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Abstract

We show that the mass of a dark matter halo can be inferred from the dynamical status of its satellite galaxies.
Using nine dark matter simulations of halos like the Milky Way (MW), we find that the present-day substructures
in each halo follow a characteristic distribution in the phase space of orbital binding energy and angular
momentum, and that this distribution is similar from halo to halo, but has an intrinsic dependence on the halo
formation history. We construct this distribution directly from the simulations for a specific halo and extend the
result to halos of similar formation history but different masses by scaling. The mass of an observed halo can then
be estimated by maximizing the likelihood in comparing the measured kinematic parameters of its satellite galaxies
with these distributions. We test the validity and accuracy of this method with mock samples taken from the
simulations. Using the positions, radial velocities, and proper motions of nine tracers and assuming observational
uncertainties comparable to those of MW satellite galaxies, we find that the halo mass can be recovered to within
40%~ . The accuracy can be improved to within ∼25% if 30 tracers are used. However, the dependence of the

phase-space distribution on the halo formation history sets a minimum uncertainty of 20%~ that cannot be reduced
by using more tracers. We believe that this minimum uncertainty also applies to any mass determination for a halo
when the phase-space information of other kinematic tracers is used.

Key words: dark matter – galaxies: dwarf – Galaxy: halo – Galaxy: kinematics and dynamics – methods: numerical –
methods: statistical

1. Introduction

We present a method for estimating the mass of a dark

matter halo from the dynamical status of its satellite galaxies.
In the framework of hierarchical structure formation based on

the concordance cold dark matter ( CDML ) cosmology, the

mass of a dark matter halo is closely related to its many other
properties such as structure, dynamics, and formation history.

In the case of the Milky Way (MW), a number of theoretical

predictions or interpretations of observations, for example, the
baryon fraction (e.g., Zaritsky & Courtois 2017) and the

problem of missing massive satellites (e.g., Boylan-Kolchin

et al. 2011; Wang et al. 2012; Cautun et al. 2015), depend on
the MW halo mass. Various methods have been proposed to

measure this important quantity (see Courteau et al. 2014;

Bland-Hawthorn & Gerhard 2016 for reviews and Wang
et al. 2015 for a comparison of recent measurements).

Although these measurements are roughly consistent, they

result in a factor of ∼3 difference in the estimated MW halo
mass. The scatter might be even larger if systematic

uncertainties are included (Han et al. 2016b; Wang

et al. 2017). Clearly, there is a need for more accurate
methods for determining the MW halo mass.

The MW halo mass can be constrained by the abundances

of certain constituents, such as the baryon fraction (Zaritsky &

Courtois 2017), the total stellar mass (Guo et al. 2011), and
the number of satellite galaxies above a specific threshold

(e.g., Rodriguez-Puebla et al. 2013; Starkenburg et al. 2013;

Cautun et al. 2015). Timing argument is widely used to give
another mass estimator by modeling the expansion of the

Local Group galaxies (Kahn & Woltjer 1959; Li & White
2008; Banik & Zhao 2016; Peñarrubia et al. 2016). Perhaps
the most powerful and direct method for estimating the MW
halo mass is to use dynamical tracers. In this regard, the mass
distribution within ∼100 kpc is reasonably well constrained
by the kinematics of stars (e.g., Xue et al. 2008; Nesti &
Salucci 2013; Huang et al. 2016) or a stellar stream (e.g.,
Gibbons et al. 2014). However, owing to the limited spatial
distribution of these tracers, extrapolation is needed to obtain
the total halo mass, which often depends on the assumed
parametric form for the overall density profile.
The outer region of the MW can be investigated more

directly by using its satellite galaxies, which lie far beyond the
other tracers. However, this approach was limited for a long
time by the small sample size, large uncertainties in distance
estimates, and lack of proper-motion measurement. Fortu-
nately, both the sample size and precision of distance
measurement have increased greatly over the past decade
(see McConnachie 2012 for a recent compilation of observa-
tions7). In addition, with the unprecedented precision of the
Hubble Space Telescope (HST)and the new generation of
ground-based telescopes, proper motions of bright satellites
have been measured (e.g., Piatek et al. 2002, 2003, 2005; also
see Table 1 of Pawlowski & Kroupa 2013 for a summary of
currently available measurements). Consequently, such satel-
lites are fully characterized in the 6D phase space of position
and velocity, and their orbits can be computed assuming a
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potential. Currently, proper motions are available for 12 of the
13 satellite galaxies (the exception being Canes Venatici I)
that are more luminous than L105 and within 300 kpc from
the MW center.

However, unlike stellar tracers, the limited number of
satellite galaxies does not allow direct calculation of the
velocity dispersion profile or rotation curve. Instead, analy-
tical models of the dynamical status or comparisons with
numerical simulations are required. Previous studies using
satellite galaxies considered the orbital energy of Leo I
(Boylan-Kolchin et al. 2013), velocity moments (Watkins
et al. 2010), orbital ellipticity distribution (Barber et al. 2014),
and probability distribution of orbital parameters (Eadie et al.
2015, 2017). These approaches encounter several difficulties.
When the density and velocity anisotropy profiles of the tracer
population are assumed, the inferred mass distribution
depends sensitively on the assumptions (e.g., Watkins
et al. 2010; Eadie et al. 2017), which requires further
systematic study. In addition, analytical methods assume that
all satellites are bound in a steady state with random orbital
phases, which may not hold for all halos. The influence of
deviations from a steady state and halo-to-halo scatter has yet
to be taken into full consideration. Another difficulty is how
to treat observational errors properly, as the measurement
uncertainty differs substantially from satellite to satellite. In
this paper we develop a new method that either avoids or
addresses the above issues in using satellite galaxies to
estimate the MW halo mass.

We base our method on dark matter simulations of MW-like
halos and associate satellite galaxies with subhalos of a
simulated halo. We construct the distribution of subhalos in the
phase space of orbital binding energy and angular momentum
directly from the simulations without assuming a steady state or
any particular form of velocity anisotropy. We also take into
account observational uncertainties of satellite galaxies. We
estimate the halo mass by maximizing the likelihood in
comparing the observed orbital parameters of satellite galaxies
with the phase-space distribution derived from simulations. We
test the validity of this method and investigate its systematics
using mock samples taken from simulations. We also study the
dependence of this halo mass estimator on observational
uncertainties, the number of satellites used, and on halo-to-halo
scatter. While our method is motivated by our wish to improve
the estimate of the MW halo mass, it can be extended to other
MW-like halos as well.

The plan of this paper is as follows. We outline our method
in Section 2 and show how to construct the phase-space
distribution of subhalos from simulations in Section 3. We
discuss systematic tests through mock samples in Section 4 and
give conclusions in Section 5.

