
2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2840222, IEEE
Transactions on Big Data

1

CityLines: Designing Hybrid Hub-and-Spoke
Transit System with Urban Big Data

Yanhua Li, Senior Member, IEEE, Guanxiong Liu, Zhi-Li Zhang, Fellow, IEEE , Jun Luo Member, IEEE ,
Fan Zhang, Member, IEEE ,

Abstract—Rapid urbanization has posed significant burden on urban transportation infrastructures. In today’s cities, both private and
public transits have clear limitations to fulfill passengers’ needs for quality of experience (QoE): Public transits operate along fixed
routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide
point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid
hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips
among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits.
CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system
operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world
trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines
reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation
baselines.

Index Terms—Hub-and-spoke network, urban computing, spatio-temporal data analytics.
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1 INTRODUCTION

The past few decades have seen rapid urbanization at the world
scale. It is reported that the world urban population has reached
54% in 2014, and it is projected that by 2050, two-thirds of the
world population will be urban [2]. The rapid growth in urban
population has placed an enormous strain on urban transportation
infrastructures. This is particularly the case in developing coun-
tries which experience the fastest urbanization, but suffer from far
less developed urban transportation infrastructures.

Conventionally, there are two primary models of urban trans-
port systems, namely, public transit services such as buses,
subway, and private passenger services such as taxis, shared
shuttles, ride-hailing services (e.g., Uber or Lyft). Both systems
have limitations in fulfilling passengers’ demands or “quality-of-
experience” (QoE), especially during peak demand hours, due to
the following fundamental trade-offs in transit service efficiency
and costs. Private transits provide exclusive (non-stop) services,
thus its transit fare is high, due to the high operation cost. Public
transits offer shared rides, thus reducing the cost of operations
when there are a significant number of people riding together, say,
on a bus. However, existing public transits operate along fixed
routes with fixed time tables, where the transit capacity offered do
not always match the time-varying trip demands. Consequently,
many urban residents rely heavily on private cars and other
transport modes (e.g., motor cycles, bikes) to get around a city,
creating urban road congestion.
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Fig. 1: Applications of Hub-and-Spoke Model

The aforementioned urban transport systems operate primarily
in two modes: fixed route mode (with a large number of stops)
in public transit services; and point-to-point mode in private pas-
senger services. Differing from these two modes, hub-and-spoke
mode1 is a system of connections, where all traffic move along
spokes connected through a small number of hubs. This mode
has been extensively studied in the literature and is commonly
used in industry, particularly in Airline route map planning [3],
[4], telecommunications [5], freight [6], [7], [8], and package
delivery system. Hub-and-spoke mode has advantages over the
other two transit modes in the following aspects: It requires less
stops/transfers than existing public transits to save on trip time; it
requires less routes than private transits, where the smaller number
of routes may improve the efficiency of using transportation
resources and increase the occupation rate. Figure 1 shows two

A preliminary version of the results in this paper appeared in [1].
1. Fixed route mode and hub-and-spoke mode both allow transfers during a

trip, where fixed route mode relies on a large number of densely distributed
stops/transfers (e.g., one stop per kilometer) to serve passengers, and hub-
and-spoke mode employs very few (usually less than three) hubs per trip to
guarantee the quality of experience while aggregating trip demands.



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2840222, IEEE
Transactions on Big Data

2

applications of hub-and-spoke mode in package delivery system
and Airlines route map, respectively, where packages and airlines
aggregate at and distribute from hubs. Hence, the hub-and-spoke
mode offers a great potential to aggregate urban trip demands
to leverage economies of scale, while improving users’ QoE.
However, it can a challenging task to plan and implement the hub-
and-spoke mode in urban transportation for the following reasons:
(i) Urban transits operate on an extremely large spatio-temporal
scale, thus it is non-trivial to develop a scalable hub-and-spoke
network to dynamically serve vast volumes of trip demands over
time. In operations research, the hub location problem (HLP) has
been studied for Industry planning, e.g., airline route planning [3],
[4]; these solutions, however, are limited to a maximum scale
of 200 regions/spokes. (ii) In a real urban area with diverse
distributions of trip demands, it is desirable but yet challenging
to integrate both point-to-point and hub-and-spoke modes in an
adaptive and dynamic fashion.

To tackle these challenges, in this work we propose CityLines
(in analogy to “Airlines” for flight route services), a scalable
dynamic hybrid hub-and-spoke transit system with shared shuttles.
The CityLines service relies on a hybrid hub-and-spoke transit
network, consisting of a set of inter-connected hub stations in the
urban area. A trip demand originated from a small region (referred
to as a spoke region) is routed to the destination with a non-stop
service (in the point-to-point mode) or via a hub station (in the
hub-and-spoke mode). Given a city with n small regions (spokes),
if a total budget allows L hubs and M point-to-point transit routes,
CityLines aims to find the hub locations and assign urban trip
demands to hubs or point-to-point routes, so as to minimize the
average travel time. Our main contributions2 are summarized as
follows.
• To scale up the hybrid hub-and-spoke network in CityLines,
we propose a two-stage planning framework, including the hub
selection stage and the trip assignment stage. The hub selection
stage aims to find a small set of high quality candidate regions
as hub candidates, so that a maximum number of least travel time
paths of trip demands pass through them. Then, the trip assignment
stage assigns each trip demand to a hub (for a detour) or a point-to-
point transit service, so that the average travel time is minimized.
• To evaluate the performance of our CityLines framework, we
conduct experiments on real trajectory data of taxi, bus and
subway collected during March 2014 in Shenzhen, China. The
results demonstrate that CityLines provides a transformative urban
transit service, with travel time as short as private transits and
travel cost as low as public transits. Moreover, we deployed a
CityLines system [9], and publicized our system code and a part
of anonymized urban transit data [10] to allow others to repeat
and validate our results, and to (more importantly) facilitate the
research in smart transit community.

