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Abstract
In deciduous forests, spring leaf phenology controls the onset of numerous ecosystem functions.While most studies have focused
on a single annual spring event, such as budburst, ecosystem functions like photosynthesis and transpiration increase gradually
after budburst, as leaves grow to their mature size. Here, we examine the Bvelocity of green-up,^ or duration between budburst
and leaf maturity, in deciduous forest ecosystems of eastern North America.We use a diverse data set that includes 301 site-years
of phenocam data across a range of sites, as well as 22 years of direct ground observations of individual trees and 3 years of fine-
scale high-frequency aerial photography, both fromHarvard Forest. We find a significant association between later start of spring
and faster green-up: − 0.47 ± 0.04 (slope ± 1 SE) days change in length of green-up for every day later start of spring within
phenocam sites, − 0.31 ± 0.06 days/day for trees under direct observation, and − 1.61 ± 0.08 days/day spatially across fine-scale
landscape units. To explore the climatic drivers of spring leaf development, we fit degree-day models to the observational data
from Harvard Forest. We find that the default phenology parameters of the ecosystem model PnET make biased predictions of
leaf initiation (39 days early) and maturity (13 days late) for red oak, while the optimized model has biases of 1 day or less.
Springtime productivity predictions using optimized parameters are closer to results driven by observational data (within 1%)
than those of the default parameterization (17% difference). Our study advances empirical understanding of the link between
early and late spring phenophases and demonstrates that accurately modeling these transitions is important for simulating
seasonal variation in ecosystem productivity.
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Introduction

The timing of leaf unfolding determines seasonal shifts in a
range of ecosystem processes, from functions such as photo-
synthesis and transpiration (Fitzjarrald and Acevedo 2001;
Peñuelas et al. 2009; Richardson et al. 2013), to trophic inter-
actions associated with forage availability (Pettorelli et al.
2007; Plard et al. 2014). Changes in the annual arrival of spring
phenology events of deciduous trees have accompanied global
temperature change, as these events typically arrive earlier
when temperatures are higher (Schwartz et al. 2006; Menzel
et al. 2006; Piao et al. 2007). Combined with a projected delay
of the end of the growing season in a warmer climate found in
many tree species (Dragoni et al. 2011; Archetti et al. 2013)
(although not all; see Vitasse et al. (2009)), earlier spring-time
canopy development creates the potential for greater annual net
primary production. This raises the possibility that as
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temperatures rise, forests may sequester increasing amounts of
atmospheric carbon dioxide (Keenan et al. 2014; Duveneck
and Thompson 2017), to the extent that the residence time of
carbon in trees is not reduced (Körner 2017), or gains in pho-
tosynthesis are not offset by increases in respiration (Piao et al.
2008). Therefore, an understanding of how spring time leaf
development responds to temperature is crucial to understand-
ing forest ecosystem function in a changing climate.

Most studies of the relation of climatic variability to spring-
time leaf development in forests focus on one annual event,
usually defined as budburst or first leaf (Cannell and Smith
1983; Hunter and Lechowicz 1992; Chuine 2000; Schwartz et
al. 2006). While budburst marks a key point in the growing
season, at which foliar photosynthesis and transpiration begin,
the magnitude of ecosystem carbon and water fluxes exhibit a
steady increase over several weeks as leaves grow to their
mature size (Goulden et al. 1996). Surprisingly, comparatively
few studies have examined interannual and spatial variability
of the Bvelocity of green-up,^ or duration of the period from
initial appearance of leaves to their maturity.

Similar to the timing of budburst, the velocity of green-up
is thought to be under temperature control. The use of accu-
mulated temperatures as a model for the progression of leaf
expansion was established in the literature from studies mak-
ing detailed leaf-scale measurements: degree-days were found
to explain increases in leaf width and length during growth of
cereal crops (Gallagher 1979) as well as development of sun-
flower leaves (Granier and Tardieu 1998). At the plant-to-
canopy scale, a study using long term phenology observations
from two forest sites in New England found that a sigmoid
model describing the trajectory of springtime canopy devel-
opment could be improved by using degree-day sums as pa-
rameters in the sigmoid equation (Richardson et al. 2006). A
later landscape-scale remote sensing study in the Southern
Appalachian forest of North Carolina explored the effect of
topographical factors on green-up rates, finding correlations
of green-up duration with aspect and elevation, presumably
due to differences in radiation load (Hwang et al. 2011).
Recently, Yu et al. (2016) found that accumulated tempera-
ture, measured by growing degree-days (GDD), could be used
along with day length to predict the progression of 24 spring
phenology stages for several species under observation at a
study site inWisconsin. However, Donnelly et al. (2017) char-
acterized the effect of accumulated temperature on the start
and duration of the spring season for a wider range of tree
species at another site in Wisconsin and found that accumu-
lated GDD above a base temperature of 0 °C, starting on
January 1, may not be an accurate predictor of either the
timing of spring onset or the duration of leaf expansion.

