms (ep; and oy,; for
the energy and length parameters, respectively) are determined
by the traditional mixing rule expressions, &n = /émné;i and
oni = (onn + 03i) /2, for the corresponding energy and length
parameters, respectively.'?

The computational domains are equilibrated under the
Nose-Hoover thermostat and barostat;I4 the number of
atoms, volume, and temperature of the simulation is held
constant followed by a isothermal-isobaric ensemble with
the number of particles, pressure, and temperature of the sys-
tem held constant for a total of 2ns at O bar pressure. For the
NEMD simulations, a fixed amount of energy is added per
time step to a warm bath at one end and the equal amount of
energy is removed from a cool bath at the other end. This is
performed with the length of the baths set to 10ay in the
z-direction, and the dynamics are carried out under a micro-
canonical ensemble, or the NVE integration, with the num-
ber of particles (N), volume (V), and energy (E) held
constant. After ~2 ns, a steady-state temperature gradient in
the z-direction is established by averaging the temperature
for atoms in each monolayer for a total of another 5ns.
Examples of the steady-state temperature profiles for a
homogeneous domain with m=20gmol™' and a 5-
component solid solution are shown in Fig. 1(a). These tem-
perature profiles are then used to predict the thermal
conductivity of the various structures by invoking the
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FIG. 1. (a) Time-averaged steady-state temperature profiles for computa-
tional domains consisting of 1 and 5 component alloys as listed in Table I.
The thermal conductivity is determined by dividing the applied heat flux
across the computational domain with the temperature gradient induced as
shown in the figure. (b) Thermal conductivity versus system size in the
applied heat flux direction for the 1- and 5-component solid solutions. A
computational domain with d=43nm is large enough to predict size-
independent thermal conductivities for our structures.

Fourier law, Q = —xdT/0z, where the applied flux is in the
z-direction. To check for convergence of system size on the
thermal conductivity predictions, we simulate computational
domains with varying lengths in the direction of the applied
heat flux. As shown in Fig. 1(b) for 1-component and
5-component structures, a domain size of 80 unit cells
(~43nm) is large enough to predict size-independent ther-
mal conductivities, which suggests that our choice of 10ag
% 10ay x 80aq for the system sizes is computationally rea-
sonable and avoids artifacts due to small system sizes. Along
with the computational domain size, the applied heat flux
does not alter the calculated thermal conductivity as well.

For the spectral contributions to thermal conductivity,
the heat flux is spectrally resolved by the relation,"
0 = J;" 42 4(w), where o is the angular frequency and g(w)
is the spectral heat current. The details of the procedure are
outlined in our previous work in Ref. 16. In general, this heat
current between an atom i and j is proportional to the correla-
tion between the interatomic force F, ;j between the atoms and
the velocities, g, .j(w) o< (F;; - (¥; + ;)), where the brackets
denote steady-state non-equilibrium ensemble average.'’~'”
We tabulate the forces and velocities for the atoms under
consideration for a total of 10ns with 10 fs time intervals
under the NVE integration to calculate the spectrally
resolved heat flux, ¢(w).'® Note, as the dot product of
the forces and velocities includes separate contributions in
the x-, y-, and z-directions, the x- and y-components describe
the in-plane or transverse mode contributions, and the com-
ponent in the z-direction describes the out-of-plane or longi-
tudinal mode contribution to the total heat current. It should
also be noted that the assumption that all the modes experi-
ence the same temperature drop holds for our spectrally
decomposed thermal accumulation calculations. The reader
is referred to Ref. 20 for a detailed NEMD-based approach
that calculates the spectral phonon temperatures and spatial
temperatures of all the individual phonon modes in systems
using more material specific potentials.
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lll. RESULTS AND DISCUSSIONS