The remainder of the paper is organized as follows. Section 2
formally defines the problem, presents the overview and outlines
the key components of our CityLines framework. Section 3 pro-
vides detailed methodology of CityLines framework. Section 4
presents evaluation results over a large-scale urban trip demand

2. Note that comparing to the preliminary version of this work in [1],
we have (i) introduced a new (optimal hub selection (OHS)) component to
significantly promote the system scalability (in Section 3.3); (ii) described the
details of our deployed CityLines online system implementation (in Section 5);
(iii) presented more comparison results with public and private transit services,
and with baselines of hub selection and trip assignments (in Section 4.3 and
4.4.).

data. Related works are discussed in Section 6 and the paper is
concluded in Section 7.

2 OVERVIEW

In this section, we will motivate and define hybrid hub-and-spoke
planning problem, detail the datasets we use, and outline CityLines
system framework.

2.1 System Design Trade-offs and Motivations
The choice of urban transit services from a passenger depends
on the QoE and cost of the trip, where the QoE hinges on many
potential factors, including in-vehicle time, level of inconvenience,
etc [11], and the trip cost depends on the service operation cost.
Private transit services in general offer high QoE, with low in-
vehicle time and high level of convenience, but at a high cost
of trip fare. On the other hand, by reducing the operation cost
with ride-sharing, public transit services have a lower trip fare, but
longer in-vehicle time. Hence, due to the fundamental trade-off
between passengers’ QoE and operation cost, private and public
transit services are operated to meet one of the two aspects,
respectively. The next question is how we can develop a transit
service to dynamically serve urban trip demands with travel time
as short as taking private transits and trip fare as low as taking
public transits? In this paper, by utilizing the historical trip data
from urban transportation systems in Shenzhen, we make the
first attempt to develop CityLines, a hybrid hub-and-spoke transit
model, that allows an integration of both hub-and-spoke mode (to
aggregate trip demands with small number of hubs, thus reduce
the operation cost) and point-to-point mode (to reduce the overall
trip time, thus to maintain a high passengers’ QoE).

2.2 Problem Definition
Thanks to the fast development of location sensing technologies,
the increasing prevalence of sensors, mobile devices, and Au-
tomated Fare Collection (AFC) devices has led to an explosive
increase of the scale of spatio-temporal data, including passenger
trip demands as defined as follows.

Definition 1 (Trip demand). A trip demand of a passenger
indicates the intent of a passenger to travel from a source location
src to a destination location dst from a given starting time t,
which can be represented as a triple 〈src, dst, t〉.

Passenger trip demands can be obtained from various data
sources. For example, the transaction data from AFC devices in
buses and subway systems record passenger trip demands at the
level of bus stops and subway stations. Taxi GPS trajectory data
with occupation information include the trip demands for taxi
trips. For urban trip demands, we consider two types of transit
modes below, i.e., point-to-point mode and hub-and-spoke mode.

Definition 2 (Point-to-point mode). With point-to-point mode, a
trip demand is served through a direct (usually the shortest or
least-cost) path from the source src to the destination dst.

The urban area consists of small regions, where a trip demand
may originate from or destine to. Each of such small regions is
referred to as a spoke. Some regions, referred to as hubs, are
deployed with transfer stations, that allow trips to detour at. Given
all spoke and hub regions, a hub-and-spoke transit mode can be
interpreted as follows.
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Fig. 2: Trip source locations
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Fig. 3: Trip destination locations Fig. 4: Shenzhen road map

Definition 3 (hub-and-spoke mode). With hub-and-spoke mode, a
trip demand 〈src, dst, t〉 is detoured through a small number of `
hubs, h1, · · · , h` (with ` ≤ 3 in general). Thus, the path taken for
the trip is {src, h1, · · · , h`, dst}, and each segment of the path
is in general a direct (least-cost) transit.

Note that the more hubs a trip demand takes, the lower QoE
a passenger would receive. In Airlines route planning, one hub
detour is commonly used for trip demands. In this paper, to
guarantee a high QoE, we allow ` = 1 hub for a trip demand,
where our framework also works for cases with ` > 1.

Ideally, for those source-destination location pairs with a large
number of trip demands, e.g., commute trips between a residen-
tial area and a commercial/working area, point-to-point mode is
preferred. On the other hand, for those source destination pairs
with less trip demands, hub-and-spoke mode is more promising to
aggregate trip demands and reduce the operation cost by leverag-
ing economics of scale. To balance such trade-offs, we propose to
investigate the hybrid hub-and-spoke planning problem.
Problem definition. Given a set of n spokes (regions) in an
urban area, a set of K trip demands, and a budget of M point-
to-point transit routes and L hub stations to deploy, we aim to
find the optimal L regions to deploy hub stations and optimal
assignment of trip demands to either point-to-point transit or a hub
to detour from, so that the average travel time of all trip demands
is minimized.
System dynamics. Note that the trip demand distribution changes
dramatically over time and follows a stable diurnal pattern. To
better cope with the trip demand dynamics, we divide each day
into fixed time intervals, and develop CityLines solutions for
different intervals. For the rest part of this paper, we focus on
solving the hybrid hub-and-spoke planning problem for a given
time interval.