Examining the relationship between the beginning of can-
opy development and the velocity of leaf expansion, Donnelly
et al. (2017) further observed that an early start to preliminary
spring transitions did not imply a longer or shorter duration of

subsequent phenophases. However, somewhat different con-
clusions were reached in a study on the phenology of woody
and herbaceous plant species in Greenland using phenocams
(Westergaard-Nielsen et al. 2017), which found that a later
start of green-up was associated with a shorter duration of
green-up. A similar observation was made between two con-
trasting springs, one with a later, faster green-up than the other,
in a deciduous forest in New England (Richardson et al.
2009). Therefore, while these three studies concerned differ-
ent plant species in different growing conditions, together they
indicate that if any relation between the start and length of
green-up is observed, it is that a later start tends to have a
faster green-up.

These recent in situ studies built on the widespread practice
of using growing degree-days to model the timing of discrete
phenological events such as budburst (Cannell and Smith
1983; Hunter and Lechowicz 1992; Chuine 2000), which
had subsequently been extended to include later spring tran-
sitions of leaf growth (Richardson et al. 2006; Yu et al. 2016;
Donnelly et al. 2017). The degree-day approach for leaf ex-
pansion was also adopted to describe forest canopy develop-
ment in a study of biosphere/atmosphere exchange of carbon
dioxide in forest ecosystems, using different critical sums to
mark leaf growth initiation and completion (Goulden et al.
1996). This phenology sub-model, with two critical sums of
growing degree days defining the endpoints of leaf expansion,
became part of the ecosystem model PnET (Aber et al. 1996).
While the parameterization of this sub-model has not been
evaluated against observational data, it has however been
shown that errors in modeling the start of the growing season
are a major source of uncertainty in even the most sophisticat-
ed terrestrial biosphere models (Richardson et al. 2012).

In the present study, we investigate the relationship be-
tween the start and length of green-up using several modes
of observation.We examine interannual variation in the timing
of these phenophases using canopy-scale data from tower-
mounted phenocams (Sonnentag et al. 2012) as well as direct
in-situ observations of trees (Richardson and O’Keefe 2009),
and spatial variation using fine-scale landscape units observed
by aerial drone photography (Klosterman and Richardson
2017a; Klosterman et al. 2018). This enables us to examine
the link between spring phenophases using a more geograph-
ically extensive, longer, and more methodologically diverse
set of observations than has been done previously. We then fit
models of budburst and leaf maturity to the visual observation
record, using Monte Carlo optimization to estimate the
starting date, base temperature, and critical sums of degree-
days associated with springtime phenological events. Finally,
we use a fitted phenology sub-model to predict ecosystem
productivity with the PnET model. We compare fitted model
results to results from the default PnET phenology model to
determine the effect of increased accuracy in phenology
modeling on predictions of ecosystem function.
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Methods

Phenocams

We used publicly available phenocam data from 301 site-
years across 51 sites located in North America (2 to 16 years
per site, sites displayed in Fig. 1 and listed in Table S1) to
examine the relation between start and length of green-up at
multiple locations (Richardson et al. 2018).

Phenocam sites were spread throughout diverse climate
zones; mean annual temperatures at the sites had a minimum
of 0.4 °C, a maximum of 21 °C, a mean of 9.4 °C, and a
standard deviation of 4.3 °C. Sites were located in ecosystems
with deciduous trees and captured repeat digital photography
at least once per day. The number of trees in phenocam fields
of view varied widely across study sites, from approximately
5 trees up to over 100 trees. Phenocam images included pri-
marily broadleaf deciduous trees common to the temperate
zone of eastern North America, except for two sites of
mixed-deciduous evergreen forest where evergreens dominat-
ed the camera field of view (Bharvardbarn^ and Bgroundhog^).
For all sites, however, the region of interest (ROI) within the
field of view, used to generate results for this study, was com-
posed of deciduous canopy. Camera fields of view were fo-
cused on forests except for one camera in an urban public park
(Bbostoncommon^). Green chromatic coordinate (GCC) was
calculated from the ROIs within the images (Sonnentag et al.
2012). GCC is a measure of the pixel brightness of the green
channel of digital imagery relative to the total image bright-
ness (sum of brightness over all channels):