2. Method

Our basic assumption is that for a present-day halo of mass
Mh, its substructures have a characteristic distribution
p E L M, h( ∣ ) in the phase space of orbital binding energy E
and angular momentum L (see below for a definition). Then
the unknown mass of a halo can be inferred by comparing the
observed orbital parameters of its substructure tracers with the
phase-space distributions derived from simulations for different
Mh. In practice, dwarf satellite galaxies are the outmost tracers
for the MW. To develop the halo mass estimator, we consider
such satellites as a subset of the surviving subhalos for a halo in

terms of kinematics.8 Hereafter, the simulated halo that provides
the calculated phase-space distribution is referred to as the
template halo. The halo whose mass is to be determined is
referred to as the test halo.
We characterize the orbit in the potential of a halo by the

corresponding binding energy E and angular momentum L per
unit mass. Specifically,
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is the gravitational potential. In the above equation, r0
corresponds to the zero potential point, G is the gravitational

constant, and
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represents the mass exceeding the mean cosmic background,

where rr ( ) is the dark matter density profile of the host halo

and r̄ is the mean cosmic density. We adopt r h1 Mpc0
1= -

and have checked that using r h3 Mpc0
1= - instead makes

little difference in the results.
There are two reasons why we do not use the observable

parameters r v, r, and vt directly, although this alternative seems
to provide more information. First, the E and L of a subhalo are
approximately conserved after its infall into the host halo. They
are less mixed in phase space over time and also less sensitive
to individual merger events that produce halo-to-halo scatter.
Second, because the number of subhalos in the simulations is
finite, the constructed phase space of r v, r, and vt is more
sparse, and therefore more discontinuous. This problem is
mitigated by using the phase space of the corresponding E and
L instead. Hereafter, “phase space” means E–L space.
For a template halo of mass Mh, we construct the phase-

space distribution p E L M, h( ∣ ) directly from the simulations.
Specifically,
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where nsub is the number of selected subhalos, and p E L, subi˜ ( ∣ )

represents the probability density for the ith subhalo to be

“observed” at (E, L). As described in detail in Section 3,

p E L, subi˜ ( ∣ ) serves as the kernel function in the kernel density

estimation to transform the discrete distribution of subhalos in

phase space into a continuous one.
The utility of template halos is greatly extended by the

scaling technique. For the mass range of our interest for the
Milky Way halo, dark matter halos are built up approximately
in a self-similar manner, thus we can scale a halo to a different
mass while keeping the formation history and relaxation status

8
We assume that the orbits of satellites are not subject to significant selection

effects. Satellite samples are usually selected by some luminosity threshold.
Using the data from McConnachie (2012), we have checked that both the space
and radial velocity distributions of the most luminous ( L105> ) 13 MW
satellites agree with those of the nearly complete sample of ∼25 fainter
( L104> ) satellites. This result is consistent with our assumption.
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unchanged. Specifically, the distribution p E L M, h
¢( ∣ ) for a halo

of mass Mh
¢ can be obtained from p E L M, h( ∣ ) by using
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for each of the subhalos in the halo of mass Mh. The subhalo

mass is scaled as m M M mh h¢ = ¢( ) . In this way, we can

construct a family of distributions p E L M, h
¢( ∣ ) for a range of

halo mass Mh
¢ from a single template halo.

To infer the unknown mass of a test halo hosting a set of
satellites with observed r v v, ,r t( ), we calculate (E, L) for each
satellite using the potential of a scaled template halo of mass
Mh
¢ and further compute the likelihood

M p E L Mobs , , 6
k

N

k kh

1

h
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=

( ∣ ) ( ∣ ) ( )

where Nsat is the number of observed satellites, and E L,k k( )

correspond to the kth satellite. The likelihood Mobs h
¢( ∣ ) can be

calculated for a range of template halos scaled to different Mh
¢.

Assuming that the test halo has the same formation history and

relaxation status as the template halos, we can infer the

unknown mass of the test halo by maximizing Mobs h
¢( ∣ ),

which gives the maximum likelihood estimator (MLE) for the

mass

M Margmax obs . 7
M
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h

= ¢
¢

( ∣ ) ( )

This method is illustrated in Figure 1, which shows how
Mobs h
¢( ∣ ) changes with Mh

¢. Template halo A1 in our

simulations, which has a true mass of M M1.6 10h
12» ´ ,

is also used as a test halo, and its most massive nine subhalos
are chosen as satellites, for which mock observations of
r v v, ,r t( ) are made with the fiducial measurement precision (see
Sections 3.3 and 3.4). The colored contours in Figure 1
represent the phase-space distribution constructed from tem-
plate halo A1 by scaling it to M 0.5 10 , 1.5 10h

12 12¢ = ´ ´ ,

and M2.5 1012´ , respectively. The symbols stand for the

mock data on (E, L) for the satellites. Note that the “observed”
r v v, ,r t( ) for each satellite do not change during scaling.
Therefore the mock data on L remain the same, but those on E
change with the potential of the scaled template halo. The
observation points become more bound as Mh

¢ increases. It can
be seen from Figure 1 that of the three Mh

¢ values, the likelihood
of the observations is highest for the middle one, which is also
closest to the true value Mh.
Because the binding energy E of a satellite depends on the

template halo mass Mh
¢, the likelihood Mobs h

¢( ∣ ) cannot be
converted into a straightforward manner into the probability
distribution of the true halo mass even when the prior
distribution of Mh

¢ is known. Nevertheless, we show below
that the MLE Mesti is indeed a good if biased indicator for the
true halo mass. Using Monte Carlo realization of mock
samples, we find that the bias is approximately constant and
define an average bias M Mesti trueh = á ñ over the mock
samples. Consequently, we obtain the bias-corrected estimator
for the halo mass

M M . 8esti esti h=ˆ ( )

The above discussion assumes that the test and template
halos have the same formation history and relaxation status.
However, information like this about the test halo is not readily
available in practice. The lack of such information then
introduces an intrinsic uncertainty into our method. We assess
this uncertainty using nine simulated halos with a wide range of
formation histories in Section 4.

3. Construction of Subhalo Phase-space Distribution

Central to our method is the phase-space distribution
p E L M, h( ∣ ) of subhalos for a template halo of mass Mh. This
distribution is constructed directly from our simulations taking
into account realistic observational uncertainties. The detailed
procedure is described in this section.

3.1. Simulations

In order to have enough substructures within a halo and
resolve them with reasonable details, we use the cosmological
N-body simulation of Jing & Suto (2002) to select nine

Figure 1. Comparison of mock observations with the phase-space distributions constructed from simulations of template halo A1 scaled to different halo masses.
Template halo A1 is also used as a test halo, and its most massive nine subhalos are chosen as satellites for mock observations. Symbols with black border and colored
contours represent mock data and constructed phase-space distributions, respectively. The scaled halo mass and the corresponding likelihood of mock observations are
shown in each panel. It can be seen that of the three cases, the likelihood is highest for the middle one, whose halo mass is also closest to the true value

of M1.6 1012» ´ .
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template halos for high-resolution resimulations. Each of these
halos is required to be relatively isolated at redshift z= 09 so
that its distance to any more massive halo must exceed three
times the sum of the virial radii of both halos. In addition, each
template halo is required to have a mass of approximately

M1.5 1012´ similar to that of the MW. The simulation was

performed in a box of h100 Mpc1- on each side with a parallel

particle-particle-particle-mesh P M3 code using 5123 particles.
A CDML cosmology was adopted with the density parameter

