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Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean 

and limited exposure to open air. Despite being found on islands and peninsular coastlines 

around the world, the isolation of anchialine systems has facilitated the evolution of high 

levels of endemism among their inhabitants. The unique characteristics of anchialine caves 

and of their predominantly crustacean biodiversity nominate them as particularly interesting 

study subjects for evolutionary biology. However, there is presently a distinct scarcity of 

modern molecular methods being employed in the study of anchialine cave ecosystems. 

The use of current and emerging molecular techniques, e.g., next-generation sequencing 

(NGS), bestows an exceptional opportunity to answer a variety of long-standing questions 

pertaining to the realms of speciation, biogeography, population genetics, and evolution, as 

well as the emergence of extraordinary morphological and physiological adaptations to these 

unique environments. The integration of NGS methodologies with traditional taxonomic and 

ecological methods will help elucidate the unique characteristics and evolutionary history of 

anchialine cave fauna, and thus the significance of their conservation in face of current and 

future anthropogenic threats. Here we review previous contributions to our understanding of 

anchialine biodiversity and evolution, and discuss the potential of “speleogenomic” methods 

for future research in these threatened systems.
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INTRODUCTION

The term anchialine, from the Greek “anchialos” 
meaning “near the sea”, is generally used in reference 
to ‘tidally-influenced subterranean estuaries within 
crevicular and cavernous karst and volcanic terrains 
that extend inland to the limit of seawater penetration’ 
(Stock, 1986; Iliffe, 1992; Bishop et al., 2015). Despite 
tidal influences acting through small conduits and/or 
the porosity of the surrounding limestone or volcanic 
rock, anchialine systems have restricted biological 
connectivity with adjacent water bodies and their 
associated ecosystems (Iliffe & Kornicker, 2009; 
Becking et al., 2011; Bishop et al., 2015). Anchialine 
caves are occasionally interconnected, forming 
extensive underground networks and giving rise to 
large and spatially complex habitats (e.g., cenotes in 
the Yucatan Peninsula, Mexico, Beddows et al., 2007; 
Mylroie & Mylroie, 2011). Anchialine caves’ stratified 
waters often further increase their habitat complexity 

(Moritsch et al., 2014). This stratification involves a 
surface layer of meteoric freshwater, separated from 
underlying marine water by a halocline or mixing 
zone, where dissolved oxygen levels are low or absent 
and clouds of hydrogen sulfide occur (Fig. 1, Sket, 
1996; Humphreys, 1999; Iliffe, 2000; Seymour et al., 
2007; Becking et al., 2011; Gonzalez et al., 2011). 
Anchialine systems are widely distributed around 
the world, mostly isolated from each other, and 
occurring on karst or volcanic coastlines of islands 
and peninsulas. Partially explored locations include 
(but are not limited to) the islands of the Bahamas, 
Bermuda, Galapagos (Ecuador), Hawaii (U.S.A.), the 
Ryukyus Archipelago (Japan), Canary and Balearic 
Islands (Spain), the Philippines, Indonesia, Christmas 
Island and Barrow Island (Australia), and peninsular 
areas of the Yucatan (Mexico), Belize and Cape Range 
(Australia, Iliffe, 1991; Jaume et al., 2001; Humphreys, 
2002; Pesce & Iliffe, 2002; Fosshagen & Iliffe, 2004; 
Kano & Kase, 2004; Namiotko et al., 2004; Koenemann 
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et al., 2009a; Russ et al., 2010; Becking et 
al., 2011; Gonzalez et al., 2011). Anchialine 
habitats are locally known by a variety of 
names: the most notable being Australia’s 
“sinkholes”, Belize’s and the Bahamas’ “blue 
holes”, and the Yucatan’s “cenotes” (from 
the Maya word ts’onot, Jaume et al., 2001; 
Iliffe & Kornicker, 2009; Humphreys et al., 
2012). These habitats can take a variety of 
different forms including pools, lava tubes, 
faults in volcanic rock, karstic limestone cave 
systems, and connected groundwater (Fig. 2, 
Iliffe, 1992; Namiotko et al., 2004; Becking et 
al., 2011; Mylroie & Mylroie, 2011), yet they 
all share the same characteristic patterns 
of stratification and limited biological 
connectivity with surrounding environments 
(Kano & Kase, 2004; Hunter et al., 2007; 
Porter, 2007).

Anchialine caves have a relatively young 
history in their current state and locations 
(Mylroie & Mylroie, 2011), originating when 
formerly dry caves were flooded by rising, 
post-glacial sea-levels in the early Holocene 
(11,650-7000 years ago, Becking et al., 2011; 
Smith et al., 2011). However, anchialine 
habitats have existed for millions of years 
(Iliffe, 2000; Suárez-Morales et al., 2004; 
Sathiamurthy & Voris, 2006; Becking et 
al., 2011). Previous studies of cave geology 
have shown that a great number of extensive 
and complex caves were formed by the 
cyclical sea-level changes associated with the 
Quaternary period (~2.5 million years ago 
to present, Mylroie & Mylroie, 2011), while 
the fossil record indicates that the putative 
ancestors of modern anchialine fauna were 
already present in marine systems hundreds 
of million years ago (e.g., remipedes ~328-
306 mya, atyid shrimp ~145-99 mya, Brooks, 
1955; Emerson, 1991; von Rintelen et al., 
2012; Moritsch et al., 2014). It is therefore 
possible that the colonization of anchialine 
caves and similar marine crevicular habitats 
has been occurring since at least the 
late Jurassic (i.e., the thaumatocypridid 
ostracod Pokornyopsis feifeli Triebel, 1941, 

Fig. 1. Schematic representation of an anchialine cave system. A) “Blue hole”, “Cenote” or “Sinkhole” opening to the 

surface; B) Meteoric freshwater lens upper stratum; C) Halocline or mixing zone – often accompanied by a layer of 

hydrogen sulfide by-product of microbial activity; D) Hypoxic saltwater lower stratum – devoid of sunlight, food webs 

in this habitats are likely to depend on chemosynthetic microbial communities. Diagram by J.M. Song-López.

Fig. 2. Anchialine systems can be found in a range of different forms including (but not 

limited to): A) karst cave systems (Crystal Cave, Bermuda – photo by J. Heinerth);  

B) lava tubes (Jameos del Agua, Lanzarote, Canary Islands, Spain – photo by  

J. Heinerth), and C) pools (Angel Pool, Bermuda – photo by T. Thomsen).
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Iglikowska & Boxshall, 2013; Jaume et al., 2013). 
The particular geochemistry that distinguishes 
anchialine habitats (low dissolved oxygen, stratified 
and oligotrophic waters, Moore, 1999; Seymour et al., 
2007; Pohlman, 2011; Neisch et al., 2012), coupled 
with the distributional patterns and isolation of 
these cave systems has allowed for a high proportion 
of endemism among their autochthonous fauna 
(Iliffe, 1993; Myers et al., 2000; Porter, 2007; Iliffe & 
Kornicker, 2009). Due to these circumstances, novel 
and complex chemosynthetically based food webs 
have arisen, analogous to those found in the deep 
seas (Sarbu et al., 1996; Engel et al., 2004; Opsahl 
& Chanton, 2006; Engel, 2007; Porter et al., 2009; 
Pohlman, 2011). 