GCC ¼ G= Rþ Gþ Bð Þ ð1Þ

where R, G, and B are the average digital numbers, across
the ROI, for the red, green, and blue channels, respectively.
Phenophase transition dates, representing the beginning

and end of green-up, were calculated using a procedure
described in Richardson et al. (2018). Briefly, start of
green-up was calculated using a 10% threshold (Btransi-
tion_10^) of amplitude in rising springtime greenness,
while end of green-up was calculated using a 90% thresh-
old (Btransition_90^), and the length of green-up was the
duration between these two events. We calculated dates
from the daily (i.e., B1-day^) GCC time series. To examine
the relation between start and duration of green-up across
sites, we calculated interannual anomalies from the multi-
year means at each site and performed a linear regression
on the combined data set of 301 site-years.

In situ observations

We used the long-term record of phenology observations
from Harvard Forest, which has been widely used in phe-
nology studies, to characterize the timing of leaf develop-
ment at the individual tree scale (Richardson and O’Keefe
2009; Migliavacca et al. 2012; Jeong et al. 2012; O’Keefe
2015). Start of green-up was characterized as Bbudburst^
(BB), the date when individual trees had recognizable
leaves emerging from 50% of the buds, while end of
green-up was characterized as B75% leaf size^ (L75), the
date when 75% of the leaves on an individual reached 75%
of their final size. Two to five marked individuals of each
species were observed on each date, and we calculated the
species-averaged BB and L75 dates for 1993–2004 for the
species, Acer rubrum (red maple), Acer saccharum (sugar
maple), Betula alleghaniensis (yellow birch), Fraxinus
americana (white ash), Quercus alba (white oak), and
Quercus rubra (red oak). These are the overstory tree spe-
cies which have the longest records in the Harvard Forest
phenology data set (22 years). We calculated the length of
green-up as the period of time from BB to L75.

Aerial drone imagery

We used methods described in an earlier study (Klosterman
et al. 2018) to obtain and process aerial photography at
Harvard Forest in the vicinity of the EMS tower
(42.5377° N, 72.1715° W), over an area of 1.4 ha. We used
3 years of data (2013–2015) in this study. Briefly, we used
a drone (3DR ArduCopter Quad-C Frame, 3D Robotics,
Berkeley, CA) equipped with a Canon Powershot A3300
camera (35 mm film equivalent focal length 28 mm,
approx. 16 million pixels). We took pictures of a gray ref-
erence square (ColorChecker classic, X-rite, Grand Rapids,
MI) before each flight to ensure data quality (Klosterman
and Richardson 2017a; Klosterman et al. 2018). Flight fre-
quency was roughly every 5 days during spring leaf out,
every 4 weeks during summer, and every week during au-
tumn leaf color change, depending on weather conditions,

Fig. 1 The 51 phenocam sites, located primarily throughout eastern
North America
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as we found that these frequencies were sufficient to char-
acterize the progression of leaf phenology in spring and
fall (Klosterman et al. 2018). Images were taken at a min-
imum shutter speed of 1/1000 s, with constant exposure
during each flight. The same (Bfixed^) color balance was
used for all acquisition dates, because consistent color bal-
ance is necessary for reliable digital camera observations
of phenology (Richardson et al. 2009). We conducted
flights at mid-day (between 10 am and 3 pm) on either
clear or evenly overcast days, and never during periods
of variable cloud cover, as exposure was constant during
flights. For each imagery acquisition date, we created
orthophotos of the study area using about 100 JPEG photos
taken with an intervalometer script (Canon Hack
Development Kit, http://chdk.wikia.com/wiki/CHDK),
with the PhotoScan photogrammetry software (Agisoft,
S t . P e t e r s bu rg , Ru s s i a ) , a nd pe r f o rmed f i n a l
georeferencing in ERDAS IMAGINE AutoSync
(Intergraph, Huntsville, AL). The orthophotos used in
this study are available through the Harvard Forest Data
Archive (Klosterman and Richardson 2017b).