2.3 Data Description
To tackle the problem defined above, two real datasets are em-
ployed, including (1) trip demand data; (2) road map data. For
consistency, all datasets are collected from the same time interval
in Shenzhen, China. Below, we describe each of these datasets in
details.
Trip demands data are extracted from large GPS trajectory
dataset (from taxis) and AFC billing dataset (from buses and
subway trains) collected from Shenzhen, China during March
2014. For trip demands from buses and subway trains, we extract
their starting and ending stations from the AFC billing data as
source and destination locations. On the other hand, we employ
taxi GPS data to extract trip demands served by taxis. Each GPS
record contains a unique ID, time stamp, latitude, longitude, and
passenger indicator. The passenger indicator field is a binary
value for taxi data, indicating if a passenger is aboard or not.
Hence, a sequence of taxi GPS points with passenger indicator
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Fig. 5: CityLines Framework

as 1 represent a taxi trip, and the first and last GPS points of
the sequence are the source and destination locations (i.e., src
and dst) of a trip demand. The time stamp of the starting GPS
point is the trip starting time t. Figure 2 and Figure 3 show the
geo-distributions of source and destination locations in Shenzhen
during the morning rush hours 7–10AM. Note that in the figures,
we characterize the trip demands by the density of the events (i.e.,
the number of source (or destination) locations per hour within a
geographic region of 1 km2 along the road networks). When the
density is larger than or equal to 100, the region is considered as
a high demand region. A low demand region has the density low
than 10 events per hour.

Type Counts Type Counts
Motorway 563 Secondary 868

Trunk 258 Tertiary 1,393
Primary 745 Unclassified 16,829

TABLE 1: Road Map Data in Shenzhen

Road map data. In our study, we use the Google GeoCoding [12]
to retrieve the bounding box of Shenzhen. The bounding box
is defined between 22.45◦ to 22.70◦ in latitude and 113.75◦

to 114.30◦ in longitude. The covered area is about 1, 300km2.
Within such a boundary, Shenzhen road map data were obtained
from OpenStreetMap [13], which are visualized in Figure 4. The
road map data contain six levels of road segments in Shenzhen,
which are detailed in Table 1.

2.4 Solution Framework
Figure 5 presents our optimal hybrid hub-and-spoke (OHHS)
framework for CityLines system. It takes trip demand data and
road map data as inputs. The whole framework consists of three
stages in Figure 5: (1) map gridding, (2) trip demand aggregation,
and (3) optimal hybrid hub-and-spoke (OHHS) planning.
• Stage 1 (Map gridding): The road map is divided into equal
grids with a side-length of 0.01 degree in latitude and longitude.
Then, a filtering process is conducted to eliminate those grids
off the road network, so that the remaining n grids are strongly
connected by the road map, namely, each grid can reach any other
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grid through the road map. We refer to those remaining grids as
spokes in the urban area. Then, we estimate average travel time
between each spoke pair. Thus, an n by n travel time matrix C is
obtained, which contain the least travel time of each pair of spokes
in the urban area.
• Stage 2 (Trip demand aggregation): In this stage, all sources
and destinations of trip demands are aggregated to the spokes ex-
tracted in stage 1. Hence, a trip demand 〈src, dst, t〉 is aggregated
as 〈s, s′, t〉, where s and s′ are the spokes where source src and
destination dst are located at. Then, a spoke level trip demand
matrix V is obtained with each entry Vij representing the number
of trip demands originating from spoke i and terminating at spoke
j.
• Stage 3 (Optimal hybrid hub-and-spoke (OHHS) planning):
Given a budget of M point-to-point transit paths, and L hub
stations to deploy, we propose a two-step optimization framework
to tackle the optimal hybrid hub-and-spoke (OHHS) planning
problem, including an optimal hub selection (OHS) step and
an optimal trip assignment (OTA) step. The OHS problem is
formulated as a maximum coverage problem, that selects M + L
high quality hub candidates from n spokes. The OTA problem is
formulated as a p hub location problem (p-HLP) problem, which
optimally assigns the trips to point-to-point transits or one hub to
detour, with the goal of minimizing the average travel time per
trip.

Table 2 provides notations used throughout the paper.

Notations Descriptions
G = {gi}, 1 ≤
i ≤ n

G is the spoke set of the gridded road map and
there are in total n = |G| spokes.

C = {Cij} Cij is average travel time between a spoke pair
(gi, gj).

V = {Vij} Vij is the number of spoke level trip demands.
K, L, M K is the total number of trip demands; L (resp. M )

is the number of hub stations (resp. point-to-point
paths) to be deployed.

H = {hm}, 1 ≤
m ≤M + L

H is set of selected physical hub candidates.

xk ∈ {0, 1} xk indicates if a spoke k is selected as a hub
candidate.

yij ∈ {0, 1} yij indicates if a trip demand (gi, gj) is covered
by hub candidates.

xm
ij ∈ {0, 1} xm

ij indicates if a trip demand (gi, gj) detours at a
hub candidate hm.

ym ∈ {0, 1} ym indicates if a hub candidate hm is chosen to
deploy a hub.

TABLE 2: Notation Table

3 METHODOLOGY

3.1 Stage 1: Map Gridding
The passenger trip demands (i.e., sources and destinations) are
geo-graphically and dynamically distributed across urban areas.
In the first stage, the entire urban area needs to be partitioned into
spokes (i.e., small regions), so that trip demands with the same
source and destination spokes are served in the same fashion,
e.g., by the same shuttle at the same time. For the ease of
implementation in practice, in this paper, we adopt the gridding
based method, which simply partitions the map into equal side-
length grids [14], [15]. Moreover, the gridding based method
allows us to adjust the side-length of grids, to better examine
and understand impacts of the spoke size. Hence, in Stage 1, our
approach divides the road map into equal-size grids with a pre-
defined side-length s in latitude and longitude. Figure 6 shows all