Recent improvements in scientific cave diving 
technology and techniques (e.g., mixed-gas rebreathers) 
have facilitated access and greatly contributed to 
sampling capabilities in anchialine cave systems (Iliffe 
& Bowen, 2001; Iliffe & Kornicker, 2009; Iliffe, 2012). 
Increased access to these systems has resulted in the 
description of numerous species, genera, families, 
orders and even a new class (Remipedia) previously 
unknown to science (Yager, 1981; Iliffe, 2002). 
However, the scarcity of modern genomic methods 
being employed in the study of anchialine ecosystems 
remains to be addressed. Although biospeleological 
studies that incorporate genetic methodologies have 
been previously conducted (Adams & Humphreys, 
1993; Porter, 2007; Page et al., 2008; Juan et al., 
2010), the use of modern sequencing technologies 
for the study of anchialine caves still lags behind 
their freshwater and terrestrial counterparts (e.g., 
Friedrich et al., 2011; Protas et al., 2011; Friedrich, 
2013; Gross et al., 2013), with perhaps the exception 
of some localized studies of specific taxa (e.g., Meland 
& Willassen, 2007; Russ et al., 2010; Neiber et al., 
2012; von Reumont et al., 2014). In this contribution 
we examine the current state of knowledge on 
anchialine cave ecology, biodiversity, and evolution 
and also discuss the advantages and possibilities that 
biospeleological investigations at the genomic level, or 
“speleogenomics”, will provide to the understanding 
of these fascinating systems – with special emphasis 
in the areas of biodiversity, phylogeography, and 
molecular evolution.

ECOLOGY AND BIODIVERSITY  
OF ANCHIALINE CAVES

Anchialine caves display unique species assemblages 
with biodiversity often varying not only by location, 
but also in response to abiotic factors such as tidal 
flux, salinity, temperature, dissolved oxygen, and 
water stratification (e.g., haloclines, Iliffe, 2002; 
Gonzalez et al., 2011). Cave food webs have been 
regarded as nutrient poor and dependent on external 
inputs of nutrients such as decaying organic matter 
(Dickson, 1975; Sket, 1996; Neisch et al., 2012), 
but recent discoveries have attributed considerable 
importance to the chemosynthetic activity of bacterial 
communities (Sarbu et al., 1996; Pohlman et al., 
1997; Engel et al., 2004; Engel, 2007; Seymour et 

al., 2007; Gonzalez et al., 2011; Humphreys et al., 
2012; Pakes et al., 2014; Pakes & Mejía-Ortíz, 2014), 
particularly with increasing distances from cave 
openings (Neisch et al., 2012). In fact, productivity 
of cave chemoautotrophic communities appears to 
correlate with diversity of heterotrophic microbes 
and of macro-invertebrates in higher trophic levels, 
which suggests that microbial diversity plays a role 
in mediating cave biodiversity (Engel, 2007; Porter et 
al., 2009). Chemosynthetic ectosymbioses between 
bacteria and several invertebrate phyla have been 
documented in similar ecosystems (Dubilier et al., 
2008; Goffredi, 2010), including freshwater caves 
(Dattagupta et al., 2009; Bauermeister et al., 2012). 
Recent studies suggest that analogous interactions 
occur in anchialine systems, with both ecto- and 
endosymbioses of chemoautotrophic bacteria having 
been found in two crustacean taxa (the remipede 
Xibalbanus tulumensis and the atyid shrimp 
Typhlatya pearsei) from anchialine caves (Pakes et al., 
2014; Pakes & Mejía-Ortíz, 2014). Other microbiota 
also present in anchialine caves include microscopic 
eukaryotes such as fungi, protozoa, and rotifers, but 
documentation on their biodiversity and ecological 
roles in anchialine caves is limited (Engel, 2007). 

Assemblages of anchialine cave fauna display 
unique variations and stratified ecological niches, 
due to thermoclines and haloclines, among and 
within caves. An interesting phenomenon observed 
in these systems is the assemblage cave “types” 
(e.g., Remipedia or Procaridid communities) – where 
similar crustacean communities of only a few 
different genera are found inhabiting different caves, 
often geographically distant from each other, and 
displaying predictable generic compositions (Poore & 
Humphreys, 1992; Jaume et al., 2001; Humphreys 
& Danielopol, 2006; Neiber et al., 2011). Remipede-
type caves typically contain remipedes and other 
crustacean stygobionts (aquatic and cave-dwelling) 
such as cirolanid isopods, hadziid amphipods, 
calanoid copepods, ostracods, thermosbaenaceans, 
and atyid shrimps; while Procaridid-type communities 
are characterized by the presence of shrimp from the 
genus Procaris Chace and Manning, 1972 along with 
a number of species of alpheid, atyid, and barbouriid 
shrimps (Chace & Manning, 1972; Humphreys & 
Danielopol, 2006; Neiber et al., 2011). The exact 
reasons underlying these phenomena of community 
“types” and disjunct distributions continue to be 
subject to investigation. The dominant hypothesis 
suggests that this community-type phenomenon is 
due to ancient geological patterns when many of these 
species and their ancestors originated (in the Tethys 
Sea during the Mesozoic), as these cave community-
types tend to be associated with particular geographical 
features (e.g., Procaridid-type communities are more 
commonly located on sea-mount islands, Humphreys, 
1999, 2002; Humphreys & Danielopol, 2006; Neiber 
et al., 2011). The underlying mechanisms and 
processes that gave rise to cave biodiversity and its 
ecology constitute one of the major research themes 
for modern biospeleology (Peck & Finston, 1993; Sket, 
1999; Juan et al., 2010).
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Stygobitic fish, particularly eel-like fish (orders 
Ophidiiformes, Synbranchiformes) and eleotrids 
(order Perciformes), can be encountered in anchialine 
caves (Williams et al., 1989; Humphreys, 2001a; 
Medina-Gonzalez et al., 2001; Wilkens, 2001; 
Larson et al., 2013). However, these habitats are 
clearly dominated by invertebrates both in terms 
of diversity and biomass (Iliffe, 2002). Anchialine 
invertebrates encompass a diverse range of taxa, e.g., 
annelids, arachnids, chaetognaths, echinoderms, 
gastropods, poriferans, turbellarians, but most 
importantly crustaceans (Culver & Sket, 2000; Engel, 
2007; Mejía-Ortíz et al., 2007; Iliffe & Kornicker, 
2009; Solís-Marín & Laguarda-Figueras, 2010; 
Bribiesca-Contreras et al., 2013). The reason for 
the high diversity of crustaceans, the endemism of  
higher taxa to anchialine systems, and their 
preponderance over other higher taxa is unknown 
(Stoch, 1995; Sket, 1999). The diversity, abundance, 
and widespread distributions of crustacean taxa 
in anchialine caves designate them as the ideal  
subjects for biospeleological, biogeographical, and 
evolutionary studies in these systems. The sub-
phylum Crustacea is most commonly represented 
in anchialine cave environments by organisms from  
the following taxa:

Order Decapoda (Class Malacostraca,  
Superorder Eucarida)

