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ABSTRACT

We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey (SDSS),
selected using two novel photometry-based selection techniques. The J0941+0518 sys-
tem, with two point sources separated by 5.46” on either side of a galaxy, has source
and lens redshifts z; = 1.54 and z; = 0.343. The AO-assisted images of J2211+1929
show two point sources separated by 1.04”, corresponding to the same quasar at
zs = 1.07, besides the lens galaxy and Einstein ring. Images of J2257+2349 show two
point sources separated by 1.67" on either side of an E/S0 galaxy. The extracted spec-
tra show two images of the same quasar at redshift z; = 2.10. In total, the two selection
techniques identified 309 lens candidates, including 47 known lenses, and 6 previously
ruled out candidates. 55 of the remaining candidates were observed using NIRC2 and
EST at Keck Observatory, EFOSC2 at the ESO-NTT (La Silla), and SAM and the
Goodman spectrograph at SOAR. Of the candidates observed, 3 were confirmed as
lenses, 36 were ruled out, and 16 remain inconclusive. Taking into account that we
recovered known lenses, this gives us a success rate of at least 50/309 (16%). This
initial campaign demonstrates the power of purely photometric selection techniques
in finding lensed quasars. Developing and refining these techniques is essential for
efficient identification of these rare lenses in ongoing and future photometric surveys.

Key words: gravitational lensing: strong — methods: statistical — methods: observa-
tional

ages can be used to probe dark matter substructure in the
lensing object (Mao & Schneider 1998; Dalal & Kochanek

Strong gravitational lensing serves as a unique probe into
the distant universe (e.g. Treu & Ellis 2015, and references
therein). With their highly magnified images, one can use
lenses as cosmic telescopes to study, e.g., the properties of
quasar host galaxies at high redshifts (Peng et al. 2006; Ding
et al. 2017). Anomalies in the positions and fluxes of the im-
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2002; Vegetti et al. 2012; Nierenberg et al. 2014). Microlens-
ing due to compact objects in the lens galaxy (see Wamb-
sganss 2006) can be used to study the inner structure of
lensed AGN, enabling measurements of the accretion disk
size (Kochanek 2004; Motta et al. 2017) and thermal slopes
(Anguita et al. 2008; Eigenbrod et al. 2008) and the geom-
etry of the broad line region (Braibant et al. 2014, 2016).
With additional monitoring, one can measure the time de-
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lay between arrival of the different images and use this as a
cosmological distance indicator (e.g. Refsdal 1964; Schechter
et al. 1997; Suyu et al. 2014; Tewes et al. 2013; Treu & Mar-
shall 2016; Bonvin et al. 2016).

Unfortunately, the field is currently limited by the small
number of known lenses. Since strong gravitational lensing
requires such a close alignment of a distant source with a
foreground lensing object, lensed quasars are very rare ob-
jects. Oguri & Marshall (2010) estimate that, given an i-
band limiting magnitude of 21, there are only ~0.2 lenses per
square degree, of which ~20% are information-rich quads.
Thus, the large footprints of wide-field surveys such as the
Sloan Digital Sky Survey (SDSS, York et al. 2000) and the
Dark Energy Survey (DES, Diehl et al. 2014) are essential
for successful searches.

Previous systematic searches for strongly lensed quasars
have predominantly explored samples of objects that have
spectroscopic data. In the radio, the Cosmic Lens All Sky
Survey (CLASS, Myers et al. 2003; Browne et al. 2003) in
combination with the Jodrell-Bank VLA Astrometric Sur-
vey (JVAS, King et al. 1999) explored flat-spectrum radio
sources, resulting in the discovery of 22 lenses. In the opti-
cal, Pindor et al. (2003) compared fits of single- and double-
component point-spread functionss (PSFs) to spectroscopi-
cally confirmed quasars in SDSS to identify closely separated
pairs of quasars as lens candidates. The SDSS Quasar Lens
Search (SQLS, Oguri et al. 2006; Inada et al. 2012) explored
the sample of low-redshift (0.6 < z < 2.2) spectroscopically
confirmed quasars and used a combination of a morpholog-
ical selection aimed at finding small-separation candidates
and a colour-based selection to find lenses that are deblended
in SDSS imaging. More recently, More et al. (2016) applied
a similar method to the Baryon Oscillation Spectroscopic
Survey (BOSS, Dawson et al. 2013), expanding the SDSS
spectroscopic searches out to higher redshifts.

