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Abstract

Objective

Hospital readmission costs a lot of money every year. Many hospital readmissions are
avoidable, and excessive hospital readmissions could also be harmful to the patients. Accu-
rate prediction of hospital readmission can effectively help reduce the readmission risk.
However, the complex relationship between readmission and potential risk factors makes
readmission prediction a difficult task. The main goal of this paper is to explore deep learning
models to distill such complex relationships and make accurate predictions.

Materials and methods

We propose CONTENT, a deep model that predicts hospital readmissions via learning
interpretable patient representations by capturing both local and global contexts from
patient Electronic Health Records (EHR) through a hybrid Topic Recurrent Neural Network
(TopicRNN) model. The experiment was conducted using the EHR of a real world Conges-
tive Heart Failure (CHF) cohort of 5,393 patients.

Results

The proposed model outperforms state-of-the-art methods in readmission prediction (e.g.
0.6103 £ 0.0130 vs. second best 0.5998 + 0.0124 in terms of ROC-AUC). The derived
patient representations were further utilized for patient phenotyping. The learned pheno-
types provide more precise understanding of readmission risks.

Discussion

Embedding both local and global context in patient representation not only improves predic-
tion performance, but also brings interpretable insights of understanding readmission risks
for heterogeneous chronic clinical conditions.
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Conclusion

This is the first of its kind model that integrates the power of both conventional deep neural
network and the probabilistic generative models for highly interpretable deep patient repre-
sentation learning. Experimental results and case studies demonstrate the improved perfor-
mance and interpretability of the model.

Introduction

A hospital readmission is defined as the admission to a hospital within a short amount of time
after discharge, where 30-day is typically considered a clinically meaningful time window [1].
Excessive hospital readmissions disrupt the normality of patients’ lives and have negative
impacts on the healthcare systems [2]. For example, in the US, it has been reported by the
Medicare Payment Advisory Committee that 17.6% of hospital-admitted patients were read-
mitted within 30 days of discharge, which accounted for $17:9 billion Medicare spending per
year, while 76% of them are potentially avoidable [1]. To curb hospital readmission rates, the
Patient Protection and Affordable Care Act was set up to penalize hospitals with excessive
readmission at a minimum of 3% of their Medicare reimbursement. Despite the efforts, it is
estimated that the scrutiny of readmission rates will continue to grow over the next few years.

To prevent excessive readmissions, procedures such as patient follow-ups and educations
have been implemented, which could be costly for individual patient. Therefore, targeted fol-
low-ups that focus on patients with high risks of readmissions are preferred. This raises the
demand for assessing patient readmission risks and consequently brings the readmission pre-
diction to the forefront of healthcare research. Accurate prediction of hospital readmission is
difficult because of its complex entanglements with the patients’ health conditions, especially
the chronic ones. In recent years, there have been some research on hospital readmission pre-
diction from patient Electronic Health Records (EHRs) [1-6]. There are many challenges for
working with EHR such as its incompleteness, noisiness, heterogeneity, etc. [7], and the exist-
ing research typically needs to rely on appropriate feature engineering [4, 8], whose optimality
is difficult to justify from both computational and clinical perspectives.

In order to solve the challenges, we seek for deep learning models to perform readmission
predictions. Deep learning models are well known for their end-to-end learning capabilities so
we do not need to worry about the feature engineering part [9, 10]. Moreover, deep learning
models are proved to be very powerful at distilling the complicated relationships hidden in the
data and thus demonstrate good prediction performance [10, 11]. In this paper, we develop
CONTENT, which is a deep learning model that transforms patients’ complicated event struc-
tures in their EHR into deep clinical concept embedding, which can be viewed as a novel form
of patient representation encoding the patient clinical conditions from both long and short
terms. We draw the analogy between EHR modeling and natural language models [12] to con-
sider the short-term dependencies among medical events in EHRs as local context of a patient
journey and long-term effect as global context. Such contexts impact the latent relations
between the clinical variables (e.g. diagnoses, procedures, medications, etc.) and the target var-
iable (i.e., readmission). We design a hybrid deep learning model structure that combines
topic modelling [13] and Recurrent Neural Network (RNN) [14] to distill the complex knowl-
edge hidden in those contexts and perform accurate readmission prediction.

It is worthwhile to highlight the following aspects of the proposed CONTENT model.
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o The proposed model explores both the global and local contexts within the patient journey
from his/her EHRs. The global context (the general conditions of the patient, such as those
chronic diseases, comorbidities, etc.) is captured by topic models and local context (the short
term disease progressions) is captured by RNN. In this way, we can better capture the het-
erogeneities across different patient individuals and make the model more precise. Empirical
results also show the joint modeling could achieve better overall performance evaluated on
the readmission prediction tasks.

Because of the incorporation of the global context, the resultant model is more interpretable
comparing to simple RNN models. Our model will produce a context vector for each patient,
which characterizes his/her overall condition.

Background
Predictive modeling and deep learning

Most of the existing works on predicting 30-day hospital readmissions were developed with
administrative claims with certain components from EHR such as vital signs and lab tests [1-
3, 5]. Those events are typically aggregated over a certain period of time (a.k.a. observation
window) with some simple feature transformation [4, 8], and then fed into a predictor such as
logistic regression or random forest for the prediction task [1, 6].