Stygobitic decapods (Fig. 3A) are broadly distributed 
throughout tropical and subtropical anchialine caves 
(Bruce & Davie, 2006; Hunter et al., 2007; Iliffe & 
Kornicker, 2009). Freshwater crayfish, and both 
brachyuran and anomuran crabs (e.g., Munidopsis 
polymorpha Koelbel, 1892) have been found inhabiting 
cave environments (Iliffe, 1993; Ng et al., 1996; Mejía-
Ortíz et al., 2003; Cabezas et al., 2012; Álvarez et al., 
2014), but the most common stygobitic decapods are 
the caridean shrimp (e.g., families Agostocarididae, 
Alpheidae, Atyidae, Barbouriidae, Hippolytidae, 
Palaemonidae, Chace & Manning, 1972; Jaume & 
Brehier, 2005; Hunter et al., 2007; Álvarez et al., 
2012), procarididean (e.g., family Procarididae, Chace 
& Manning, 1972; Felgenhauer et al., 1988; Bruce 
& Davie, 2006; Bracken et al., 2010), stenopodidean 
(e.g., family Macromaxillocarididae,  Álvarez et al., 
2006), and gebiidean (e.g., family Laomediidae, Iliffe & 
Kornicker, 2009) representatives living in anchialine 
systems around the world. Decapods are also among 
the most studied anchialine taxa, perhaps due to 
their charismatic nature and larger sizes (making 
them easier to be located and captured). However, 
the life-history, biogeography, and ecology of their 
anchialine cave inhabiting representatives for the 
most part remain poorly understood. Genetic studies 
of anchialine decapods have resulted in valuable 
insights on the phylogenetic position and biogeography 
of some species (for example Santos et al., 2006; 
Hunter et al., 2007; Page et al., 2008; Bracken et 
al., 2010; Botello et al., 2013), but investigations at 
the genomic or transcriptomic level remain scarce 
(Genomic Resources Development Consortium et al., 
2014; Justice et al., 2015).

Order Amphipoda (Class Malacostraca,  
Superorder Peracarida)

Stygobitic amphipods (Fig. 3B) are small “shrimp-
like” crustaceans that can be found in a variety 
of cave environments, including freshwater and 
anchialine caves, and are distributed across the 
world with a considerable number of species 
described from the Atlantic region (Southern 
Europe, the Mediterranean, North America, and the 
Caribbean, Culver & Pipan, 2009; Iliffe & Kornicker, 
2009). They are mostly represented in anchialine 
systems by a number of families from the suborder 
Senticaudata (e.g., Bogidiellidae, Hadziidae, Melitidae, 
Metacrangonyctidae Niphargidae, Salentinellidae, 
Jaume & Christenson, 2001; Iliffe & Kornicker, 
2009; Gràcia & Jaume, 2011). Recent molecular 
investigations have identified novel ectosymbioses 
between cave amphipods (Niphargus spp.) and sulphur-
oxidizing chemosynthetic bacteria (Dattagupta et al., 
2009; Flot et al., 2010; Bauermeister et al., 2012). 
Although such findings concerned freshwater species, 
the findings raise the possibility of similar symbioses 
occurring in these environments. 

Order Isopoda (Class Malacostraca,  
Superorder Peracarida)

Several families of isopods (e.g., Anthuridae, 
Asellidae, Atlantasellidae, Cirolanidae, Microcerberidae, 
Stenasellidae, Sphaeromatidae, Fig. 3C) are also found 
inhabiting cave systems, and their distributions 
tend to be relatively widespread. Isopods have been 
described from anchialine caves in Africa (Canary 
Islands), Asia (India, Indonesia, Japan, Malaysia), 
Europe (Mediterranean), North America (The 
Bahamas, Bermuda, Mexico and the Caribbean), 
Central and South America (Galapagos Islands), and 
Oceania (Australia and Polynesian Islands, Bruce & 
Humphreys, 1993; Botoşăneanu & Iliffe, 2006; Iliffe 
& Botoşăneanu, 2006; Iliffe & Kornicker, 2009). 
Cirolanids and sphaeromatid isopods are thought to 
have a marine origin, and are prevalent in anchialine 
systems, in contrast with other stygobitic families 
(e.g., Asellidae, Stenasellidae, Microcerberidae) that 
are likely to be product of colonizations from epigean 
freshwater habitats (Culver & Pipan, 2009). A limited 
number of anchialine isopods have been included in 
genetic studies (for example, molecular phylogeny of 
Cirolanidae in Baratti et al., 2010), but none of these 
have been conducted in the context of anchialine 
systems, nor at the genomic/transcriptomic level.

Orders Bochusacea and Thermosbaenacea (Class 
Malacostraca, Superorder Peracarida)

Bochusaceans are small (1.2 – 1.6 mm) swimming 
peracarids that display several morphological 
regressive adaptations to cave life (lack of pigmentation 
and visual organs, Guţu & Iliffe, 1998; Iliffe & 
Kornicker, 2009). Only two species of Bochusacea 
are known, inhabiting anchialine and submarine 
caves from the Bahamas and Cayman Islands (Guţu 
& Iliffe, 1998). Two other species are also known to 
be found in deep-sea environments (Guţu & Iliffe, 
1998; Jaume et al., 2006). There is presently only 
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a single bochusacean DNA sequence available 
online (small-subunit ribosomal RNA gene for 
Thetispelecaris remex), which resulted from a study 
that investigated peracarid monophyly (Spears 
et al., 2005). Thermosbaenaceans (Fig. 3D) are 
small (< 5 mm) and enigmatic stygobitic swimming 
crustaceans. They tend to live in the water column in 
proximity to the halocline, where they feed off organic 
matter and microbial communities that inhabit 
these density interphases (Gràcia & Jaume, 2011). 
They are globally distributed with some species 
found in Australia, Cambodia, the Mediterranean, 
and the Caribbean (Poore & Humphreys, 1992; Iliffe 
& Kornicker, 2009). Although they are believed to 
have originated from marine ancestors, no extant 
epigean marine species have been found (Sket, 
1996). Interestingly, thermosbaenaceans brood 
their young in a dorsal pouch, as opposed to a 
ventral marsupium as in the case of other extant 
peracarids (Olesen et al., 2015), and their brain’s 
olfactory lobe seems to be less developed than in 
other blind cave-dwelling crustaceans (Stegner 
et al., 2015). Similarly to bochusaceans, genetic 
resources for the order Thermosbaenacea are 
severely lacking. Of the four thermosbaenacean DNA 
sequences deposited in Genbank (National Center 
for Biotechnology Information), only one is from an 
anchialine representative (Tethysbaena scabra). 
Furthermore, this sequence for the 18S rRNA gene 
from T. scabra was simply used as an outgroup for 
an asellote isopod phylogeny (Wägele et al., 2003). 
Despite recent innovations and examinations of 
thermosbaenacean morphology (Olesen et al., 
2015; Stegner et al., 2015), genetic and genomic/
transcriptomic studies yet remain to be conducted.

Orders Mictacea, Mysida, and Stygiomysida  
(Class Malacostraca, Superorder Peracarida)

Fig. 3. Examples of various crustacean taxa found in anchialine caves: 

A) Parhippolyte sterreri (Decapoda); B) Pseudoniphargus grandimanus 

(Amphipoda); C) Bahalana caicosana (Isopoda); D) Tulumella sp. 

(Thermosbaenacea); E) Mictocaris halope (Mictacea); F) Bermudamysis 

speluncola (Mysida); G) Cumella abacoensis (Cumacea); H) Ridgewayia 

sp. (Calanoida); I) Spelaeoecia sp. (Ostracoda); J) Cryptocorynetes sp. 

(Remipedia) (Photographs of anchialine crustaceans by T. M. Iliffe).