Fig. 6: Connected spokes in Shenzhen

grids (i.e., spokes) in the bounding rectangle region of Shenzhen,
China, with s = 0.01◦. Then, we remove the spokes without a
road segment, which are usually located in the no-sense areas,
such as ocean or mountain. The remaining spoke set is denoted as
G with n = |G| spokes, which can be represented as a graph, with
spokes as nodes, connected by the urban road network. Figure 6
highlights (in light color) those n = 1, 018 spokes on the road
network of Shenzhen, China.
Average travel time estimation between spoke pairs. Each
spoke grid has a center location, which is not necessarily on a
road segment. We first map the center location on a nearest road
segment in the spoke, and use the mapped location on the road
segment to represent the spoke. Then, for each pair of neighboring
spokes gi and gj , we can calculate average travel time on the road
network from the trajectory data of taxis and buses, denoted as
Tij . The matrix T = [Tij ] thus represent the adjacency travel time
matrix between neighboring spokes. Since the urban road network
is well connected, such a spoke graph is strongly connected [16],
which means that each spoke gi has a path to any other spoke
gj . Hence, we can apply the shortest path algorithms, such as
Dijkstras and Bellman-Ford algorithms to calculate the least travel
time between each spoke pair. We denote the least travel time
from spoke gi to gj as Cij , and C = [Cij ] thus form the
least travel time matrix among spokes. The diagonal entries of
C indicate the travel time within each spoke. In our study, we set
these entries to be 0, namely, CityLines service primarily serves
relatively long distance trips. It is more convenient to walk from
source to destination for a trip demand within a spoke.

3.2 Stage 2 :Trip Demand Aggregation
Each trip demand 〈src, dst, t〉 specifies a source location src, and
a destination location dst. Given n spokes extracted from stage 1,
we now in a position to aggregate all trip demands to spoke pairs,
that is, for all trip demands with src ∈ gi and dst ∈ gj , they
will be considered in the same group with the source spoke gi
and destination spoke gj . We denote Vij as the total number of
trip demands with source spoke as gi and destination spoke as
gj . Clearly, Vij = |{〈src, dst, t〉|src ∈ gi, dst ∈ gj}|. Then,
the volume matrix V = [Vij ] indicate the number of pairwise
trip demands across the spokes. From our dataset collected from
Shenzhen, China (as shown in Figure 2 and 3), the trip demands
are distributed unevenly across spoke pairs.

3.3 Stage 3: Optimal Hybrid Hub-and-Spoke (OHHS)
Planning
Consider a city with a budget of deploying point-to-point transit
service for M spoke pairs, and L hubs for trip demands to detour.
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Given the spoke set G of n connected spokes, least travel time
matrix C = [Cij ], and volume matrix V = [Vij ] as input, the
hybrid hub-and-spoke planning problem aims to identify M spoke
pairs to deploy point-to-point transit, L spokes from G to deploy
hubs, and assign each of the rest source-destination spoke pairs
to a hub for detour, so as to minimize the average travel time
for all trip demands. There are primarily two key challenges in
solving this problem: (i) The hub candidate set is the entire spoke
set G of size n, where n = 1, 018 in Shenzhen as discussed in
the example in Stage 1. Suppose that there are a total of L = 10
hubs to be deployed. The search space of all possible 10 hubs
is about a size of

(n
L

)
= n!

L!(n−L)! = 6.8 × 1023, which is
in general unsolvable for a combinatorial optimization without
an approximation. (ii) The hub location planning problems have
been studied extensively in the literature [17], but none of them
consider a scenario with both point-to-point and hub-and-spoke
transit modes. Hence, how to formulate the combination of these
two transit modes in a single framework is challenging. To address
the first challenge, we develop a two-step optimization framework,
with step 1 (referred to as optimal hub selection (OHS)) to pre-
select a small set of “high quality” hub candidates, and step 2 to
find the best L hubs from a much smaller searching space. For the
second challenge, we introduce a novel notion of virtual hub into
the traditional hub location problem to characterize those point-
to-point transit mode, namely, all trip demands assigned to the
virtual hub are chosen for point-to-point transits. Below, we will
elaborate on each of these two steps in details.

3.3.1 Optimal Hub Selection (OHS)

The goal of this step is to pre-select a small set of “high quality”
hub candidates from the entire spoke set G of size n, so as to
reduce the searching space in the next step when finalizing hub
locations. In general, if a hub resides on the least travel time
path of a trip demand, it generates the least additional cost,
when detouring the trip demand to that hub. In this case, we
consider that the hub “covers” the particular trip demand. Hence,
given all (spoke-level) trip demands, the single hub candidate that
resides on (or covers) the most trip demands is the “best” hub
candidate. However, when we look for multiple hub candidates,
we want a collection of hub candidates that together cover a
maximum number of unique trip demands, which may not be the
hub candidates with top numbers of covered trip demands, since
the coverage of different hub candidates may overlap. Given such
intuitions, we formulate our optimal hub (candidate) selection
(OHS) problem as follows.

Denote a source-destination spoke pair from spoke gi to gj
as (gi, gj). Given a hub candidate gk, we denote S(gk) as the
set of source-destination spoke pairs with their least travel time
paths going through gk. Let ~x = [xk] be a vector of binary hub
selection variables, indicating if a spoke gk ∈ G is selected as a
hub candidate (with xk = 1) or not (with xk = 0). Moreover,
we denote ~y = [yij ] as the matrix of binary variables, with yij
indicating if a source-destination spoke pair (gi, gj) is covered by
the selected candidate hubs (with yij = 1) or not (with yij = 0).
We aim to resolve ~x, indicating the best hub candidates, and ~y,
the source-destination spoke pairs covered by the hub candidate
set ~x, such that the total number of unique trip demands from
the covered source-destination spoke pairs is maximized. OHS
problem is formally summarized below.

max:
∑
gi∈G

∑
gj∈G

Vijyij (1)

s.t. :
∑
gk∈G

xk ≤M + L (2)∑
(gi,gj)∈S(gk)

xk ≥ yij ∀gi, gj , gk ∈ G (3)

yij , xk ∈ {0, 1} ∀gi, gj , gk ∈ G (4)

The objective function in eq.(1) captures the total number
of trip demands being covered by the selected hub candidates.
The first constraint (in eq.(2)) indicates that the total number of
selected hub candidates is no more than M + L, with L as the
maximum number of hubs to be deployed, and M as the maximum
number of source-destination spoke pairs to be served by point-
to-point transit mode. Since the trip demands being covered in
step 1 may be served by point-to-point transit mode, selecting
M + L hub candidates in step 1 guarantees that we have enough
high quality hub candidates for step 2. The second constraint (in
eq.(3)) guarantees that if a spoke pair (gi, gj) is covered (with
yij = 1), at least one spoke gk, that “covers” (gi, gj) should be
selected as a hub candidate (i.e., xk = 1). The last constraint (in
eq.(4)) specifies that each xk and yij is a binary variable.