One limitation of those conventional approaches is that they cannot take the time informa-
tion into account. The temporalities of the events in patient records are crucial because they
can potentially suggest the progression pattern of the patient conditions. Recently, researchers
have been exploring deep learning models, such as Convolutional Neural Network (CNN) [15,
16] and Recurrent Neural Network (RNN) [17-20] to capture the complex temporal relation-
ships among the medical events. For example, in [15], the authors proposed a multilayered
convolutional neural nets (CNNs) to extract complex patient representations that capture con-
voluted relations among various clinical events. In [16], each patient’s EHR is represented as a
temporal matrix with time on one dimension and medical events on the other dimension, and
a four-layer CNN model is built for extracting representations. An RNN model was adopted
for predicting the onset risk for heart failure patients from their EHRs [17]. A temporal Long
Short Term Memory (LSTM, which is a variant of RNN) model is proposed to capture the pro-
gression patterns for Parkinson’s disease [18].

These existing works typically construct a unique model for the entire patient cohort.
Because of the high heterogeneity of the disease conditions across patient individuals and the
complexity of the dependencies of hospital readmission and the medical events within patient
EHRs, it would be very difficult to learn a single model that can capture all those complexities
with a limited number of patients. The proposed model in this paper assigns a global patient-
specific context vector for each patient, and the prediction for the patient is dependent on both
the context vector and an RNN. In this way, we can model the patients more precisely.

RNN and contextual RNN

An RNN is a fully connected neural network with recurrent connections in its hidden layer
[10]. They take the input at current time step ¢ along with the hidden state at time step t — 1 to
compute the current hidden state. Mathematically, an RNN defines the conditional probability
of each input w, given all of the previous inputs w;. ;_; through a hidden state h, via a softmax
function:

pw|wy, ) = p(w,h,)
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h(t) = f(h,_,w,,)

The function f{-) can either be a standard RNN cell or a more complex cell such as gated
recurrent (GRU) unit [21] or long short-term memory (LSTM) unit [22]. In this paper, we
choose the GRU cell for CONTENT model because it can achieve similar effects as LSTM with
a much simpler structure. More concretely, GRU can overcome the vanishing gradient prob-
lem as well as capture the effect of long-term dependencies with a sophisticated gating mecha-
nism. Given input x,, the function GRU(-) updates hidden states as follows.

z,=o(Ux,+W.h, )
r,=0(Ux,+Wh, )

fzt = tanh(U,x, +r,© W,h,_))
h,=z,0h,_ +(1—2z)0h,

where o(-) denotes the sigmoid function and ® denotes the element wise multiplication; x; is
the input at time step t, h,_; is the previous hidden state. U, and W, are weight matrices for
update gate z,, and U, and W, are weight matrices for the reset gate r,. We drop the biases here
for simplicity of notation. In this formulation, the update gate selects whether the hidden state
is updated with a new hidden state h,. The reset gate r, decides whether the previous hidden
state h;_; is ignored [21].

Although in principle RNN-based models can “remember” arbitrarily long span history if
provided enough capacity, in practice such large-scale neural networks can easily encounter
difficulties during optimization or overfitting [23, 24]. Thus, several contextual recurrent neu-
ral network models were proposed to explicitly model long span context to improve learning
[7,9, 13, 25-27]. In language models, since much of the long span context comes from seman-
tic coherence, and the topic models [13] can be used to capture global semantic coherency.
Therefore, the recently proposed TopicRNN model [26] uses topic models in a recognition
network to directly capture long-range semantic dependencies (i.e. global context) via latent
topics. These latent topics are then used as additional bias to the output layer of an RNN-based
model. In this study, CONTENT is an extension of the contextual RNN model, particularly
the TopicRNN model, with hierarchical inputs (“hospital visits” and “clinical events”) and
sequential binary outputs (indication of readmission) at the “visit” level in EHR data. In addi-
tion, the CONTENT does not model stop words.

Materials and method
Data description

In this work, we conducted the experiment using data from a real world EHR repository of
Congestive Heart Failure (CHF) cohort including 5,393 patients. The input data includes dis-
ease, lab test, and medication codes, all binary encoded indicating their occurrence or absence.
The CHF cohort is constructed by clinical experts according to the following criteria: 1) ICD-9
diagnosis of heart failure appeared in the EHR for at least two outpatient encounters, indicat-
ing consistency in clinical assessment, and 2) At least one medication was prescribed with an
associated ICD-9 diagnosis of heart failure. In addition, the diagnosis date was defined as its
first appearance in the record. These criteria have also been previously validated as part of Gei-
singer Clinical involvement in a pay-for-performance pilot study conducted by Centers for
Medicare and Medicaid Services (CMS) [28]. More details could be found in [29]. A sample of
EHR record segments is illustrated in Fig 1. In addition to the CHF dataset, we also evaluated
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Fig 1. An example segment of EHR records, where visits could occur to different locations. Patients who are re-admitted to “inpatient hospital”
within 30 days of their releases from “inpatient hospital” are considered readmissions.

https://doi.org/10.1371/journal.pone.0195024.9001

based on a synthetic EHR data simulated from a de-identified real world patient dataset. The
synthetic data is generated as follows: for each original patient record we randomly sample
30% to 50% of the visits in that record and drop the un-sampled visits. After subsampling, we
permute patient index. Next, for each new patient record, we randomly combine it with
another new record, with the event time of the second patient record being aligned to the
first one. We consider such combined record as one synthetic patient record. Following this

approach, we generated 3000 synthetic patients, of which 2000 are used in model training, 500
for validation, and 500 for testing. The synthetic data will serve as a benchmark for reproduc-
ing experimental results in this paper. However, since they cannot faithfully reflect real patient
conditions, the performance comparison will more rely on the real world CHF data. We will
also only discuss the learned patient patterns based on the results from the real world data. The
basic statistics for both datasets are summarized in Table 1.

