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Abstract
Consider the sum X(&) = >0, a;&, where @ = (a;)?, is a sequence of non-zero reals
and & = (&)™, is a sequence of i.i.d. Rademacher random variables (that is, Pr[{; = 1] =

Pr[¢; = —1] = 1/2). The classical Littlewood—Offord problem asks for the best possible upper
bound on the concentration probabilities Pr[X = z]. In this paper we study a resilience version
of the Littlewood—Offord problem: how many of the & is an adversary typically allowed to
change without being able to force concentration on a particular value? We solve this problem
asymptotically, and present a few interesting open problems.

1 Introduction

Let a = (a;);_, be a fixed sequence of nonzero real numbers, and for a sequence of i.i.d. (inde-
pendent, identically distributed) Rademacher random variables & = (&;);; (meaning Pr[¢; = 1] =
Pr[¢; = —1] = 1/2), define the random sum

X = Xa(8) =) aid.
=1

Sums of this form are ubiquitous in probability theory. For example, X can be interpreted as
the outcome of an unbiased random walk with step sizes given by a. The central limit theorem
asserts that if the a; are all equal then X asymptotically has a normal distribution. More flexible
variants of the central limit theorem allow the a; to differ to an extent, and give quantitative control
over the distribution of X. An important example is the Berry—Esseen theorem [2, 9], which gives
an estimate for the probability that X lies in a given interval, comparing it to the corresponding
probability for an appropriately scaled normal distribution (we give a precise statement, adapted to
our context, later in the paper). The Berry—Esseen theorem is effective when the a; are of the same
order of magnitude, in which case it can be used to easily deduce the estimate

Pr[X — 2] = o(\}ﬁ)
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for any x. Qualitatively, it guarantees that X is unlikely to be concentrated on any particular value
(X is anti-concentrated).

Over half a century ago, in connection with their study of random polynomials, Littlewood and
Offord [13] considered anti-concentration in the general setting where no assumption is made on
a, other than that its entries being nonzero. The classical result of Littlewood and Offord [13]
strengthened by Erdés [6] states that no matter the choice of @ € (R\ {0})", for all € R we have

Prix =4l < (LJ%)/T :OQH)’

which is sharp for the sequence @ = (1,1,...,1). This result is particularly remarkable due to the
fact that if one does not assume anything about the a;, then the distribution of X may be far from
normal and Berry—Esseen type bounds may no longer be meaningful.

Erdés’ proof of the above inequality was combinatorial and extremely simple, as follows. First,
we can assume that each a; is positive, because changing the sign of some a; does not affect the
distribution of X. Then, observe that a sign vector & € {—1,1}" can be identified with the subset {3 :
& =1} of {1,...,n}, and under this identification each fiber X ~1(z) = {£ : X (&) = x} corresponds
to a Sperner family'. It then suffices to apply a classical bound for the maximal size of a Sperner
family.

Since the Littlewood—Offord problem was first introduced, many variants of it have been addressed;
one particularly interesting line of research involves the relationship between the structure of a
and the resulting concentration probability max, Pr[X = z|. Erdés and Moser [7] and Sarkézy
and Szemerédi [17] considered the case where the a; are all distinct, and showed that the stronger
bound Pr[X = 2] = O(n~/2) holds. Haldsz [11] gave even stronger bounds for sequences which
are “arithmetically unstructured” in an appropriate sense. More recently, Tao and Vu [20, 21] and
Nguyen and Vu [15] investigated the inverse problem of characterizing the arithmetic structure of a
given the concentration probability max, Pr[X = z].

Many fruitful connections have been found between Littlewood—Offord-type problems and various
areas of mathematics. In particular, Littlewood—Offord-type theorems are essential tools in some
of the landmark results in random matrix theory (see for example [19, 20]). In particular, the
Littlewood—Offord theorem gives an upper bound on the probability that a particular row of a random
+1 matrix is orthogonal to a given vector, and can thus be used (see for example [4, Section 14.2])
to bound the probability that a Bernoulli random matrix is singular.

1.1 Our Results

In this paper we are interested in studying a “resilience” version of the Littlewood—Offord problem.
Given a sequence a € (R\{0})" and a real number = € R, we know that most sequences £ € {—1,1}"
do not satisfy the event {X (&) = x}. We are interested in understanding whether most sequences &
are “far” from this event. In order to make this question precise we need a few definitions. Given
two sequences £, & € {—1,1}" we define d(&,¢’) to be the Hamming distance between € and &' (that
is, d(E, {') denotes the number of coordinates in which & and ¢ differ). If S € {—1,1}" is a subset
of the hypercube we further define d(&, S) as the minimum Hamming distance from £ to a point in

' A Sperner family is a collection of subsets of [r] in which no subset is included in any other. For more details on
Sperner families, the reader is referred to the book of Bollobés [3].



