
Semantics-Assisted Code Review
An Efficient Toolchain and a User Study

Massimiliano Menarini, Yan Yan, and William G. Griswold
Department of Computer Science and Engineering

University of California at San Diego
La Jolla, CA, USA

mmenarini@ucsd.edu, yayan@cs.ucsd.edu, wgg@cs.ucsd.edu

Abstract—Code changes are often reviewed before they are de-
ployed. Popular source control systems aid code review by present-
ing textual differences between old and new versions of the code,
leaving developers with the difficult task of determining whether
the differences actually produced the desired behavior. Fortu-
nately, we can mine such information from code repositories. We
propose aiding code review with inter-version semantic differen-
tial analysis. During review of a new commit, a developer is pre-
sented with summaries of both code differences and behavioral dif-
ferences, which are expressed as diffs of likely invariants extracted
by running the system's test cases. As a result, developers can more
easily determine that the code changes produced the desired effect.
We created an invariant-mining tool chain, Getty, to support our
concept of semantically-assisted code review. To validate our ap-
proach, 1) we applied Getty to the commits of 6 popular open
source projects, 2) we assessed the performance and cost of run-
ning Getty in different configurations, and 3) we performed a com-
parative user study with 18 developers. Our results demonstrate
that semantically-assisted code review is feasible, effective, and
that real programmers can leverage it to improve the quality of
their reviews.

Index Terms—Software behavior, mining software repository,
code review, likely invariants, dynamic impact analysis,
scalability, software testing

I. INTRODUCTION
To aid code review [1], today’s popular Version Control Sys-

tems (VCS’s, e.g., git [2]) integrate with textual differencing
tools (e.g., git-diff [3]). A reviewer can start with a summary of
changed code between two versions, then navigate to related
code snippets at her own discretion. However, the textual, pro-
gram-level differences from current differencing tools provide
only indirect information about the behavioral impact of code
changes. The results of testing provide only a pass/fail view of
that behavior, perhaps disguising subtle bugs. A reviewer should
read further into the source code to understand both the syntactic
and semantic changes, and examine the related tests to verify
that the changes are being properly tested.

We propose that reviewers would benefit from summaries of
the behavioral effects of those changes. The summaries should
be concise, comprehensive, presented in a familiar notation, and
complement existing review information. Likewise, the produc-
tion of summaries should require little effort on the part of the
developer or reviewer, just like Continuous Integration today

supports effortless regression testing. We call the resulting infra-
structure and process Semantic-Assisted Code Review (SCR).

The idea of differential assertion checking [4], [5] is a ges-
ture in the right direction, but these works require manual effort
and do not provide a comprehensive view of semantic effects.
However, applying this concept to behavioral summaries mined
from code repositories could provide the best of both worlds.
Existing tools like Daikon can infer likely invariants and report
them in the terminology of the program itself [6]. Likely invari-
ants are properties that summarize the traces of runs fed to Dai-
kon. (Following the terminology used by Daikon, we use the
term likely invariant or invariant to refer to these properties.) We
propose that performing inter-version differencing of the (volu-
minous) invariants extracted by Daikon will provide a concise
“behavioral diff”. Because Daikon invariants are reported at the
method level, it would be easy to attach them to the code differ-
ence summaries provided by a tool like git.

Our approach, realized in a tool called GETTY, builds on Dai-
kon and provides an infrastructure for automatically pulling,
building, testing, and analyzing multiple commits of a program
from its code repository. Making this approach practical requires
solving three critical problems. 1) Because several data- and
compute-intensive steps are required we need to address perfor-
mance (and cost) issues. 2) Because there are two potential
causes of change to Daikon’s dynamically inferred invariants –
changes to source code and changes to tests – we must identify
how to extract and compare invariants to highlight the contribu-
tions of each of these changes. And 3) because of the novelty
and possible complexity of running code reviews based on be-
havioral summaries, we need to verify that real programmers can
effectively use them to improve the quality of their code reviews.
The following contributions address these problems:
1. We introduce three complementary techniques for effec-

tively mining behavioral information (in our case, Daikon
invariants) for code review (Section III.B). The techniques,
applied in GETTY, include (a) using impact analysis to
scope invariant mining to the methods related to the current
commit, (b) mitigating memory pressure by tracing one
class at a time, and (c) parallelizing trace gathering and in-
variant extraction. Our experiments on 6 open source pro-
jects demonstrate that these techniques enable nearly arbi-
trary reductions in running time by parallelizing analyses.

978-1-5386-2684-9/17$15.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

554

Moreover, renting processors in the cloud makes running
GETTY for SCR acceptable both in terms of time and cost.

2. To help the reviewer understand the effects of changed
source code versus changed test cases, our approach ex-
tracts likely invariants and presents their differences for
various combinations of source code versions and test suite
versions. We show how SCR behavior-change summaries
can reveal bugs and other problems earlier than they were
actually discovered by the original reviewers. To this end,
we applied GETTY on a portion of Google’s GSON revision
history (Sections II and IV). We discovered two bugs that
were previously unreported. Moreover, in a retrospective
analysis of GSON and five other open source projects, we
show that invariant differentials helped find testing gaps in
32 of 100 selected commits (Section V). We also analyzed
six randomly chosen previously known bugs (one in each
project); GETTY’s invariant differentials made the bug evi-
dent at its point of introduction in 4 out of 6 cases.

3. To ensure that the results we achieved in our experiments
with GETTY can be achieved by programmers in general,
and to assess the benefits of SCR compared to traditional
lightweight review processes, we ran a comparative user
study with 18 participants. We divided the participants in 9
teams of 2 and assigned 3 review tasks on real commits of
the GSON open source project. Six teams used the GETTY
toolchain for their review while three teams used the tools
available in Github. The results of this study demonstrate
that SCR as implemented by GETTY changes how review-
ers perform their task and can improve the quality of the
feedback they produce.

Before diving into GETTY’s design and evaluation, we moti-
vate and define Semantic-Assisted Code Review. Before clos-
ing, we discuss related work in Section VII.

II. SEMANTICS-ASSISTED CODE REVIEW WITH GETTY
We illustrate how to perform SCR with GETTY by following

the review of a real commit taken from the GSON project. The
review follows the work of real reviewers that participated in a
user study further discussed in Section VI. GSON is a Google-
sponsored open source Java library for performing conversions
between Java Objects and their JSON representations [7]. When
we ran our study, GSON had undergone 1,322 commits by 52
contributors, with 34 software releases since the project’s start
in 2008. All changes were peer reviewed using what’s called
lightweight code review, which attempts to achieve the benefits
of formal code review with lower overhead and delay [8].

We support our scenario and the analysis of how the review
is carried out by quoting study participants. The case study pre-
sented in this section does not follow the review of a single study
participant; instead, it summarizes the process followed by dif-
ferent teams and is simplified to demonstrate the key elements
of a continuous semantic review with GETTY (e.g., we show the
review of a single method).

We review GSON commit #e450822, which modified the
class LazilyParsedNumber. This class parses strings into numeric
values; it does this lazily, meaning that the class maintains a
string representation of the number and converts it to a numeric

value only when a method returning the number is invoked. The
patch changes two methods of this class: intValue and longValue
which return the number represented as an int and long respec-
tively. The changes implemented in the patch use the BigDecimal
class to parse the string even when an integer value is requested.
Therefore, no exception is thrown when the string has decimals
or if the number is very large. The patch adds one test.