With the aim of expanding searches to include the
footprints of new and upcoming wide-field surveys, many
photometry-based techniques have recently been developed.
Ostrovski et al. (2016) use Gaussian Mixture Models to
search for lenses in the DES Y1A1 (Diehl et al. 2014) foot-
print using DES photometry combined with the Wide-field
Infrared Survey Explorer (WISE, Wright et al. 2010) and
VISTA Hemisphere Survey (VHS, McMahon et al. 2013)
infrared bands. Agnello et al. (2015) used an artificial neu-
ral network classifier applied to blue, extended objects, and
Lin et al. (2017) search for red galaxies with multiple blue
neighbours in DES.

In this paper, we present the discovery of three new
gravitationally lensed quasars selected by two independent
photometry-based selection techniques applied to the SDSS
DR12 footprint: J09414+0518 at (ra, dec) = (09:41:22.5,
+05:18:23.9), J221141929 at (22:11:30.3, +19:29:13.2), and
J2257+2349 at (22:57:25.4, +23:49:30.4). The quasar im-
ages are separated by 5.46”, 1.04”, and 1.67", and corre-
spond to sources at zs = 1.54, 1.07, 2.11, respectively. In
Section 2, we describe the two selection techniques, intro-
duced by Williams et al. (2017) and Agnello et al. (2017),
and their application to SDSS data. In Section 3, we present
the follow-up imaging and spectroscopy observations of the
candidates and provide simple model fits to the three lenses.
Finally, we conclude in Section 4.

2 CANDIDATE SELECTION METHODS

The colours of lensed quasars are a combination of the
colours of quasars and those of the lensing galaxy. This
places them in a particular location in colour-magnitude
space that is separate from the locations of more common
contaminant classes of objects such as individual quasars
or individual galaxies. We use two independent selection
techniques that take advantage of this fact: one which de-
scribes the distribution of all classes of objects individually,
and another which uses pseudo-distance measures in colour-
magnitude space to identify objects that lie ‘far’ away from
more common classes/clusters.

2.1 Population Mixture Models

The population mixture model approach attempts to de-
scribe the populations of lensed quasars and various con-
taminant classes as a superposition of K probability density
functions (PDFs) in colour-magnitude space. We use Gaus-
sian PDF's and the Expectation Maximization algorithm to
fit the Gaussians to the data, where each Gaussian is asso-
ciated with a different class of objects. This then allows us
to compute the probability that a particular object belongs
to each of the K classes.

The objects in this paper were selected using the results
of three different models utilizing SDSS and WISE photom-
etry: a 6 feature model including gmod — Tmod, gmod — Imod,
Tmod — Zmod, fmod — W1, W1 — W2, and W2; a 7 feature
model adding W2 — W3; and a 9 feature model adding
(9pst = gmod) = (Ppst — Tmoa), (Tpst = Tmod) = (ipst — imoa), and
(fpst — tmod) — (2psf — Zmod) as a measure of extendedness.
Objects were first selected from the SDSS DR12 data set ac-
cording to the cuts in (Williams et al. 2017) and were then
run through each of the 6, 7, and 9 feature models, generat-
ing three membership probability vectors for each object. We
retained only those objects where the average ‘lens’ proba-
bility across the three models is greater than 0.8. Each of
these was visually inspected by two investigators (among
PW, AA, TT) using the SDSS DR12 Image List Tool and
assigned a score of 0-3 with the following grading scheme: 0
- not a lens, 1 - probably not a lens, 2 - possibly a lens, 3
- probably a lens. Those receiving an average visual inspec-
tion score greater than 2 were then selected for follow-up
based on observability.