S. Finally, for a fixed sequence a of non-zero reals and £ € {—1,1}", let us define

R:p(é) = Rg(S) = d(E,X_l(l')),

which is the minimum number of signs one needs to change in £ in order to satisfy X = z. (For
completeness, if X = x is impossible then we set R;(§) = 00). We refer to R;(§) as the resilience of
& with respect to the event {X # z}, and if R, > k we say £ is k-resilient.
Given a we define
qr(a) = max Pr[R2(&) < k.

x
as the maximum probability that & fails to be k-resilient. We also define pi(n) as the “worst case”
for this probability over all sequences a € (R\ {0})™:

pr(n) = max qy(a)

ac{R\{0}}"
Equivalently, pg(n) corresponds to the maximum volume of the k-neighbourhood of a suitable
“Boolean hyperplane” X ~!(z) in the hypercube.

An immediate natural question is as follows:

Problem 1.1. Given a non-negative integer k, what is the asymptotic behavior of pr(n) asn — oo?

The Erdos—Littlewood—Offord bound trivially gives
po(n) = O(1/Vn).

Understanding the case k = 1 already has non-trivial implications. In fact, Fiiredi, Kahn and
Kleitman [10] showed that there are Sperner families whose 1-neighbourhood comprises a constant
proportion of the hypercube, while we will see in Section 4.2 that p;(n) — 0. This demonstrates a
special structural property of “arithmetic” Sperner families of the form X ~!(z).

More generally, we believe an especially interesting question is to understand the qualitative
behaviour of pg(n), as a function of k.

Problem 1.2. For which k = k(n) does px(n) — 0 asn — co?

In other words, we are asking for which k& we can expect a typical & € {—1,1}" to be k-resilient,
regardless of the choice of z and a. This question is especially compelling in view of the recent
popularity of resilience problems for random graphs (see for example the influential survey of Sudakov
and Vu [18]), and in view of questions asked by Vu [22, Conjectures 7.4-5] concerning the resilience of
the singularity of random matrices. Specifically, Vu asked how many entries of a random +1 matrix
one has to change (“globally” or “locally”) to make it singular; due to the connection between the
Littlewood—Offord problem and singularity of random matrices, these conjectures were our initial
motivation to investigate the questions treated in this paper.

Before stating our results, we compute the typical resilience for a few simple illustrative specific
choices of a and =.

Example 1.3. Consider the case a = (1,...,1), and for simplicity assume n is even. One can easily
derive that for all even x we have

Pr[X = 2] = <nﬁx> 9",

2

Standard binomial estimates show that with (say) 99% certainty we have | X| = ©(y/n). Noting that
Ry = |X|/2, we typically have Ry = ©(y/n).



Example 1.4. Let us next consider the sequence a = (1,2,...,n). Since all the a; are distinct, it
follows from the result of Sarkozy and Szemerédi [17] that go(a) = O(n_?’/ 2). Moreover, changing
k signs of £ can increase or decrease X by no more than kn, so there are at most 2kn + 1 ways to
affect X by changing k signs. Therefore, as long as kn = o(n®/?) (that is, k = o(n'/2)), the union
bound shows that for any x, typically R, > k.

Example 1.5. Take a = (1,2,4, - ,2”_1). Note that X can take 2™ different values (the odd
integers between —2" and 2"). This of course leads to the minimum possible concentration probability
max, Pr[X = z] = 27". Each x in the support of X can be obtained by exactly one &, so R, has
the binomial distribution Bin(n,1/2) and is tightly concentrated around n/2 by a large deviation
inequality for the binomial distribution (see for example [12, Theorem 2.1]).

We can see from the above three examples that the type of additive structure influencing the
concentration probability does contribute somewhat to the typical resilience. However, the following
example shows that the typical resilience can be much more strongly influenced by small subsequences
of a.

Example 1.6. Let k£ be the minimal integer such that £ > logsn and n — k is odd. Define a by
a; =+ =an— =1and apn_gy; = 2= For any &, modifying at most k coordinates we can make
Zle &n—k+iGn—k+; equal to any odd number between —n and n, so in particular we can make it
equal to — Z?:_lk &ia;, so that X = 0. This means Ry = O(logn) (with probability 1).

Somewhat surprisingly, there is a sequence which typically results in significantly lower resilience
than Example 1.6.

Theorem 1.7. There exists a sequence a € (R \ {0})" such that for any fived e > 0, a.a.s.> Ro(€) <
(1+¢)logslogn. (That is to say, for k > (1 +¢€))logslogn, we have p, — 1).

The crux of Example 1.6 was the fact that one can form all non-negative integers less than 2F
with sums of subsets of {1,2,4, e ,2’“*1}. In other words, {1, . .,2’“*1} is an additive basis of
{O, 1,2,...,2k — 1}. The proof of Theorem 1.7, which we defer to Section 3, involves a more efficient
additive basis construction, using an idea from a 1937 paper of Rohrbach [16].