The reviewer first looks at the commit message and possibly
at the referenced issues that the commit addresses. In this case
the message is: “Use BigDecimal to parse number string when
requesting it as integer. LazilyParsedNumber has the value of a
string that can be interpreted as a number. Use BigDecimal to
parse the number string to avoid precision loss in general. How-
ever, when requesting as an integer, it ignores all digits after
decimal point if any, and ignores all bits that overflow the range
of requested integer type”.

This description is not clear; unfortunately, unclear commit
messages and issue reports are commonplace. One of our re-
viewers commented: “… ignores all bits that overflow the range
of requested integer type. … that is not a good way of saying
that!” [C1LA] (See Table V for decoding C1LA).

Next, the reviewer opens the GETTY and peruses the upper
box in the page (Fig. 1), which lists top-to-bottom (a) the source
code methods that have changed (highlighted in blue), (b) the
testing methods that have been updated (also highlighted in blue)
and (c) the methods whose invariants have changed (highlighted
in red). The reviewer notices that both the code of method
longValue and its invariants changed (boxed in the picture).

The reviewer clicks the LazilyParsedNumber:longValue method
link (boxed in Fig. 1), causing it to be listed in the middle of the
next section of dotted boxes (Fig. 2), as well as listing its
changed invariants below (Fig. 3).

The dotted boxes summarize the invocations closely related
to longValue. Above longValue, the reviewer sees that longValue has
two direct callers. Being shown in red means they have changed
invariants, underlined means changed source. In this case, a test
case calling longValue has changed. To the left of longValue are
methods that one of longValue’s callers called immediately before
calling longValue, and to the right methods called immediately

Fig. 1. GETTY methods and classes with changed invariants

Fig. 2. GETTY navigation of the call graph

555

after longValue returned. The gray text color indicates no changes
to the method’s source or invariants. The reviewer does not see
anything on the left suggesting they would affect longValue’s in-
variants, so she is not motivated to click any of them. The box
below shows the methods that longValue itself called, in this case
no method is called.

The reviewer now turns her attention to the invariants dis-
played below the invocation summary (Fig. 3). Removed invar-
iants would be highlighted in red, added invariants in green, and
changed invariants in yellow (the figure shows only added in-
variants), just as text changes are highlighted in git. The gray
header above the invariants indicates that they are for the exit
point of the method in line 52 (the return inside the catch block
in yellow). The reviewer observes immediately that it appears
that only one value is parsed using BigDecimal in the modified
code. In the reviewer’s own words: “So I think what this means
is that the exception case is tested with only one test… And that
also seems not necessarily great, right? You want at least a few
tests for all branches. A couple of tests, at least, for all
branches.” [E2RA] This is a working hypothesis the reviewers
can then validate by browsing through the code.

She then clicks on testNumberDeserialization in the top box of
Fig. 2, opens the Source Diff view (Fig. 4) and confirms that
indeed only one test was added; a simple test parsing the string
“1.0”, thus confirming the hypothesis.

Before firing off a comment to the developer, however, she
uses impact analysis to confirm that the existing test works as
expected. Likely invariants are computed by running each pro-
ject’s test cases. In this example, both the main source code and
the test code have been modified; there are two potential causes
for Daikon’s likely invariants to change. GETTY isolates the im-
pact of these changes by computing the invariants for different
combinations of source and test code versions. For example., the
GETTY invariant diff for longValue in the older commit code run-
ning the old and new test suites shows a THROWSCOMBINED
section on the right side (new test suite). This shows that the old
code throws an exception when tested with the value “1.0”. One
reviewer in our user study stated: “Okay, so the old source is
throwing an exception, presumably because it might have been
called as something it wasn't supposed to be called” [E6RE].

This scenario highlights three features of SCR with GETTY:
invariant differentials, impact isolation, and invocation flows.
The display of just the changes in invariants provided the re-
viewer a concise behavioral view of the commit, enabling quick
creation of working hypotheses about the commit despite the
dozens of underlying invariants. Her ability to explore different
combinations of old and new tests helped her isolate the behav-
ioral effects due to the source changes. Finally, the summary of
the application’s call structure around longValue helped her
quickly focus on a particular part of the program. We next elab-
orate on these three elements.

A. Diff’ing Behavior
SCR depends on having summaries of the input-output be-

havior of methods. These can naturally be phrased in terms of
observed invariants. For a dynamic tool like Daikon, these in-
variants are not absolute, but depend on executions, which we
discuss more in the next subsection.

The number of likely invariants for a method before and after
a commit can be numerous, and reasoning about their differences
can be mentally challenging. However, because the behavioral
changes between program commits can be quite small, so could
the differences in their invariants. This motivates the creation of
invariant difference sets between program commits to suppress
the common invariants and help the reviewer focus her attention
on just what’s changed since the last commit. For example, for
the longValue method in example of the previous section, with no
isolation of effects (Fig. 3), there were 2 invariants before com-
mit and 6 after. As shown in the figure, for just the changed in-
variants, there were just 4 added – a 50% reduction. Other ex-
amples we encountered in our study showed reductions of more
than 90%.

For each kind of program point of a method m – entry, exit,
and exceptional exit – GETTY calculates the change in invariants
between an older commit and a newer commit as two sets, the
removed invariants and the added invariants. Following git’s
style of code differencing, GETTY displays added, removed, and
changed invariants. A changed invariant is just a presentation of
an added invariant paired with a removed invariant based on
their overall similarity. For example, a removed invariant x < 5
would be paired with the added invariant x < 6 because they con-
tain the same variable, operator, and value type. Taking ad-
vantage of Daikon’s consistent invariant formatting, GETTY is
able to use the minimality of text differences to infer changed
invariants. Comparing the logical formulae would achieve better
results in some cases [9].

B. Impact Isolation
As seen in the GSON scenario, when developers modify

sources they often add test cases as well, meaning that invariants
can change due to either (or both) source and test changes.
GETTY must support a reviewer in isolating behavioral impacts
to one or the other.

By running the same test cases on both the old and the new
source, any resulting invariant differences can be confidently at-
tributed to the changes to the source code. Likewise, by running
the old and new test cases on the same source, any resulting in-
variant differences can be attributed to the changes to the test

Fig. 3. GETTY invariants diff for longValue

Fig. 4. GETTY right side of diff for testNumberDeserialization (added code)

556

cases. Because the separation of source code and tests is stand-
ardized, it is possible for GETTY to automatically extract and
show the invariants for a commit under four different combina-
tions of source and tests, shown in Table I.

The first variant provides no isolation, showing the full ef-
fects of a new commit by simply running the older commit’s
tests on the old source, and the newer commit’s tests on the new
source.

The second isolates source effects by running each of the old
and new source on a common set of tests, the union of the old
and new tests. We motivate this variant by first considering an
alternative, the intersection of the two commits’ test suites. The
resulting test suite would be guaranteed to compile and run on
both source code bases. However, this excludes test cases that
were intentionally written to demonstrate the behavior of a par-
ticular commit, so it would often produce less useful invariants
than desired. The union of all tests, on the other hand, will in-
clude those unique tests, but oftentimes some won’t run or com-
pile on the commit for which it wasn’t written. As a simple ex-
ample, if a new method is introduced in the new commit and
some tests are added to test this method, then these new tests will
not compile with the old source. This creates an asymmetry in
which test cases run on which commit, which seems to defeat
the isolation of effects to the source. However, the failure of
compilation is really just an early indicator of a failure to run.
The fact that a test case runs on one commit but not the other
reveals a behavioral property of the source code. Thus, the de-
fault condition for isolating source effects is to run the union of
the test cases, modulo compilability.