2.2 Outlier selection

In the outlier selection technique, Gaussians are used to
characterize four classes, or clusters, of ‘common’ objects:
nearby quasars (z < 0.75), isolated quasars at higher red-
shift, blue-cloud galaxies, and faint objects. Each Gaussian
k is characterized by a mean u; and a covariance Cj in
the seven-dimensional space of g —r, g — i, r — 2z, i — W1,
W1-W2 W2—-W3, and W2. The six- and nine-dimensional
spaces of the population mixture model approach are not
used. For a given object, a set of four pseudo-distances
d, = 0.5(f — py, C; ' (f — py)) can be calculated, describing
how close the object colours are to those of the main clus-
ters of objects. By excluding those with distances less than
a certain threshold, one retains mainly peculiar objects, in-
cluding lensed quasars.

© 0000 RAS, MNRAS 000, 1-8
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Telescope  Instrument Type filter/wavelength coverage pixel scale/dispersion  slit size (")
Keck 1 OSIRIS Imaging Kbb 0.02 arcsec/pixel -
Keck 2 NIRC2 narrow  Imaging K’ 0.01 arcsec/pixel -
Keck 2 ESI Spectroscopy 3900 A to 10900 A 0.16 to 0.30 A /pixel 0.75
NTT EFOSC2 Spectroscopy 3685 A to 9315 A 5.54 A /pixel 1.2
SOAR SAM Imaging SAMI-z 0.045 arcsec/pixel -
SOAR Goodman Spectroscopy 4912 A to 9020 A 1.00 A/pixel 1.0

Table 1. Summary of telescopes and instruments used for follow-up of candidates.

arcsec
arcsec

arcsec

0.0 ) o 135 10 05

arcsec

1 U A 1 b
00 05 1.0 1.
arcsec

in

arcsec
arcsec

arcsec

0.0
arcsec

1
0.0
arcsec

Y ) : L
-0.5

0.5

arcsec

Figure 1. Images of the three confirmed lenses with critical lines (dotted) and caustics (solid) overlaid. The red star-symbol indicates
the location of the source. All images are aligned with North up and East left. Left: NIRC2 image of SDSS J0941+0518 made up of 27
exposures of 30 sec each, giving a total exposure time of 13.5 minutes. The image separation is 5.46". The lens models are SIE (top) and
SIE + fluxes (bottom). Middle: NIRC2 image of SDSS J221141929 made up of nine 120 second exposures and two 60 second exposures,
giving a total exposure time of 20 minutes. The image separation is 1.04"". We associate the slight excess between the two point sources
with the lens galaxy. The lens models are SIE (top) and SIE + fluxes (bottom). Right: OSIRIS image of SDSS J2257+42349 made up
of six 120 second exposures and two 60 second exposures, giving a total exposure time of 14 minutes. Two point sources are visible at
either side of an E/SO galaxy, separated by 1.67”. The lens models are SIE (top) and SIE + fluxes (bottom).

Objects were pre-selected to have extended morphology
based on the log,y Lstar,; and psf-model magnitudes in the
SDSS. Additional cuts in WISE magnitudes were used to
exclude most z < 0.35 quasars and narrow-line galaxies (see
Agnello et al. 2017, for details). For the remaining objects,
the distances dix were calculated and only those with large
enough distances were retained.

2.3 Performance of the two methods

The population mixture model yielded 59 candidates with
a score of greater than 2, including 7 already known lenses
and 6 objects that had already been identified, observed, and

© 0000 RAS, MNRAS 000, 1-8

rejected. Of the remaining 46 candidates, 21 were observed,
resulting in 2 confirmed lenses, 15 rejects, and 4 inconclusive.
This gives a success rate between 9/59 and 38/59, ie. at least
15%. The two main sources of contamination were close QSO
+ star alignments and single point sources, accounting for 9
of the 15 observed rejects and 1 of the 6 previously rejected
candidates.