Our optimal hub selection (OHS) problem is fundamentally a
(weighted) maximum coverage problem [18]: Given a number `
and n sets of elements, which may have some common elements,
we select ` of these sets so that the maximum number of unique
elements are covered. OHS problem is NP-hard, and there is no
polynomial-time algorithm that guarantees to find the optimal
solution for all instances unless P = NP .

In the literature, there have been a variety of efficient ap-
proximation algorithms for solving weighted maximum coverage
problem. The generalized maximum coverage algorithm [18]
achieves an approximation ratio of 1 − 1

e − o(1). Moreover,
a greedy algorithm for weighted maximum coverage problem
has an approximation ratio of 1 − 1

e [19], [20]. We employ the
approximation algorithm in [20] for solving our OHS problem.

3.3.2 Optimal Trip Assignment (OTA)
The output hub candidates from step 1 has significantly reduced
the hub selection space from n = |G| to M + L. The next
step is to further select L hubs from the M + L candidates
{h1, · · · , hM+L}, and assign them to spoke pairs, and choose
M spoke pairs for point-to-point transit mode, so that the overall
average travel time of trip demands is minimized. Without the
point-to-point mode part, this problem is a well-studied combi-
natorial optimization problem, so called, p-HLP (p hub location
problem), that aims to select a total of p hubs and assign each trip
demand to one and only one hub, to minimize the average trip
time. To include the point-to-point transit mode, we introduce a
novel notion of virtual hub, denoted as h0, which is not physically
one entry from M+L hub candidates. Figure 7 illustrates how the
virtual hub h0 works. All trip demands assigned to h0 are served
by point-to-point transit mode. Instead, a trip demand assigned to
a physical hub hi (1 ≤ i ≤ M + L) will be detoured through hi

during the trip. By introducing the virtual hub h0, the optimal trip
assignment (OTA) problem can be formulated as follow.

Let Ck
ij be the travel time for a trip demand from spoke gi to gj

detoured at hub hk. Recall that the least travel time from spoke gi
to gj is Cij . Thus, with a physical hub hk, we have Ck

ij = Cik +



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2840222, IEEE
Transactions on Big Data

6

Ckj ; and for the virtual hub h0, we have C0
ij = Cij , since a trip

demand assigned to virtual hub h0 is served with point-to-point
transit mode. Let xk

ij be a binary assignment variable indicating
if trip demands with source-destination spoke pair (gi, gj) are
assigned to hub hk (xk

ij = 1) or not (xk
ij = 0). Moreover, we

denote ym (with 1 ≤ m ≤M +L) as a binary selection variable,
indicating if a physical hub hm is selected (ym = 1) or not (ym =
0). We want to resolve ym, indicating the finally selected L hubs,
and xk

ij , the trip assignment to hubs, such that the average travel
time of trip demands is minimized. This OTA problem is presented
below.

min:
1

V

∑
gi∈G

∑
gj∈G

∑
0≤k≤M+L

VijC
k
ijx

k
ij , (5)

s.t. :
∑

0≤k≤M+L

xk
ij = 1, ∀gi, gj ∈ G, (6)

∑
gi∈G

∑
gj∈G

x0
ij ≤M, (7)

∑
gi∈G

∑
gj∈G

Vijx
k
ij ≤ Fk, 1 ≤ k ≤M + L, (8)

∑
1≤m≤M+L

ym ≤ L, (9)

ym ≥ xm
ij , ∀gi, gj ∈ G, 1 ≤ m ≤M + L, (10)

xk
ij ∈ {0, 1}, ∀gi, gj ∈ G, 0 ≤ k ≤M + L. (11)

ym ∈ {0, 1}, 1 ≤ m ≤M + L. (12)

The objective function in eq.(5) indicates the average travel
time of all trip demands, with V =

∑
gi,gj∈G Vij as the total

number of trip demands to be planned. The constraint in eq.(6)
states that each source-destination spoke pair should be served,
i.e., by one and only one hub (including the virtual hub). The
constraint in eq.(7) ensures that up to M source-destination pairs
are served by point-to-point transit mode with direct paths. The
constraint in eq.(8) specifies the capacity of each physical hub hk,
namely, the total number of trips going through a hub hk cannot
exceed the hub capacity Fk. The constraint in eq.(9) guarantees
that the total number of physical hubs deployed is no more than L.
Eq.(10) specifies a validity constraint, where a spoke pair (gi, gj)
is assigned to a hub candidate hm, if and only if hm is selected to
deploy a hub, namely, ym = 1. The constraint eq.(11) and eq.(12)
indicate that xk

ij and ym are binary variables.
By introducing the virtual hub h0 into the formulation, our

optimal trip assignment (OTA) problem allows both hub-and-
spoke and point-to-point modes. The nice property of OTA for-
mulation is that it still follows p-HLP (p hub location problem).
Moreover, with the optimal hub selection step, the searching
space for hubs has been reduced from all spokes in G to only
M + L hub candidates. In the literature, p-HLP has been ex-
tensively studied, with several efficient approximation approaches
developed. For examples, Ernst and Krishnamoorthy introduced a
3-index formulation for p-HLP, which enables an LP relaxation
based approximation solution [21]. Marin, Canovas and Landete
introduced new formulations for p-HLP problem that generalized
basic models with providing tighter LP bounds [22]. In this work,
we adopt the solution proposed in [21] to solve our OTA problem.