Mictaceans (Fig. 3E) are relatively small (~3 mm) 
swimming peracarid crustaceans with only a single 
species in the order, Mictocaris halope (Bowman & 
Iliffe, 1985). This single representative of the order 
inhabits anchialine caves of Bermuda, primarily in 
the deeper and harder to access areas (Bowman & 
Iliffe, 1985). Stygobitic mysids (Fig. 3F) have a wide 
distribution with species endemic to anchialine 
caves in Africa, the Caribbean, Mediterranean, and 
India (Pesce & Iliffe, 2002; Iliffe & Kornicker, 2009). 
The Mysidacea has been split into two new orders, 
Mysida and Lophogastrida (Martin & Davis, 2001; 
Spears et al., 2005 Porter et al., 2007), with stygobitic 
mysids belonging to the former. However, more recent 
molecular analyses have concluded that the order 
“Mysidacea” actually consists of three monophyletic 
groups and strongly suggest classifying some stygobitic 
mysids from the Caribbean and Mediterranean in the 
proposed order of “Stygiomysida” (Meland & Willassen, 
2007; Porter et al., 2007). 

Orders Cumacea and Tanaidacea (Class Malacostraca, 
Superorder Peracarida)

Cumaceans (Fig. 3G) are peracarid crustaceans 
that can be found globally distributed with many 

species inhabiting areas as varied as the Australian 
Indo-Pacific to the Western Atlantic Ocean (Tafe & 
Greenwood, 1996a, 1996b; Petrescu, 2003; Petrescu 
& Iliffe, 2009). In the Western Atlantic region, 
cumaceans can be encountered both in oceanic 
basins (Petrescu et al., 1993; Petrescu, 1995) as well 
as in anchialine cave systems (Petrescu & Iliffe, 1992, 
2009). The physiology, life history, and ecology of  
most cumacean species are poorly understood 
(Gnewuch & Croker, 1973; Corey, 1981; Duncan, 1984; 
Corbera et al., 2008;), especially when concerning  
that of stygobitic species. Tanaidaceans are another 
group of anchialine crustaceans found across 
the globe, with specimens having been recovered 
from caves in the Western Atlantic (the Bahamas  
Islands) and the tropical Indo-Pacific (Fiji Islands 
and Palau, Guţu & Iliffe, 1989a; Guţu & Iliffe, 
1989b; Guţu & Iliffe, 2011). They are small dorso-
ventrally flattened crustaceans with generally highly 
chitinized bodies, although some cave species 
with softer bodies have been found (Guţu & Iliffe, 
1989a; Guţu & Iliffe, 1989b). Both cumaceans and 
tanaids are underrepresented in genetic studies 
in general (Shen et al., 2015), and especially in 
anchialine systems where these investigations are yet  
to be undertaken.
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Suborder Nebaliacea (Class Malacostraca, Order 
Leptostraca) and Subclass Tantulocarida 
(Superclass Multicrustacea)

Nebaliaceans are small shrimp-like benthic 
crustaceans typically from 5 to 15 mm long. Although 
they are mostly marine, an anchialine cave species 
of nebaliacean, known from the Turks and Caicos 
Islands, shares with its marine counterparts the 
ability to tolerate low-oxygen environments (Bowman 
et al., 1985; Walker-Smith & Poore, 2001). There 
are no genetic resources available for anchialine 
Nebaliacea. Tantulocarids are small crustacean 
ectoparasites usually associated with other 
crustacean hosts (Boxshall & Huys, 1989; Huys, 
1990). Stygobitic tantulocarids have been described 
parasitizing harpacticoid copepods in anchialine caves 
of the Canary Islands (Boxshall & Huys, 1989; Iliffe 
& Kornicker, 2009). Recent molecular phylogenetic 
investigations have suggested a close relation between 
tantulocarids and the subclass Thecostraca, and that 
Tantulocarida might in fact belong within this subclass 
as a sister group to Cirripedia (barnacles, Petrunina et 
al., 2014). However, the precise phylogenetic position 
of Tantulocarida still awaits further investigation 
(Petrunina et al., 2014).

Orders Calanoida, Cyclopoida, Harpacticoida, 
Misophrioida, Platycopioida (Superclass 
Multicrustacea, Subclass Copepoda)

Copepods (Fig. 3H) are amongst the most abundant 
and widely distributed taxa of aquatic animals, and 
exist in a wide range of environments across the globe 
(Boxshall & Defaye, 2008). Not surprisingly, several 
orders from the subclass Copepoda can be found 
inhabiting most anchialine caves (Rouch, 1994; Gràcia 
& Jaume, 2011). They are typically encountered in 
the water column where they filter feed, except for a 
number of benthic bio-film grazers (e.g., cyclopoids 
& harpacticoids), and predatorial (e.g., cyclopoids 
& epacteriscids) species (Rouch, 1994; Fosshagen 
et al., 2001; Suárez-Morales et al., 2004, 2006; 
Suárez-Morales & Iliffe, 2005a, 2005b, 2007; Iliffe & 
Kornicker, 2009). Stygobitic copepods often present 
troglomorphies such as the reduction or absence of 
eyes and enlargement of eggs (Rouch, 1968). Genetic 
studies of copepods from anchialine caves are rare, 
with only a few studies having sequenced them for 
molecular phylogenetic purposes (Huys et al., 2006; 
Figueroa, 2011).

Orders Halocyprida, Myodocopida, Platycopida, 
Podocopida (Class Ostracoda)

Ostracods (Fig. 3I) are a very diverse and abundant 
group, with approximately 980 species described from 
caves and other subterranean habitats (Martens, 2004; 
Iliffe & Kornicker, 2009; Hobbs, 2012). These small  
(~1 mm) bivalved crustaceans are active swimmers and 
as such are commonly found in the water column, which 
may be a contributing factor to their long dispersal 
abilities (Humphreys & Danielopol, 2006; Kornicker et 
al., 2009). Ostracods are distributed across anchialine 
habitats in both hemispheres, with some genera (e.g., 
Humphreysella) having representatives on opposite 

sides of the planet (Humphreys & Danielopol, 2006; 
Kornicker et al., 2008, 2009; Iglikowska & Boxshall, 
2013). Stygobitic ostracods are easily distinguishable 
from epigean representatives by the morphological 
differences associated with their adaptations to cave 
life (i.e., smaller size, lack of eyes and pigmentation, 
Danielopol, 1981). Even though anchialine ostracods 
have not received much attention from molecular 
biologists, genetic and genomic/transcriptomic 
studies of ostracods in other environments have been 
conducted with great success (Oakley & Cunningham, 
2002; Oakley, 2005; Oakley et al., 2013). These studies 
provide a great basis on which to build upon future 
investigations of anchialine cave ostracods, which are 
likely to yield interesting evolutionary insights.

Order Nectiopoda (Class Remipedia)

Remipedes (Fig. 3J) are an unusual class of blind 
crustaceans with extensive body segmentation 
and lateral biramous swimming appendages 
that superficially resemble polychaete worms. 
Characteristics such as their cephalic anatomy 
warranted their classification in the subphylum 
Crustacea (Yager, 1981), which was later confirmed 
by molecular studies (von Reumont et al., 2012). 
Remipedes follow similar distribution patterns to 
those of halocyprid ostracods (Kornicker et al., 
2007), and can be found exclusively in anchialine 
caves throughout the globe in a seemingly disjunct 
range of locations such as the Western Atlantic 
and Caribbean (Bahamas, Belize, Cuba, Dominican 
Republic, Yucatan), Africa (Canary Islands), and 
Western Australia (Sket, 1996; Yager & Humphreys, 
1996; Koenemann et al., 2003, 2004, 2007a, 2007c, 
2009a; Lorentzen et al., 2007; Daenekas et al., 2009; 
Neiber et al., 2011, 2012; Hoenemann et al., 2013; 
Koenemann & Iliffe, 2013). Although at first sight 
remipedes may appear morphologically primitive 
(Yager, 1994), they possess an advanced nervous 
system (Stemme et al., 2013), highly specialized 
feeding mouthparts for capturing prey (von Reumont et 
al., 2014), and they are the top predatory crustaceans 
in the low-oxygen anchialine systems they inhabit  
(Koenemann et al., 2007c; Iliffe & Kornicker, 2009). 
Remipede larvae are so far only known from a single 
species in one cave (Koenemann et al., 2007b; 2009b; 
Olesen et al., 2014). Recent investigations of the 
remipede Xibalbanus tulumensis (Yager, 1987) have 
found that in addition to feeding from particulate 
matter in the water column, this species harbors 
chemosynthetic bacteria in ectosymbiosis that allow 
for the uptake of inorganic carbon as a supplement to 
their diet (Pakes & Mejía-Ortíz, 2014). Furthermore, 
X. tulumensis has been shown to employ venom to 
capture and digest atyid shrimp, which makes it the 
first venomous crustacean ever documented (von 
Reumont et al., 2014). 