The outlier selection technique yielded ~ 250 candidates
with i < 20.0, including ~40 known lenses'. 36 of the candi-

1 The exact number depends on the colour-preselection cuts and
pseudo-distance cuts used. The combination used for this search
retained 37 previously known lenses.
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dates were observed, yielding 2 confirmed lenses, 22 rejects,
and 12 inconclusive. This would correspond to > 17% suc-
cess rate.

3 FOLLOW-UP OF CANDIDATES

Candidates were observed using the Near-Infrared Camera
2 (NIRC2), the Echelette Spectrograph and Imager (ESI,
Sheinis et al. 2002), and the Optical, Spectrographic, and In-
frared Remote Imaging System (OSIRIS Larkin et al. 2006)
at Keck Observatory; the ESO Faint Object Spectrograph
and Camera (EFOSC2 Buzzoni et al. 1984) at the New Tech-
nology Telescope (NTT); and the Adaptive Optics Module
(SAM) and Goodman Spectrograph at the Southern Astro-
physical Research Telescope (SOAR). The instrument se-
tups and observing conditions are summarized in Table 1.
In total, we observed 55 candidates (results summarized in
the Appendix), of which 3 were confirmed to be lenses.

We used the lensmodel package (Keeton 2011) to fit
simple lens models to each confirmed lens. We adopted a
singular isothermal ellipsoid (SIE) model, which has a sur-
face density given by

_ b
T l-ortiror

where b is the lens strength, and the axis ratio ¢ is related
to e by ¢*> = (1 —€)/(1 + ¢€). We use the lensmodel rou-
tine optimize which minimizes x? by varying the source
and galaxy positions, the source flux, the lens strength b,
the ellipticity e = 1 — ¢, and the ellipticity position angle
0. Our observational constraints are the image and galaxy
positions found using a centroid algorithm and fluxes found
using aperture photometry with the high resolution AO im-
ages. Since flux ratios can be affected by microlensing and
differential extinction (e.g., Mao & Schneider 1998; Falco
et al. 1999) as well as the combined effects of quasar vari-
ability and time delays, the flux measurements introduce
additional uncertainties greater than those measured. For
this reason, we fit a model without using image fluxes and
one using the fluxes with 20% uncertainties. The relative po-
sitions and fluxes of the images are given in Table 2. With
the fluxes omitted, we have 4 constraints from the image po-
sitions relative to the galaxy and are fitting for b, e, ., and
source position. This means we have more free parameters
than constraints and should expect a x? ~ 0. In this case,
the fitted parameters give an idea of the correct values for
the SIE model, but the errors do not hold as much meaning
as those for the fits including the flux ratios. The best-fit
parameters for all models are given in Table 3.

(1)

3.1 SDSS J0941+0518

Images of SDSS J0941+4-0518 were obtained with the OSIRIS
Imager at Keck Observatory on 9 November 2016. The Kbb
filter was used, centered at 2172 nm and with bandwith
415 nm, with a scale of 0.02 arcsec/pixel. 27 exposures of 30
seconds each were obtained with 3" dithers in each direction.
Spectra were obtained with ESI at Keck Observatory on 19
November 2016, in echelette mode with a wavelength cover-
age from 3900 A to 10900 A and dispersion ranging from 0.16
A /pixel to 0.30 A /pixel, giving a constant dispersion of 11.5
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Figure 2. A simple PSF subtraction reveals the lens galaxy
and and Einstein ring in the NIRC2 AO-assisted image of SDSS
J2211+41929. The PSF subtraction was performed by subtracting
a flux scaled cutout of Image A from Image B and vice versa.
Note that since the two image peaks do not lie on pixel centers,
the subtraction is not perfectly aligned.

km/sec/pixel. The 0.75 arcsec slit was used, which projects
to 4.9 pixels. Three 600s exposures were taken, dithering
along the slit between exposures.

Images show two point sources separated by 5.46" on
either side of the lens galaxy. The spectra (Figure 3, top
panel) are consistent with coming from the same object at
redshift z; = 1.54, as identified by the C III] and Mg II
emission lines. The extracted galaxy spectrum with the Ca
H and K, G-band, Mg b, and Na D lines give z; = 0.343.
These values agree with the SDSS fiber spectra which give
zs = 1.55 and z; = 0.343.