0.3mW = , the cosmological constant 0.7W =L , the Hubble
constant h= 0.67 in units of 100 km s Mpc1 1- - , and the slope
ns= 1 and amplitude 0.98s = of the primordial power
spectrum. While these parameters are not up to date, they are
close to the most recent results from the Planck mission. The
differences in the cosmological parameters have little effect on
the conclusions of this study because our main concern is to
develop a method of estimating halo masses and test its
validity. For each template halo, we use the multiple-mass
method to generate the initial conditions for zooming (Jing &
Suto 2000) and carry out zoom-in resimulations using the
public code Gadget2 (Springel 2005). In the high-resolution
region enclosing a template halo, these simulations have a
particle mass of M105~ (Table 1) and a softening length of

0.15 h kpc1- . We find halos using the standard friends-of-
friends (FoF) algorithm with a linking length b equal to 0.2
times the mean separation of high-resolution particles. For ease
of comparison with results in the literature, we define Mh and
Rh as the mass and radius, respectively, of a spherical region
with a mean density equal to 200 times the critical density of
the universe. The nine template halos have M 1.3h ~ ( –1.6 ´)

M1012 (Table 1) within R 230 kpch ~ at z= 0. As shown in
Figure 2 and Table 1, these halos have very different histories
of mass growth, and therefore cover a wide range of possible
assembly history for an MW-like halo. Lacking the formation
history of a test halo, we must resort to exploring a wide range
of template halos to investigate the uncertainty from halo-to-
halo scatter in our method of halo mass determination.

We use the hierarchical bound-tracing (HBT) algorithm of
Han et al. (2012) to identify subhalos and build merger trees

through time in the simulations. HBT traces the merger
hierarchy of halos and subhalos with a physically motivated
unbinding algorithm, and thus performs reliably even in the
dense inner region of a host halo, which fits our needs very
well. The mass m of a subhalo is defined to be its self-bound
mass. A subhalo can be identified if it contains at least 10
bound particles ( M106~ ). The positions and velocities of
subhalos are essential input to construction of their phase-space
distribution. These quantities are defined in HBT by the center
of mass and bulk velocity of the most bound 25% of the
particles in each subhalo (see Han et al. 2012 for details). The
center of the largest subhalo is taken as the center of its
host halo.
We have checked the completeness of subhalo samples in

the high-resolution region of the zoom-in simulations. As
expected (Han et al. 2016a), within R2 h, the number density
profile of subhalos (including disrupted ones) in any given
infall-mass bin coincides very well with the dark matter density
profile of the host halo. Therefore, the subhalo sample within
R2 h is complete and not affected by the low-resolution
particles.

3.2. Subhalo Sample Selection

As satellite galaxies are intended as the subhalo tracers, we
adopt the following criteria to mimic these tracers in selecting
the subhalos to construct the phase-space distribution for a
template halo.

1. Maximum binding mass in history: m M2 10max
5

h> ´ -

( 300 particles). Subhalos containing only ∼10 particles
are vulnerable to numerical instability. As shown by Han
et al. (2016a), at infall, a subhalo should be at least ∼30
times more massive than the smallest resolved subhalo to
alleviate artificial disruptions. On the other hand, we
would like to keep enough subhalos to have good
statistics. The above relatively low mass threshold is
adopted as a reasonable compromise. We note that
subhalos hosting the bright MW dwarf galaxies were

Table 1

Properties of Template Halos

Halo mp Mh t0.5 t0.8
M105( ) M1012( ) Gyr( ) Gyr( )

A1 0.99 1.58 3.14 1.79

A2 1.11 1.46 6.95 3.58

A3 0.96 1.61 9.21 5.06

A4 0.93 1.60 10.20 3.96

A5 0.96 1.60 10.55 6.65

A6 1.37 1.54 6.93 6.68

A7 1.02 1.55 1.42 1.09

A8 1.05 1.64 9.54 9.13

A9 0.92 1.38 2.71 2.46

Note. The columns are the particle mass mp in the high-resolution region, the

present (z = 0) mass Mh of the template halo, and the lookback times t0.5 and

t0.8 when the halo first reached 50% and 80% of its present mass, respectively.

Figure 2. Growth history of template halos. The solid curves color-coded
A1–A9 show the fraction of the present halo mass as a function of the lookback
time t for the corresponding halos. For reference, the dashed curve shows the

median growth history for halos of M1.5 1012´ in the model of Zhao
et al. (2009).

9
The selection of relatively isolated halos is required by the zoom-in

technique because a close neighbor of low resolution may bring unpredictable
numerical effects in resimulations, while one of high resolution will consume
too much computational time. We confirm in the Appendix that the selection of
relatively isolated halos does not affect our method.
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probably ∼100 times larger than this limit at their infall.
We show below that our method is not very sensitive to
this mass selection.

2. Mass at z= 0: m M100
6 ( 10> particles). This is a

safe lower bound, as MW dwarf galaxies have high mass-
to-light ratios (e.g., Wolf et al. 2010), with the mass
enclosed within 300 pc being M107~ for most of these
satellites (Strigari et al. 2008) and that within the half-
light radius being M5 106´ for the classical dwarf
galaxies (McConnachie 2012). We have checked that
doubling the lower bounds on mmax and m0 changes the
results by only 5%.

3. Distance to host halo center: r40 kpc 300 kpc< < .
This range covers the nine MW satellites with adequate
kinematic data and excludes satellites experiencing strong
tidal disruption due to extreme proximity to the Galactic
Center (GC) (see Section 3.3). As the absolute position of
a subhalo changes with the scaled halo mass, this
criterion makes the selected subhalo sample dependent
on the scaling of a template halo. Consequently, to ensure
completeness of the sample, a scaled template halo must
satisfy R2 300 kpch > , which limits the scaled halo mass

to M M0.35 10h
12> ´ . This lower bound is below the

expected MW halo mass and does not pose any limitation
in practice.

The dots in Figure 3 show the discrete phase-space
distribution of subhalos selected according to the above criteria
for each of the nine template halos in our simulations. These
distributions share a broad similarity, but significant differences
exist. The similarity points to a basic dependence on the halo
mass, while the differences reflect the halo-to-halo scatter that
must be taken into account in our method of halo mass
determination. There appears to be a crude relation between the
dynamical status of subhalos and the formation history of the
host halo: the phase space is more extended, and there are more
unbound subhalos in late-formed halos such as A7 and A9
(Table 1).

3.3. Observational Guidance

A practical application of the method presented in this paper
is to estimate the mass of the MW halo. We use the current
observations of the MW and its satellite galaxies as a guide in
developing the method.

There are 13 satellite galaxies more luminous than L105

within 300 kpc of the GC. Proper motions are available for 12
of these, with the exception being Canes Venatici I (Pawlowski
& Kroupa 2013). We exclude Sextans because of the very large
uncertainty in its proper motion. Canis Major and Sagittarius
are also excluded because they are so close to the GC that they
are experiencing strong tidal disruption. Consequently, nine
satellite galaxies of the MW can be used as subhalo tracers at
present. Of these, the Large Magellanic Cloud (LMC) at
50 2 kpco is the closest to the GC, while Leo I at
258 15 kpco is the farthest (McConnachie 2012).