CURRENT ADVANCES AND FUTURE 
PROSPECTS

Despite difficulties and dangers of sampling in 
anchialine caves (Iliffe & Bowen, 2001; Iliffe, 2002, 
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2012), previous studies have made monumental 
contributions to the field and an extraordinary 
amount of novel diversity from these habitats 
has been described to present day. Although 
traditional sanger DNA sequencing technologies  
(Glossary Box 1) have provided valuable insights to 
biospeleology (including but not limited to species 
identification, phylogenetics, and estimates of genetic 
diversity, Juan et al., 2010), high-resolution molecular 
data from cave systems have the potential to greatly 
expand the depth and breadth of knowledge to be 
gained from these types of studies. “Next-generation” 
DNA sequencing technologies (NGS), which allow for 
the sequencing of thousands of loci and/or hundreds 
of samples at a time, have scarcely been used by 
biospeleologists (Juan et al., 2010; Friedrich et al., 
2011; Friedrich, 2013; Tierney et al., 2015). Previous 
biospeleological studies that incorporate genetic data 
to their investigation efforts have mainly focused on 
a single locus (for examples see: phylogeography – 
Caccone & Sbordoni, 2001; Buhay & Crandall, 2005; 
population genetics – Russ et al., 2010; phylogenetics 
– Neiber et al., 2011, 2012) or a limited number of loci 
at a time (for examples see: phylogeography – Villacorta 
et al., 2008; Trontelj et al., 2009; Zakšek et al., 2009; 
phylogenetics – Leys et al., 2003; Hunter et al., 2007; 
Lefébure et al., 2007; Zakšek et al., 2007; Page et 
al., 2008; von Rintelen et al., 2012; Hoenemann et 
al., 2013), with only a small portion of those studies 
employing four or more loci in their analyses (for 
examples see: phylogenetics – Bracken et al., 2010; 
Botello et al., 2013; population genetics – Adams & 
Humphreys, 1993). Employing a limited number of 
loci is suitable for the specific purposes that have 
been addressed so far, nevertheless the continuous 
development and improvement of molecular 
techniques offers an enormous potential for answering 
long-standing questions in biospeleology (Juan et al., 
2010). These technologies open the way for analyses of 
a much higher resolution at an accelerated pace, and 
facilitate work on whole genomes and transcriptomes 
(Shendure & Ji, 2008; Metzker, 2010; Lemmon et al., 
2012; Friedrich, 2013). Additionally, NGS has the 

ability to provide researchers with vast amounts of 
data in a cost-effective manner (Metzker, 2010). NGS 
has also permitted the development of techniques 
that target many loci and/or many samples at once 
(Lemmon et al., 2012), such as “Targeted Sequencing” 
(Glossary Box 1, Meyer et al., 2007; Mamanova et al., 
2010; Bybee et al., 2011a; Ekblom & Galindo, 2011; 
Hedges et al., 2011; Cronn et al., 2012; Grover et 
al., 2012; Hancock-Hanser et al., 2013; Stull et al., 
2013), “Anchored Hybrid Enrichment” (Glossary Box 
1, Lemmon et al., 2012), and other high-throughput 
methods (Binladen et al., 2007; Miller et al., 2007;  
Lemmon & Lemmon, 2012; Rohland & Reich, 2012; 
Peñalba et al., 2014). These methods, some of 
which have already been employed successfully for 
pancrustacean phylogenetics (Bybee et al., 2011b), 
are easily adaptable for other purposes where 
massively parallel sequencing would be advantageous 
(e.g., multi-locus phylogenetics, metagenomics, DNA 
barcoding, biodiversity assessments, etc., Glossary 
Box 1). In combination with non-destructive tissue 
sampling techniques, the high-throughput nature 
of NGS paves the way for studies with large sample 
sizes with a minimal impact on natural populations. 
Minimizing the impact of sampling is of particular 
importance when working with rare and endemic 
cave species, especially those with small population 
sizes such as many anchialine cave dwellers. These 
methodologies can be employed for biological research 
in caves and similar environments to answer questions 
in a diverse array of areas such as biogeography/
phylogeography (Porter, 2007; Juan et al., 2010; 
Lemmon & Lemmon, 2012; McCormack et al., 2013), 
ecology (Mock & Kirkham, 2012), phylogenetics/
phylogenomics (Bybee et al., 2011b; Lemmon & 
Lemmon, 2012; McCormack et al., 2013), cryptic 
speciation and evolution (Juan et al., 2010). The 
potential of next-generation sequencing has so far been 
demonstrated by the relatively few biospeleological 
studies that have successfully incorporated these 
modern techniques (e.g., Humphreys et al., 2012; 
Gross et al., 2013; O’Quin et al., 2013; von Reumont  
et al., 2012, 2014). 

Sanger DNA Sequencing: A methodology for sequencing DNA molecules based on in-vitro replication with the 
incorporation of labeled chain-terminating dideoxynucleotides. Sanger sequencing allows for the sequencing 
of longer DNA reads (typically up to ~1000 contiguous bases) in a single reaction. Despite its limitations of 
one sequence per reaction, it is still useful for smaller-scale applications. Its relatively longer reads are also 
of utility for the validation of Next-generation sequencing data.
Next-generation DNA Sequencing (NGS): A term used to describe a variety of modern high-throughput DNA 
sequencing technologies, including but not limited to: the Illumina platform, Roche 454 pyrosequencing, Ion 
Torrent, Pacific Biosciences. They are more cost-effective than Sanger DNA sequencing (in terms of number 
of base pairs sequenced per monetary unit), and in recent years their use has demonstrated their enormous 
potential for studies at the genomic and transcriptomic scales.
Targeted/Directed Sequencing: Refers to a type of sequencing where only a specific region of interest (i.e., 
partial gene fragment) in the genome is sequenced for a particular application. It can be used in conjunction 
with next-generation sequencing technologies for cost-effectiveness, which also allows for projects of a much 
larger scale than with Sanger DNA sequencing technologies.
Metagenomics: It refers to the sequencing and study of genes across whole communities in an environmental 
sample. It is especially useful as it allows for the examination of microbes that are typically uncultured in 
laboratory settings.
DNA Barcoding: The use of a given genetic sequence as an identifying marker or “barcode” for a given species. 
The best loci to use for this purpose may vary among taxa, however most recent efforts have focused on the 
mitochondrial cytochrome c oxidase subunit I or COI (animals and most eukaryotes), the nuclear ribosomal 
internal transcribed spacer or ITS (fungi), and the chloroplast rbcL and matK genes (plants).