When the reviewer is interested in effects due to changes in
the test cases, GETTY executes the test suites defined in the two
commits on the same source code. Since the source code bases
cannot be unioned like the tests, there are two included variants
(last two rows of Table I): running the two test suites on the old
source, and running the two test suites on the new source. Fully
understanding the effects of the changes to the test cases might
require spending time looking at the results of both variants. As
discussed in Section II regarding GSON commit #e450822, the
test impact isolation running new tests on old code reports an
exception, showing that the new test is not simply passing all the
time, but is also capable of revealing incorrect behavior.

C. Invocation Flows
A change of one method in the source code can have wide-

spread effects on the behavior of numerous methods. This is a
motivation for providing behavior change summaries, that di-
rectly articulate those wide-spread effects. Still, a reviewer needs
help in finding her way around. Semantic effects are propagated

directly by the application’s control flow: a field is set in one
method, and then its value is passed to another, where it is used,
set, returned, and so forth. Thus, a natural way for a reviewer to
explore a source code base is to navigate its call graph, from
caller to callee, from callee to caller, and so forth [10], [11].

GETTY provides a local-area call-graph, as seen in the dotted
boxes in Fig. 2. Only callers, immediate siblings, and callees
whose invariants have changed are necessarily displayed. As
screen space allows, more neighbors are displayed (in gray, to
indicate their invariants were not affected by the commit). Click-
ing any method in the displayed local call-graph puts that
method in the center and displays its callers, immediate siblings,
and callees around it. In this way, it is possible to explore all the
invariant changes through the program’s control flow.

GETTY computes the invocation flows from execution traces
during testing. Because the flows actually occurred, a reviewer
can compare them with the expected flows to identify problem-
atic or unexpected results [12].

III. IMPLEMENTING AND SCALING SCR
Like Continuous Integration (CI), SCR depends on heavy

lifting in the back-end to support developers’ and reviewers’
work. SCR requires not only the same compilation and testing
support of CI, but also adds the often-massive cost of mining
likely invariants with Daikon. Both human costs and computa-
tional costs must be minimized. We discuss each in turn.

A. Automated Invariant Differential Extraction
Similar to Yan et al. [13], we leverage existing open source

tools commonly used in Continuous Integration, like the build
tool Maven [14] and the testing framework JUnit [15]. Specifi-
cally, we implement the GETTY tool chain in four main compo-
nents:

1) Static Source Diff Analyzer (villa) – this component
takes the textual code differentials from git and determines
which methods and test cases have changed. These constitute
the “change set”.

2) Dynamic Callgraph Analyzer (agent) – Next, the old and
new source are run on their test suites to extract their dynamic
call graphs and acquire the change set’s local invocation flows.
Agent supports multi-threading and exceptions. The resulting
“impact set” will be an expanded change set containing all
methods and test cases for which we calculate invariants on the
two commits.

3) Invariant Detector (center) – this component checks out
two commits and, using Daikon, infers invariants for all meth-
ods in the impact set, in all combinations of tests and source
specified in Table I. (Center uses a version of Daikon that sup-
ports exceptional invariant detection [16].) Since test methods
can depend on each other, center always executes the whole test
suite. To minimize disk I/O, we pipe traces directly to Daikon.

4) Semantic Differential Viewer (gallery) – Next, gallery
assigns invariant changes to methods and creates the user inter-
face described in Section II.

In our use of GETTY on GSON, center takes over 95% of the
total execution time (with agent next at under 3%), even when

 BEHAVIOR ISOLATION STRATEGIES

Effects
of

“Old” src/test combo “New” src/test combo
src tests Src tests

entire
commit old old New new
source
only old old ∪ new New old ∪ new

tests for
old src old old Old new
tests for
new src new old New new

557

just focusing on the impact set. Even for the small GSON app,
center requires over 3 hours to run. The next subsection focuses
on center’s performance.

B. Scalable Invariant Differential Extraction
Ideally, invariant extraction times would be commensurate

with build and testing costs, enabling a timely repair-compile-
review feedback loop. To achieve such performance, we have
three advantages to exploit.

• We only need to trace, and extract invariants for, the
methods that are relevant to the current pair of commits,
the impact set. Thus, we apply dynamic impact analysis
to restrict tracing and invariant inference to relevant
methods.

• Much of the performance cost is due to memory pres-
sure. As long as the full test suite is run, the Daikon trace
for a class will be the same regardless of which other
classes are being traced. To this end, we trace one class
at a time, rather than all relevant methods at once.

• Invariant detection is embarrassingly parallel, allowing
us to parallelize inference in the cloud. We partition
each project’s class-granularity inference processes into
as many groups as there are cores on the machine, and
distribute them to all the cores. Each group for a project
is executed on a separate core, concurrent with the other
groups. After all the groups finish, center merges all the
invariants collected, a trivial step. Because of the class
granularity, the limit to parallelization is the number of
classes in the impact set.

To evaluate these techniques, we used GSON and five other
randomly selected projects from Apache Commons [17]. We
took 10 random commits of each project, executed the center
analysis on them, and took the truncated mean for each project
(throwing out the low and high times). Their characteristics are
summarized in Table II. The total time taken by the Daikon in-
ference process running on all methods in the impact set, shown
in the second to last column (for reference, we call this the all-
tests-all-methods mode or ATAM), increases with the running
time of the test suite. The cost of inference has no evident rela-
tionship with the other factors. The size of a commit will influ-
ence the size of the change set and hence the inference time, but
we controlled for this by averaging over the 10 commits. While
limiting inference to the impact set makes invariant extraction
tractable, the cost is far too high for the last three projects, re-
quiring a day or more to run (the last was killed after more than
three days).

Reducing memory pressure by tracing one class at a time
(all-tests-single-class, or ATSC) cuts run times by about a factor
of two, as shown in Table II, “ATSC”.

We evaluated the parallel mode, called Parallel-ATSC or
PATSC, on a cluster with eight 2-processor nodes, typical of
what can be found in a cloud deployment today. Each node has
2.66GHz CPUs and 16GB of RAM. Fig. 5 plots running time
against the number of processors used. The single-processor
condition runs plain ATSC, the rest PATSC. PATSC running on
the same single node (using both processors) achieved 1.8
speedup and 89% efficiency. Its suboptimal speed-up is due to

memory contention. Running on all 16 processors (eight nodes)
provides a total speedup is 13.1 with 82% efficiency, with a
nearly linear speedup across the range, implying high scalability
of invariant inference for SCR.

Related is the cost of computing GETTY’s invariants in the
cloud, say as part of an existing continuous integration process.
Fig. 6 plots the estimated additional CPU cost on Amazon EC2.
The costs are modest, tracking project size. The high efficiency
of parallelization modestly increases the baseline, average 24%.

The scalability of PATSC is bounded by the number of clas-
ses in the impact set. For the 60 commits examined here, the av-
erage number of classes is 142, with a standard deviation of 148,
suggesting generally ample parallelism. At the low end there are
a few commits that contain just 12 classes, for example commit
c241318 in Collections. Its times for invariant inference are 0.57,
0.31, 0.23, and 0.21 hours, on 2, 4, 8, and 16 processors, respec-
tively. The overall speedup from 2 to 16 processors is 2.7x, with
no discernable speedup from 8 to 16 processors since the maxi-
mum expected speedup is 12, and the net time is bounded by the
longest running class. However, all the small commits have short
running times that don’t demand high levels of parallelization.