The SIE model fit infers an elliptical lensing object with
ellipticity e = 0.371+0.01 and position angle 8. = —28.24+0.9
degrees, measured East of North. The inferred mass centroid
from the model agrees with the light centroid from the im-
ages. The resulting critical lines and caustics are plotted on
the images in Figure 1 along with the inferred source po-
sition. The x? value for the model without flux constraints
was 5.37 x 1072, but the ellipticity and position angle were
poorly constrained. Including the fluxes increased x? to 30.3,
but the parameter constraints improved drastically.

The lens galaxy is in close proximity (< 0.5") to eight
other sources in SDSS imaging. McConnachie et al. (2009)
identify 6 of these objects, including the lens, as belonging
to a compact group of galaxies. This could explain the large
image separation and indicates the need for a more complex
lens model.

3.2 SDSS J2211+1929

Images of SDSS J2211+1929 were obtained using NIRC2
with adaptive optics at Keck Observatory on 21 Septem-
ber 2016. The narrow camera was used with the Kp filter,
centered at 2124 nm and with bandpass 351 nm. The pixel
scale is 0.01 arcsec/pixel. Three sets of three 120s exposures
were taken using a three point dither pattern in addition to
two 60s acquisition exposures. Spectra were first obtained
with ESI at Keck Observatory on 19 November 2016. The
same setup was used as for SDSS J0941+4-0518, but with two
900s exposures. A second set of spectra were obtained with
EFOSC2 at NTT on 27 September 2016. The Gr#13 grism

© 0000 RAS, MNRAS 000, 1-8
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Figure 3. Extracted 1D spectra of the quasar images in the three confirmed lenses. Identifiable emission lines are marked with vertical
dashed lines, and absorption features are marked with dotted lines. Note that the features at 7600-7630A and 6860-6890A are the A-band
and B-band atmospheric absorption features and should not be attributed to the quasar spectra. From top to bottom, the panels are
(1) SDSS J0941+40518, ESI; (2) SDSS J2211+1929, ESI; (3) SDSS J2211+1929, EFOSC2; (4) SDSS J2257+2349, EFOSC2. In panel (1),
the galaxy spectrum is plotted in gray. Note that one of the quasar spectra is contaminated by the galaxy spectrum, as can be seen by
the excess and similar features at the red end.
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name Image separation (/) Image Flux (arbitrary) Ar.a.-cos(dec.) (") Adec. (")
J0941+0518 5.4554 £ 0.0003 A 1.49 (£20%) —2.7998 £ 0.0003  —2.5096 + 0.0003
B 1.00 (£20%) 0.8349 £+ 0.0003 1.5586 + 0.0003
J2211+1929 1.0391 + 0.0001 A 1.20 (£20%) 0.2218 4 0.0005 0.3924 £ 0.0005
B 1.00 (£20%) —0.1080 £ 0.0005  —0.5930 = 0.0005
J2257+42349 1.6701 + 0.0036 A 3.85 (£20%) —0.6219 £ 0.0010 0.1667 £ 0.0010
B 1.00 (+£20%) 0.8873 £ 0.0037  —0.5485 £ 0.0037

Table 2. Image positions and fluxes used to fit the lens models. Positions are measured relative to the lens galaxy.

name Lens model b (") e 0e (deg) x?
J0941+0518 SIE 2.887081 0.377051 —28170 537 x 1072
SIE + fluxes  2.88170:01 0.371001  —28.270% 30.3
J221141929 SIE 0.5417000"  0.18610 95 208705 41x 1073
+0.001 +0.001 +0.3
SIE + fluxes  0.54170:001  0.18670 008  —29.770% 27.3
J225742349 SIE 0.7970:09 0.28170:9% —347+2 2.0 x 1074
+0.001 +0.002 +0.01 “
SIE + fluxes  0.76170001 035770002 —31.770°5% 33.6

Table 3. List of confirmed lenses and their best-fit model parameters. The 1-o error is found by determining the parameters for which

x2 = xfnin + 1. The angle 6. is measured in degrees East of North.

was used with a 1.2 slit, which covers 3685 A to 9315 A with
dispersion 5.54 A /pixel.