Glossary Box 1.
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Cave biodiversity in the molecular era

Current molecular tools, such as DNA barcoding, 
allow us to identify species by using a DNA sequence 
in a specific genomic region as an identifier or 
“barcode” (Savolainen et al., 2005; Shokralla et al.; 
2014). DNA barcoding can be useful to discern species 
complexes that would otherwise go unnoticed due to 
morphological similarities or dissimilarities within a 
single species at different life-stages (Puillandre et 
al., 2011; Bracken-Grissom et al., 2012; Neiber et 
al., 2012). This is of special importance in anchialine 
caves and other subterranean systems where 
the possibility that troglomorphy and convergent 
evolution of morphological traits obscure phylogenetic 
relationships is significant (Wiens et al., 2003; 
Wilcox et al., 2004; Buhay & Crandall, 2005; Porter, 
2007; Trontelj et al., 2009). For example, Zakšek et 
al. (2009) investigated the seemingly widespread 
distribution of a common species of freshwater 
cave shrimp from the Balkan Peninsula (Troglocaris 
anophthalmus) and concluded that they should be 
considered distinct evolutionary significant units for 
conservation purposes. The study thus provides an 
example of how molecular tools can contribute to 
the delimitation of species with extensive convergent 
morphologies, which in turn could have important 
conservation implications. Molecular tools, such as 
DNA sequencing, will undoubtedly continue to be of 
importance for resolving cryptic species complexes 
that are pervasive in cave environments (Lefébure et 
al., 2007; Trontelj et al., 2009; Neiber et al., 2012). 
Similarly, morphological differences between life-
stages within a species are commonplace among 
crustaceans, and in many instances pose important 
challenges for organism identification and taxonomic 
classification. This is especially common in poorly 
studied or rare species, where adult-larval linkages 
have not been determined experimentally due to 
logistical difficulties in obtaining samples or difficulty 
of larval rearing. DNA barcoding has proven useful to 
link morphologically distinct adults and larvae of the 
same species. For example, Bracken-Grissom et al. 
(2012) employed DNA barcoding regions and molecular 
systematics to show that the mid-water species 
Cerataspis monstrosa was in fact the larval stage 
of the deep-sea shrimp Plesiopenaeus armatus. The 
high-throughput capabilities of NGS can substantially 
benefit DNA barcoding efforts by targeting specific 
amplicons over hundreds of samples at a time 
(Glossary Box 2, Floyd et al., 2002; Wu et al., 2009; 

Puillandre et al., 2011; Shokralla et al., 2014), making 
the sequencing and processing of numerous samples 
more efficient and cost-effective than with traditional 
Sanger DNA sequencing. These high-throughput 
capabilities can be especially useful for applications 
such as species identification, creation of species 
inventories (and large scale projects, such as the 
Barcode of Life initiative), detection of cryptic species 
complexes, and species delimitation (Savolainen et 
al., 2005; Bickford et al., 2007; Hajibabaei et al., 
2007; Ratnasingham & Hebert, 2007; Trontelj et al., 
2009; Niemiller et al., 2013; Shokralla et al., 2014), all 
of which would be of benefit to research in anchialine 
caves (i.e., Bribiesca-Contreras et al., 2013). 

Phylogeography of anchialine cave ecosystems

The vast amounts of genomic data that are possible 
to obtain with current technologies can be used to 
investigate evolutionary rates, diversification, and 
speciation among anchialine cave fauna, as well as 
enabling the investigation of population structure and 
gene-flow patterns at an unprecedented resolution 
(Leys et al., 2003; Porter, 2007; McCormack et al., 
2013). Furthermore, these kinds of molecular data 
can be used to answer questions regarding the 
intriguing distribution patterns of cave fauna, such 
as the determination of species origins aligning with 
the climatic-relic or adaptive-shift hypotheses (Leys et 
al., 2003). In biogeographical terms, anchialine fauna 
have provided a very interesting source of debate, 
where several models have been proposed to explain 
their origins (Suárez-Morales & Iliffe, 2005a; Porter, 
2007; Culver et al., 2009; Iliffe & Kornicker, 2009). 
The vicariance hypothesis states that the distribution 
of present-day anchialine fauna can be explained by 
plate tectonics, whereas the dispersal models suggest 
that stygobitic species dispersed to their present 
location when non-cave sister species invaded and 
adapted to cave environments (Jaume et al., 2001; 
Iliffe & Kornicker, 2009). The actual mechanisms that 
gave rise to contemporary anchialine fauna are likely 
to be a more complex combination of the previously 
mentioned models (Culver et al., 2009). Molecular 
studies provide the opportunity to test these hypotheses 
(Page et al., 2008; Juan et al., 2010). A number of 
comparative phylogeography studies have already 
been undertaken to explain the evolutionary origins 
and distributional patterns of cave fauna (Caccone & 
Sbordoni, 2001; Espinasa & Borowsky, 2001; Hunter 
et al., 2007; Ribera et al., 2010; von Rintelen et al., 

High-throughput sequencing: Refers to sequencing technologies that are able to generate vast amounts of 
data in a timely and cost-effective manner.
mtDNA: Mitochondrial DNA is the DNA contained within the mitochondria organelles in eukaryotic organisms. 
mtDNA is derived from bacterial genomes early in eukaryotic evolution, and thus has different evolutionary 
origins than nuclear DNA. In most organisms it is exclusively maternally inherited.
Haplotypes: Refers to a set of genetic variations in a DNA sequence that share common inheritance. The 
scale of these variations and determination of haplotypes can be from Single Nucleotide Polymorphisms 
(SNPs) in a particular locus to groups of alleles on the same chromosome that are inherited together.
RNA-Seq: The term refers to the high-throughput sequencing of RNA from a specific tissue or organism 
at a discrete point in time. This provides the research with a snapshot of what is occurring in terms of 
transcription in that precise moment. Transcriptomic data can be used for studies in a wide range of areas 
such as evolution, development, physiology, adaptations to changing environments, and responses to 
physicochemical challenges.

Glossary Box 2.
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2012). Although in the case of most taxa, the evidence 
of their origins remains inconclusive at best (Phillips 
et al., 2013), the incorporation of modern molecular 
techniques with datasets at the genomic scale will 
undoubtedly shape the future of this research area 
[e.g., with use of phylogenomic approaches (Leaché  
et al., 2014)].

One method that can be applied to fine-scale 
questions of phylogeography (i.e., population to 
species) is Restriction-site associated DNA sequencing 
(i.e., RAD-Seq, Glossary Box 2). This is a methodology 
that allows for the sequencing, identification, and 
use of thousands of genetic markers, such as Single 
Nucleotide Polymorphisms (SNPs), distributed across 
hundreds of loci (Ekblom & Galindo, 2011; McCormack 
et al., 2012, 2013). Restriction-site associated DNA 
sequencing reduces the complexity of the genome to 
be investigated with the use of restriction enzymes, 
which allows for genome-wide analyses to be 
performed without the computational and financial  
requirements of working with whole genomes (Davey 
& Blaxter, 2010; Davey et al., 2011; Toonen et al., 
2013). RAD-Seq provides high-resolution data that  
enable the identification of potentially thousands 
of these genetic markers across individuals and 
populations that can be employed for further analyses 
(Davey & Blaxter, 2010; Peterson et al., 2012). For 
example, Coghill et al. (2014) used RAD-Seq to 
trace the colonization of caves by the blind Mexican 
cavefish Astyanax mexicanus. This methodology 
enabled them to find over 2,000 SNPs across the 
examined populations and provided evidence for 
at least four independent colonization events from 
surface populations to the caves, which suggests 
parallel evolution of the cave phenotypes observed in 
these stygobitic fish.