The CONTENT model
We formalize the CONTENT model in this section. Denote C as the number of medical events

in the EHR data and {c;, - - -, c¢} as the set of medical events. Each patient p makes T, visits
Vi Vs where the visit V; at time ¢ can be represented using a subset of medical events.

Table 1. Basic statistics of CHF and synthetic datasets.

Dataset Congestive Heart Failure Synthetic EHR Data
# patients 5,393 3,000
# visits 455, 106 239, 936
# events 1, 306, 685 685, 482
Avg. # of visits per patient 84.4 79.98
Avg. # of events per patient 242.3 228.49
# of unique event codes 618 618
https://doi.org/10.1371/journal.pone.0195024.t001
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Fig 2. The CONTENT model.
https://doi.org/10.1371/journal.pone.0195024.9002

Given such a structure, it is easy to draw an analogy between data in our model and language
models: the set of patients can be considered as the document corpus, the EHRs of each patient
can be regarded as a separate document, and each visit of a specific patient can be viewed as a
paragraph in a document. Thus representing a patient as a sequence of visits is just as repre-
senting a document as a sequence of paragraphs. The difference is that in our case all events
within the same visit are treated as simultaneous events. With such an analogy, the CONTENT
model can be similarly constructed as a language model. We denote y = {y', - - -, '} as the
observed patient hospital admission indicators, b = {h', - - -, h™} as the collection of RNN hid-
den states for all patients with h” = {h/, ..., h“’,P} being the RNN hidden state sequence for

patient p. O is the collection of all model parameters, and 8 is the hidden variable which repre-
sents the context vector. The hospital readmission prediction will be made based on the com-
bination of the patient context vector and the hidden state of an RNN model. Fig 2 provides an
illustration of the CONTENT model.

The CONTENT model is essentially a generative model. Its generative process is described
as follows: for a particular patient p with visits Vi

1. Draw patient context vector § ~ N(0, I).
2. For the tth visit,
a. Computer hidden state h, = GRU(V,_y, h,_;W,, W},),

b. Compute logit score z, = Q'h, + B/, B, = MLL >"b, and b, is the latent topic vector for

medical code m in this visit; M, is the number of codes in the visit.

c. Compute readmission indicator y, ~ o(z,).
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Assume that the dimension of the latent word embedding is H, and the dimension of topics
is N. The parameters of the model include the word embedding matrix W, € R, where Cis
the number of distinct words (medical events). Wy, is the RNN parameter set {U,, W, z,, U,,
W,, r,} in the GRU(-) functions as defined in previous section. Here we also have Q € R” and
b, € R". Following the general auto-encoding variational Bayes model and the TopicRNN,
we also use the multivariate Gaussian prior for 0 to make it easier for inference. The context
vector 6 € RY encodes the patient’s contextual information, which can be regarded as the dif-
ferent clinical subtypes of the hospital readmission task.

Model inference

To make predictions, ideally we need to maximize the log marginal likelihood:
logp(y/h ©) = log [ plylh,©.0)p(6)do.

However, directly optimizing it is intractable [30], so we adopt approximate variational
inference techniques [30] to approximate it. Let q(0) be the variational distribution that
approximates the intractable posterior distribution p(|y). The log marginal likelihood could
be rewritten as

logp(y|h, ®) = Dy, (q(8)||p(6ly)) + ELBO.

Here, the first term is the Kullback-Leibler (KL) divergence that measures the distance
between the approximate distribution g(6) and the true posterior p(6|y). The second term is
the evidence lower bound (ELBO) [31] with the following form:

ELBO = E,, [logp(y|h, 8,©) +log p(8) — log q(0)] < logp(y|h, ©)

where the ELBO is the variational objective function to be optimized. It is a lower bound to the
marginal log likelihood by positivity of the KL divergence. It therefore constitutes a principled
objective for optimizing the log marginal likelihood.

Following TopicRNN [26] and the recent techniques in deep generative models [30], we
formulate q(0) as an inference network using a feed-forward neural network. The inference
network takes the patient representation matrix p as the input, and then project it onto a lower
dimensional subspace using a multilayer perceptron (MLP) as formulated below.

r,=RelUW,p+b,)

r, = ReLU(W,r, +b,)

.U(P) = Wp.rQ + b,u

logo(p) =W, r,+b,

q(6lp) = N(u(p), diag(e*(p)))
6 ~ q(6|p).

For each time step, we update the RNN hidden state at time stamp ¢, h;, to model the
sequence of visits for the patient. We do so by representing a visit at time ¢ as a binary vector
V, € {0, 1}€, where the i-th entry is 1 only if ¢; € V, with ¢; being the i-th distinct medical event
in the dictionary. For the T,-th visit, the inference network only takes the patient matrix from
previous visits of the patient, p[0: T,] of size T}, as the input. Thus, the patient matrix p is of

dimension C x T, where T, is the number of the visits of the patient. The hidden state is then
updated following the GRU update rule: b, = GRU(V,_y, h,_1;W,, W},). The hospital
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readmission indicator y, at time step ¢ is then computed via logistic regression using both the
hidden state of the RNN h; and the patient-specific context vector 6 : y, = ¢(Q"h, + B6).
Note this approach is highly scalable since it does not have the bottleneck of computing the
normalization constant of the softmax function as is the case in language models.