The images show two bright point sources separated by
1.04"”. Despite the complex structure in the PSF, a slight
excess can be seen which we associate with the lens galaxy
(Figure 2, left). A simple pairwise PSF subtraction, in which
Image A is subtracted from Image B and vice versa, reveals
the lens galaxy as well as an Einstein ring (Figure 2, right).
The extracted 1D spectra are consistent with coming from
the same object with emission lines C III], C II, Mg II, H-
gamma, and H-beta at redshift z, = 1.07.

The SIE fit with fluxes infers an ellipticity e =
0.18670005 and position angle §. = —29.7703. As with
J09414-0518, the fit without flux observations does not re-
liably constrain the ellipticity position angle, but including
fluxes with 20% uncertainties significantly improves the con-
straints. The inferred mass centroid from the SIE fit again
agrees with the light centroid from the psf-subtracted im-
ages.

3.3 SDSS J225742349

Images of SDSS J2257+2349 were obtained with NIRC2
with adaptive optics at Keck Observatory on 21 September
2016. The same setup was used as for SDSS J2211+1929,
but with two sets of three 120s exposures and the two addi-
tional 60s acquisition exposures. Spectra were obtained with
EFOSC2 at NTT on 27 September 2016 with the same setup
as for SDSS J2211+1929.

The images show two point sources separated by 1.67”
on either side of an E/SO galaxy. Spectra show that both
point sources correspond to the same quasar at redshift z; =
2.11, as indicated by the Si IV + O IV], C IV, and C III]
emission lines.

The SIE fit with fluxes infers an ellipticity e =
0.35775-992 and ellipticity position angle —31.7 4 0.01 de-
grees. These values agree with the orientation of the lens
galaxy as seen in the right panels of Figure 1 and the mass

centroid from the fit matches the light centroid from the
images. When fluxes are not included as constraints, the
position angle is only constrained with an upper bound, but
when the fluxes are used, all parameters are well constrained.
This again illustrates the necessity of deeper data in order
to constrain the deflector shape and explore more complex
lens models.

4 DISCUSSION AND CONCLUSIONS

We have followed-up 55 lensed quasar candidates selected
by two photometry-based selection techniques, indepen-
dently applied to the SDSS-DR12 data set, confirming three
new lenses: J0941+0518, J221141929, and J2257+42349. Of
these, J0941 was selected by both methods, J2211 was found
only by the population mixture search, and J2257 only by
the outlier selection. This reflect a general behaviour on the
larger sample of selected candidates, where the two searches
complement one another and have some degree of overlap.

Adaptive-Optics assisted images of the three lenses,
taken with OSIRIS and NIRC2, reveal two quasar images on
either side of a lensing source, separated by 5.46”, 1.04”, and
1.67", respectively. Spectra taken with ESI and EFOSC2
confirm that each system is a lens with quasar redshifts
zs = 1.54, 1.07, and 2.11, respectively, and give a lens red-
shift z; = 0.343 for J0941+4-0518. Fits to simple SIE models
with and without the use of fluxes as a constraint give the
lens parameters summarized in Table 3. With deeper data,
one could apply more complex models, e.g. including exter-
nal shear terms or deviations from the SIE density law, in
order to better constrain the shape of the lens.

Most of the ‘inconclusive’ objects appear as two point
sources in images, but do not show any sign of a lens
galaxy. These objects will require spectra to confirm if they
are images of the same quasar, or, similar to the case of
J2211+41929, deeper imaging with careful PSF subtraction.
In future follow-up campaigns, a quick PSF subtraction such

(© 0000 RAS, MNRAS 000, 1-8



as the one done with J221141929 can be used as a tool for
quickly examining targets while at the telescope.