 PROJECT CHARACTERISTICS

Projects Commits KLoC Methods Tests TTE
TIE

(ATAM)
TIE

(ATSC)
GSON 1,294 36.6 582 1,276 13.3s 3.22h 2.70h
CLI 827 8.6 212 206 18.0s 5.98h 3.10h
Codec 1,608 14.1 272 334 23.3s 11.64h 3.67h
Crypto 550 9.9 183 20 49.5s 23.20h 9.43h
Collections 2,881 100.1 3,177 1388 86.9s 55.51h 25.36h
Configuration 2,730 92.3 2,121 1,962 127.5s 54.81h

TTE: total time for testing; TIE: total time for inference
Environment: Intel 2.53 GHz Dual-Core, 4GB DDR3 RAM, Mac OS X Yosemite

Fig. 5. Average running time versus number of CPUs. The single-processor

mode is ATSC; others are PATSC. Environment: Intel 2.66 GHz Dual
Processor, Quad-Core, 16GB RAM, Ubuntu Server 16.04.

Fig. 6. Cloud cost of Getty’s invariant extraction plotted against the number of

CPUs used. Each quad-core processor is priced as one independent
Amazon EC2 t2.xlarge instance (4 vCPU up to 30GHz, 16GB RAM,

$0.244/hour for North California, Feb 7, 2017).

$0

$5

$10

$15

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

Co
st

 (
US

D)

GSON CLI Codec Crypto Collections Configuration

558

IV. HOW TO IDENTIFY PROBLEMS WITH GETTY
In Section II we saw that SCR with GETTY can both quickly

reveal inadequate testing and help users to successfully review a
GSON commit [18]. In this section, we show how GETTY sup-
ports SCR in finding bugs.

We highlight commit #10 (903769e) in Fig. 8, which intro-
duced a test comparing two JSON primitive integers: 264+5 and
5. The equals method should return false because the two values
are different. However, the test failed, revealing a bug. The bug
was never fixed: in the last commit we analyzed, #12 (423d18f),
the developers assessed that “the price is too much to pay” to fix
the bug and overrode the test’s failure by changing its “assert-
False” to “assertTrue”.

It is interesting to note that the bug was not revealed until
commit #10, despite all previous commits passing their code re-
views. The question, then, is whether SCR could have aided in
finding this bug sooner, preferably at the point of introduction,
were it in use by this project at the time.

In commit #4 (e89c949), developers introduced new features
such that: (1) integers of different types (Byte, Short, Integer, Long,
and BigInteger) are comparable to each other in equals, and (2)
floating-point numbers of different types (Float, Double, BigDeci-
mal) are comparable to each other.

Fig. 7 shows the two new if-branches added in equals to com-
pare integers and floating-points. The predicate method isIntegral
checks whether a JsonPrimitive object represents an integer, i.e.,
the type of value attribute is Byte, Short, Integer, Long, or BigInteger.
If both this and other represent integers, the first branch is exe-
cuted and both value attributes are converted to Long to compare
for equality. Similarly, the predicate isFloatingPoint checks
whether a JsonPrimitive object represents a decimal, i.e., the type
of value attribute is Float, Double, or BigDecimal. If both this and
other store decimals, the second branch is executed and value at-
tributes are converted to Double to compare for equality. The two
branches are independent from each other since the two predi-
cates separate all input numbers into two disjoint sets.

We first study the branch from line 374 to line 376 for inte-
gers. We expect that the branch returns true when both value at-
tributes store the same integer values, regardless of the specific
integer types. The invariant differentials are shown in Fig. 10a.
At the exit-point of line 375, where the new integer-comparison
branch returns, this.value must be Long if the return value is false.
This is surely an incorrect invariant because the type of this.value
being Long is not a necessary condition for equals to return false.
The new branch should return false if value attributes are quanti-
tatively unequal, even when one is or both are not Long. In this
regard, we suspect a bug was introduced that created an incorrect
dependency between the result of comparison and the types of
value attributes.

To verify if the bug actually exists, we need to add a test. The
incorrect invariant is informative. We challenge the incorrect
Long type dependency by creating and comparing BigInteger ob-
jects that cannot be precisely converted to Long. Java’s Long type
is a 64-bit signed integer so any integer representation over 64
bits will be masked when converting to Long. For example, 264+1
takes 65 bits, and is converted to 1 after conversion. We there-
fore create four JsonPrimitive objects: one for 1, lp1 for 264+1, lp1c

for 264+1, and lp2 for 264+2, and assert that none of them are
equal except for the pair of lp1 and lp1c. Our test (Fig. 9) is
stronger than Fig. 8’s, because it only considers the case where
other.value is BigInteger, but ours considers this.value being BigInte-
ger as well.

Since our test fails, we conclude that the bug was introduced
in commit #4. This is a typical case where a bug was introduced
after the developers added a new feature. Notice that commit #4
is dated Sep 23, 2009, but commit #10 discovered the bug on
Sep 9, 2011, nearly 2 years after the bug was introduced. A
reviewer could have found the bug much earlier if they had been
able to examine invariant differentials.

Additionally, consider the branch from line 377 to line 379
that deals with floating-point comparisons. Similar to the previ-
ous integer branch, we expect this branch to return true when
both represent the same decimal values, regardless of the spe-
cific decimal type of value attribute.

In Fig. 10a, the dynamic invariant at exit-point 378 says the
return value is always true, i.e., for all tests so far this branch has
only returned true. This indicates that either there is a lack of
testing for unequal decimals, or unequal decimals are compared
but there is a bug.

Consequently, we add a test case (Fig. 11) to compare une-
qual decimals. Building on previous experience, we consider not
only unequal Double numbers but also unequal BigDecimal num-
bers. Our test case passes the first assertion but fails the second
one. Passing the first assertion implies that equals behaves cor-

Fig. 7. New feature to compare between integers in commit # e89c949

public void testEqualsIntegerAndBigInteger() {
 JsonPrimitive a = new JsonPrimitive(5L);
 JsonPrimitive b = new JsonPrimitive(
 new BigInteger(“18446744073709551621”)); // 2^64 + 5
 assertFalse(a + “ equals ” + b, a.equals(b));}

Fig. 8. The failing test case in commit #10

public void testEqualsForBigIntegers() {
 BigInteger limit = // 2^64
 new BigInteger("18446744073709551616");
 JsonPrimitive one = new JsonPrimitive(1L);
 JsonPrimitive lp1 = // limit + 1
 new JsonPrimitive(limit.add(new BigInteger("1")));
 JsonPrimitive lp1c = // limit + 1, a different object
 new JsonPrimitive(limit.add(new BigInteger("1")));
 JsonPrimitive lp2 = // limit + 2
 new JsonPrimitive(limit.add(new BigInteger("2")));
 // compare 1, limit + 1, limit + 2, etc.
 assertFalse("limit + 1 = 1", lp1.equals(one));
 assertFalse("1 = limit + 1", one.equals(lp1));
 assertFalse("limit + 1 = limit + 2", lp1.equals(lp2));
 assertTrue("limit + 1 = limit + 1", lp1.equals(lp1c));}

Fig. 9. Test case to confirm the integer-equality bug

 374+ if(isIntegral(this) && isIntegral(other)) {
 375+ return getAsNumber().longValue()
 == other.getAsNumber().longValue();
 376+ }
 377+ if(isFloatingPoint(this) && isFloatingPoint(other)) {
 378+ return getAsNumber().doubleValue()
 == other.getAsNumber().doubleValue();
 379+ }

559

rectly given two small unequal decimals, confirming our hypoth-
esis that the wrong invariant was due to lack of testing. The fail-
ure of the second assertion reveals a new bug when comparing
large unequal numbers. This bug was never found or discussed
in the GSON project. In commit #11 (commit hash a263a3f,
right after developers discovered the integer comparison bug in
commit #10), the developers further modified the same decimal
comparison branch; but the invariant differential in Fig. 10b
shows that, similar to exit-point 375 in Fig. 10a, at the exit-point
of the decimal branch the return value is incorrectly correlated
to the specific type of value attribute. This is a new bug, discov-
ered with GETTY. We submitted a bug report to the GSON pro-
ject, along with the test case in Fig. 11, and it awaits action.