The ELBO depends on all parameters of the model, including the weight matrices of the
recognition network and the recurrent neural network. The learning procedure for the CON-
TENT model is to estimate the optimal values of those parameters by using stochastic gradient
descent (Adam) [32] with back-propagation through time.

Clinical concept and patient embedding

The projection matrix W, can be thought of as a matrix that embeds the clinical concepts (i.e.,
medical events) into the low dimensional space. The context vector 8 sampled from the recog-
nition network serves as a distributed representation of the patient’s medical history. Then we
can represent each patient as the concatenation of the context vector and the final hidden state
vector of the RNN. In the empirical studies, we will demonstrate their representation power by
clustering patients using these vector representations.

Evaluation strategy

We assess the performance of the proposed CONTENT model on the task of CHF patient
readmission prediction. Specifically, we predict whether a CHF patient who is currently in
hospital will be re-admitted as “in hospital” within 30 days of his or her release from the cur-
rent “in hospital” episode. Since the task is a binary classification, we choose the area under the
receiver operating characteristic curve (ROC-AUC), the area under the precision-recall curve
(PR-AUC), and the accuracy (ACC) as three measures. A model with higher ROC-AUC or
PR-AUC is considered a better model. Advantages of AUCs as metrics are that they do not
require choosing a threshold for assigning labels to scores and that they are independent of
class bias in the test set.

Model implementation

The proposed model is implemented using Theano 8.2 [33]. Code can be found in https://
github.com/danicaxiao/ CONTENT. RNN was implemented as a Gated Recurrent Unit
(GRU). The word embedding sequences are used as inputs, and a logistic regression is applied
over the hidden layer. The hyper-parameters of CONTENT and baselines are set as follows: 1)
for word embedding via word2vec [25], we get word vectors of 100 dimensions. 2) the size of
hidden layers of RNN is 200. Training is done through Adam at learning rate 0.001 with shuf-
fled mini-batches of batch size 1. For model comparison, we split the data into training (4000
patients), validation (700 patients), and testing (693 patients). We train the model using the
training data, optimize the parameters on validation data, and compare model performance
using the out-of-sample testing strategy on testing data. The experiment was repeated 10 times
and we report the average performance along with the standard deviations.

Results
Performance comparison of readmission predictions

Table 2 compares the prediction performance of the proposed model with several state-of-the-
art baselines. The proposed CONTENT model outperforms baselines on all metrics. It is due
to CONTENT incorporates both local and global contextual information, especially for the
diseases that have heterogeneous manifestations such as CHF. The GRU+word2vec predicts
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Table 2. Performance comparison on CHF data. CONTENT outperforms Word2vec+LR, Med2vec+LR, GRU, GRU+Word2Vec, and RETAIN on different performance

metrics.

Method
Word2vec+LR
Med2vec+LR
GRU
GRU+Word2Vec
RETAIN
CONTENT

https://doi.org/10.1371/journal.pone.0195024.t002

PR-AUC ROC-AUC ACC
0.3445+0.0204 0.5360+0.0246 0.6828+0.0120
0.3836+0.0149 0.5937+0.0120 0.6915%0.0095
0.3862+0.0136 0.5998+0.0124 0.6856+0.0082
0.3430+0.0157 0.5616+0.0157 0.6731+0.0091
0.3720+0.0148 0.5707+0.0140 0.6814+0.0111
0.3894+0.0153 0.6103+0.0130 0.6934+0.0090

worse than the basic GRU model. This may be due to low-dimensional concept embedding via
word2vec blurs the boundary of some heterogeneous subtypes and thus causes wrong predic-
tions. In addition, the RETAIN [34] also predicts worse than a basic GRU model. Although
RETAIN adopts a sophisticated attention mechanism to set more weights on events that are
considered more important, their attention strategy is not relevant to the prediction task (e.g.
readmission prediction) since the attention weights in [34] are generated from only the hidden
states of the GRU, while the task-related context could be ignored by this model. For Med2vec
[35], we did not use the demographic information in the original paper in order to keep a fair
comparison. The Med2vec takes advantage of the hierarchical information of the EHR data,
and thus is a better representation method than word2vec and gaining better results.

In Table 3 we compare the prediction performance based on a set of synthetic data gener-
ated from a real generic patient cohort. During data generation, for each raw sequence of
events, we dropped randomly sampled 30%—50% events, perturbed the time information for
each visits, combined it with another subsampled sequence of events. The generation proce-
dure effectively introduced lots of missing information, noise and anomaly. Results show that
the proposed CONTENT model again outperforms most baselines due to it models patient
representations and predict readmissions not only based on the RNN states but also on the
topics. As the topics are exchangeable and globally modeled as a context, the CONTENT
would be less impacted by some missing visits, noise and perturbed time information. How-
ever, when comparing with RETAIN, the proposed model gains much better PR-AUC since
the precision is much higher, but slightly worse ROC-AUC since the attention model in
RETAIN improves prediction accuracy in general.