To develop our method for estimating the mass of a test halo
based on a comparison of the kinematic properties of its
subhalos with the phase-space distributions of template halos,
the most pertinent guidance provided by current observations
of MW satellite galaxies is the number of these tracers with
sufficiently accurate kinematic data and the typical

uncertainties in these data. We adopt the following fiducial
values, which are characteristic of current observations:

1. The number of tracers with adequate kinematic data is

N 9. 9= ( )

2. The relative uncertainty in the distance to the Sun in the
Heliocentric Standard of Rest (HSR) is

r 0.06. 10r HSRs =( ) ( )

3. The measurement error of the radial velocity with respect
to the HSR is

1 km s . 11v HSR
1

los
s = -( ) ( )

4. The precision for the proper-motion components with
respect to the HSR is

0.08 mas yr . 12HSR HSR
1s s= =m m

-
a d

( ) ( ) ( )

The uncertainties r, , ,vr HSRlos
s s s sm ma d

( ) adopted above are
approximately the root mean square values of the current
precisions for luminous MW satellite galaxies (Pawlowski &
Kroupa 2013). Note that the measurement errors of different
observables are independent as they are determined by separate
methods and that the error in proper motion dominates. We also
examine below how our method is affected when different
values from the fiducial ones are used for the number of tracers
and the measurement errors.
The measurement errors are taken into account in construct-

ing the phase-space distribution of subhalos for a template halo.
As we describe in detail in Section 3.4, this is done by making
mock observations of kinematic properties of subhalos in a
frame equivalent to the HSR and then transforming the results
into those with respect to the halo center acting as the GC. To
make this transformation, we need the position and motion of
the Sun in the Galactocentric Standard of Rest (GSR). We
adopt the following distance and velocity of the Sun relative to
the GC (Bland-Hawthorn & Gerhard 2016):

r

U V W

8.2 0.1 kpc,

, , 10, 248, 7 1, 3, 0.5 km s , 13GSR
1

= o
¢ = o -( ) ( ) ( ) ( )

where Ue is the velocity toward the GC, V ¢ is positive in the

direction of Galactic rotation, and We is positive toward the

North Galactic Pole. Note that V ¢ is the net rotation velocity of

the Sun around the GC.
For simplicity, we drop the subscripts “HSR” and “GSR”

below and note that r, , ,vr los
s s s sm ma d

( ) always refer to the

HSR and U V W, ,¢( ) to the GSR.

3.4. Mock Observations

While simulations yield precise values of r v v, ,r t( ) for each
subhalo, we must take observational errors into account when
comparing the corresponding phase-space distributions for
template halos with the kinematic data on the observed satellite
tracers to estimate the unknown mass of a test halo (see
Section 2). To develop the method, we assume that all observed
satellites have the same measurement errors r, ,vr los

s s(

,s sm ma d
). We then make mock observations with these

uncertainties in a frame equivalent to the HSR for all the
selected subhalos of a template halo (see Section 3.2). We also
include the uncertainties in the position and velocity of the Sun

5

The Astrophysical Journal, 850:116 (14pp), 2017 December 1 Li et al.



when transforming the mock data in the HSR into those with
respect to the center of the template halo that serves as the GC.
This procedure results in a smoothed phase-space distribution
of subhalos for the template halo and at the same time accounts
for the measurement errors.

We produce the mock data as follows.

1. Define “GSR”. We first apply a random rotation
(Arvo 1992) to the simulations and require the center of
a template halo to rest at the “GC.” Perhaps a better
practice is to adopt the orientation of the angular
momentum of the inner halo as the “Galactic North”
(e.g., Xue et al. 2008) instead of applying a random
rotation. However, the difference would be very small as
the satellite tracers are far from the GC.

2. Define “HSR”. We set the “Sun” at the point r , 0, 0( )

with velocities U V W, ,¢( ) in the “GSR.” To account

for the uncertainties, we sample re and U V W, ,¢( )

from Gaussian distributions with means and standard
deviations given in Equation (13).

3. Observe subhalos in “HSR”. We “observe” in the “HSR”
the distance, radial velocity, and proper motion of

subhalos according to Gaussian distributions with

standard deviations given in Equations (10)–(12), respec-

tively. The measurement errors are taken to be indepen-

dent of each other as they correspond to separate methods

in real observations.
4. Transform data from “HSR” to “GSR”. We convert the

mock data in “HSR” into r v v, ,r t( ) in “GSR” for each

subhalo, which are then used to calculate the corresp-

onding (E, L). Note that in this step, we adopt the central

values of the “solar” position and velocities in the “GSR.”

Following the above procedure, we make 2000 mock

observations of the ith subhalo of a template halo and obtain

the probability density p E L, subi˜ ( ∣ ) for this subhalo to be

“observed” at (E, L). The quantity p E L, subi˜ ( ∣ ) can be

approximated by a 2D Gaussian distribution:

p E L
S

x y xy
, sub

1

2 1
exp

2

2 1
,

14

i
2

2 2

2p r

r
r

=
-

-
+ -

-

⎛

⎝
⎜

⎞

⎠
⎟˜ ( ∣ )

( )

( )

Figure 3. Discrete phase-space distribution of subhalos for each of the template halos A1–A9. The units of E and L are E GM Rh h h= and L GM Rh h h= ,
respectively. The number n of subhalos in the selected sample is indicated for each halo. Each dot represents a subhalo and is colored according to the local number
density in the phase space, with red indicating higher density and the same color normalization for all halos. The curve is the equidensity contour enclosing half of the
subhalos. The distributions show broad similarity, but also clear differences.
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where

x
E E

E

avg

var
, 15

ij

ij

=
- ( )

( )
( )

y
L L

L

avg

var
, 16

ij

ij

=
- ( )

( )
( )

E L

E L

cov ,

var var
, 17

ij ij

ij ij

r =
( )

( ) ( )
( )

S E Lvar var , 18ij ij= ( ) ( ) ( )

and where Eij and Lij are the results from the jth mock

observation of the ith subhalo. In the above equations, the

average, variance, and covariance refer to operations on j only.

Note that because of the relatively large uncertainties in proper-

motion measurement, the variances cannot be estimated

reliably by analytical error propagation.
Equation (14) shows that accounting for measurement errors

through mock observations turns a discrete point representing
the ith subhalo into a smooth distribution p E L, subi˜ ( ∣ ) in the
phase space. In this procedure, measurement errors also shift
the mean position of the subhalo in the phase space from that
given by the simulations.

3.5. Constructed Subhalo Phase-space Distribution

Repeating the procedure for obtaining the probability density
p E L, subi˜ ( ∣ ) for all the selected subhalos in a template halo of
mass Mh, we construct the corresponding phase-space distribu-
tion p E L M, h( ∣ ) as an average of these probability densities (see
Equation (4)). In general, because the subhalo sample has a
limited size, p E L M, h( ∣ ) may be discontinuous even after
measurement errors are taken into account. The discontinuity
would be even more prominent were measurement errors to
decrease significantly in the future. Our method of halo mass
determination requires a smooth p E L M, h( ∣ ), which can be
obtained conveniently by replacing Evar ij( ) and Lvar ij( ) with

E E Svar varij ij E
2= +~( ) ( ) and L L Svar varij ij L

2= +~( ) ( ) , respec-
tively, in Equation (14). We take the smoothing terms to
be S EE ha= and S LL ha= , where E GM Rh h h= and Lh =
GM Rh h are the characteristic energy and angular momentum

per unit mass. We add the smoothing adaptively by choosing α

for each subhalo such that the ellipse with semiaxes of SE and SL
covers just the nearest 40 neighbors in the phase space. We have
checked that the result is not sensitive to the detailed choice of α.
Using a fixed 0.1 0.2a = – for all subhalos produces almost the
same result.