Figure 2(a) shows the NEMD-predicted thermal conduc-
tivities for the 2- to 5-component solid solutions for a range
of impurity mass concentrations. It is clear from the figure
that the addition of impurity masses ultimately reduces the
thermal conductivity. However, in accordance with our pre-
vious work, the thermal conductivity of solid solutions
beyond 4 impurity atoms, within uncertainties, is similar for
the entire range of alloy concentrations. It should be noted
that the generality of these results holds for cases with differ-
ent host masses, different percentages of impurity masses
introduced in the host lattice, and different mass increments
of the impurity atoms, whereby adding more impurity atoms
beyond a critical limit does not significantly change the ther-
mal conductivity."' This can be attributed to the fact that the
term proportional to mass disorder [I” in 7' =
8 Tw*/(4nv®) where 8° is the atomic volume, v is the veloc-
ity, k is the wavevector, and w is the frequency] dictating
thermal conductivity of these materials approaches a con-
stant value even with the increase in the number of compo-
nents beyond a certain limit that differ in mass alone.'' To
reduce the thermal conductivity of these alloys even further,
the local strain-field has to be altered. In our case, this can be
achieved via changing the energy or length parameter in the
LJ-potential as mentioned above. As shown in Fig. 2(a), the
thermal conductivity of the 5-component alloys can be low-
ered significantly (even beyond the mass scattering limit) by
perturbing the local strain-field. It is also interesting to note
that the minimum in the thermal conductivity shifts to higher
concentrations as the number of components is increased
beyond the binary alloy. This is consistent with our recent
experimental findings that suggests that a larger difference in
mass and crystallographic properties of the parent materials
results in a more asymmetric thermal conductivity trend with
concentration.”!

To study the effect of mass impurities on the vibrational
properties of the LJ-based alloys, we calculate the density of
states (DOS) of the solid solutions by performing the Fourier
transform of the velocity autocorrelation function.”>*
Figure 2(b) shows the vibrational DOS for a 2-component
alloy (with host lattice set to m=20gmol ' and the impu-
rity atoms set to 7, =40 gmol ') at different alloy concentra-
tions. The shaded area represents the DOS for the host lattice
only. The increase in alloy concentration results in a monoto-
nous shift of the DOS to lower frequencies due to the
increase in the concentration of the heavier impurity atoms
that have a lower cutoff frequency compared to the host lat-
tice. Similarly, in Fig. 2(c), we plot the DOS for the compu-
tational domains with 50% alloy fraction and increasing
number of components from 2 to 5-components for the
impurity masses. The increase in the number of components
by incrementing the mass of the impurity atoms has a similar
effect on the DOS as the spectrum is shifted to lower fre-
quencies with the depletion of high frequency vibrations.
However, it should be noted that for the case of the structure
with the 5-component solid solution with change in the local
force-field, a greater depletion in the high frequency phonons
is observed [see Fig. 2(c)].
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FIG. 2. (a) Thermal conductivity predictions using the NEMD approach for LJ-based solid solutions with 2 to 5 components for a range of alloy fractions at
T=25K. The host lattice has a mass of 20 g mol~' and impurity atoms are inserted at increments of 20 g mol ' from 40 to 100 g mol ~'. For comparison, the
thermal conductivities of these homogeneous systems are also shown. (b) Bulk phonon DOS calculations for a homogeneous crystal with a mass of 20 g mol ™!
(shaded area) along with the DOS for 2-component alloys at differing alloy fractions. (¢) DOS calculations for solid solutions with varying number of compo-

nents at 50% alloy fraction.

In order to study the effect of impurity mass on the spec-
tral contributions to thermal conductivity, we calculate the
heat current accumulation for these structures as discussed
above. Figure 3(a) shows the accumulation for the host lattice
and 2-component solid solutions with varying impurity con-
centrations. For all structures, the largest contribution to ther-
mal conductivity comes from phonons in the mid-frequency
range of the DOS. This is intuitive as these frequencies possess
the largest population of phonons in the structures as shown in
Fig. 2(b). Similar to the host lattice, the 2-component alloys
with various impurity concentrations show ~60% contribution
from transverse modes and ~40% contribution from longitudi-
nal modes. Increasing the concentration of impurities is shown
to slightly shift the accumulation to lower frequencies, which
is in line with the shift in the DOS [Fig. 2(b)].