Many of the problems identified here could in principle have
been identified through test coverage reports. However, alt-
hough standard test coverage tools confirm that the conditions
of a branch were tested, they don’t reveal coverage of the domain
and range of methods. Invariant differentials directly state the
anomalous properties of the input (e.g., other is never null) or out-
put, pointing to what kinds of tests need to be added (inputs that
include null). And coverage tools do not help in identifying bugs,
just areas of the code that are insufficiently tested. For example,
in commit #4 there were 65 executions of equals for numeric
equalities. Among them, 16 tested integer equalities and 30
tested decimal equalities. We did not have to examine all test
executions to identify the missing test cases; we only examined
dynamic invariant differentials. We concluded not only were
they insufficiently tested, but also both branches have bugs.

We also notice that most of the information on test quality is
a result of the impact isolation analysis (Section IIB) that review-
ers need to perform to understand the source of behavioral
changes when looking for bugs. Therefore, while other tools ex-
ist that can provide similar information on test quality, detecting
test problems is a convenient side effect of looking for bugs with
semantics-assisted code review.

V. EFFECTIVENESS OF INVARIANT DIFFERENTIALS
In Sections II and IV we replayed part of the history of

GSON, to demonstrate that SCR with GETTY can help reveal in-
sufficient testing and find bugs. Using the six open source pro-
jects studied in Section III (Table II), this section addresses the
question of whether SCR is effective on a regular basis.

A. Identifying Test Insufficiency
Using GETTY, we applied SCR on 100 test-only commits

randomly selected from the 6 projects. The number of commits
for each project varies according to the project size and history
length, (See Table III). The Maven EMMA plugin [19] reports
100% branch test coverage for the chosen testing commits. We
inspected the invariant differences of each commit to identify
inadequacies in the testing of the methods under test in the com-
mit. The question is whether or not the invariant differences
were able to expose insufficiency, and why.

As a simple metric, we consider tests sufficient for a method
if they cover all combinations of types that result in different be-
haviors of the method. For example, when testing equals for two
integers (See Section IV), we want to see test cases for all com-
binations of regular and big integers, each with equal and une-
qual values. Although this overlooks corner cases (i.e., it lowers
the experiment’s success rate), it is a straightforward, repeatable
metric. We determined ground truth by exhaustively inspecting
the tests and source after making the first determination with
GETTY.

We summarize our code review results in Table III. Cumu-
latively, of the 100 testing commits, 32 were identified as being
insufficient. GETTY led us to incorrectly classify 4 commits as

 RESULTS OF TEST SUFFICIENCY INSPECTION

Projects Commits Insuff False Insuff Little Data
GSON 17 5 1 3

CLI 16 5 0 2
Codec 21 7 2 3
Crypto 12 6 0 2

Collections 17 3 0 3
Configuration 17 6 1 7
Cumulative 100 32 4 20

Insuff: Test insufficiency evident; False Insuff.: Incorrectly classified as insufficient;
Little Data: too few invariants;

 RESULTS OF BUGGY COMMIT INSPECTION

Projects Introduction
Commit

Discovery
Commit

Time Between
Commits Y/N

GSON b634804 60ef777 1 day Y
CLI e366a69 085a153 72 months N

Codec 2405423 b9cab09 159 days N
Crypto f3c5416 a983a2c 67 days Y

Collections eced882 59c6e94 158 days Y
Configuration f59158e d6c3900 85 days Y

Y/N: Whether CSR lended insights to discover the bug at the time of its introduction

 PARTICIPANT LABELS

 E1 E2 E3 E4 E5 E6 C1 C2 C3

Left LA LA LN LE LE LE LA LA LE
Right RA RA RN RE RE RE RA RA RE

Label: Group Number (1-9) + Seat Position (L, R) + Experience Level (N, E, A)
N = novice (under two years), E = experienced (under 10 years), and A = advanced (10+ years).

Exit-Points:
 point-375:
 (return = false) → (this.value is Long)
 point-378:
 return = true

(a) Commit #4: the invariant differential clearly indicates a bug.

Exit-Points:
 point-348:
 (return = false) → (this.value is LazilyParsedNumber)

(b) Commit #11: invariant differential points to bug like commit #4’s.

Fig. 10. Selected dynamic invariant differentials across commits. For
presentation purposes, fully qualified names have been shortened.

Fig. 11. Test case to confirm the decimal-equality bug.

 public void testUnequalDecimals() {
 JsonPrimitive smaller = new JsonPrimitive(1.0);
 JsonPrimitive larger = new JsonPrimitive(2.0);
 assertFalse("smaller = larger", smaller.equals(larger));

 BigDecimal dmax = BigDecimal.valueOf(Double.MAX_VALUE);
 JsonPrimitive smallBD = // dmax + 100.0
 new JsonPrimitive(dmax.add(new BigDecimal("100.0")));
 JsonPrimitive largeBD = // dmax + 200.0
 new JsonPrimitive(dmax.add(new BigDecimal("200.0")));
 assertFalse("smallBD = largeBD", smallBD.equals(largeBD));

560

insufficiently tested, due to invariants derived from coincidental
correlations in the data. Of the remaining 68 commits, 20 had
too few invariants generated to support a judgment. Reviewer
experience might aid in improving these numbers. One fifth of
the commits did not produce sufficient invariant differentials for
the task. Given the simple nature of our insufficiency metric,
these results are quite positive. These results corroborate results
that popular test coverage tools are not always a good indicator
of test suite effectiveness [20].

During this study, we observed two simple invariants that of-
ten exposed inadequate testing, both seen in the scenario in Sec-
tion II. One is the failure to test for null as an input value (e.g.,
other ≠ null). The other is a Boolean return value always being
true or false. Additionally, invariants on exception exits were
helpful in confirming behavior after a failure was intentionally
induced by a test case.

B. Finding Bugs
We randomly selected one confirmed bug from each project

(including a new one from GSON), found the commit that intro-
duced the bug, and applied SCR to check whether the bugs could
have been found when introduced. As ground truth, we checked
out the commit confirming the existence of the bug, executed the
failed test(s), traced the buggy method’s behaviors using the
Eclipse JDT remote debugger [21], and studied the root cause of
the bug. Then we used git-blame [22] to trace back through the
editing history to find the commit that made the buggy edit. Fi-
nally, we used GETTY to review the semantic changes of the
commit that introduced the bug. See Table IV.

The differentials aided discovery of four of the six bugs, be-
tween 1 and 158 days before the bug was reported. For the two
that failed, Daikon’s lack of invariants over the contents of
strings was the cause. For the bug in issue CLI-252 [23], the
command line parser threw an exception when parsing an option
that is the prefix of another. The bug was introduced when de-
velopers added prefix matching to the parser. The bug in Codec
concerns a string encoding using the Kölner Phonetik algorithm
[24] that contains sequentially repeated digits.

VI. A COMPARATIVE USER STUDY
In this section, we describe a comparative user study that

demonstrates that real reviewers can effectively use GETTY to
improve the quality of their code reviews.