Clustering of patient patterns

As we explained in the model inference section, to gain understanding of the learned patient
representations, we concatenate the topical context vector 8 and the final hidden state of RNN
as the patient-specific vector representation. These vectors are then used to cluster the CHF

Table 3. Performance comparison on synthetic data. CONTENT outperforms Word2vec+LR, Med2vec+LR, GRU, GRU+Word2Vec, and RETAIN on different perfor-

mance metrics.

Method
Word2vec+LR
Med2vec+LR
GRU
GRU+Word2Vec
RETAIN
CONTENT

https://doi.org/10.1371/journal.pone.0195024.t003

PR-AUC ROC-AUC ACC
0.5155+0.0021 0.6040+0.0188 0.6229+0.0179
0.5906+0.0057 0.6884+0.0044 0.7170£0.0087
0.5929+0.0100 0.6881+0.0048 0.7141£0.0040
0.5907+0.0174 0.6836+0.0031 0.711740.0045
0.5525+0.0005 0.6927+0.0001 0.7310£0.0001
0.6011+0.0191 0.6886+0.0074 0.7170£0.0069
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Fig 3. Clustering of patient representations.
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cohort into patient subgroups with more homogeneous latent patterns. To be specific, we
apply k-means algorithm and set k = 20 to generate 20 subgroups. The clustering result is plot-
ted in Fig 3.

To take a closer look at the learned subgroups, we pick 4 clusters out of the 20 clusters. To
quantitatively evaluate their differences, we calculated the average number of readmission for
each cluster. In addition, we also make qualitative evaluation by analyzing the top clinical
events ranked by their counts in the cluster. Note that we omit the top three common events
shared by all CHF patients, including 1) essential hypertension: a major risk factor of CHF, 2)
cardiac dysrhythmia: a condition about irregular heart rhythm or abnormal heart rate, and if
long-term impending, could indicate higher likelihood of CHF-related hospital readmission,
and 3) heart failure. These events demonstrate the commonalities of the CHF condition mani-
festations. We omit them in order to focus more on the cluster-specific clinical patterns. The
results are listed in Fig 4.

Combine the top clinical patterns and the average count of readmissions, we find that the
clusters may represent different CHF comorbidity subgroups where comorbidity conditions
serve as context and would impact risks of readmissions. We studied literature and derived the
most likely interpretations for the clusters as explained below.

Cluster 1 (in orange) probably relates to the comorbidity group where patients have non-
severe non-cardiac conditions. For example, the top event anemia is known to be a common
condition among the non-cardiac comorbidity group, with a prevalence ranging from 4% to
55% [36]. In addition, other top events, e.g. the disorders of back, disorders of joint, and
osteoarthritismainly occur among senior people in the non-cardiac CHF comorbidity group
as discussed in [37]. Moreover, the concomitant symptoms affecting respiratory system were
also discussed in literature and considered very common to CHF patients [37]. Due to these
comorbidity conditions are not critical, under such context this cluster has low readmission
on average.

As a contrast, most of the top conditions in Cluster 3 (in green) are cardiac comorbidities
that directly relate to the presence of CHF. In addition, many patients in this cluster were
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Cluster 1: non-severe non-cardiac comorbidity group
(average # readmission = 13.20)

Cluster 2: transplant surgery patient comorbidity group
(average # readmission = 33.00)

Count Name of Clinical Event Count Name of Clinical Event
51 anemia 78 organ or tissue replaced by transplant
30 disorder of joint 64 after-surgery care
28 disorder of back 63 acute renal failure
26 osteoarthrosis and allied disorders 48 pneumonia
19 symptoms involving respiratory system 24 disorders of urethra and urinary tract

Cluster 3: cardiac-cancer comorbidity group

Cluster 4: traumatic brain injury comorbidity group
(average # readmission = 16.45)

(average # readmission = 21.09)

Count Name of Clinical Event
Count Name of Clinical Event 209 hypertensive heart disease
965 diabetes mellitus 196 anemia
622 chronic airways obstruction 126 symptoms involving nervous and
489 disorders of lipid metabolism musculoskeletal system
441 chronic ischemic heart disease 125 intracranial injury
407 malignant neoplasm of female breast 114 symptoms involving head and neck

Fig 4. Top clinical events for selected clusters.

https://doi.org/10.1371/journal.pone.0195024.g004

diagnosed as “malignant neoplasm of female breast (breast cancer)”. Literature indicates the
comorbid of CHF would become a risk factor for poor outcomes for breast cancer, adversely
impact the cancer treatments [38], and thus could lead to more frequent hospital
readmissions.

In addition, we find Cluster 4 (in yellow) quite interesting as many CHF patients have the
following events “intracranial injury” and “symptoms involving head and neck”. We suspect
that for this group, the readmission might be due to the injuries rather than CHF itself. While
the injuries could also be caused due to CHF related conditions, for example, the comorbid
vision problem (e.g. cataracts) of CHF, the comorbid hypertensive heart disease, or the preva-
lence of various neurological disorders such as the event “symptoms involving nervous and
musculoskeletal system” indicates [39].

Last, we also find Cluster 2 (in red) quite special as many patients have received organ or
tissue transplant surgeries. It is reasonable to believe transplant surgeries relate to high risks of
readmission for CHF patients. For CHF patients received cardiac transplantation, they were
often considered at advanced stage with severe dysfunctions. This can be inferred from con-
taminant acute diseases, such as pneumonia and acute renal failure, as well as disorders of ure-
thra and urinary tract, a common after surgery disorder. Moreover, CHF could be onset after
transplant surgeries, e.g. the comorbid CHF after hematopoietic cell transplantation [40].