Fig. 7: Illustration of the virtual hub
4 EVALUATION

To evaluate the performances of our CityLines system, we conduct
comprehensive data-driven experiments using large-scale urban
trip demand datasets collected from Shenzhen, China. First of
all, the comparison results of CityLines with traditional private
and public models clearly demonstrate our advantages in reducing
operation cost (i.e., the number of passengers per trip segment)
and improving passenger QoE (i.e., average travel time per trip).
Secondly, by comparing with baseline algorithms in implement-
ing hybrid hub-and-spoke transit planning, experimental results
demonstrate that our CityLines system outperforms all other base-
lines (i) with 12.5%-44% reduction on average travel time per trip
demand, and (ii) with 8.5%-32.6% more aggregated trips via ride-
sharing. Below, we elaborate on baseline methods, experiment
settings and results.

4.1 Baseline Methods
We will conduct two sets of experiments to (i) compare public and
private transit models with hybrid hub-and-spoke model employed
in CityLines system, (ii) compare our proposed optimal hybrid
hub-and-spoke (OHHS), i.e., a two-step optimization framework,
with other baseline algorithms.
Baseline transit models: We compare private and public transit
models with our hybrid hub-and-spoke model.
(1) Private transit model: This model serves trip demands via
direct least travel time paths with non-stop service.
(2) Public transit model: This model employs the existing public
transit infrastructure (i.e., bus routes and subway lines), to serve
all trip demands.
Baselines for hub candidate selection: We compare our optimal
hub selection (OHS) method with the two baseline methods below.
(1) Random Selection (RS): This baseline method uniformly at
random chooses M + L spokes from G as hub candidates.
(2) Top Selection (TS): This baseline method selects M + L hub
candidates from G with the top numbers of source-destination
spoke pairs covered.
Baselines for trip assignment: We compare our optimal trip
assignment (OTA) method with the two baseline methods below.
(1) Random Assignment (RA): This baseline method first ran-
domly picks out L hubs from M+L hub candidates, and randomly
assigns the trip demands to point-to-point mode or one of hub
candidates.
(2) Average Assignment (AA): This baseline method assigns the
trip demands to point-to-point mode or one of hub stations, so that
each hub (roughly) serves an equal amount of trip demands.

In our experiments, we run the random selection (RS) and
random assignment (RA) methods for 50 times and calculate
the average results, so as to remove the potential impact of
randomness.
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(a) Trip demand distribution (b) Average travel time (c) Trip aggregation level

Fig. 8: Comparison of transit models

4.2 Experiment Settings

From the trip demand aggregation stage, we obtain in total
19, 428, 453 urban trip demands from taxis, buses and subway in
Shenzhen, China, during March 2014. One interesting phenomena
we observe from the data is that the trip demand distribution
changes dramatically over different time intervals in a day. How-
ever, for the same time interval, it stays relatively unchanged over
days. This is reasonable since daily urban commute/travel patterns
are relatively stable. Hence, to better cope with the dynamics of
trip demands, we divide each day into 5 time intervals: 6–11am,
11am–4pm, 4-8pm, 8–12am, 12–6am, develop and apply different
hybrid hub-and-spoke plans to each interval. We apply cross-
validation mechanism to evaluate our CityLines system: We use
a sliding time window of four days. We employ the trip demands
of day 1–3 as the input data, and develop the hybrid hub-and-
spoke solution. Then, we test the performance of the solution
using the trip demand data from day 4. We move the sliding
window over the working days in our data, and calculate the
average performances for all sliding windows. In this section, we
will use the time interval 6–11am, as an example to demonstrate
the effectiveness and efficiency of our CityLines system. Results
for other time intervals are similar, and are omitted for brevity.
Taking the trip demand data during 6–11am on March 12, 2014
as an example, there were in total 202, 315 trip demands in the
city. Given those 1, 018 connected spokes obtained, most (more
than 90%) of trip demands aggregate to 700 source-destination
spoke pairs. We sort all these spoke pairs by their numbers of trip
demands in a decreasing order, and divide them into 7 groups,
each with 100 spoke pairs. The resulting spoke pair groups with
ID {#1, · · · ,#7} are thus in a descending order in their numbers
of trip demands per spoke pair (See Figure 8(a)). We will gradually
add trip demands from each group (i.e., high volume group first)
into experiments, to evaluate how the problem scale affects the
system performance. Table 3 lists configurations used in our
evaluation.

For different planning methods, we evaluate operation cost
using the trip aggregation level, and evaluate the passenger QoE
using average travel time. Moreover, we use the number of covered
unique trips to evaluate the quality of hub candidates selected in
the optimal hub selection (OHS) step. These metrics are detailed
below.
Average travel time. Given a path planned for a trip demand tr =
〈src, dst, t〉 from the source to the destination, i.e., {g1, · · · , g`},