A. Study Set-up
We arranged the study to simulate a lightweight code review

on 3 commits of the GSON project. We identified three roles:
developer, reviewer, and internet helper. The developer is the
programmer who implements the functionality or fixes the bug,
and updates the issue (played by investigators). A reviewer is a
separate engineer who reviews the code changes and provides
comments to the developer (played by our study subjects). The
internet helper plays the role of search engines (e.g., Google),
online Q&A communities (e.g., StackOverflow), and more for
GETTY, since the tool, being a prototype, has no online presence
(role played by the investigators).

We enrolled 18 anonymous participants with 1 to 16 years of
programming experience in academia or industry (Table V). All

our participants fill out a questionnaire and we rated their pro-
gramming experience as: novice (under two years), experienced
(under 10 years), and advanced (10+ years).

We grouped our participants into 9 two-member review
teams of comparable experience. Six performed reviews with
GETTY (experimental groups). The other three used the code
diff tools available in Github (control groups). We set up pair-
programming style reviews to avoid the negative impact of ap-
proaches like the Think-Aloud Protocol [25], where researchers
may unintentionally influence what participants say and do by
asking them about their work [26].

We simulated a real code review environment. All teams per-
formed their reviews in the same quiet lab. We used two Apple
27-inch iMac’s: one used for the code review, the other used by
the experimental investigator to reply to reviewers’ comments
through the issue tracker, reset issue states, and perform related
tasks. We video recorded all sessions, and interviewed all par-
ticipants afterwards.

We set up a two-phase review process; once reviewers gave
us feedback we would provide the fixes suggested and ask for a
second review. We bound the experiment’s duration by limiting
the number of iterations to two and by preparing a comprehen-
sive set of fixes that would fix all issues reported by previous
reviewers, plus all the ones we had found using GETTY.

We chose three issues and commits from the GSON project.
All commits passed their original code review process, but were
later found to be insufficiently tested or suffered from undiscov-
ered bugs. Issue-#1 [27] was described in Section II.

Issue-#2 [28] implements two new methods, equals and hash-
Code in class LazilyParsedNumber. These methods are part of the
Java Object interface and need to correctly compare the class
values. LazilyParsedNumber is complex because it keeps a string
representation of numbers. So just comparing strings can give
the wrong results for different representations of the same num-
ber. In this patch, the developers implemented both methods and
tested them. However, most tests are trivial. For example, both
equals and hashCode are tested comparing two objects whose
string value is “1”. Reviewers should find these tests inadequate.
In addition, there is a subtle bug. According to the Java specifi-
cation, developers should ensure that equals and hashCode are
consistent; i.e., two LazilyParsedNumber objects where equals re-
turns true must have identical hashCode values. This is not the
case in this patch.

Issue-#3 [29] contains patches to JsonParser. Developers up-
dated the application logic of JsonNumber, a helper method used
by the parser to return a JsonPrimitive object if the value string can
be parsed as a number. To avoid overflow and precision infor-
mation loss during parsing, they used BigInteger to parse all inte-
gers, and BigDecimal to parse decimal numbers. Later, it was de-
cided that this change unintentionally masked overflow errors in
getAsBigInteger and getAsInt in class JsonPrimitive.

B. Initial Observations
Overall, the experimental teams liked using GETTY. They

acknowledged that inspecting semantic changes is necessary and
helpful to code review, and that they would like to incorporate

561

similar procedures into their daily code review process. They
provided useful suggestions for improving GETTY, e.g. linking a
method’s invariants to the test cases that contributed to its trace.

We also obtained anecdotical evidence that GETTY helps re-
viewers produce higher quality reviews. For example, all the ex-
perimental teams discovered missing tests in the first two issues
and suggest good tests. On the other hand, two of the teams that
did not have access to GETTY struggled with it. In Issue #1, for
example, the reviewers using GETTY found that tests were miss-
ing and gave pointed suggestion on how to improve testing.
Some of these suggestions are: test for “big numbers that might
overflow” [E1A], “negative numbers” [E1A], examples such as
“1.23” [E1A] or “1.99” [E1A] that cannot be represented as integer
values, and “invalid inputs, e.g. a123” [E1A]. Reviewers using
GETTY noted that only longValue is tested with decimals but that
“BigDecimal is not being tested in intValue()” [E4E]. On the other
hand, only one of the three control teams correctly identified the
missing tests. One of the control teams missed the problems
completely. They reported “Functionality looks good” [C2A].
C3E misinterpreted the code and suggested that the existing test
for value 1.0 was wrong and to replace string “1.0” with “1”.

We also validated our implicit hypothesis that a good under-
standing of invariants is required to successfully use GETTY. Our
team of novices struggled with issue 3 because they could not
decipher what some of the invariants meant. None of the other
teams experienced such problems.

C. Effects of Tools on Review Process
The main finding from our study is that GETTY substantially

modified the review process of our participants. As exhibited in
Section II, GETTY led to a hypothesis-driven process in which
reviewers (1) used the invariant diffs to develop an initial under-
standing of the effects of code changes, and then (2) used GETTY
to navigate the code and validate their hypotheses. In simple
cases, they sometimes skipped the validation step and just added
a comment to their review.

While there are small variations in how the experimental
teams performed their reviews, SCR using GETTY followed the
general process highlighted in Fig. 12. (1) Reviewers started by
looking at the goal of the commit (expressed as an issue in the
bug-tracking system or in the commit message). (2) Next, re-
viewers focused on the methods where invariants had changed.
For each such method, they analyzed the invariant diffs pre-
sented by GETTY (as described in Section II for Fig. 3), and (3)
by looking at these invariants they generated hypotheses on what
had been changed (or not). These hypotheses ranged from sus-
pecting missing tests or potential bugs, to clarifications on the
meaning of the goal described for the commit (e.g. in Section II
E2RA hypothesizes that there was a single test for the new code).
(4) Once the reviewer has some working hypothesis for what is
going on, he or she read or searched the code to verify the hy-
pothesis. This activity is specifically directed at confirming or

disproving the hypothesis, and the code was efficiently navi-
gated using GETTY’s navigation features (e.g. the call graph in
Fig. 2). (5) Next, the reviewers usually confirmed that require-
ments were correctly understood by the reviewer considering the
code and invariant changes observed. (6) Finally, once all the
methods with changed invariants have been studied, the review-
ers decided to either accept the patch or suggest changes.

This process contrasts with the control teams. Their primary
modality was wide-scale code reading in git-diff, in an effort to
understand the behavior of the old and new code. This process
consistently induced fatigue, leading to loss of focus, mistakes,
and sometimes giving up, when the semantic changes were not
evident from the code diffs. In Issue #3, C1LA gave up and as-
sumed that the behavior of getAsBigInteger and getAsInt must be
correct as their code was unchanged: ”It's totally plausible to be
the getAsBigInteger, getAsInt, currently implement that func-
tionality already, given a number of n. But, I don't know.”

D. Limitations and Threats to Validity
Limitations. GETTY uses Daikon to extract invariants from

code. This means that it inherits some limitation that affect its
ability to discover some issues. For example, the second issue in
the user study of Section VI contains a subtle bug. This bug
arises from the incorrect interplay of the equals and hashCode
methods of the LasilyParsedNumber class. Unfortunately, to ex-
pose this bug GETTY should provide class invariants using these
two query-methods. However, Daikon is not able to detect which
methods are queries (do not modify the state) and to use them in
invariants. Another limitation arises from the optimizations
needed to make GETTY’s performance acceptable. Instead of ex-
tracting invariants for each method, we compute an impact set
as described in Section III.A. While this works well in practice,
there could be cases where some important invariant is not com-
puted and presented to reviewers.