We are also able to prove that Theorem 1.7 is in fact optimal, essentially answering Problem 1.2.

Theorem 1.8. For any fized ¢ > 0, any a € (R\{0})" and any * € R, a.a.s. Ry(&) > (1 —
e)logslogn. (That is to say, for k = (1 — €)logglogn, we have pp — 0).

We prove Theorem 1.8 in Section 2.
As for Problem 1.1, for each fixed k we are able to find the asymptotics of px(n) up to a polylog-
arithmic factor, as stated in the next theorem.

Theorem 1.9. We have
p1 = ®<n_1/6>7
and for any fized k > 2,
pr(n) = n~1/(2x3%) log®W n.

2By “asymptotically almost surely”, or “a.a.s.”, we mean that the probability of an event is 1 — o(1). Here and for
the rest of the paper, asymptotics are on n — co.




1.2 Notation

For a set of indices I C [n] define
X1(§) = ai&
i€l

to be the “part” of X corresponding to I.

We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n) we write
f = O(g) to mean there is a constant C' such that |f| < C|g|, we write f = Q(g) to mean there
is a constant ¢ > 0 such that f > ¢|g|, we write f = ©(g) to mean that f = O(g) and f = Q(g),
and we write f = o(g) or ¢ = w(f) to mean that f/g — 0. All asymptotics are taken as n — oo.
Also, for a real number z, the floor and ceiling functions are denoted |z| = max{i € Z : i < z} and
[] = min{i € Z : ¢ > x}. For a positive integer i, we write [i] for the set {1,2,...,7}. Finally, all
logarithms are base 2, unless specified otherwise.

1.3 Structure of the paper

The structure of the paper is as follows. In Section 2 we give a lower bound on typical re-
silience (proving Theorem 1.8), in Section 3 we construct a sequence with low resilience (proving
Theorem 1.7), and in Section 4 we estimate the asymptotics of pg(n) (proving Theorem 1.9).

2 Lower bound for typical resilience

In this section we prove Theorem 1.8. The heart of the proof is the following recurrence relation
for pr(n).

Lemma 2.1. Let k € N and let f := f(n) — oo be any function satisfying (k + 1)f%logn < n.
Then, for some constant C,

k
pr(n) <Y (4(k + 1) log n)zrgf}xm_z(n’) +C(k/f +1/n),
(=1

where the maximum is over all n' satisfying 0 <n —n’ < 4(k+1)f2logn.

We remark that Lemma 2.1 is also used in the proof of Theorem 1.9.

2.1 Proof of Lemma 2.1

Before giving the details of the proof of Lemma 2.1, we give a brief outline of the ideas. Intuitively,

we expect X to typically have order of magnitude about its standard deviation (which is />, a?).
If this is much larger than any individual a; then we expect the resilience Ry to be large, as flipping
a sign in & has a relatively small impact on X. Therefore (as already suggested by Example 1.6), it
is important to distinguish those a; that are “abnormally large”, and consider them separately.

So, the proof of Lemma 2.1 starts by isolating “large” a; such that a? is almost as large as the
sum of the squares of all a; < a; (here “almost as large” is parameterized by the function f). If
there are many such a;, then for similar reasons as in Example 1.5 the resilience is very likely to be
high. We can therefore assume that there are a small quantity of such a;; we need to give an upper
bound on the probability of being able to make X = x with up to k sign changes.



First consider the case where ¢ > 1 of the k changes are made on the “large” numbers. Because
there are few such numbers, it is not too wasteful to take the union bound over each possible way to
make these changes. Then, we can recursively bound the probability that we can make X = z with
at most k — £ further changes to the “small” numbers.

Otherwise, if none of the sign changes are made on “large” numbers, then as we have already
explained, the typical size of X is larger than one can “cancel out” without making a large number
of sign flips, so the resilience is high. We will rigorously establish this fact using the Berry—Esseen
theorem, as follows (this version of the Berry—Esseen theorem immediately follows from the statement
in [9]).

Theorem 2.2. For X =" | a;&; as in the introduction, let o’ = Sy a? be the variance of X, and

let p= Z?:1|ai|3. Let ® be the cumulative distribution function of the standard normal distribution.

Then,
-0(%).

g

‘pr 5 <e| -0

Now we give the details of the proof of Lemma 2.1.

Proof of Lemma 2.1. Fix k > 0 and a. Note that we may assume that all the a; are non-negative, as
changing signs of any subset of the a; does not change the distribution of X. Moreover, by relabeling
if necessary, we can assume that

0<ar <~ <ay.

We denote partial sums of squares as follows:

Now, let i1 :=n > 42 > ... > iy be a longest subsequence of indices for which the following properties
hold for all j < t¢:

1. ai; > 2a;;,,, and
2. for all ¢ > ij41 we have a;; < 2a;.