Discussion

This study presents CONTENT, a deep model that learns distributed patient representation
from the EHR data and performs prediction for the 30-day readmissions. The CONTENT
incorporates global context by capturing latent topics via a recognition network and uses
global context as additional bias to the output layer of an RNN model, so that the RNN can
focus its modeling capacity on the local context. With this design, the proposed model achieves
more accurate prediction results than the state-of-the-art baselines.

The importance of learning both local and global context from analyzing the learned clus-
ters are two-fold: 1) although CHF patients share many commonalities, e.g. having hyperten-
sion and cardiac dysrhythmia, their risks of readmission can vary due to different local or
global contextual information. For example, patients recently received heart or cell
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transplantation surgery have high risks of readmission, thus need more frequent follow-ups
after last discharge. Another example, if patients only have non-severe non-cardiac comorbid
conditions, their risks of readmission would be lower than other groups. 2) although the read-
mission prediction is based on CHF cohort, the patients may be readmitted due to some other
reasons, which could become confounding factors here. For example, patients are readmitted
due to comorbid traumatic brain injury, which can be induced by CHF comorbid conditions
or other reasons.

What is worth mentioning is in this work we did not explicitly perform any missing value
imputation for the input clinical events. The observation that time intervals between two visits
are irregular is a very common phenomenon in healthcare and clinical setting. Since most
EHR data are not missing at random (NMAR) [41-43], it is challenging for existing imputa-
tion methods to be used on EHR data. Our CONTENT model not explicitly aims for solving
the problem of missing values. However, it does implicitly decrease the impact brought by
missing values by capturing the global context using topics. In future work we can also employ
dropout techniques in the model. The dropout technique is essentially equivalent to randomly
removing some visits or codes. So the final model will be more robust to missing visits.

To summarize, the CONTENT model not only learns more accurate patient representation
and thus leads to better prediction performance, but also generates interpretable representa-
tions that could be used to cluster patients into more homogeneous patient subgroups. Analyz-
ing the top clinical features in each subgroup provide interpretability and help us gain better
understanding of CHF comorbidity and various reasons and risks of 30-day readmissions for
CHEF patients.

The limitation of this work is that we only use clinical events as original input features.
However, unlike previous models that are designed to only take sequence of events as input
features, the proposed model can be extended to extract better global context from generic
form of inputs, e.g. patient profile or other side information. This will be one future direction
of extension.

Conclusion

In this paper, we propose CONTENT, an end-to-end deep sequential predictive model that
embeds local and global contextual information via RNN and a topic model based recognition
network, respectively. We evaluated the model with hospital readmission prediction task on a
cohort of CHF patients. CONTENT outperforms baseline and can also explicitly generates
interpretable subgroups to improve understanding of heterogeneous readmission risks
among CHF cohort. Future work includes applying the model to different cohorts to show the
generality of the approach. We will also include side information for generating better global
context.

Supporting information

S1 Data. The simulation data used in the experiment. S1_Data.txt is the simulation data
used in the experiment and the implementation code can be found at https://github.com/
danicaxiao/CONTENT.

(Z1P)

Acknowledgments
The work of Fei Wang is supported by NSF IIS-1650723 and IIS-1716432.

PLOS ONE | https://doi.org/10.1371/journal.pone.0195024  April 9, 2018 12/15


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195024.s001
https://github.com/danicaxiao/CONTENT
https://github.com/danicaxiao/CONTENT
https://doi.org/10.1371/journal.pone.0195024

@° PLOS | ONE

Readmission prediction via deep contextual embedding of clinical concepts

Author Contributions

Conceptualization: Cao Xiao, Adji B. Dieng, David M. Blei, Fei Wang.
Data curation: Cao Xiao.

Funding acquisition: Fei Wang.

Investigation: Cao Xiao, Tengfei Ma, Fei Wang.
Methodology: Cao Xiao, Tengfei Ma, Adji B. Dieng, Fei Wang.
Project administration: Fei Wang.

Resources: Fei Wang.

Supervision: David M. Blei, Fei Wang.

Validation: Cao Xiao.

Writing - original draft: Cao Xiao, Tengfei Ma.

Writing - review & editing: Fei Wang.

References

1. BasuRoy S, Teredesai A, Zolfaghar K, Liu R, Hazel D, Newman S, et al. Dynamic Hierarchical Classifi-
cation for Patient Risk-of-Readmission. In: Proceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD’15. New York, NY, USA: ACM; 2015. p. 1691—
1700. Available from: http://doi.acm.org/10.1145/2783258.2788585.

2. Mcllvennan C, Eapen Z, Allen L. Hospital Readmissions Reduction Program. Circulation. 2015; 131
(20). https://doi.org/10.1161/CIRCULATIONAHA.114.010270 PMID: 25986448

3. KZ. Predicting Risk-of-Readmission for Congestive Heart Failure Patients: A Multi-Layer Approach.
IEEE Trans on Big Data. 2013;.