the total travel time is given by
∑

2≤i≤` Ti−1,i. The average travel
time of all trip demands characterizes the quality of experience
passengers receive from the planning strategy. The lower the time
is, the higher QoE passengers experience.
Trip aggregation level (of trip demands). Given a planning
method, each trip demand traverses a few trip segments. For
example, in public transit model, the trips are divided into small
trip segments between consecutive stop pairs. In CityLines service,
each trip consists of spoke-to-hub and hub-to-spoke trip segments.
In private transit model, each spoke pair maintains a unique trip
segment as the direct path. Since trip demands may share the trip
segments, each trip segment has a certain number of shared trip
demands. The average number of shared trip demands per trip
segment indicates the ride-sharing level, or trip aggregation level
of the planning method. The higher the trip aggregation level is,
the lower the operation cost is.
Hub coverage. To reduce the computational cost, we pre-select
a small set of “high quality” hub candidates from the spoke set
G. Intuitively, the hubs residing on the least travel time paths are
with good quality, in terms of generating additional travel time.
Hence, we evaluate the quality of a selected set of hub candidates,
using the number of unique least travel time paths they covered,
(in short, referred to as hub coverage).
Running time. For the same number of spoke pairs, hubs, and
directed paths, we evaluate the computational time (i.e., running
time) by comparing our scalable OHHS algorithm to the basic
OHHS algorithm proposed in [1] (in short, OHHS-Basic). Fig-
ure 12 shows the results with the problem scale ranging from
20 to 700 spoke pairs. The planning budget includes 10 hubs
and 5 directed paths. The results clearly indicate that our scalable
2-stage OHHS framework only takes less than 3 minutes for a
problem with 700 spoke pairs. On the other hand, when directly

spoke pairs {100, 200, · · · , 700}
# of hubs {1, 2, · · · , 10}
# direct paths {1, 2, · · · , 10}
transit model hybrid hub-and-spoke, public transit,

private transit
hub selection OHS, Top Selection (TS), Random Se-

lection (RS)
trip assignment OTA, Average Assign (AA), Random

Assign (RA)
hybrid hub-and-spoke planning OHHS, TS-AA, TS-RA, RS-AA, RS-

RA, OHHS-Basic [1]

TABLE 3: Evaluation configurations
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(a) Hub coverage over # hubs

(b) Hub coverage over spoke pairs

Fig. 9: Hub candidate selection

(a) Average travel time over spoke pairs

(b) Trip aggregation level over spoke pairs

Fig. 10: Trip assignment

(a) Average travel time over spoke pairs

(b) Trip aggregation level over spoke pairs

Fig. 11: Hybrid framework

solving the hub assignment problem, the running time of OHHS-
Basic increases dramatically from 20 seconds (for 20 spoke pairs)
to 77 minutes (for 150 spoke pairs). OHHS-Basic fails to find
results for a problem with more than 150 spoke pairs due to the
exponentially increased computational complexity.

4.3 Comparison of Transit Models

Figure 8(b)–(c) show the comparison between three different tran-
sit models, including public transit, private transit, and our hybrid
hub-and-spoke models. As more trip demands being included, the
results show clearly the trade-off between the three transit models,
in terms of the average travel time (as a measure of passenger
QoE) and the trip aggregation level (quantifying the operation
cost): (i) Private transit model always achieves the lowest average
travel time for trip demands, which is reasonable, since the private
transit model takes the least travel time paths for trips. However,
due to the low ride-sharing rate, the trip aggregation level is always
the lowest comparing to other models, thus leads to high operation
cost. (ii) On the other hand, by coordinating trip demands at a large
number of bus stops and subway stations, public transit model
always achieves the highest trip aggregation level than other transit
models, thus significantly reduces the operation cost. However,
high transition time incurred at stops and stations leads to the
highest travel time, over other models. (iii) By allowing both
hub-and-spoke and point-to-point connections, our hybrid hub-
and-spoke model can dedicate necessary point-to-point resources
to high-volume spoke pairs, while aggregating low-volume spoke
pairs via hubs. As a result, our hybrid hub-and-spoke model can
achieve as low average travel time as private transit model, and as
high trip aggregation level as public transit model.

Fig. 12: Running time comparison

4.4 Hybrid Hub-and-Spoke Planning

Given the clear advantages of our hybrid hub-and-spoke model
over the traditional private and public transit models, we now
move on to evaluate our CityLines system (as a 2-step opti-
mization solution) by comparing it with baseline implementation
algorithms.
Step 1: Hub candidate selection. Figure 9(a)–(b) presents the
comparison results on the hub coverage, between our OHS method
and two baseline algorithms, including top selection and random
selection. As we increase the number of hub candidates, Fig-
ure 9(a) shows that hub candidates selected by our OHS method
always cover more trip demands than random selection, and top
selection methods. when the total number of hub candidates to
be selected is small, our OHS methods can select high quality
hub candidates that cover up to 12 times more trip demands
(about 6000 trip demands), than random selection method (about
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Fig. 13: Case Studies

500 trip demands). When the number of selected hub candidates
is large, e.g., 10 hub candidates, the winning margin of our
OHS (with about 8000 trip demands) is about 1.6 times over
baseline algorithms (about 5000 trip demands). Consistent results
(in Figure 9(b)) are obtained when we increase the number of
spoke pairs. With 5 hubs for 300 spoke pairs, our OHS method
can select hub candidates that covers twice trip demands (about
7900 trip demands) of random selection method (about 3900 trip
demands). When more spoke pairs are included (say, 700 spoke
pairs), the hub candidates selected by our OHS method cover 9200
trip demands, which is about 2.1 times hub coverage of random
selection method (of 6100 trip demands). Overall, OHS method
selects hub candidates with 1.6 to 12 times hub coverage than
other baselines.
Step 2: Trip assignment. Figure 10(a)–(b) show the comparison
results between our optimal trip assignment (OTA) method with
two baselines, including random assignment (RA) and average
assignment (AA). To guarantee a fair comparison among different
trip assignment methods, we use the same set of hub candidates
selected in step 1 by OHS method. Figure 10(a) shows results in
average travel time, where our OTA always achieves the lowest
average travel time, with an average of 7%-31% reduction than
other baselines. On the other hand, Figure 10(b) shows results
in trip aggregation level: our OTA always has the highest trip
aggregation level. Given 10 hubs and 5 direct paths, our OTA
method has around 31–64 trips aggregated per trip segment, while
baseline methods only have about 25–59 trips aggregated per trip
segment, which leads to a total of 8%-24% improvement in trip
aggregation (thus reduction in operation cost).
Hybrid hub-and-spoke planning. Figure 11(a) shows that our
OHHS framework always achieves the lowest average travel time
with about 21 min, while other baseline methods lead to much
higher average travel time ranging from 24 to 38 min. Thus,
our framework achieves a total of 12.5% to 44% reduction on
average travel time. When measuring the trip aggregation level
(Figure 11(b)), our OHHS framework always has the highest num-
ber of aggregated trips, with a total of 8.5%–32.6% improvement
over baseline algorithms.