Note that Property 1 forces all possible signed sums of the a;; to be distinct (that is, Xfiy,ooit)
takes 2! different values). Maximality and Property 2 imply that a; > a;,/2 for all i € [n].

If ¢t is large, then the atom probabilities are small, and therefore the resilience is high. We
summarize this in the following claim.

Claim 2.3. Ift > (k+1)logn then q;(a) < 1/n.

Proof. Let I = {i;: j <t} and condition on the outcomes of the &;, j ¢ I. The random variable X
can then take 2! different values, each occurring with probability 27¢. This means that, uncondition-
ally, the probability that X is equal to any particular value is at most 27¢. Now, there are at most
n* ways to change up to k of the &, and given a particular choice of indices at which to perform
changes, the resulting sequence &’ has the same distribution as &€. Therefore, the probability that
X(¢) is equal to any particular value after this change is still at most 2%, so by the union bound

qr(a) < nF27t < 1/n as desired. O



From now on we assume that ¢t < (k + 1)logn. Let 7 be the first j for which a;; < oy, /f. (If
there is no such j, we set 7 = 00). This condition defining 7 is chosen so that we will later be able
to control X|; | via the Berry-Esseen theorem. In the following claim we show that 7 < oo and
moreover that [i-| comprises most of [n].

Claim 2.4. We have 7 <t and n — i, < 4(k+ 1) f?logn.

Proof. Note that for any j with a;; > oy, /f we have

Y <o < ap?
z.7<aziazj < 4f°.

Indeed, otherwise we would have the contradiction

2 2(%;\? _ 2 2
of >4f* () = (fai)? > ol
If we were to have 7 = oo this would mean a;; > o;,/f for all j < t. Therefore, this would lead
to the contradiction

n:‘{ al>f}‘ ZH‘i<az<azj}’§4f2t§4f2(k+1)logn<n.
Similarly, we have
n—iT:Hi:aZ a“lH ZH —<a1§alt}‘§4f2t§4(k:+1)f210gn. 0

Now, let n' = i,, let J = [n/] and let I = [n]\J. For each 0 < ¢ < k we will consider the case
where we change exactly ¢ elements of &|7, and we will then take a union bound over all /.

For £ > 0, there are at most (4(k +1)f?log n)g ways to modify ¢ elements of &|;. For each such
possibility, we can condition on the modified value of &|; (therefore on X;(€)), and for any x the
probability that we will be able to make X ; = x — X7 with our remaining k& — ¢ modifications is at
most pi_¢(n’) by induction. Therefore, the probability we can make X = x while modifying at least

one element of &|; is at most
k

3" (473 (k + 1) log n) pr—e (n').

(=1

It remains to consider the possibility that we do not modify &|; at all. Again, condition on &|r
(therefore on X7). Note that } ;cp;
with Z having the standard normal distribution,

]a? < 02 a;,, so by the Berry-Esseen theorem (Theorem 2.2),

Pr(| Xy + Xr — 2 < koi, / f] = Pr[|Z + (X1 — 2)/0i.| < k/f] + O(ai, /i)
< Pr(|Z] < k/f]+ O(ai, /0i,)
=O(k/[).
Note that by changing k elements in &|; we can change the value of X by at most ka; , which is

not greater than ko;_/f by the choice of 7. So, the probability that we can make X = x without
modifying &|; at all is O(k/f). By combining all the above bounds, we obtain the desired result. [



2.2 Proof of Theorem 1.8

Finally, we show how to deduce Theorem 1.8 from Lemma 2.1.

—k—1

Proof of Theorem 1.8. Let § > 0 be a small constant and let ¢ = 3+ . We prove that pp, < n~°
for k <logg,o5logn and sufficiently large n, from which the theorem statement will follow. (In this
section all asymptotics are uniform over k& < logs, o5logn). We prove our desired bound on pj by
induction on k. For k = 0, as mentioned in the introduction, the Erdés—Littlewood—Offord theorem
gives

po=0mn 1) <n .
Next, consider some 0 < k < logs, o5logn and suppose pp < n=""" for all K < k. Observe that

F < (3+5)10g3+5logn/log3+5(3+26) (logn)l a

)

for some constant 0 < a < 1 depending on 8, and let f = n /3 > exp((logn)®/3). For some
n' >n—4(k+1)f2logn = n — o(n), Lemma 2.1 says that

k
Z (k+1 f2logn) pr—e(n') + O(k/f +1/n).
=1

Observe that k/f +1/n = o( 1) and log(n —o(n)) = logn + o(1), so it follows that

< i(n%k/fi 10g2 n)e exp<—c_k+g_1(10gn + 0(1))> n 0<n_cik71>,

(=1

Now, recalling that ¢* < (logn)t=2, for 1 < £ < k we have
_ l
<n2c */3 log? n) exp(—c_k+€_l(logn + 0(1)))

2¢,  2c" 1 logl
:exp< k- 110gn<3cﬁ+mﬁ—ce(l—i-o(l/logn))))

—exp(—c k= 1logn<c — 3€+0( )))
= exp(—cfl’“*1 logn<§ + 0(1))).
(We have used the fact that ¢! — (2¢/3)¢ > ¢ — (2¢/3) = ¢/3 for £ > 1 and ¢ > 2). Consequently,

pi < kexp(— (5 +o(1) e Hogn) +o(n" )

)

This concludes the proof of the desired bound on p, and it follows that if k = logz,951logn then
—k—1

pr < n ¢ = exp(—cilc*lC log n) =o(1).