Threats to internal validity. We identified multiple factors
in our experiments that could potentially affect their validity. 1)
Our experiment participants were not familiar with GETTY nor
with the projects they reviewed. Yet, the control participants
were familiar with their tools, perhaps pessimizing our results.
2) In code review, it’s subjective whether one test or another is
required, and so our bar for a successful review was subjective
on this count. We addressed this by analyzing how GETTY was
used instead of fixing an arbitrary bar for successful review.

Threats to external validity. While we endeavored to max-
imize external validity, there are a few limitations in our experi-
ments. 1) We had a limited number of participants in our study,
and although they are all members of population of reviewers,
they may not be representative of the population. We mitigated
this risk by selecting students with distinct experience levels, in-
cluding several with industry experience. Still our participants
may not be representative because they are mostly graduate stu-
dents and four have a background in programming languages. 2)
A second threat is the representativeness of the issues we used
in our experiments. We randomly chose problems from 6 open
source projects. Still, there may be a bias because we had to
choose (a) projects that were relatively well tested and (b) com-
mits that were not too complex to bound the length of the study.
3) Because GETTY is a prototype and does not have manuals or

Fig. 12. Review process with GETTY

562

forums that can be Googled for answers on its use, the investi-
gator first trained the users and then answered questions about
the tool and its use during the experiment. This could have in-
fluenced the result either positively or negatively. 4) Finally, our
study was conducted in a simulated code review environment,
with an accelerated timeline (reviewers would get feedback on
their reviews immediately). Consequently, in the second review
phase the issue was still fresh in the minds of the reviewers.

VII. RELATED WORK
Many researchers have appreciated the value of differencing

static semantic information. Lahiri, Vaswani and Hoare from
Microsoft Research discuss differential static analysis [30]. Sev-
eral promising applications are highlighted, including semantic
differencing and differential contract checking. Person et al. pro-
poses differential symbolic execution to detect and characterize
the effects of program changes in terms of behavioral differ-
ences, then use a theorem prover to compare the symbolic sum-
maries for such differences [31]. iProperty hits the similar idea
[4]. SYMDIFF [5] presents differential assertion checking for
comparing different versions of a program with respect to a set
of assertions. The approach defines relative correctness: the sec-
ond program version does not violate assertions the first one sat-
isfies. Although it provides a weaker guarantee than outright cor-
rectness, it is more tractable than traditional assertion checking,
and is still powerful: the authors of SYMDIFF were able to
soundly verify null-pointer dereferencing bugs. However, the
practical use of differential static analysis is limited because: the
approach generally requires users to write assertions, intermedi-
ate contracts, or worse, proof scripts, all of which impose very
high overhead to programmers [30]. Moreover, static analysis
can be overly conservative, limiting the value of its inferences.

Directly related is dynamic impact analysis. Chianti executes
tests on two versions of the code and differentiates their runtime
behaviors, then it decomposes the difference into a set of prede-
fined atomic changes like “add a new class”, “remove a
method”, “change definition of static initializer”, etc., and then
relates those changes to affected tests [32]. Chianti is particularly
helpful in isolating changes that lead to a test failure. iDiSE con-
siders dynamic calling context information from inter-proce-
dural analysis to categorizes impact behaviors, and extends no-
tions of test coverage by change impact information [33]. Alt-
hough Chianti and iDiSE are debugging tools, their underlying
technologies could be applied to code review. Our work follows
the spirit of Software Change Contracts, which define a formal
language to summarize how patches change code behavior.
Change Contracts are used to specify the intent of code changes
and can be verified at runtime [34]. Preliminary work explored
extracting these contracts by tracing the execution of test cases
[35]. Instead of specifying expected changes, GETTY helps re-
viewers discover how code changes affect program behavior; we
use Daikon to extract generalized likely invariants, provide im-
pact analysis, and support navigation via the call graph.

Holmes and Notkin take a hybrid static-dynamic approach to
semantic differencing [12]. Their approach analyzes invocation
dependencies based on their presence in each of four graphs: the
static call graph and the dynamic call graph, from each of the

two versions given. A visualization of the differences in the
cross-product of the graphs can reveal anomalies that motivate
further inspection. For example, a developer updating a third-
party library and expecting the system to behave the same would
be surprised to find the control flow has changed at runtime, yet
not in the static call graph. Differences in static and dynamic
call-graphs are less detailed and more removed from the code
than invariant differences. For example, commit #4 discussed in
Section IV would have fallen into the “consistent” s+d+ partition,
because the changes to equals produced consonant static and dy-
namic call graph changes. However, GETTY’s invariant differen-
tials told the reviewer that the commit actually contains a bug.

Randoop employs invariant differencing to determine when
random test case generation can halt, that is when adding tests
stops improving the invariants [9]. Their differencing method
that supports some understanding of logic is more sophisticated
than our current textual approach. Randoop and other ap-
proaches (such as Palikareva et al.’s method of performing con-
colic testing on a unified version of two versions of the code to
automatically generate test inputs for new program paths intro-
duced in the code [36]) can be used to automatically generate the
tests needed to run GETTY.

Gerrit supports distributed code review by providing a stag-
ing area for changes where they can be reviewed prior to com-
mitting to the repository [37]. Phabricator is a platform integrat-
ing many tools, including git-diff based code review [38]. Since
our GETTY tool generates results as HTML files, they could be
integrated into these existing platforms.

VIII. CONCLUSION
Traditional code review is semantically poor. A summary of

behavioral differences, can enable the reviewer to see what be-
haviors have changed since the last commit. The Daikon dy-
namic invariant extractor can be used to mine behavioral differ-
entials. To isolate effects due to changes in source versus tests,
we must run Daikon on different combinations of sources and
tests, placing extreme demands on performance. Running Dai-
kon on just the methods of interest reduces run time. Also, par-
titioning Daikon’s inference process on a per-class basis reduces
memory pressure and parallelizes well.

Our studies of six open source projects shows that GETTY
consistently aided in uncovering insufficient testing and finding
bugs at their point of introduction. Our case study further shows
that GETTY changes reviewers’ process from reading all the code
to generating hypotheses that focus their analysis, ultimately
producing better review comments.

ACKNOWLEDGMENT
This research was supported in part by NSF Grant CCF-

1719155. We thank Sorin Lerner for his advice on static program
analysis, Michael Ernst and his team for their help with Daikon,
Philipp Hirch for his contribution to implementing exception
handling in Chicory, the participants of our user study, and the
anonymous reviewers for their insightful comments.

563

REFERENCES
[1] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code Review

Quality: How Developers See It,” in Proceedings of the 38th
International Conference on Software Engineering, New York,
NY, USA, 2016, pp. 1028–1038.

[2] “Git.” [Online]. Available: https://git-scm.com/.
[3] “Git - git-diff Documentation.” [Online]. Available: https://git-

scm.com/docs/git-diff.
[4] G. Yang, S. Khurshid, S. Person, and N. Rungta, “Property Dif-

ferencing for Incremental Checking,” in Proceedings of the
36th International Conference on Software Engineering, New
York, NY, USA, 2014, pp. 1059–1070.

[5] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel,
“Differential Assertion Checking,” in Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering,
New York, NY, USA, 2013, pp. 345–355.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support pro-
gram evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 2, pp.
99–123, Feb. 2001.

[7] “google/gson,” GitHub. [Online]. Available:
https://github.com/google/gson. [Accessed: 11-May-2017].