Figure 4 shows the phase-space distribution for template
halo A1. Compared with the discrete distribution taken directly
from the simulations (left panel), the smooth distribution
including the fiducial measurement errors (middle panel) is
more extended. The effects of the measurement errors are
illustrated by the comparison of the middle and right panels.
For the latter, 0.01 mas yr 1s s= =m m

-
a d

are used instead of

the fiducial values of 0.08 mas yr 1- , while all other errors
remain the same as for the middle panel. The much smaller sma
and smd not only shrink the distribution, but also shift the point
of the highest probability density (marked as the cross).

4. Tests with Mock Samples

In our method of halo mass determination, we scale a
template halo of mass Mh to different masses and obtain a
family of subhalo phase-space distributions p E L M, h

¢( ∣ )

following the procedure presented in Section 3. We then use
these distributions and the (E, L) data on the observed satellite
tracers of a test halo to obtain the likelihood Mobs h

¢( ∣ ) as a

function of Mh
¢ (see Equation (6)). This gives the MLE Mesti for

the test halo mass based on a specific set of scaled template
halos. If the test halo is the MW, we use the actual kinematic
data on its dwarf satellite galaxies. For each satellite, the actual
measurement errors are used so that the mock observations
obtain the corresponding p E L M, h

¢( ∣ ), while the central values
of the kinematic data in HSR are used (along with the central
values of the solar position and velocities relative to the GC) to
obtain the corresponding (E, L) in the GSR. To test the validity
and accuracy of our method, we choose a subset from the
subhalos of a template halo to serve as the “observed” satellite
tracers. These tracers are referred to as the mock sample, and
their (E, L) data are obtained by making a single mock
observation of each tracer as described in Section 3.4. Below
we present a series of tests of our method using these mock
samples.

4.1. Bias in the MLE for a Specific Template Halo

We first check how well the true mass Mtrue of a halo can be
recovered by the MLE Mesti in our method. As an example, we
use template halo A1 as both the test halo to generate mock
samples and the template to estimate the mass of the test halo.
We randomly pick nine of its subhalos to make a mock sample
and apply our method to obtain the corresponding Mesti. We
repeat this with 5000 random mock samples to obtain a
distribution of M Mesti true at M M1.58 10true

12= ´ for
template halo A1. We then use halos scaled from template
halo A1 as test halos and obtain distributions of M Mesti true for
M M0.5 3.0 10true

12= ´( – ) . We find that to very good
approximation, all these distributions can be fitted to a single
Gaussian 0.83, 0.262( ) with a mean of 0.83 and a standard
deviation of 0.26. This is illustrated by the excellent agreement
between the histograms showing the distributions for
M M0.5, 1, 2 10true

12= ´( ) and the dashed curve for the
Gaussian fit in the right panel of Figure 5. In addition, the left
panel of this figure shows the median value (solid curve) and
the 68% (1s, dashed curves) and 95% (2s, dot–dashed curves)
intervals for M Mesti true as functions of Mtrue. These again agree
very well with the Gaussian fit.
As Figure 5 shows, the MLE Mesti tends to underestimate the

halo mass Mtrue with a bias that is nearly independent of Mtrue.
We recall that the likelihood is constructed from the phase-
space distribution p E L M, h

¢( ∣ ) as a function of Mh
¢. Because E

also depends on Mh
¢, the likelihood is non-Bayesian and gives a

biased MLE. As shown in Figure 1, p E L M, h
¢( ∣ ) is denser for

a lower Mh
¢. Thus the likelihood tends to favor a lower halo

mass than the true value. This bias is intrinsic to our method,
but as shown below, it is insensitive to the number of tracers
used, the measurement errors, or the formation history of

the halo. Therefore, we can use M Mesti esti h=ˆ with h =
M M 0.83esti trueá ñ = as an essentially unbiased estimator for the

halo mass. However, the relative uncertainty of Mesti
ˆ depends

on the number of tracers used and the measurement errors,
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being 30%~ for nine tracers with the fiducial measurement

errors.
Using template halo A1 as the test halo, we show in Figure 6

the distributions of M Mesti true
ˆ for different numbers (N) of

tracers and observational errors. We take N= 9, 50, and 400,

respectively. As proper-motion measurements dominate the
observational uncertainties, we take 0.08s s= =m ma d

, 0.03,

and 0.01 mas yr 1- , respectively, but keep the other measure-

ment errors at their fiducial values. For each choice of

N ,
,

sma d
( ), the distribution of M Mesti true

ˆ (histogram) can be

well fitted by a Gaussian (red curve) centered at

M M 1esti true =ˆ with the standard deviation (“std”) indicated
in the corresponding panel of Figure 6. This demonstrates that

the fixed bias-correction 0.83h = works quite well for very

different numbers of tracers and measurement errors. As shown

in Figure 6, the standard deviation of M Mesti true
ˆ decreases

when more tracers and more precise observations are used. For

fixed measurement errors, this quantity exhibits the expected

N1 dependence.

We have also checked that the corrected halo-mass estimator
M Mesti esti h=ˆ with 0.83h = works consistently when each of
the nine template halos is used as both the test halo and the
template to estimate the test halo mass. Figure 7 shows the

distribution of M Mesti true
ˆ in each case when the mock samples

are observed with the fiducial measurement errors. All the
distributions can again be well fitted by a Gaussian 1, 0.32( ).

While the median value of M Mesti true
ˆ fluctuates slightly

around unity, this fluctuation is 5%< , well within the standard

deviation. This shows that Mesti
ˆ recovers the true halo mass

within 30%~ for all the nine template halos we used as test
halos. Because these halos have a very different formation
history and dynamical status, this demonstrates the validity and
robustness of our method, at least when the formation history
of a test halo is known.

4.2. Influence of Subhalo Mass

Our method implicitly assumes that the phase-space
distribution of subhalos is independent of their masses. This
is supported by recent studies (e.g., Han et al. 2016a), which
showed that small and massive subhalos have very similar
dynamics. This can be understood because dynamical friction
with strong mass dependence is important only for major
mergers. Nevertheless, because the intended tracers for the
MW halo are its satellite galaxies, the more luminous of
which tend to inhabit massive subhalos, we carry out further
tests to check any possible influence of subhalo mass on our
method.
In the first test, we scale each of the nine template halos to a

mass of M M1.5 10true
12= ´ and take the most massive (at

infall) nine subhalos in each case as the mock sample with the

fiducial measurement errors. Figure 8 shows M Mesti true
ˆ (filled

squares) for these test halos. These results are fully consistent
with those in Figure 7, which are obtained from mock samples
with nine randomly selected subhalos each. Specifically, when
the results in Figure 8 are compared with the Gaussian
distribution 1, 0.32( ), the 2c test gives P 0.462c> =( ) ,
which indicates no deviation. This insensitivity to the mock
sample is also confirmed when we scale the template halos to
other masses and use them as test halos.