We also calculate the heat current accumulation for alloys
with increasing number of components for impurity concentra-
tion of 50% as shown in Fig. 3(b). In contrast to the slight shift
in accumulation with increasing impurity concentration,
increasing the number of components has negligible effect on

1.1
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FIG. 3. Normalized thermal conductivity accumulation calculated for (a)
computational domains with 0% to 50% impurity mass of 40 g mol ' in a
host lattice with atomic mass of 20 g mol ' (b) structures with 50% impurity
mass concentration with 2- to 5-component mass impurity alloys. For com-
parison, the heat current accumulation for a structure with 5-component
alloy with mass and bond impurity is also shown (red lines). The contribu-
tions from transverse (dashed lines) and longitudinal (dashed-dotted lines)
modes are also shown.

the spectral contributions to thermal conductivity even though
the DOS shifts to lower frequencies [going from 2 to 5-
component alloys as shown in Fig. 2(c)]. This suggests that the
mean free paths of phonons in these LJ-structures do not signif-
icantly change with the addition of more impurity components
(and therefore the individual contributions from the normal
modes do not change significantly for these alloys) with the
increment of impurity mass scattering alone at a fixed impurity
concentration. However, the spectral contributions to thermal
conductivity can be altered by changing the local force-field of
the impurity atoms by changing the energy and length parame-
ters in the LJ potential. For the 5-component alloy with the
15% reduction in ¢ and 15% increase in g, the spectral contri-
butions to thermal conductivity shift significantly to lower fre-
quencies. These results suggest that mass impurity alone does
not alter the spectral contributions significantly. However, a
change in the local strain-field can cause a drastic alteration to
the spectral contributions.

As seen from the above results, the overall disorder
strength in solid solutions is determined by alloy concentra-
tion, mass ratio, and stiffness ratio. In terms of analytical mod-
els, the virtual crystal approximation (VCA), which treats the
phonon properties of solid solutions as an average property
determined from the individual components, is a widely used
model to explain some of the experimentally determined ther-
mal conductivities of alloys..24_27 In this context, Larkin and
Mcgaughey,?® through detailed lattice dynamics and molecu-
lar dynamics calculations, have shown that the VCA under-
predicts the lifetimes of high-frequency modes for similar LJ-
based binary alloys. Similarly, our spectral heat flux calcula-
tions for the LJ-based alloys suggest that the high-frequency
modes contribute a significant amount to the total heat current.
Therefore, the use of the VCA for these structures can lead to
erroneous results, as pointed out by Larkin and Mcgaughey.*®
However, for more realistic alloys such as SiGe (which are
stiffer in nature as compared to the LJ-based alloys studied in
this work), where the dominant heat carriers are low-
frequency vibrations,”’ the VCA has been shown to be more
appropriate to describe thermal transport since the underpre-
diction of lifetimes of high frequency phonons ultimately does
not have significant impact on the predicted thermal conduc-
tivity.”® We note that our LlJ-based structures are
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fundamentally different than commonly studied alloys with
stiffer bonds and less-anharmonic potentials in which low fre-
quency vibrations could be the dominant heat carriers. Along
these lines, anharmonic interactions are more pronounced in
the LJ-potential, which can give rise to very different tempera-
ture trends in thermal conductivity compared to more realistic
systems such as Si defined by the Stillinger-Weber potential,
which have been shown to be relatively more harmonic in
nature;>° low frequency phonons in the latter contribute much
more significantly to thermal conductivity as compared to the
former (even at high temperatures). Therefore, we caution that
our results presented here should not be directly and quantita-
tively compared to specific material systems with stronger
bonding environments.

Next, we consider the effect of chemical order and disor-
der on the temperature dependent thermal conductivities of
our LJ-based multicomponent solid solutions. To this extent,
we construct computational domains with L1-type configura-
tions. These configurations form a simple 1 x 1 superlattice in
the [001] direction. For these structures, we construct
multicomponent alloys by including the impurity atoms to the
monolayers next to the host lattice, thus ensuring the periodic-
ity and order in the host lattice. The computational domain
with a binary L1y and a 5-component L1, configurations is
shown in Fig. 4(a). For comparison, we have also included the
schematic of the computational domain for our homogeneous
and disordered 5-component -crystalline solid solutions.
Similar to the crystallographic configuration of the entropy
stabilized oxides experimentally realized in Ref. 10 where the
anion sublattice is ordered while the cation sites can accom-
modate multiple components, our structures also include peri-
odicity in the host sublattice (with every other atom is
periodically repeated in the [001] direction). The side view of
the 5-component L1 structure is shown in Fig. 4(b) for clar-
ity. It should be noted that one major difference in the struc-
tures between the entropy stabilized oxides and our LJ-based
solid solutions is that the former is in the rocksalt configura-
tion whereas the latter are fcc crystal structures.