In particular, since ¢ is arbitrary it follows that for any ¢ > 0, @ € (R\ {0})"” and = € R, a.a.s.
R; > (1 —¢)logslogn.
[



3 A sequence with low typical resilience

In this section we prove Theorem 1.7 by constructing a sequence a such that a.a.s. Ry =
(1+0(1))logs logn.

Let X =Y ; a;& as in the introduction. To construct a sequence a that results in low typical
resilience, we are looking to improve on the idea of Example 1.6. We start with the “nicely behaved”
sequence a = (1,1,...,1), and we look to “plant” a small subset B in a which allows us to “cancel
out” the typical outcomes of X. This leads us to consider the following notion.

3.1 Additive bases

An order-h additive basis of [n] is a subset B C [n] such that for each x € [n], there are distinct
bi,...,by € B, t < h, with x = by + --- 4+ b;. As an easy example, the reader may note that the
key part of the sequence in Example 1.6 was the additive basis {1,2,22...,2/1°871=1} of [n], which
is of order [logn]. In order to improve on Example 1.6 and prove Theorem 1.7, we wish to include
a lower-order additive basis in our sequence a.

The critical issue with this idea is that our additive basis must be part of the sequence a itself,
and therefore it contributes to the behaviour of the typical sum. For example, if we define a by

" “1”7s and combining it with a low-order additive basis of [n/], then due to

taking a sequence of n
the extra “weight” of the additive basis, X can take values (much) larger than n’, which are not
“covered” by the additive basis. This issue was circumvented in Example 1.6 because the size of the
basis was equal to its order: we were able to control each element in the basis with our & = ©(logn)
changes.

In order to minimize the impact of including an additive basis in a, we need an additive basis
2
19
size of | X|). Let v (n) be the minimum sum of squares of an order-h additive basis of [n]. That is,

with small sum of squares. (Recall that the variance of X is ) " ; a7, and this controls the typical

vp(n) = min{z b? | B is an order-h additive basis of [n]}
beB

In the following lemma we provide an upper bound on vy (n).

Lemma 3.1. For h > 1 we have
on(n) < 10hp2+2/(3" 1)

Our proof of Lemma 3.1 uses an inductive construction closely resembling a construction of
Rohrbach [16].

Proof. The proof is by induction on h. For the base case, h = 1, one can take B = {1,...,n}. Note

that indeed we have .

;2 < n3 < 101n2+2/(31*1).
i=1
Next, consider A > 1 and assume that for all n we have

vp_1(n) < 10h—1,2+2/(3"1=1)
For what follows it will be convenient to use the identity

2+4+2/(3" —1)=2x3"/3"-1). (3.1)



et { 2x3h=1 /(3" 1)1
m= |n"* -

and consider an order-(h — 1) additive basis B’ of [|n/m]] with sum of squares vy_1(|n/m]).

Now, let us define m- B" = {mb: b € B'}, and note that B = [m]U (m - B’) is an order-h additive
basis of [n]. Indeed, for any z = mq + r (with ¢ < [n/m] and 1 < r < m), there are by,...,b; € B’
with ¢t < h—1 and by + --- + by = q. Then, note that each mb; € B, and r € B, so we can write
x = mby + -+ 4+ mb; + r, which is a sum of at most h elements. So, we have

vp(n) <m® +m2u,_1(|n/m)).
Now, observe that n < m®"~D/2x3""))_ Using (3.1),
h_ h_ h—1
3 1 1) (24 2 _ 3 1 1 2x3
2 x 3h—1 3=t —1 2 x 3h—1 311
3h—1-2x 31

so the induction hypothesis gives vj,_1(|n/m]) < 10"~tm. Therefore, v, (n) < (10"~1+1)m?. Noting
that [z] < 2z for z > 1, and again using (3.1),

op(n) < (1081 4 1)p?3"/ (3" 1) < 10k 22/ (3" 1),

This completes the proof. ]