Figure 4. Phase-space distribution of subhalos for template halo A1. The discrete distribution in the left panel is taken directly from the simulations. The smooth

distribution in the middle panel includes the fiducial measurement errors. The right panel assumes 0.01 mas yr 1s s= =m m
-

a d instead of the fiducial values of

0.08 mas yr 1- , while all other errors remain the same as for the middle panel. Color indicates the probability density, and the cross marks the point of the highest
density. The dashed curves enclose the densest 68% of the region.

Figure 5. Distribution of M Mesti true as a function of Mtrue for test halos scaled
from template halo A1. Left panel: solid, dashed, dot–dashed curves show the
median value and the 68% (1s) and 95% (2s) intervals for M Mesti true as
functions of Mtrue, which agree very well with the corresponding characteristics

of the Gaussian distribution 0.83, 0.262( ) (thin dotted line and shaded
regions). Right panel: histograms show the distributions of M Mesti true for

M M0.5, 1, 2 10true
12= ´( ) , which are in excellent agreement with the

dashed curve showing the Gaussian distribution.
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In the second test, mock samples are created by randomly
selecting 9 subhalos from the top 100 massive subhalos in each
of the 9 template halos used as test halos. We show in Figure 9

the distribution of M Mesti true
ˆ obtained from 5000 mock

samples for each test halo. These results are almost the same
as those in Figure 7.

Figure 6. Distributions of M Mesti true
ˆ for different numbers (N) of tracers and observational errors (

,
sma d) when template halo A1 is used as the test halo. The upper,

middle, and lower rows assume N = 9, 50, and 400, respectively. The left, middle, and right columns assume 0.08
,

s =ma d , 0.03, and 0.01 mas yr 1- , respectively. In

each case, the histogram showing the distribution can be well described by the red curve showing a Gaussian centered at M M 1esti true =ˆ , with the standard deviation
(“std”) indicated in the corresponding panel.

Figure 7. Distribution of M Mesti true
ˆ when each of the nine template halos is

used as the test halo. Left panel: filled squares and error bars show the median

value and the 68% (1s) and 95% (2s) intervals for M Mesti true
ˆ . These compare

very well with the thin dotted line and the shaded regions showing the

corresponding characteristics of the Gaussian distribution 1, 0.32( ). Right

panel: histograms showing the distributions of M Mesti true
ˆ are compared with

the dashed curve showing the Gaussian distribution.

Figure 8. Results obtained from mock samples that each have the most massive

nine subhalos of a halo. The filled squares give the M Mesti true
ˆ when each of the

template halos is scaled to M M1.5 10true
12= ´ and used as the test halo.

The thin dotted line and the shaded regions show the median and the1s and 2s
intervals for the Gaussian distribution 1, 0.32( ). The p-value of the 2c test of

the filled squares against the Gaussian distribution is P 0.462c> =( ) .
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Based on these tests and in view of the 30%~ uncertainty in
our halo mass estimate, which is mostly due to the relatively
small number of tracers used and the rather significant errors in
proper-motion measurement, we conclude that any influence of
subhalo mass can be safely ignored. In any case, when the
number of the MW satellite galaxies with precise kinematic
data increases, this sample will reach tracers of lower
luminosity associated with less massive subhalos and will
therefore become closer to the sample of randomly selected
subhalo tracers that is best suited for our method.

4.3. Halo-to-halo Scatter

So far, we have shown that if the formation history of a test
halo is known, the halo mass can be determined reliably by our
method. However, halo formation history is not readily
available in practice. Without this information, we must resort
to comparing the kinematic data on the observed tracers of a
test halo with the subhalo phase-space distributions for a
number of template halos with a wide range of formation
histories. For example, when we use template halo A1 as the
test halo, we estimate its mass using all the nine template halos.
For clarity, we refer to template halo A1 in this case as test halo

A1. Figure 10 shows the distributions of M Mesti true
ˆ for test

halo A1 obtained by comparing fiducial mock samples (nine
tracers with fiducial measurement errors) from this halo with
the phase-space distribution from each of the nine template
halos. The influence of the halo formation history on

M Mesti true
ˆ is clear.
To address the lack of the formation history of a test halo, we

take the average of the Mesti
ˆ obtained for this halo using the

subhalo phase-space distribution for each of the template halos,

M
M

N
, 19

i

N
i

esti

1

esti,

temp

temp

å=
=

ˆ
ˆ

( )

and check if this average (for N 9temp = ) gives a better

estimate. We show the distribution of M Mesti true
ˆ for test halo

A1 in Figure 10. The rightmost filled square in this figure

shows that the median M Mesti true
ˆ is 1. On the other hand, the

corresponding 68% and 95% intervals are asymmetric and

favor higher values. As shown in the right panel of Figure 10,

the distribution of M Mesti true
ˆ is well described by a lognormal

ln 0, 0.352( ). Using other template halos as test halos, we

show in Figure 11 the corresponding distributions of

M Mesti true
ˆ . The filled squares with error bars in the left panel

show the median value and the 68% and 95% intervals of

M Mesti true
ˆ for each test halo. The median M Mesti true

ˆ scatters

around unity within 20%~ ( 30%~ for a few cases), reflecting

the difference in formation history between the test and

template halos. We have also checked that the bias of

M Mesti true
ˆ does not depend on the number of tracers used or

the measurement errors (not shown). Note that the relative

uncertainty in M Mesti true
ˆ is 30%~ for all nine test halos.

As a final test, we make mock samples by randomly picking
a test halo and then randomly selecting nine subhalos from this
halo. Based on 5000 such mixed mock samples, we show the

distribution of M Mesti true
ˆ as the rightmost filled square with

error bars (left panel) and the histogram (right panel) in
Figure 11. This distribution best characterizes the halo mass
estimate given by our method in practice, and is well described
by a lognormal ln 0, 0.382( ), whose 1s interval corresponds

to the interval 0.68, 1.46[ ] for M Mesti true
ˆ . The uncertainty is

Figure 9. Same as the left panel of Figure 7, but the mock samples are
randomly drawn from the top 100 massive subhalos in each test halo.

Figure 10. Distribution of M Mesti true
ˆ obtained for test halo A1 by comparing

mock samples from this halo with each of the nine template halos. Left panel:
filled squares and error bars show the median value and the 68% and 95%

intervals of M Mesti true
ˆ . The thin dotted line and the shaded regions indicate a

Gaussian distribution centered at unity with a standard deviation of 0.3. The

rightmost filled square with error bars shows M Mesti true
ˆ obtained by averaging

the results from all nine template halos. Right panel: distribution of M Mesti true
ˆ

compared with a lognormal ln 0, 0.352( ).