Figure 4(c) shows the NEMD-predicted thermal conduc-
tivities as a function of normalized temperature (with respect

J. Appl. Phys. 123, 015106 (2018)

to the melting temperature of the LJ-based solid) for the L1,
solids with 2- and 5-components. For comparison, we have
included the NEMD results for a homogeneous LJ-argon
(red squares) crystalline domain, and 2-component (blue
circles) and 5-component (green diamonds) alloys in the
disordered crystalline configurations. At low temperatures,
the thermal conductivity of the 2-component L1, alloy dem-
onstrates higher thermal conductivity as compared to its
disordered counterpart (2-component alloy). However, at
higher temperatures, the thermal conductivity of the ordered
2-component alloy surpasses that of its disordered counter-
part. Similarly, the thermal conductivity of the homogeneous
LJ-argon at high temperatures can approach the thermal con-
ductivity of the 2-component alloys. Since the ordered and
disordered states have the same atomic compositions and lat-
tice constant, they possess the same heat capacity and molar
density. Therefore, the difference in their thermal conductiv-
ities mainly arises due to the different scattering mechanisms
and group velocities of the phonons.’

With regard to phonon scattering, the total scattering time
is usually approximated by the Matthiessen’s rule,
Tt = Ty + Timp» Where 7y is the scattering rate due to
(three-phonon) Umklapp scattering and Tiy, is the scattering
due to impurities in the crystal. For disordered alloys, Ty, dic-
tates thermal conductivity across much of the temperature
range while for the homogeneous crystal 7y dictates the ther-
mal conductivity.“*33 Therefore, due to the enhanced role of
1y, and the different dominant scattering mechanisms and
their dependence on temperature, the thermal conductivity of
the ordered alloys (or even the homogeneous case) can be
lower than the disordered state. This can also be partially
attributed to the reduction in the Brillouin zone size in the
ordered alloys (with relatively larger unit cells), which can
increase phonon-phonon scattering rates, as discussed by
Duda er al.®' This is further demonstrated by the 5-component
alloys, where at low temperatures the thermal conductivity of
the ordered (L1, configuration) and the disordered alloys is
similar but as the temperature is increased, the thermal con-
ductivity of the ordered state is lower than that of the 5-
component disordered alloy. Furthermore, at relatively high
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FIG. 4. (a) (In order from top to bottom) Schematics of the homogenous crystal, 5S-component alloy in the disordered state, and 2- and 5-component alloys in the
L1y-type configurations. (b) Side view of the 5-component L1, alloy showing the periodicity in the host lattice (represented by blue atoms with atomic mass of
20 g mol " '; the different colors for the atoms represent the different impurity atoms in the 5-component alloy). (c) Thermal conductivity as a function of tempera-
ture normalized by the melting temperature of LJ-argon (Tiei,Ls argon = 87 K) for the various solid solutions in the ordered and disordered states. The dashed lines
represent inverse power-law fits. For comparison the temperature dependent thermal conductivity of a homogeneous LJ-argon crystal, amorphous LJ argon, and

an amorphous alloy with 4 different atomic components are also shown.
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temperatures, the thermal conductivity of the ordered state
approaches the thermal conductivity of the alloy of impurities
in the amorphous state, which is generally considered as the
theoretical minimum in thermal conductivity.***> We also
include the thermal conductivity of amorphous LJ-argon for
comparison. Note, the dashed lines for the crystalline domains
represent power law fits (x = aT~! + b, where a and b are
variables), which demonstrate the extent of Umklapp domi-
nated thermal conductivity. These observations suggest that
by creating an ordered sublattice (as experimentally realized
in Rost ez al.’s work'?) in a solid solution with multiple com-
ponents, the thermal conductivity can be lowered as much as
the theoretical limit at relatively higher temperatures.

Next, we study the influence of strain on the thermal
conductivities of multicomponent alloys, since strain has an
apparent effect on the spectral thermal conductivity (as sug-
gested by our earlier discussions). For this purpose, we apply
uniaxial strain in the z-direction and perform NEMD simula-
tions at different temperatures. We first consider the effects
of strain and pressure on the thermal conductivity of a homo-
geneous crystal (LJ-argon). Figure 5(a) shows the thermal
conductivity of LJ-argon as a function of temperature and
uniaxial strain. Consistent with prior results on LJ-argon,***°
the thermal conductivity monotonically increases with com-
pression and decreases with tension for the temperature
range shown in Fig. 5(a). Also, the thermal conductivity
monotonically decreases with temperature for all strain lev-
els. However, it is interesting to note that the temperature
dependence is greater at compressive strains due to increas-
ing anharmonicity of the crystal lattice.