4.5 Case Studies
Figure 13(a)–(c) show an example with real trip demands, which
demonstrate the effectiveness of CityLines service by comparing
it with private and public transit services. We extract a small
set of trip demands during 6–11am in March 12, 2014, from
Shenzhen, China. The trip demand set includes a total of 1,274
trip demands with 5 source spokes and 5 destination spokes. One
source-destination pair (from spoke A to A′) is with the highest
trip demand volume, i.e., 473 trip demands. Moreover, each source
(from B, C , D) has some trip demands (ranging within 58 – 118)

to each destination (in B′, C ′, D′), and E has 77 trip demands
to E′. Figure 13(a)–(c) show the trip planning solutions using
three transit models, including private transit, public transit, and
CityLines service (with one hub and one direct path as the budget).
Our results show that private transit and CityLines lead to similar
average travel time, as 23 and 26 minutes, respectively, and public
transit has 47 minutes average travel time due to the large number
of stops and transfers during the trips. On the other hand, public
transit and CityLines enable similarly high aggregation levels,
with 168 and 155 aggregated demands per trip segment, where
private transit leads to only 112 aggregated demands3, due to the
distinct least travel time paths employed.

5 SYSTEM DEPLOYMENT

In this section, we describe the details of our deployed system.

Fig. 14: System Interface.

Our CityLines system is publicly available online [9], where
the website user interface is implemented using bootstrap, Java,
OpenStreetMap, and the system is deployed on a WPI server.
Figure 14 is an example of the system interface. The system allows
users to interact with it using different parameters to obtain hub-
and-spoke network recommendations in a real-time fashion. The
interface contains the following components:

Parameters. In the system interface (as shown in Figure 14),
there are a few parameters that allow users to choose the desired
deployment settings, such as the time interval of interests (in each
two hours of a day), total number of hubs (L) and number of
directed paths (M ) to deploy. Once the user defines and chooses
those parameters and presses the button “Generate”, the planned
hub-and-spoke network will be displayed. Moreover, to achieve

3. Note that the aggregation level of private transits is calculated without
considering vehicle capacity. When using taxis, the aggregation level is up to
4, i.e., taxi capacity.
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better visualizations for the project, we also developed a drop-
down menu to the right of the “Generate” button, with which
users can choose the background color patterns: auto-change, the
background color will change based on the time interval a user
chooses; day-time, bright white background color all the time;
night-time, dark grey background color all the time.

Result. On the right hand side of the demo page, the planned
hub-and-spoke network will be shown, with red dots representing
the planned hub station locations, and green dots representing the
source and destination spokes to be served by directed paths. The
red paths highlighted between the source and destination spokes
are the direct path routes.

Data and Code Sharing: We also make our code and (a subset
of) data publicly available on the project webpage [10]. We believe
that this will not only allow other researchers to repeat and validate
our results, but also facilitate the research community.

6 RELATED WORK

To the best of our knowledge, we are the first to investigate hybrid
hub-and-spoke transit model in solving urban transit planning
problem. We discuss two closely related topics to our work:
(1)urban computing and (2) hub-and-spoke network planning.
Urban computing integrates urban sensing, data management and
data analytic together as a unified process to explore, analyze
and solve existing critical problems in urban area such as traffic
congestion, energy consumption and pollution [23]. For example,
by analyzing a large-scale real electric taxi trajectory dataset,
authors in [15], [24] develop scalable charging station placement
strategies to reduce seeking and waiting time for electric vehicles
in urban areas. In [25], [26], the authors developed novel models
to predict the road traffic and crowd flows in subway stations.
However, none of the existing work addresses the fundamental
transit planning problem by employing the novel hybrid hub-and-
spoke transit model. Our study shed lights on the opportunity of
transforming the urban transit model to provide higher quality of
services to passengers.
Hub-and-spoke network planning has been extensively studied
in the literature, where all trip demands need to be detoured
via hubs to their destination spokes [17]. [27], [28] all attempt
to address a single allocation hub-and-spoke problem, where
multiple hubs are deployed, but all trips from the same spoke have
to detour at the same hub. [3], [29] develop solutions to multiple
allocation hub-and-spoke problem, where trips from the same
spoke, with different destination can potentially employ different
hubs for detour. However, few works have addressed the hybrid
hub-and-spoke network planning by allowing both point-to-point
and hub-and-spoke services. Moreover, the existing solutions can
only solve a hub-and-spoke problem with limited scale, say, 200
spokes and 10 hubs, which is not applicable to large-scale urban
trip planning scenarios. Our CityLines system design aims to
fundamentally address these two challenges to develop a scalable
trip planning service with low system operation cost, and high
passenger QoE.

7 CONCLUSION

In this paper, we make the first attempt to develop CityLines sys-
tem for urban scale transportation services, that employs a hybrid
hub-and-spoke transit model. The model allows both point-to-
point connection to improve the passenger quality of experience,

and hub-and-spoke connection to reduce the system operation cost.
CityLines employs a two-step optimization framework to enable a
scalable solution to the optimal hybrid hub-and-spoke planning
problem. Comparing with other implementation baselines, the
evaluation results (obtained with real world transit data) demon-
strate that CityLines reduces 12.5%-44% average travel time, and
aggregates 8.5%-32.6% more trips with ride-sharing.
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