Figure 11. Distribution of M Mesti true
ˆ for each test halo. Left panel: filled

squares and error bars show the median value and the 68% and 95% intervals

for M Mesti true
ˆ . The thin dotted line and the shaded regions show the median

and the 1s and 2s intervals for the lognormal distribution ln 0, 0.382( ). The
rightmost filled square with error bars shows the result for the mixed mock
samples randomly drawn from the nine test halos. Right panel: distribution of

M Mesti true
ˆ for the mixed mock samples compared with the lognormal
distribution.
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slightly larger than in the case with mock samples from a single
test halo because a discrepancy of 20%~ due to halo-to-halo
scatter is also included in addition to the statistical uncertainty.
More precisely, the uncertainty due to halo-to-halo scatter is
19 %4

6
-
+ based on the variance of the nine data points in

Figure 11. While this uncertainty cannot be reduced without
additional information, it can be estimated better with more test
halos. In addition, the limited number (nine) of template halos
also introduces an uncertainty of 20% 9 7%~ » in

M Mesti true
ˆ . However, this uncertainty is relatively small
compared to that from halo-to-halo scatter. In principle,
knowledge of the formation history of a test halo can reduce
the uncertainty in its mass estimate that is due to halo-to-halo
scatter. Of particular importance is information on the growth
of the halo potential, as well as information on the accretion
and disruption of substructures. However, it is difficult to find a
simple indicator to characterize the influence of the halo
assembly history on the kinematics of surviving substructures.
We intend to study this problem in the future.

4.4. Prospects and Limitation

Based on the preceding discussion, there are two main
sources of uncertainties in our method of halo mass
determination: one is statistical and due to the limited number
of tracers and measurement errors, while the other is intrinsic
and due to the lack of knowledge about the formation history of
a test halo. Below we quantify these uncertainties using mixed
mock samples created by randomly picking one of the test
halos and then randomly selecting a subset of its subhalos. We
vary the sample size (the number N of tracers) and the error
s s s= =m m ma d

in proper-motion measurement, which dom-
inates the observational uncertainties. The other measurement
errors are kept at their fiducial values.

Because M Mesti true
ˆ follows a lognormal distribution, we

define the uncertainty of our method as

M Mvar ln . 20esti trues = [ ( ˆ )] ( )

Note X Xvar var ln( ) ( ) when X follows ln 0, 2s( ) and σ is

small.
In Figure 12 we show σ as a function of the number N of

tracers for 0.01s =m , 0.03, 0.06, and 0.08mas yr 1- , respec-
tively. As shown by the dashed curves, these results can be well
described by

A

N
, 212

stat
2

hist
2

2 2
other
2

hist
2s s s

s s
s= + =

+
+m

( )

where stats is the statistical term that decreases with increasing

N, and hists is the intrinsic term due to the lack of knowledge

about the halo formation history. The statistical term can be

specified by Asm, where A is a constant, and others , which

captures the other observational uncertainties and errors in

constructing the subhalo phase-space distribution. The fit to the

data gives A= 8.75, 0.80others = , and 0.17hists = . Note that

hists depends on the template halos used and may be estimated

better with more halos in addition to the nine used here.
For the fiducial number of tracers (N= 9) with the fiducial

measurement errors ( 0.08 mas yr 1s =m
- ), σ is 40%~ . If N

increases to 30, σ decreases to ∼25% for the fiducial
measurement precision. However, as N increases further, σ

becomes dominated by hists . This sets a limiting number of

tracers at N 50~ beyond which there is no significant gain in
the accuracy of our halo mass estimate. This is similar to the
result of Wang et al. (2016), who gave a systematic uncertainty
of 25%–40% for the MW mass estimate using dynamical
tracers under the steady-state assumption. We emphasize that
the ultimate improvement of our method requires detailed
knowledge about the formation history of a test halo.

5. Conclusions

We have presented a method for estimating the mass of a
dark matter halo using the kinematic data of its subhalo tracers,
which are satellite galaxies in practice. The halo mass is
inferred by comparing these data with the distribution in the
phase space of binding energy and angular momentum for
subhalos in each of the template halos obtained in cosmological
simulations. We have tested the validity and accuracy of this
method with mock samples and found that the halo mass can be
recovered within 40%~ by using nine tracers with the current
observational precision. The uncertainty can be reduced to
∼25% if the number of tracers with sufficiently accurate
proper-motion measurement increases to 30 in the future.
However, the subhalo phase-space distribution depends on the
halo formation history, and the lack of this knowledge results in
an intrinsic uncertainty of 20%~ in our halo mass estimate,
which cannot be reduced by increasing the number of tracers.
Further studies on the assembly history of a halo and how this
history affects the kinematics of its substructures are essential
for an accurate determination of its mass. A direct application
of our method is to estimate the mass of the MW halo. Using
the data on its nine dwarf satellite galaxies, we obtain a mass of

M1.3 1012´ with uncertainties comparable to the expected
value of 40%~ . This preliminary result is consistent with
various estimates in the literature. A detailed report will be
given elsewhere.
Although they do not seem to affect our current results,

several issues regarding our approach merit discussion. We
have found that the phase-space distribution is nearly
independent of subhalo mass. Because satellite galaxies are

Figure 12. Uncertainty σ in M Mln esti true( ˆ ) as a function of the number N of
tracers for different values of the error sm in proper-motion measurement. Filled

squares are data obtained using mixed mock samples randomly drawn from the
nine test halos. A good fit to the data is provided by the dashed curves

for N8.75 0.80 0.172 2 2 2 2s s= + +m( ) .
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the intended subhalo tracers, it is desirable to confirm this with
further tests using satellite samples from semianalytical or
hydrodynamic simulations. We have simulated nine template
halos with a wide range of formation histories. It is valuable to
have more template halos to check if this range is sufficiently
representative. Because high-resolution zoom-in simulations
are required to provide well-resolved substructures to construct
the phase-space distributions, it is computationally intensive to
study many template halos. Another issue is the influence of
massive neighbors such as M31 in the case of the MW. Our
nine template halos are chosen to be relatively isolated to
exclude such neighbors. Using a larger halo sample, we have
checked that the presence of a massive neighbor will not affect
our method when the distance to the neighbor exceeds three
times its virial radius, as in the case of M31 and the MW (see
Appendix). Finally, in our mock observations, we set the origin
of the “GSR” to rest at the center of a template halo. However,
theoretical and observational studies suggest that central
galaxies do not necessarily rest at the centers of their host
halos (e.g., Berlind et al. 2003; Yoshikawa et al. 2003). A
recent study by Guo et al. (2015) reported that a central galaxy
tends to move around the host halo center with a dispersion of
0.2 v,DMs ( 30 km s 1~ - for the MW) for each velocity comp-
onent. In addition, if the LMC exceeds 10% of the MW mass,
then the MW is moving relative to their barycenter at a velocity
of 30 km s 1~ - (v 300 km sLMC

1- relative to the GC). In
principle, the unknown velocity offset between the GC and the
MW halo center introduces an extra uncertainty in the MW
halo mass estimate. However, in practice, we find with Monte
Carlo experiments that adding an extra velocity of 30 km s 1- to
the “GC” in mock observations only changes the results at the
3% level. So this effect might become significant only when

the intrinsic uncertainty in our method is reduced with
information on the halo formation history.