A non-negligible subset of candidates were revealed as
bright and single point-sources in follow-up imaging. Their
uncertain SDSS morphology was given by CCD ‘blooming’,
which is common for bright sources and in fact can be seen
also on some known quasar lenses. Subsequent Pan-STARRS
images?, not available at the time of this campaign, were
much clearer at distinguishing between spurious candidates
(due to blooming) and systems with truly multiple images.

The discovery of these three lenses in the SDSS demon-
strates the importance of photometry-based selection tech-
niques to complement previous searches for lensed quasars.
Neither J2211+1929 nor J225742349 have spectra in the
SDSS and thus were not explored by previous searches like
the SQLS. The case of J09414-0518 is more surprising: de-
spite having, coincidentally, a fibre spectrum of the bright
quasar image and one of the lens galaxy and counter-image,
it was missed by previous spectroscopic searches. With new
and upcoming surveys that do not have readily available
spectroscopic data, both types of searches will be important
in order to generate a more complete sample of lenses.
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APPENDIX A: OBSERVED TARGETS

In Table A, we list all 55 observed candidates and their
follow-up outcomes. Of the 16 inconclusive objects, most
appear as two point sources in imaging. These need either
deeper imaging to bring out the lens galaxy, as in the case of
J221141929, or spectra to confirm that both images are the
same quasar. The ruled out candidates are split into those
that are single point sources and those that are multiple
sources, but not lenses. The single-source objects appear as
single point sources in the SDSS, but were selected as po-
tential small separation lenses because they contain galaxy
colours and some have SDSS QSO spectra showing galaxy
absorption features. These objects can probably be avoided
in future searches without risk of losing a substantial num-
ber of lenses.