3.2 Proof of Theorem 1.7

Recall that the key idea for our construction is to “plant” an additive basis of an appropriate order,
with low sum-of-squares, in the all-1 sequence. Note that for £ = logs log n we can use Lemma 3.1 to
find an order-k additive basis of [n] with sum-of-squares O(10%12) = n210g®" n. A variance bound
of 0% = n? logo(l) n is enough to prove that a.a.s. | X| < nlogo(l) n, but is not quite enough to prove
that a.a.s. |X| < 2n, which we need for the additive basis of [n] to be effective. We can address
this issue by additionally including a very small number of large powers of 2 in our sequence; by
modifying the corresponding signs we will be able to make |X| < 2n. A second consideration is the
fact that changing a sign increases X if the sign was negative and decreases X if the sign was positive.
In order to guarantee that we can a.a.s. use our additive basis to adjust X in either direction, we
can include many repetitions of the elements of our basis (so that a.a.s. there will be a copy of each
element with a positive sign and with a negative sign). These basic ideas are enough for a sequence
with typical resilience O(loglogn), but to optimize our construction for the asymptotically lowest
possible resilience requires some additional technical details. In particular we include in our sequence
two different additive bases of different orders, each with different amounts of repetition.

Proof of Theorem 1.7. Consider small € > 0 and let
h= [logg)_5 log n], n = [log3_g log log n], r= [log log? log n]

We will construct a sequence a such that a.a.s. Ry < h+h' +r.

10



Fix an order-h additive basis B of Hn/ log? n” with sum of squares

h_

Z ¥ =0 <10h (n/log? n)2+2/(3 1)> = o(n*/logn)
beB
(note that 10" = o(log® n) for small €), and similarly fix an order-h’ additive basis B’ of [[log? n/log? log ]
with sum of squares

o(log4 n/ log log n) .
Note that |B| = o(n/logn) and |B’| = o(log?(n)/loglogn).

Now, define a by combining:

e [logn]| copies of each b € B (let I be the corresponding set of indices of a);
° ﬂog log® n] copies of [n/ log? n}b for each b € B’ (let J be the corresponding set of indices);

e the numbers m,2m,...,2" 'm form = {n/ log? n} ﬂog2 n/ log? log n} (let K be the correspond-
ing set of indices);

e n—r—|Bl|[logn] — |B|[log log? n|] copies of the number “1” (let L be the corresponding set
of indices).

Also, if necessary change one of the “1”s in the final bullet point to a “2” to ensure that y ;" | a; is
even. (This guarantees that X is always even).

Now, consider some b € B and let I, be the set of indices corresponding to the copies of b in a.
Note that

Pr[£|lb - (1’ o "1)] = Pr[g‘fb = (_17 ) _1)] < 2—108" = % = 0<‘;’>

So, by the union bound, a.a.s. for each b € B there is at least one copy of b associated with a
negative sign and one associated with a positive sign. Similarly, a.a.s. for each b € B’ there is a
negative and positive copy of {n/ log? n] b. In what follows we assume both these properties hold.

Next, note that

0% = O(log n)o(n2/log n) = o(n2 ,
o4 = O(loglog n)O((n/ log? n)2)0(10g4 n/ loglog n) = o(nQ),
of <n,

so 0%, = o(n?) and by Chebyshev’s inequality, a.a.s. |X;ujur] < 2n. Assuming this, by
modifying &|x we can make |X| < 2m. Then, there are by,...,b, € B’ with t <’ and >'_, &b; =
[1X/2]/[n/ log? n]], and we can therefore make | X| < 2[n/ log? n] by changing a further ¢ < A’ signs
in €|;. Finally, there are by,...,bs € B with s < h and Z?:l &b; = | X/2|, so we can make X = 0 by
changing s < h signs in &|;. This completes the proof. O

4 Asymptotics of pi(n)

In this section we prove Theorem 1.9. We stress that throughout this section, k is fixed.

11



4.1 Upper bounds

The upper bound pi(n) < nY (2x3%) logo(l) n follows immediately from Theorem 2.1, using a
similar (but much simpler) induction argument to the one used to prove Theorem 1.8, as follows.

Proof. For k = 0, as mentioned in the introduction, the Erdés—Littlewood—Offord theorem gives

po = @(n—l/Q) _ G(n—l/(ZXi}O))'

_ K
For k > 0, suppose pr <n 1/<2X3 ) logo(l) nfor k' < k. Let f = pl/(2x3%) Then, using Lemma 2.1,

k
pe < 3 (4F2(k + 1) logn) ‘pre(n — o(n)) + O(k/f + 1/n)
/=1

k
< an/3kn—1/(2x3k—f) 1og®W 4+ O<n_1/(2x3k)>
=1

k

< Zn—(gé_%)/(msk) 10g®M) n + O(n_l/(2X3k))
=1

< n—l/(2><3’“) logO(l) n.

This completes the proof. ]

For the tight upper bound p;(n) = O(n~/6) we will use Sérkézy and Szemerédi’s theorem (men-
tioned in the introduction) which asserts that if a has distinct elements, then

Pr[X =z] = O(n_3/2).