Currently, our method is still limited by the number of
tracers and measurement errors. Proper motions are only
available for 12 of the 13 MW satellite galaxies (the exception
being Canes Venatici I) that are more luminous than L105 and
within 300 kpc of the GC. The best of these proper-motion
measurements were made with the HST. The Gaia mission will
reduce uncertainties in proper motions of nearby classical
satellites (e.g., van der Marel & Sahlmann 2016) and make new
measurements for fainter objects within ∼100 kpc of the Sun
(Wilkinson & Evans 1999). Proper motions of more distant
satellite galaxies could be measured by a multi-year HST

program with follow-up by the James Webb Space Telescope

(JWST) or the Wide-field Infrared Survey Telescope (WFIRST)

(Kallivayalil et al. 2015). In addition, ongoing deep wide-field
sky surveys, such as the Dark Energy Survey (DES),
PanSTARRS 1 (PS1), and VST ATLAS have doubled the
number of known MW satellites over the past two years (e.g.,
Bechtol et al. 2015; Drlica-Wagner et al. 2015; Koposov et al.
2015; Laevens et al. 2015; Torrealba et al. 2016). The number
of satellites brighter than the faintest known dwarf galaxies
might eventually reach 300–600 and possibly as high as ∼1000
(Tollerud et al. 2008). This exciting progress in observations
will undoubtedly enable us to determine the MW halo mass
with increasing accuracy.
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Appendix
Validation with More Test Halos from

Cosmological Simulations

Our method recovers the true halo mass consistently in a
series of tests with the nine halos from zoom-in simulations.
Nevertheless, it is important to check the robustness of the
method with a larger test halo sample. Such a sample can also
be used to investigate how a massive neighbor may affect the
mass estimate for a halo, thereby checking the validity of using
relatively isolated template halos in our method. We select a
set of test halos from six cosmological simulations. Each
simulation was performed with 10243 particles in a periodic
cubic box of h150 Mpc1 3-( ) . A CDML cosmology was
adopted with 0.268mW = , h n0.732, 0.71, 1sW = = =L ,
and 0.858s = (Jing et al. 2007). The particle mass in these
simulations is h M2.3 108 1´ - . We identify halos and
subhalos in the same way as described in Section 3.1. We
note that the cosmological parameters adopted above are
somewhat different from those in the main text. We expect that
the effect of this difference would be small compared to that of
the difference in halo formation history for application of our
method.
To ensure a sufficient number of well-resolved subhalos in

each test halo, we focus on halos in the mass range of
2 1013~ ´ ( – h M1014 1-) and obtain a sample of 2681 test

halos. For each test halo, we select subhalos with a maximum
binding mass of m 300max > particles over history, a mass of
m 100 > particles at present, and a distance of 160 kpc <
r 1200 kpc< to the halo center. We then randomly pick nine
subhalos to make a mock sample. (For the least massive halos,
which amount to 1.5%< of the test halo sample and contain
fewer than nine usable subhalos each, we randomly pick nine
subhalos with repetition.) Mock observations of the nine
subhalos are made with measurement errors r 0.06,rs =

4 km sv
1

los
s = - , and 0.08 mas yr 1s =m

- . These numerical
values are the same as in Section 3, except that the distance
range and vloss are increased in proportion to the mass range of
the test halos under consideration. Following the procedure in
Section 3, we estimate the mass of a test halo by comparing the
phase-space distribution of its mock sample with those of a
template halo scaled to the same mass range. The results using
the nine template halos A1–A9 are averaged to calculate the
final estimate Mesti.
A total of 20 mock samples are chosen from each test halo to

generate a distribution of M Mesti true, where Mtrue is the true
halo mass. This distribution is shown in the upper left panel of
Figure 13 as a function of Mtrue for the entire test halo sample.
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The solid and dashed curves give the median value and

the 68% (1s) intervals, respectively, for the M Mesti true of all

the mock samples in a bin of Mtrue. The number of test halos
in each bin is shown in the lower left panel of Figure 13. It

can be seen that although the test halos 3 1013~ ´[ ( – M1014) ]

have very different masses from the template halos ( 1.5~ ´
M1012 ), our method still gives reasonable mass estimates. The

median value of M Mesti true is nearly independent of Mtrue and

can be taken as the bias 0.92h = . In addition, the uncertainty

of M Mesti true also has little dependence on Mtrue. These results
are similar to those shown in Figure 5 for MW-like test halos

and demonstrate that our method using scaled templates is valid

for a fixed range with a factor of ∼6 variation in the halo mass

even when these masses differ greatly from those for the

template halos.
The distribution of M Mesti true shown in Figure 13 can be

well described by a lognormal with 0.4s = (see the similar

definition in Equation (20)), which extends the results in
Section 4.4 to much higher halo masses. However, the bias

0.92h = is 10%» larger than the value of 0.83 adopted for

MW-like halos. This small difference may be due to the

difference in assembly history between MW-like halos and the

test halos under consideration, with possibly a minor contrib-
ution from the somewhat different cosmology adopted for the

template and test halos. It is also possible that the template

halos A1–A9 are not representative enough. While we cannot

identify the exact cause for the above difference in η, we note

that this issue is secondary compared to the 40%~ overall

uncertainty of our method when applied to the MW with
the current observational constraints. However, in anticipation

of major improvement of observations, a more detailed

investigation with many more template halos is required to

better understand the influence of the halo assembly history on

our method.
For each of our template halos, its distance to any more

massive halo exceeds three times the sum of the virial radii of

both halos. We now investigate how this choice of relatively

isolated template halos may influence the mass estimate.

Satellites of a halo are subject to both the gravitational force of

the halo and the tidal force of a massive neighbor. For a halo of

mass Mh and virial radius Rh with a neighbor of mass Mnb and

virial radius Rh,nb at a distance dnb, the gravitational force of

the halo on a satellite of mass msat is F GM m Rg h sat h
2~ , while

the tidal force of the neighbor is F GM m R dt nb sat h nb
3~ . So the

importance of the neighbor can be gauged by F Ft g ~
M M R dnb h h nb

3( )( ) . Because the halo and its neighbor have

the same average density, M R M Rnb h,nb
3

h h
3= , we obtain

F F R dt g h,nb nb
3~ ( ) . Using the sample of test halos from

cosmological simulations, we locate every more massive halo

in the neighborhood of a test halo and define the one with the

smallest d Rnb h,nb as the nearest neighbor. As shown in the

upper right panel of Figure 13, the mass estimate is essentially

independent of d Rnnb h,nnb for d R 3nnb h,nnb . Therefore, it is

appropriate to use our template halos with d Rnnb h,nnb +(

R 3h >) to estimate the masses of those halos with

d R 3nnb h,nnb . The galaxy M31 is perhaps slightly more

massive than the MW and is at a distance of d 800 kpcM31 ~ .

The virial radius of its dark matter halo can be estimated as

R 200 kpcM31 ~ . With d R 4M31 M31 ~ , the effect of the tidal

force of M31 is at the level of 2%~ , and our method can be

safely applied to estimate the mass of the MW halo.

Figure 13. Distribution of M Mesti true (upper panels) and number of test halos N (lower panels) as functions of the true halo mass Mtrue (left panels) and the distance to
the nearest more massive neighbor relative to its halo radius d Rnnb h,nnb (right panels) for a sample of test halos from cosmological simulations. The solid and dashed
curves in the upper panels show the median value and the 68% (1s) intervals for M Mesti true in a bin of Mtrue (left panel) and d Rnnb h,nnb (right panel). The histograms
in the lower panels show the number of test halos in each bin.
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