We calculated Bstart of spring^ and Bend of spring^ phenol-
ogy dates using GCC and RCC (defined similarly to GCC)
values for ROIs consisting of grid cells from a 10m resolution
grid over the aerial images. A sigmoid curve with a linear
decrease in summer time greenness was used to fit GCC time
series, and phenology dates were estimated using extrema in
the curvature change rate (Klosterman et al. 2014). For a small
number of grid cells with leaves that appeared red in spring
time (6 grid cells, red spring leaves only observed in 2015), we
used 10 and 90% amplitude of linear interpolations of RCC to
calculate start and end of spring (Klosterman and Richardson
2017a). We limited our analysis to upland forest, excluding
wetlands to the north and south of the study area. We then
calculated average start of spring dates, and lengths of green-
up (time from start to end of spring) for each grid cell of
deciduous land cover for the years 2013–2015 and examined
their association with linear regression.

Phenology modeling

We sought to determine whether variability in the duration of
green-up could be explained by interannual temperature vari-
ation. To do this, we used a growing degree-day (GDD)model:

GDDi ¼ ∑
t0

tpheno

max 0; Ti−Tbð Þ ð2Þ

where t0 is the starting date of degree-day accumulation (day of
year or DOY), Ti is the daily average temperature (°C), and Tb
is the base temperature above which accumulation occurs. The
phenology event occurs on day tpheno, when the GDD sum is
greater than or equal to the critical sum F* (°Cd).

Predictive models of budburst and leaf expansion

Amodel that can be used prognosticallymust predict budburst
as well as L75. Therefore, we formulated a two-stage model
(Eqs. 3 and 4) that sequentially uses Eq. 2 to predict the timing
of budburst and L75. We estimated parameters for two ver-
sions of this model. In the first version, both the BB and L75
models share a common base temperature (Tb), but have dif-
ferent critical sums (F1*, F2*). Degree days begin accumula-
tion on a constant day of year t0 for F1*, and on the day of
budburst for F2*. This is referred to as the one-base tempera-
ture model:

F*
1 ¼ ∑

ti¼t0

tBB

max 0; Ti−Tbð Þ ð3Þ

and

F*
2 ¼ ∑

ti¼tBB

tL75

max 0; Ti−Tbð Þ ð4Þ

In the second version, we fit separate base temperatures for
two degree-day sums (Tb,1, Tb,2), the first accumulating tem-
peratures toward budburst, and the second accumulating be-
tween budburst and L75. We did this to see whether a model
allowing for different temperature responses of budburst and
leaf expansion would better describe observed data than a
model with a single base temperature. This is referred to as
the two-base temperature model.

Model parameterization

We fit both models described in the BPredictive models of
budburst and leaf expansion^ section for each of the six spe-
cies listed in the BIn situ observations^ section, using simulat-
ed annealing in Matlab. We estimated t0, Tb, and F* by min-
imizing the total residual sum of squares (RSS) across predict-
ed BB and L75 dates. We then compared model goodness of
fit using the small-sample corrected Akaike information
criteria (AICc):

AICc ¼ 2k þ nln RSSð Þ þ 2k k þ 1ð Þ
n−k−1

ð5Þ

where k is the number of fitted model parameters (4 for the
one-base temperature model, 5 for the two-base temperature
model) and n is the total number of BB and L75 observations.
To ensure we found optimal parameter estimates, we ran sim-
ulated annealing using all combinations of three different ini-
tial parameter values as starting points for estimation (i.e.,
34 = 81 starting points for the one-base temperature model
and 35 = 243 starting points for the two-base temperature
model). We estimated uncertainty in the model parameters
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by generating 1000 parameter sets for each species where the
RSS of predicted BB and L75 dates passed a chi-squared test
(95% confidence), and calculating the standard deviation of
each parameter (Migliavacca et al. 2012; Melaas et al. 2016).
Following our observation that daily average temperatures
were above 0 °C during leaf expansion for all species in all
years, we limited Tb,2 > 0.

Ecosystem modeling with PnET

PnET-Day, an extension of the original PnET model that can
be run at a daily time step, is a forest ecosystemmodel that has
been validated using eddy covariance measurements of car-
bon and water fluxes at Harvard Forest, and has subroutines
for ecosystem functions including photosynthesis, respiration,
and evapotranspiration, as well as phenology (Aber and
Federer 1992; Aber et al. 1996). The phenology sub-model
for temperate deciduous trees in PnET has the same structure
as the Bone-base temperature^ model described here, with de-
fault parameters t0 = 1 (i.e., January 1), Tb = 0 °C, F1* = 100
°Cd, and F2* = 800 °Cd for deciduous trees (in PnET refer-
ences, F2* = 900 °Cd since it is reported relative to January 1,
as opposed to the date of budburst as formulated here). Leaf
growth in PnET-Day begins on the predicted day of budburst
(F1* = 100 °Cd) and proceeds proportionally to the fractional
progress of accumulated degree days toward leaf maturity
(F2* = 900 °Cd). Mathematically, at time step i after budburst,
forest LAI (leaf area index) in the original PnET-Day model is
calculated as:

LAIi ¼ min
GDDi−F*

1

F*
2

; 1

� �
*LAImax ð6Þ

where LAImax is the maximum growing season LAI. We eval-
uated the default parameterization of the PnET-Day phenolo-
gy model, as well as our fitted phenology model, against ob-
servational data for red oak, the dominant deciduous tree spe-
cies at Harvard Forest.