Proof of the upper bound on pi(n). Fix any a,z. Suppose there are g distinct values in a, so there
are at most 2¢ different ways to affect X by flipping a sign. Just as in the proof of Claim 2.3, for
any particular choice of index at which to perform a flip, the resulting sequence ¢ has the same
distribution as £, so the probability that X (&) = z after the change is O(n~'/?) by the Erdés—
Littlewood—Offord theorem. The union bound over all possible ways to make one flip (or no flips)
then gives

Pr[R, <1] = O(gnil/Q). (4.1)

Alternatively, let a;,...,a;, give a representative for each distinct value and let I = {i1,...,ig}.
Conditioning on §|j,)\; and similarly using Sarkozy and Szemerédi’s theorem and the union bound,

Pr[R, < 1] = O(g X g_3/2> = O(g_l/Q). (4.2)

No matter the value of g, one of (4.1) or (4.2) gives Pr[R, < 1] = O(n"V/5) (if g < n'/3 then use
(4.1), otherwise use (4.2)). This completes the proof. O
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4.2 Lower bounds

First we prove the general lower bound pg(n) > n~1/(2x3%) logo(l) n.

Proof. Let
gr = Za?7 pI:Zag}a
icl icl
and define o = oy,,) and p = py,), for use with the Berry—Esseen theorem (Theorem 2.2). The

proof proceeds in a similar way to Theorem 1.7, as follows. Let g = (en/logn)Y/(2+2/3*-1) —
nt/2-1/(2x3%) logo(l) n, for some small € > 0 to be determined (where useful for clarity, asymptotic
notation will be uniform over ¢). Using Lemma 3.1 fix an order-k additive basis B of [¢g] with sum

Z b2 — @(92+2/(3k71))'

beB

of squares

Define a by combining [2logn| copies of each b € B (let I be the corresponding set of indices in a),
and padding the remaining n — |B|[2logn| entries with “1”s. As in Section 3, if necessary we can
change a “1” to a “2” to ensure that > ; a; is even, and we can show that a.a.s. for each b € B
there is at least one copy of b associated with a negative sign and one associated with a positive sign.
Assume this holds.

Now, we have 0% = @<92+2/(3k_1) log n) and 02 =n — g+ O'%, and since each a; < g, we also
have p=n—g+ pr < n— g+ go?. By the definition of g, this means o = ©(en), so o = O(n) and
p = O(egn). By the Berry—Esseen theorem (Theorem 2.2), for small enough € we have

Prlx/2 <l = 0(%) + 0(5) =64 ) ~ 0 & ) = e 1020,

Now, if |X/2| < g then there are by,...b, € B, t < k, with >.¢_, b; = |X/2|, and we can therefore
make X = 0 by changing ¢ signs in &|;. This completes the proof. O

Finally, we prove the sharp bound p;(n) = Q(n‘l/G).

Proof. The construction is similar to the one given above (with £ = 1), but we include only one copy
of each element in B. Recalling the base case for the induction in the proof of Lemma 3.1, define a
by

ap =:"=0p—g = 1, an—g+i = i,

where g = (en)/3 for some € > 0 to be determined. (We will be able to choose an appropriate &

such that " | a; is even, without having to change a “1” to a “2”). Let J = [n—g] and I = [n]\ J.

By the same arguments as above, we have 07 = O(g®) = O(en), o = O(n), and py, p = O(egn), so

using the Berry—Esseen theorem in the same way as in the last proof gives

Pr|X/2| < g] = @(\%) - 0<\5/%> - @(n_1/6).

Similarly, we can use the estimates 02,02 = O(n), p; = O(n*/?) and p; = O(n), and the Berry—
Esseen theorem applied to X7 and X ;, to show that for large C' and any =z € R,

Pr[|X;| > Cv/n] <1/C,
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Pr]|X; + 2| < 2g] = O(n_1/6>.

So,
Pr|X/2| < gand |X;[>Cvn] = ) Pr[|X,+ax| <29 Pr[X; =]
z:|z|>C/n
= O(n_1/6> Z Pr[X; = x]
x:|z|>Cy/n

For large enough C', we therefore have

n—1/6
n—1/6

Pr[|X/2| < g and | X;| < Cv/n] :@(n1/6>—0< 8 )z@)(nl/G).

Now, with N =n — g, for any = with N + z even and |z| < 2Cy/n we have

Pr[X;=z] = <(N —|]-Vx)/2>/2N
o(1)
VN1 +a/N)NT2( gy NN )2
o(1)
- VN(1 - 22/N)N2(1 4 O(x/N))/?
B o(1)
VN1 =0(1/n))°™(1+ 0(1/x))"/

()

That is to say, the probabilities Pr[X; = z] differ from each other by at most a constant factor.
Let s(a) = sign(&,—g+q). Conditioning on any choice of £|; such that | X;(€)| < Cy/n, we have

Pr[|X/2| < g and sign(X) = sign(fn_g+|X/2|)] - Z Pr[X; = 2s(a)a — X/]
a:0<a<g
=0 Z Pr[X; = —2s(a)a — X|]
a:0<a<g

= O(Pr[|X/2| < g and sign(X) # sign(&n,gHX/m)]).
So,

Pr[|X/2| < g and sign(X) = sign(&,—g4|x/2)) and | X1(€)| < Cv/n]
= O(Pr[|X/2| < g and |X,(£)] < C/n])

- Q<n—1/6).