4. Mathias J, Agrawal A, Feinglass J, Cooper A, Baker D, Choudhary A. Development of a 5 year life
expectancy index in older adults using predictive mining of electronic health record data. Journal of
American Medical Informatics Association. 2013; 20(e1). https://doi.org/10.1136/amiajnl-2012-001360

5. TranT, LuoW, Phung D, Gupta S, Rana S, Kennedy RL, et al. A framework for feature extraction from
hospital medical data with applications in risk prediction. BMC Bioinformatics. 2014; 15(1):425. https://
doi.org/10.1186/s12859-014-0425-8 PMID: 25547173

6. Hammill B, Curtis L, Fonarow G, Heidenreich P, Yancy C, Peterson E, et al. Incremental value of clinical
data beyond claims data in predicting 30-day outcomes after heart failure hospitalization. Circ Cardio-
vasc Qual Outcomes. 2011; 4(1). https://doi.org/10.1161/CIRCOUTCOMES.110.954693

7. Hripcsak G, Albers D. Next-generation phenotyping of electronic health records. Journal of the Ameri-
can Medical Informatics Association. 2013; 20:117-121. https://doi.org/10.1136/amiajnl-2012-001145
PMID: 22955496

8. BC,JW,SW,etal. Systematic review: Impact of health information technology on quality, efficiency,
and costs of medical care. Annals of Internal Medicine. 2006; 144(10):742—752. https://doi.org/10.7326/
0003-4819-144-10-200605160-00125

9. BengioY, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE trans-
actions on pattern analysis and machine intelligence. 2013; 35(8):1798-1828. https://doi.org/10.1109/
TPAMI.2013.50 PMID: 23787338

10. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.

11. LeCunY, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(Jan):436—444. https://doi.org/10.1038/
nature14539 PMID: 26017442

12. Bengio Y, Ducharme R, Vincent P, Janvin C. A Neural Probabilistic Language Model. J Mach Learn
Res. 2003; 3:1137-1155.

13. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of machine Learning research. 2003; 3
(Jan):993-1022.

14. Elman JL. Finding structure in time. COGNITIVE SCIENCE. 1990; 14(2):179-211. https://doi.org/10.
1207/s15516709cog1402_1

PLOS ONE | https://doi.org/10.1371/journal.pone.0195024  April 9, 2018 13/15


http://doi.acm.org/10.1145/2783258.2788585
https://doi.org/10.1161/CIRCULATIONAHA.114.010270
http://www.ncbi.nlm.nih.gov/pubmed/25986448
https://doi.org/10.1136/amiajnl-2012-001360
https://doi.org/10.1186/s12859-014-0425-8
https://doi.org/10.1186/s12859-014-0425-8
http://www.ncbi.nlm.nih.gov/pubmed/25547173
https://doi.org/10.1161/CIRCOUTCOMES.110.954693
https://doi.org/10.1136/amiajnl-2012-001145
http://www.ncbi.nlm.nih.gov/pubmed/22955496
https://doi.org/10.7326/0003-4819-144-10-200605160-00125
https://doi.org/10.7326/0003-4819-144-10-200605160-00125
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1371/journal.pone.0195024

@° PLOS | ONE

Readmission prediction via deep contextual embedding of clinical concepts

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Nguyen P, Tran T, Wickramasinghe N, Venkatesh S. Deepr: A Convolutional Net for Medical Records.
IEEE journal of biomedical and health informatics. 2017; 21 1:22-30. https://doi.org/10.1109/JBHI.
2016.2633963 PMID: 27913366

Cheng Y, Wang F, Zhang P, Hu J. Risk Prediction with Electronic Health Records: A Deep Learning
Approach. In: Proceedings of the 2016 SIAM International Conference on Data Mining, Miami, Florida,
USA, May 5-7, 2016; 2016. p. 432—440. Available from: http://dx.doi.org/10.1137/1.9781611974348.
49.

Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of
heart failure onset. Journal of the American Medical Informatics Association. 2016; p. ocw112. https:/
doi.org/10.1093/jamia/ocw112

Baytas IM, Xiao C, Zhang X, Wang F, Jain AK, Zhou J. Patient Subtyping via Time-Aware LSTM Net-
works. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD’17; 2017. p. 65-74.

Che C, Xiao C, Liang J, Jin B, Zhou J, Wang F. An RNN Architecture with Dynamic Temporal Matching
for Personalized Predictions of Parkinson’s Disease. In: SIAM International Conference on Data Mining;
2017.

Ma T, Xiao C, Wang F. Health-ATM: A Deep Architecture for Multifaceted Patient Health Record Repre-
sentation and Risk Prediction. In: SIAM International Conference on Data Mining; 2018.

Cho K, van Merriénboer B, Gillgehre G, Bahdanau D, Bougares F, Schwenk H, et al. Learning Phrase
Representations using RNN Encoder—Decoder for Statistical Machine Translation. In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics; 2014. p. 1724—-1734. Available from: http://www.aclweb.org/
anthology/D14-1179.

Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997; 9(8):1735—-1780.
https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

Pascanu R, Mikolov T, Bengio Y. On the Difficulty of Training Recurrent Neural Networks. In: Proceed-
ings of the 30th International Conference on International Conference on Machine Learning—Volume
28.1CML’13. JMLR.org; 2013. p. [1I-1310-111-1318. Available from: http://dl.acm.org/citation.cfm?id=
3042817.3043083.

Srivastava N, Hinton G, Krizhevsky A, Sutskever |, Salakhutdinov R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J Mach Learn Res. 2014; 15(1):1929-1958.

Mikolov T, Zweig G. Context Dependent Recurrent Neural Network Language Model; 2012.

Dieng AB, Wang C, Gao J, Paisley J. TopicRNN: A Recurrent Neural Network with Long-Range
Semantic Dependency. International Conference On Learning Representations. 2017;.