Cave-inhabiting organisms can be used as a 
proxy for investigating the connectivity of intricate 
cave systems, by looking at patterns of gene flow 
and population connectivity. Many submerged cave 
systems form underground web-like tunnels that 
extend for several hundreds of kilometers (e.g., the 
Yucatan cave systems, Iliffe, 2000; Beddows et al., 
2007; Mylroie & Mylroie, 2011; Moritsch et al., 2014). 
The complexity of these cave systems makes them 
extremely challenging to be explored using traditional 
cave-diving methods, mainly due to technological and 
physiological constraints. Several studies have used 
stygobiont genetics to assess present or historical 
hydrological connectivity of cave systems (e.g., Culver 
et al., 1995; Verovnik et al., 2004; Krejca, 2005). Culver 
et al (1995), while examining cave-adapted populations 
of Gammarus minus in West Virginia (USA), found 
congruent patterns between genetic differentiation 
and hydrology even when accounting for the possible 
selective pressures of different habitats. Krejca (2005) 
compared mitochondrial DNA phylogenies of two 
lineages of aquatic isopods (Cirolanidae and Asellidae) 
to examine the evolution of aquifers in Texas (USA) 
and northern Mexico. Despite finding differences 
between the two species examined, which could 
be explained by their individual ecologies and life-
histories, Krejca (2005) found congruency between 

the crustacean phylogenies and the hydrogeological 
history of the examined systems. The molecular 
examination of these two cave-dwelling isopod 
species allowed her to test a priori biogeographical 
hypotheses and investigate the evolution of the 
aquifers studied (Krejca, 2005). Further, Verovnik et 
al. (2004) also used molecular data (mtDNA, Glossary 
Box 2) of a crustacean species (Asellus aquaticus), in 
combination with paleogeographical information, to 
reveal possible scenarios of hydrological history of the 
Dinaric karst in the Balkan Peninsula. A study in the 
Pilbara region of Western Australia uncovered similar 
patterns amongst subterranean amphipods (Finston 
et al., 2007), where the mitochondrial haplotypes 
(Glossary Box 2) found were congruent with the 
hydrology of the tributaries examined as previously 
hypothesized (Humphreys, 2001b). Anchialine cave 
system hydrology can be similar to that of freshwater 
karstic cave systems, with the added complexity of 
underground connections to marine waters. Santos 
(2006) investigated the population genetics and 
connectivity patterns of the iconic Hawaiian anchialine 
shrimp Halocaridina rubra. Amongst his findings, he 
determined that there appears to be strong population 
subdivisions and a clear genetic structure particularly 
when surface distances between anchialine pools 
exceeded 30 km. Santos’ (2006) results also suggest 
that dispersal through subterranean conduits between 
anchialine pools is of more importance for this species 
than oceanic dispersal. These results contrast with 
Kano and Kase’s (2004) findings of extensive oceanic 
dispersal by anchialine gastropods, further illustrating 
the importance of meticulous consideration of study 
species for cave connectivity purposes – where the 
chosen species’ dispersal abilities should correspond 
to the geographical scales under investigation. 
Coupled with NGS technologies, these could offer a 
compelling alternative for the investigation of cave 
connectivity, by using population genomics as a 
proxy via methodologies such as RAD-Seq. Reduced-
representation genome sequencing methodologies 
offer an unprecedented resolution (even compared 
to microsatellites) to genotype populations of cave 
organisms by sampling thousands of genomic regions 
at a time (Bradbury et al., 2015). The population 
structure and gene-flow patterns of those stygobiont 
populations could then be employed for a fine-scale 
evaluation of the connectivity of the anchialine caves 
under investigation, and complement traditional 
exploration efforts (e.g., scientific cave diving, Iliffe & 
Bowen, 2001; dye-tracing, Beddows & Hendrickson, 
2008) of these spatially complex habitats.

Evolution of troglomorphy

RNA sequencing (RNA-Seq, Glossary Box 2) can 
provide invaluable resources for evolutionary studies 
of cave biota. The term RNA-Seq refers to the high-
throughput sequencing of RNA from a specific tissue 
or organism at a discrete point in time (Wang et al., 
2009; De Wit et al., 2012). This is achieved by reverse 
transcribing extracted RNA to cDNA, followed by high-
throughput sequencing by an NGS platform (e.g, 454 
pyrosequencing, Illumina, PacBio), and subsequent 
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de novo assembly of the sequenced reads or the 
alignment of these reads to reference genomes (Wang 
et al., 2009; Deyholos, 2010; Martin & Wang, 2011; 
Zhang et al., 2011; De Wit et al., 2012). The resulting 
transcriptome assembly can then be characterized 
to identify the transcripts that are being expressed 
in that tissue, organism, and/or life-stage (Ekblom 
& Galindo, 2011; De Wit et al., 2012). Albeit being 
purely descriptive, a characterized transcriptome 
provides a base on which to build further analyses. 
The characterized transcriptome assembly can 
be used as a reference and both the original and 
additional sequenced reads (for other treatments, 
for example) can be mapped back to the assembly 
to obtain quantitative data of gene expression and 
genetic variation (Ellegren, 2008; Deyholos, 2010; 
Ekblom & Galindo, 2011). These data can be further 
utilized for a variety of applications such as the 
development of molecular markers and even the 
identification of events associated with speciation 
processes (i.e., alternative splicing, Harr & Turner, 
2010; Ekblom & Galindo, 2011). The small size of RNA 
sequence datasets, in comparison with whole-genome 
data, can also be valuable for the identification of 
new molecular markers and of novel proteins from 
non-model organisms in a computationally efficient 
manner. Additionally, transcriptomic data can be 
used for studies in a wide range of areas such as 
evolution (Harr & Turner, 2010; Friedrich et al., 2011; 
Rehm et al., 2011; Wong et al., 2015), development 
(Zeng et al., 2011; Ichihashi et al., 2014), physiology 
(Dassanayake et al., 2009; Harms et al., 2013; Groh 
et al., 2014), adaptations to changing environments 
(Deyholos, 2010; Friedrich, 2013; Harms et al., 2013), 
and responses to physicochemical challenges (e.g., 
biomonitoring & ecotoxicogenomics, Watanabe et al., 
2008; Suárez-Ulloa et al., 2013a, 2013b).