But if |X/2| < g and sign(X) = sign(&n,gﬂx/m) then we can modify &,_g4|x/z to make X = 0.
This completes the proof. O
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5 Concluding remarks and open problems

In this paper we have investigated the resilience of the anti-concentration in the Littlewood—Offord
problem. We hope the results and ideas in this paper can be applied to other problems, in particular
to the resilience questions for random matrices raised by Vu [22]. We would like to draw attention
to several interesting open questions.

e [t would be interesting if the polylogarithmic error term could be removed from Theorem 1.9.
This problem is analogous to the situation in the Erdés—Moser problem, where Sarkozy and
Szemerédi [17] removed a polylogarithmic factor in Erdés and Moser’s original bound. Indeed,
it is due to Sarkozy and Szemerédi’s theorem that we could get the right order of magnitude

for pi(n).

e We showed that for some ¢ — 0, for & < (1 —¢)logglogn, a.a.s. R, > k for any a,z, and for
k > (1+¢)logglogn there is a such that a.a.s. Ry < k. It remains open what the behaviour
is when k is very close to logslogn. Is there a “sharp threshold” k& = k(n) in the sense that
pr — 0 but pprq — 1 (or pgaq — 1 for some fixed a)? This would be analogous to the two-point
concentration phenomenon for the chromatic number of random graphs [1]. As pointed out to
us by Joel Spencer, there is also the possibility that there is some f = o(loglogn) such that,
if k = logzlogn + Af(n), then py depends nontrivially on A. This would be analogous to the
behaviour of the connectivity threshold for random graphs; see [8].

e The constructions used to prove Theorem 1.7 had a very special “layered” structure, and
the proof of the lower bound in Theorem 1.8 seems to indicate that this type of structure is
necessary for the typical resilience to be small. It would be interesting to formalize this idea
in an inverse theorem of some kind, and we suspect such a theorem would be very useful for
the random matrix questions of Vu mentioned in the introduction. An inverse theorem for
Theorem 1.9 would also be interesting: fixing k, what can be said about the structure of a
given max, Pr[R, < k]?

e We have considered the setting where X is a linear combination of independent Rademacher
random variables. As suggested to us by Van Vu, one can consider more generally the setting
where X is a low-degree polynomial. The anti-concentration problem in this setting was initated
by Costello, Tao and Vu [5] in order to study symmetric random matrices, and was further
developed by many authors, most recently by Meka, Nguyen and Vu [14]. Resilience problems
in this setting appear to be more difficult than for the ordinary Littlewood—Offord problem,
and are likely to require new ideas.

We would also like to highlight an alternative construction of a sequence a which results in
Pr[Ry < k] > 99% for k = (1+ o(1)) loglog n, due to Svante Janson and Joel Spencer. Let a consist
of all “1”s, except 10001log(i + 1) copies of each y/n/i for 1 < i < n%2, and 10logn copies of each j
for 2 < j < n%3. (If the sum of all these numbers is odd, change a single “1” to a “2”). We give a
sketch proof that this sequence has the claimed property. First observe that

n0-2

Var(X) = O | n+n"?logn + Z % log(i+1) | =0(n),
i=1
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so by Chebyshev’s inequality, |X| < Ly/n for some L, with probability at least 99.9%. Also, observe
that with probability at least 99.9% there is a positive and negative sign associated with each distinct
value in a. Indeed, the probability that this fails is at most

n0-2

2( n™n 04> i+ 1)710 | < 0.1%.
=1

Now, consider an outcome of X satisfying both of these properties. By the divergence of the harmonic
series, there is B such that .2 | \/n/B > Ly/n; first make at most B flips among the elements /n/i,
for i < B, to obtain |X| < y/n/B. Then, the key reason we have resilience (1 + o(1))loglogn is
that if 2¢/n/(i + 1) < |X| < 24/n/i then flipping a sign to add or subtract 2y/n/(i + 1) results in
|X| < 2y/n/(i(i+ 1)). That is to say, if | X| ~ \/n/i then with one flip we can make |X| ~ \/n/i%, so
it takes approximately loglogn flips to go from | X| ~ v/n/B to | X| ~ n%3, after which we can make
X = 0 with a single flip. We suspect that with some optimization this type of construction could
lead to an alternative proof of Theorem 1.7.

Acknowledgements. We warmly thank Svante Janson and Joel Spencer for giving us permission
to present their alternative construction. We also thank Van Vu and Joel Spencer for many insightful
discussions.
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