[8] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Im-
pact of Code Review Coverage and Code Review Participation
on Software Quality: A Case Study of the Qt, VTK, and ITK
Projects,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, New York, NY, USA, 2014, pp.
192–201.

[9] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
Directed Random Test Generation,” in Proceedings of the 29th
International Conference on Software Engineering, Washing-
ton, DC, USA, 2007, pp. 75–84.

[10] G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hannemann,
and W. Leong, “Design recommendations for concern elabora-
tion tools,” Asp.-Oriented Softw. Dev., pp. 507–530, 2005.

[11] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How Do Soft-
ware Engineers Understand Code Changes?: An Exploratory
Study in Industry,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engi-
neering, New York, NY, USA, 2012, p. 51:1–51:11.

[12] R. Holmes and D. Notkin, “Identifying program, test, and envi-
ronmental changes that affect behaviour,” in 2011 33rd Inter-
national Conference on Software Engineering (ICSE), 2011,
pp. 371–380.

[13] Y. Yan, M. Menarini, and W. Griswold, “Mining Software Con-
tracts for Software Evolution,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, 2014, pp.
471–475.

[14] “Apache Maven Project.” [Online]. Available: http://ma-
ven.apache.org/. [Accessed: 11-May-2017].

[15] “JUnit 4,” GitHub. [Online]. Available:
https://github.com/junit-team/junit4. [Accessed: 11-May-
2017].

[16] P. Hirch, “Automatic inference of JML-based security specifi-
cations with exception handling,” Master Thesis, Universität
Bremen, 2016.

[17] “Apache Commons – Apache Commons.” [Online]. Available:
https://commons.apache.org/. [Accessed: 11-May-2017].

[18] Y. Yan, “Getty Main Repository,” Getty - Semantiful Differen-
tials. [Online]. Available: https://github.com/mmenarini/se-
mantiful-differentials-getty. [Accessed: 06-Sep-2017].

[19] “Maven - Maven EMMA plugin.” [Online]. Available:
http://emma.sourceforge.net/maven-emma-plugin/. [Accessed:
11-May-2017].

[20] L. Inozemtseva and R. Holmes, “Coverage is Not Strongly Cor-
related with Test Suite Effectiveness,” in Proceedings of the
36th International Conference on Software Engineering, New
York, NY, USA, 2014, pp. 435–445.

[21] Debug Team, “Eclipse Debug Project.” [Online]. Available:
https://www.eclipse.org/eclipse/debug/. [Accessed: 11-May-
2017].

[22] “Git - git-blame Documentation.” [Online]. Available:
https://git-scm.com/docs/git-blame. [Accessed: 11-May-2017].

[23] “[CLI-252] LongOpt falsely detected as ambiguous - ASF
JIRA.” [Online]. Available: https://is-
sues.apache.org/jira/browse/CLI-252. [Accessed: 11-May-
2017].

[24] H. J. Postel, “Die Kölner Phonetik. Ein Verfahren zur Identi-
fizierung von Personennamen auf der Grundlage der Gestal-
tanalyse,” IBM-Nachrichten, vol. 19, pp. 925–931, 1969.

[25] A. H. JØRGENSEN, “Thinking-aloud in user interface design:
a method promoting cognitive ergonomics,” Ergonomics, vol.
33, no. 4, pp. 501–507, Apr. 1990.

[26] N. Miyake, “Constructive Interaction and the Iterative Process
of Understanding,” Cogn. Sci., vol. 10, no. 2, pp. 151–177, Apr.
1986.

[27] “Added test to use BigDecimal to parse number when request-
ing it as a … · google/gson@e450822,” GitHub. [Online].
Available: https://github.com/google/gson/com-
mit/e4508227c53749b48318366c1272119031851887. [Ac-
cessed: 11-May-2017].

[28] “LazilyParsedNumber does not implement eqals and hashCode
methods · Issue #627 · google/gson,” GitHub. [Online]. Avail-
able: https://github.com/google/gson/issues/627. [Accessed:
11-May-2017].

[29] “Parse all JSON numbers as either BigDecimal or BigInteger.
From ther… · google/gson@d5319d9,” GitHub. [Online].
Available: https://github.com/google/gson/com-
mit/d5319d9e840b2c7237ca435f50c50ffbe7dce507. [Ac-
cessed: 11-May-2017].

[30] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare, “Differential
Static Analysis: Opportunities, Applications, and Challenges,”
in Proceedings of the FSE/SDP Workshop on Future of Soft-
ware Engineering Research, New York, NY, USA, 2010, pp.
201–204.

[31] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Dif-
ferential Symbolic Execution,” in Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, New York, NY, USA, 2008, pp. 226–237.

[32] J. Branchaud, S. Person, and N. Rungta, “A Change Impact
Analysis to Characterize Evolving Program Behaviors,” in Pro-
ceedings of the 2012 IEEE International Conference on Soft-
ware Maintenance (ICSM), Washington, DC, USA, 2012, pp.
109–118.

[33] N. Rungta, S. Person, and J. Branchaud, “A Change Impact
Analysis to Characterize Evolving Program Behaviors,” in
2012 28th IEEE International Conference on Software Mainte-
nance (ICSM), 2012, pp. 109–118.

[34] D. Qi, J. Yi, and A. Roychoudhury, “Software Change Con-
tracts,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering,
New York, NY, USA, 2012, p. 22:1–22:4.

564

[35] T. D. B. Le, J. Yi, D. Lo, F. Thung, and A. Roychoudhury, “Dy-
namic Inference of Change Contracts,” in 2014 IEEE Interna-
tional Conference on Software Maintenance and Evolution,
2014, pp. 451–455.

[36] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a Doubt:
Testing for Divergences Between Software Versions,” in Pro-
ceedings of the 38th International Conference on Software En-
gineering, New York, NY, USA, 2016, pp. 1181–1192.

[37] “Gerrit Code Review.” [Online]. Available: https://www.ger-
ritcodereview.com/. [Accessed: 16-Nov-2016].

[38] “Phacility - Phabricator.” [Online]. Available:
https://www.phacility.com/phabricator/. [Accessed: 11-May-
2017].

565

	I. Introduction
	II. Semantics-Assisted Code Review with Getty
	A. Diff’ing Behavior
	B. Impact Isolation
	C. Invocation Flows

	III. Implementing and Scaling SCR
	A. Automated Invariant Differential Extraction
	1) Static Source Diff Analyzer (villa) – this component takes the textual code differentials from git and determines which methods and test cases have changed. These constitute the “change set”.
	2) Dynamic Callgraph Analyzer (agent) – Next, the old and new source are run on their test suites to extract their dynamic call graphs and acquire the change set’s local invocation flows. Agent supports multi-threading and exceptions. The resulting “i...
	3) Invariant Detector (center) – this component checks out two commits and, using Daikon, infers invariants for all methods in the impact set, in all combinations of tests and source specified in Table I. (Center uses a version of Daikon that supports...
	4) Semantic Differential Viewer (gallery) – Next, gallery assigns invariant changes to methods and creates the user interface described in Section II.

	B. Scalable Invariant Differential Extraction

	IV. How to Identify Problems with Getty
	V. Effectiveness of Invariant Differentials
	A. Identifying Test Insufficiency
	B. Finding Bugs

	VI. A Comparative User Study
	A. Study Set-up
	B. Initial Observations
	C. Effects of Tools on Review Process
	D. Limitations and Threats to Validity

	VII. Related Work
	VIII. Conclusion
	Acknowledgment
	References