RNA-Seq (Wang et al., 2009) can also be used to 
address more basic questions of cave evolution, 
by investigating the “speleotranscriptome” – 
the transcriptomic profile of stygobitic fauna’s 
physiological and morphological adaptations (Gross 
et al., 2013). In addition, such investigations can set 
the stage for addressing broader questions regarding 
natural selection and the evolution of phenotypic 
diversity, novel molecular functions, and complex 
organismal features (Christin et al., 2010). Animals 
inhabiting cave environments usually undergo various 
distinct physiological, morphological, and behavioral 
changes, which together are commonly referred 
to as “troglomorphy” (Desutter-Grandcolas, 1997; 
Porter & Crandall, 2003; Mejía-Ortíz et al., 2006). 
Troglomorphic modifications can be classified in either 
progressive (constructive) or regressive (reductive) 
adaptations (Porter & Crandall, 2003; Mejía-Ortíz & 
Hartnoll, 2006; Mejía-Ortíz et al., 2006). In anchialine 
cave environments, stygobitic (aquatic and cave-
limited) fauna typically present a combination of both 
types of troglomorphism. Examples of progressive 
adaptations may include cases such as those of 
enlarged sensory and ambulatory appendages, 
increased numbers of chemoreceptor setae, or 
enhancement of spatial orientation capabilities (Turk 

et al., 1996; Li & Cooper, 2001, 2002; Mejía-Ortíz & 
Hartnoll, 2006;). Regressive modifications involve the 
decrease or loss of features present in their epigean 
(surface) counterparts, e.g., reduced pigmentation, 
reduction or loss of visual functions, or decreased 
metabolism (Sket, 1985; Wilkens, 1986; Mejía-Ortíz 
& López-Mejía, 2005; Mejía-Ortíz et al., 2006; Bishop 
& Iliffe, 2012). Troglomorphy is a perfect example of 
convergent morphological evolution where analogous 
traits have evolved in different lineages to adapt to 
similar environments (Caccone & Sbordoni, 2001; 
Wilcox et al., 2004; Protas et al., 2007; Bishop & Iliffe, 
2012; Mejía-Ortíz et al., 2013). Species from a variety 
of crustacean taxa have been documented to have 
convergent characters (e.g., pigmentation, Beatty, 
1949; Anders, 1956; body-size, Hobbs et al., 1977) by 
seemingly analogous mechanisms as adaptations to 
their subterranean life. This phenomenon poses the 
question on whether the underlying mechanisms of 
troglomorphy in cave crustaceans are also convergent 
at the molecular level. Although morphological 
and physiological convergence is well documented 
(Arendt & Reznick, 2008), particularly in the case 
of adaptations to extreme environments (including 
caves, Wiens et al., 2003; Wilcox et al., 2004; Protas 
et al., 2006, 2007; Dassanayake et al., 2009), cases 
of convergent molecular evolution remain elusive 
(Tierney et al., 2015). Nevertheless, it has been 
suggested that this seemingly rare occurrence may 
be simply a product of the low-resolution genetic 
sampling that has been prevalent in the last few 
decades (Castoe et al., 2010). Recent investigations 
at the genomic and transcriptomic levels have indeed 
revealed evidence of convergent molecular evolution 
associated to phenotypic convergence (see Foote et al. 
(2015) for genomic convergence in marine mammals, 
Pankey et al. (2014) for transcriptomic convergence 
in bioluminescent squid, and Tierney et al. (2015)
for transcriptomic convergence in subterranean 
beetles). A combination of transcriptomic and 
genomic approaches can help elucidate the 
strategies and mechanisms of adaptation to extreme 
environments (Benvenuto et al., 2015), as well as 
evaluate the prevalence of molecular convergence 
and the patterns it might follow in anchialine caves, 
where strong selective pressures could prompt for 
homologous mechanisms of genetic adaptation  
across different taxa.

Molecular studies of the evolution of special 
adaptations to extreme environments have been 
undertaken in a wide array of taxa; although to 
date most of these have focused on prokaryotes 
(Lauro & Bartlett, 2008; Sahl et al., 2011; Bonilla-
Rosso et al., 2012; Lesniewski et al., 2012; Baker 
et al., 2012, 2013; Orsi et al., 2013; Iwanaga et al., 
2014), plants (Gidekel et al., 2003; Dassanayake et 
al., 2009; Deyholos, 2010; Champigny et al., 2013; 
Liu et al., 2013; Torales et al., 2013), and vertebrates 
(Wilcox et al., 2004; Protas et al., 2006; Qiu et al., 
2012; Gross et al., 2013). However, recent NGS 
efforts that specifically target crustaceans in extreme 
environments have been embarked upon with very 
promising results (for examples see: Clark et al., 



159Anchialine cave biology in the era of speleogenomics

International Journal of Speleology, 45 (2), 149-170. Tampa, FL (USA) May 2016

2011, Antarctic waters; Protas et al., 2011, freshwater 
caves; Harms et al., 2013, Arctic waters; von Reumont 
et al., 2014, anchialine caves; Wong et al., 2015, deep 
sea). For instance, Hinaux et al. (2013) used RNA-
Seq to show that the loss of vision in the Mexican 
cavefish Astyanax fasciatus is probably due to relaxed 
selective pressures on their visual genes, which 
showed numerous deleterious mutations. A similar 
occurrence was reported by Tierney et al. (2015), who 
analyzed the transcriptomes of three cave-dwelling 
beetles and found evidence of convergent loss of opsin 
photoreceptor transcription by neutral processes. 
Likewise, von Reumont et al. (2014) pioneered one 
of the first examinations of an anchialine crustacean 
transcriptome, and revealed that the remipede 
Xibalbanus tulumensis (Yager, 1987) is capable of 
producing and utilizing venom proteins for predation. 
This discovery not only provides evidence for the first 
and only venomous crustacean documented, but also 
illustrates the potential that NGS technologies offer 
to the biological and evolutionary study of anchialine 
cave ecosystems.

CONCLUDING REMARKS

Anchialine caves are unique ecosystems with highly 
specialized inhabitants, which are often endemic (Iliffe, 
2002). As such, these unique ecosystems function as 
natural laboratories (Mejía-Ortíz & Hartnoll, 2006; 
Gonzalez et al., 2011) that allow us to test numerous 
hypotheses concerning adaptation, speciation, and 
evolution. Furthermore, cave ecosystems present us 
with the opportunity to study organisms existing in 
habitats and conditions perhaps analogous to those of 
our planet many millions of years ago (Por, 2007). The 
special adaptations and evolutionary processes that 
gave rise to extant extremophiles, including some cave 
organisms, grant us the ability to examine questions 
regarding the origin and early evolution of life on 
our planet, and applications relating to these (i.e., 
astrobiology, Christin et al., 2010; Czyżewska, 2011; 
Gonzalez et al., 2011; Protas et al., 2011; Bonilla-Rosso 
et al., 2012). The unique processes and characteristics 
of anchialine caves (distribution, biogeochemistry and 
habitat stratification, chemosynthetic food-webs) and 
their biodiversity make them important communities 
to conserve in face of current anthropogenic threats 
(Myers et al., 2000; Iliffe, 2002; Porter, 2007; 
Mercado-Salas et al., 2013). Unfortunately, anchialine 
caves are often found in conflict with the impacts of 
anthropogenic forces such as tourism-driven habitat 
loss, pollution by sewage, overexploitation of aquifers, 
climate change, and others (Iliffe et al., 1984; Sket, 
1999; Iliffe, 2002). The distribution of these coastal 
caves in ‘desirable’ locations in the tropics often 
places them at a considerable disadvantage (Iliffe, 
2002). Numerous stygobiont species follow patterns of 
regional and even single-cave endemicity (Sket, 1999; 
De Grave et al., 2007), making them more prone to be 
severely impacted and becoming extinct as a result of 
pollution and habitat destruction. The opportunity to 
document and study anchialine cave biodiversity and 
evolution is a fleeting one (Wilson, 1985; Iliffe, 2002) 

and the potential for substantial discoveries is under 
threat of rapid decline and eventual disappearance.

Even though biological research in caves has seen 
significant advances in recent decades, new and 
emerging genomic technologies have just begun 
to scratch the surface of the underworld’s deepest 
mysteries. The adoption of these technologies not 
only will considerably expand the breadth of scientific 
questions that can be addressed and the depth with 
which these can be answered, but will surely provide 
us with necessary knowledge and tools to manage and 
conserve these intriguing and threatened habitats 
and their unique biodiversity. 
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