Figure 5(b) shows the thermal conductivity dependence
on pressure for 2-, 3-, and 5-component alloys (at impurity
concentrations of 50%) calculated at 17% (square symbols)
and 40% (triangle symbols) of the melting temperature of
the solid solution; the melting temperature of LJ-argon has
been calculated to be ~87K.*” For these multicomponent
alloys, the temperature dependence of thermal conductivity
(for the range of strain levels studied in this work) decreases

J. Appl. Phys. 123, 015106 (2018)

as the number of components increases. This is clear from
the decreasing separation (with increasing number of compo-
nents) of the thermal conductivities between the two temper-
atures shown in Fig. 5(b). Moreover, unlike for the case of
LJ-argon, the weak temperature dependence for the 5-
component alloy at compressive and tensile strains suggests
that scattering due to three-phonon processes and anharmo-
nicity induced Umklapp scattering is not the dominant mech-
anism dictating thermal conductivity for these structures. It
should also be noted that the application of compressive or
tensile strains leads to a drastic shift of the spectral contribu-
tions to higher and lower frequencies, respectively, for the
homogeneous crystal as well as the solid solutions.

Furthermore, to gauge the relative pressure dependence
of thermal conductivity for multicomponent alloys, we nor-
malize the thermal conductivity of our LJ-argon, 2-component
and 5-component solid solutions by their respective ther-
mal conductivities predicted at ambient pressure [as shown
in Fig. 5(c)]. The increment in the number of components
reduces the dependence of thermal conductivity on strain.
For example, at compressive and tensile strains of 6% for
LJ-argon, the thermal conductivity can be increased by
~85% and reduced by ~63%, respectively. However,
this dependence is reduced for the alloys since for the
5-component alloy, at compressive and tensile strains of
6%, the thermal conductivity can be increased by ~50%
and reduced by ~37%, respectively.

For the homogeneous crystals, due to increased anhar-
monicity in the crystal lattice at increased compressive
strains, Umklapp processes dictate thermal conductivity,
whereas, for the disordered solid solutions, increase in anhar-
monicity is overshadowed by the effect of impurity mass
scattering that leads to a reduced pressure dependence of
thermal conductivity for the disordered alloys. It should be
noted that the L1y-type alloys also showed a pronounced
dependence on pressure, similar to the homogeneous crystals
due to Umpklapp dominated scattering mechanisms.
Therefore, from the observations and discussions outlined in
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the preceding paragraphs, it can be confirmed that the incre-
ment in mass scattering by increasing the number of compo-
nents in a disordered crystalline solid solution can lead to a
reduced dependence of thermal conductivity on temperature
and pressure.

IV. CONCLUSIONS

We have investigated the role of mass impurities on the
spectral thermal conductivity (and its dependence on pressure
and temperature) for LJ-based multicomponent solid solutions
via molecular dynamics simulations. Our results suggest that
for multicomponent alloys, increasing only the mass impurity-
based disorder by adding atoms with different masses in the
solid solution does not lead to a significant change in the spec-
tral contributions to thermal conductivity. However, increas-
ing the impurity concentration or changing the local force-
field of the impurity atoms in the solid solution has a relatively
significant impact on the spectral contributions to thermal con-
ductivity. Furthermore, the thermal conductivity of solid solu-
tions comprised of an ordered sublattice for the host atoms
(and impurity atoms randomly distributed) is shown to demon-
strate a pronounced temperature dependence in comparison to
their fully disordered counterparts. We ascribe this to the dif-
ferent scattering mechanisms responsible for dictating thermal
conductivities in ordered vs. disordered solid solutions.
Moreover, in comparison to a homogeneous solid, solid solu-
tions (especially in the disordered state) show a reduced pres-
sure dependence as well, which becomes more prominent as
the number of components is increased. This is attributed to
the fact that while anharmonic effects in homogeneous solids
lead to the large temperature and pressure dependencies of
thermal conductivity, impurity scattering in solid solutions
leads to a largely reduced dependence on pressure and
temperature.
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