© 0000 RAS, MNRAS 000, 1-8
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name r.a.(J2000)  dec.(J2000) mag_i selection method Instrument Comments Zs E
w J094140518  145.3435481 5.3069880  21.39, 17.44, 18,51  PopMix, OutlierSel ESI, OSIRIS 1.54 0.343
g J2211+41929  332.8763774 19.4869926 15.41 PopMix EFOSC2, ESI, NIRC2 1.07
= J225742349  344.3558623 23.8251034 17.67 OutlierSel EFOSC2, NIRC2 2.11
J0048+2505 12.1457148 25.0896541 18.77 OutlierSel NIRC2 two point sources
J0118+44718 19.7397002 47.3147867 18.21 OutlierSel NIRC2 two point sources
J0130+4110 22.5096548 41.1693817 18.22 OutlierSel NIRC2 two point sources
J02134-1306 33.3262661 13.1121799 18.47 OutlierSel NIRC2 bad AO correction
J0252+3420 43.0729962 34.3382372 16.16, 15.96 OutlierSel NIRC2 two point sources
o J0252—0855 43.0879945 -8.9210091 17.79 OutlierSel NIRC2 two point sources
E J0852—0148  133.2245838 -1.8139580 19.42, 18.59 PopMix ESI, SAM two point sources
= J0930+44614  142.5881738 46.2396842 18.25 OutlierSel ESI two traces visible, but too faint to confirm  2.38
2 J093240722  143.0298040 7.3809231 18.94 OutlierSel EFOSC2, SAM two point sources 1.99
S J1010+5705 152.7130546 57.0919030 16.93 PopMix ESI one obvious, possibly two blended traces 1.97
S J1013+1041  153.4169237 10.6877941 18.44, 17.39 PopMix SAM two point sources
J1700+0058  255.1000485 0.9708746 16.13 OutlierSel NIRC2 two point sources
J21034+1100 315.8419650 11.0053179 18.82 OutlierSel NIRC2 two point sources
J22094-0045  332.2788165 0.7621817 19.50, 19.78 OutlierSel NIRC2, EFOSC2, SAM two point sources
J2246+3118  341.6917100 31.3047196 19.46, 20.51 OutlierSel NIRC2 two point sources
J2352+0105  358.1586989 1.0978733 17.16 PopMix ESI one obvious trace 2.15  0.837
J2353—0539  358.4625516 -5.6655170  18.11, 18.40, 16.52 PopMix NIRC2, EFOSC2 QSO + star
J0037+0111 9.3326860 1.1874153 18.21 OutlierSel NIRC2 point source + galaxy
J0120+4-2654 20.0190333 26.9153290 17.15 OutlierSel NIRC2 point source + galaxy
J0141+0007 25.4609249 0.1317267 19.06 PopMix EFOSC2, ESI, SAM, NIRC2 QSO + galaxy, zgal = 0.279 1.35
J0255—-0051 43.9399327 -0.8650315 16.79, 19.12 PopMix NIRC2 large separation, no sign of lens
JO739+1350 114.9568004 13.8366667 16.85, 18.83 PopMix ESI QSO + star
gz J0806—0135  121.6793365 -1.5952567 18.22, 17.00 PopMix ESI QSO + star
< JO808—0051  122.0369752 -0.8643357 18.52, 16.60 PopMix ESI QSO + star
s JO808+0118  122.1946461 1.3110056 19.62, 16.03 PopMix Goodman, SAM, SAM 3 stars
¥ J0836+4841  129.2064862 48.6983237 18.11, 19.03 OutlierSel ESI QSO 4+ AGN pair
Z J0841+4+0312  130.2782996 3.2019064 16.04, 18.05 PopMix ESI QSO + star
J0940—0249  145.1593119 -2.8267049 17.28 PopMix ESI z ~ 0.092
J1704+41817  256.1354746 18.2910172  18.36, 20.19, 18.88 OutlierSel NIRC2 three point sources
J1810+6344  272.5184057 63.7407189 18.99, 18.52 PopMix NIRC2 point source + galaxy
J2036—1801  309.2195540  -18.0292749 18.04, 17.69 OutlierSel NIRC2, EFOSC2 QSO + star 2.32
J2044+0314  311.2035735 3.2486361 17.22 PopMix NIRC2 three souces in wrong configuration
J2055—0515  313.8753026 -5.2504530 18.46, 19.01 OutlierSel NIRC2, EFOSC2 QSO + star
J2350—0749  357.5107284 -7.8258943 18.18, 18.57 OutlierSel NIRC2, EFOSC2 star forming galaxy
J0001+1411 0.3166458 14.1897373 18.49 OutlierSel NIRC2 SDSS - QSO
J0005+2031 1.4974794 20.5235499 17.10 OutlierSel NIRC2
J0024+0032 6.1838018 0.5393054 17.02 PopMix, OutlierSel NIRC2 SDSS - QSO
g J0116+4241 19.0677562 42.6953976 16.86 OutlierSel NIRC2
= J012840055 22.0456250 0.9317422 17.88 OutlierSel NIRC2 SDSS - QSO
2 J0209—-0028 32.4458329 -0.4781211 18.86 PopMix EFOSC2, SAM QSO 1.31
9 J0242+0057 40.6679989 0.9575364 16.59 OutlierSel NIRC2 SDSS - QSO
0 J0340+0057 55.1983256 0.9599661 17.81 OutlierSel NIRC2
‘@ J0502+1310 75.6155639 13.1822185 18.33 OutlierSel NIRC2
g J1738+3222  264.7017777 32.3767753 17.41 OutlierSel NIRC2
< J2045—0101  311.4023578 -1.0299982 16.42 PopMix NIRC2 SDSS - QSO
s J2111-0012 317.7877331 -0.2164685 18.38 OutlierSel NIRC2 SDSS - QSO
B J2121—-0005  320.3755890 -0.0908685 17.00 OutlierSel NIRC2 SDSS - QSO
Z J2123—0050  320.8727805 -0.8480401 16.34 PopMix NIRC2 SDSS - QSO
J214640009  326.5554674 0.1585651 19.74 OutlierSel NIRC2 SDSS - QSO
J2158+1526  329.6736308 15.4374749 17.47 OutlierSel NIRC2
J22384-2718  339.5371608 27.3136765 18.08 OutlierSel NIRC2
J2358—0136  359.5858434 -1.6029082 16.71 OutlierSel NIRC2
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