Arisoy E, Saraclar B, Roark B, Shafran . Discriminative language modeling with linguistic and statisti-
cally derived features. Audio, Speech, and Language Processing, IEEE Transactions on. 2012; 20
(2):540-550.

MP, P B, HR, et al. Bnp-guided vs symptom-guided heart failure therapy: The trial of intensified vs stan-
dard medical therapy in elderly patients with congestive heart failure (time-chf) randomized trial. JAMA.
2009; 301(4):383-392. https://doi.org/10.1001/jama.2009.2

Wu J, Roy J, Stewart W. Prediction modeling using EHR data: challenges, strategies, and a comparison
of machine learning approaches. Med Care. 2010; 48(6).

Kingma DP, Welling M. Auto-Encoding Variational Bayes. CoRR. 2013;abs/1312.6114.

Blei DM, Kucukelbir A, McAuliffe JD. Variational Inference: A Review for Statisticians. Journal of the

American Statistical Association. 2017; 112(518):859-877. https://doi.org/10.1080/01621459.2017.
1285773

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. CoRR. 2014;abs/1412.6980.

Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints. 2016;abs/1605.02688.

Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A, Stewart W. RETAIN: An Interpretable Predictive
Model for Healthcare using Reverse Time Attention Mechanism. In: Advances in Neural Information
Processing Systems; 2016. p. 3504—3512.

Choi E, Bahadori MT, Searles E, Coffey C, Sun J. Multi-layer Representation Learning for Medical Con-
cepts. arXiv preprint arXiv:160205568. 2016;.

Katz SD. Mechanisms and Treatment of Anemia in Chronic Heart Failure. Congestive Heart Failure.
2004; 10(5):243-247. https://doi.org/10.1111/j.1527-5299.2004.03298.x PMID: 15470302

Lang CC, Mancini DM. Non-cardiac comorbidities in chronic heart failure. Heart. 2007; 93(6):665-671.
https://doi.org/10.1136/hrt.2005.068296 PMID: 16488925

PLOS ONE | https://doi.org/10.1371/journal.pone.0195024  April 9, 2018 14/15


https://doi.org/10.1109/JBHI.2016.2633963
https://doi.org/10.1109/JBHI.2016.2633963
http://www.ncbi.nlm.nih.gov/pubmed/27913366
http://dx.doi.org/10.1137/1.9781611974348.49
http://dx.doi.org/10.1137/1.9781611974348.49
https://doi.org/10.1093/jamia/ocw112
https://doi.org/10.1093/jamia/ocw112
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
https://doi.org/10.1001/jama.2009.2
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1111/j.1527-5299.2004.03298.x
http://www.ncbi.nlm.nih.gov/pubmed/15470302
https://doi.org/10.1136/hrt.2005.068296
http://www.ncbi.nlm.nih.gov/pubmed/16488925
https://doi.org/10.1371/journal.pone.0195024

@° PLOS | ONE

Readmission prediction via deep contextual embedding of clinical concepts

38.

39.

40.

41.

42,

43.

Robert I, Griffiths ML, Gleeson JMV, Danese MD. Impact of Undetected Comorbidity on Treatment and
Outcomes of Breast Cancer. International Journal of Breast Cancer. 2014;.

Thompson H, Dikmen S, Temkin N. Prevalence of Comorbidity and its Association with Traumatic Brain
Injury and Outcomes in Older Adults. Research in gerontological nursing. Research in gerontological
nursing. 2012; 5(1):17—24. https://doi.org/10.3928/19404921-20111206-02 PMID: 22165997

Armenian S, Sun C, Francisco L. Late Congestive Heart Failure After Hematopoietic Cell Transplanta-
tion. Journal of Clinical Oncology. 2008; 26(34):5537-5543. https://doi.org/10.1200/JC0O.2008.17.7428
PMID: 18809605

Lin JH, Haug P. Exploiting Missing Clinical Data in Bayesian Network Modeling for Predicting Medical
Problems. Journal of Biomedical Informatics. 2008; 41(1):1-14. https://doi.org/10.1016/.jbi.2007.06.
001 PMID: 17625974

Pivovarov R, Albers DJ, Sepulveda JL, Elhadad N. Identifying and Mitigating Biases in EHR Laboratory
Tests.” Journal of Biomedical Informatics. Journal of Biomedical Informatics. 2014; 51:24—-34. https:/
doi.org/10.1016/}.jbi.2014.03.016 PMID: 24727481

Little RJA, Rubin DB. Statistical Analysis with Missing Data. John Wiley & Sons.; 2014.

PLOS ONE | https://doi.org/10.1371/journal.pone.0195024  April 9, 2018 15/15


https://doi.org/10.3928/19404921-20111206-02
http://www.ncbi.nlm.nih.gov/pubmed/22165997
https://doi.org/10.1200/JCO.2008.17.7428
http://www.ncbi.nlm.nih.gov/pubmed/18809605
https://doi.org/10.1016/j.jbi.2007.06.001
https://doi.org/10.1016/j.jbi.2007.06.001
http://www.ncbi.nlm.nih.gov/pubmed/17625974
https://doi.org/10.1016/j.jbi.2014.03.016
https://doi.org/10.1016/j.jbi.2014.03.016
http://www.ncbi.nlm.nih.gov/pubmed/24727481
https://doi.org/10.1371/journal.pone.0195024