We then examined the effect of using the default PnET
parameterization as well as fitted model parameters on eco-
system function, by implementing our model in PnET. We ran
PnET retrospectively over the same time period used for mod-
el fitting (1993–2014). As a reference for the results of fitted
and default phenology sub-models in PnET, we formulated
prescribed phenology using the dates of BB and L75 for red
oak.We assumed daily leaf growth proceeded in proportion to
the amount of accumulated degree days as a fraction of the
degree day sum on the date of L75. We used 0 °C as the base
temperature for prescribed leaf growth since 1 °C was the
minimum temperature during leaf out in any year. For each
PnET run, we calculated the yearly average springtime (April–
May–June) net primary productivity (NPP).

2.4.5 Climatic data

We used climatic data from the EMS tower at Harvard Forest
(Munger et al. 2017) as drivers for phenology and ecosystem
modeling based at Harvard Forest, including daily mean (av-
erage of minimum and maximum) temperature and daily pho-
tosynthetically active radiation.

Results

Later start of green-up coincides with faster green-up

We find that later start of spring correlates with faster green-up
between years at the ecosystem level, within phenocam sites,
using interannual anomalies from the site means (Fig. 2). The
regression slope indicates − 0.47 (± 0.04 SE) days difference
in green-up (i.e., shorter green-up) for every day later start of
spring (r = − 0.60, p < 0.001 versus a null hypothesis of zero
slope, RMSE 4.2 days). The large geographic distribution of
phenocam sites indicates that the relationship between start of
spring and length of green-up is widespread in deciduous tree
ecosystems throughout North America (site locations listed in
Table S1, map in Fig. 1).

In the observations of individual trees at Harvard Forest,
there was considerable variation in start and length of green-
up over the study period. For the most prevalent species by
basal area, red oak, BB varied from day of year 114 at the
earliest to 136 at the latest, with an average of day of year 126
(May 6)while the length of green-up varied from16 to 33 days
and averaged 22 days.We find similar, although generally less
significant correlations between the timing of budburst and
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Fig. 2 Relation between length of green-up and timing of start of green-
up, shown as interannual anomalies from the site mean. Negative
anomalies indicate earlier start of green-up or shorter length of green-
up. Three hundred one site-years from 51 PhenoCam sites having
deciduous trees are shown
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length of green-up for individual species at Harvard Forest
(Fig. 3, Table 1), compared with the multi-site phenocam re-
sults. This is likely due in part to the sample size of individual
species (n = 22 years), which is much smaller than the
phenocam data set of interannual anomalies across sites (n =
301 site-years), and possibly differences in data collection
method (digital image analysis versus direct observation).

Three out of six species have significant regressions with
p < 0.05 while two of the remaining three are marginally sig-
nificant at p < 0.1. We note that when combining all species
from Harvard Forest as anomalies from the species-level
means (n = 176 species-years), the regression is highly signif-
icant with p < 0.001 and a slope of − 0.31 ± 0.06. This slope is
lower in magnitude than what was observed across phenocam
sites, although the slope for red oak, the dominant canopy
deciduous species at Harvard Forest, is − 0.40 ± 0.16, closer
to the phenocam regression slope.

In addition to evidence for quicker progression of later
springs across years for trees under direct observation, and
from the integrated ecosystem-scale measurements of
phenocams, we find a similar phenomenon across space with-
in a forested ecosystem. Multi-year averages (2013–2015) of
start of spring and length of green-up for 10 m grid cells of
aerial drone imagery (Fig. 4) indicate that across fine-scale
landscape units, there is a − 1.61 ± 0.08 days change in length
of green-up for every day later start of green-up (r = − 0.87,
p < 0.001, Fig. 4b). We note that within individual years, the
correlation was significant as well (p < 0.001). The regression
slope for the spatial relationship seen in drone imagery is
steeper than the slopes for interannual relationships from
phenocams and in situ observations, suggesting there is a
strong link between the timing of these phenophases spatially
across landscapes.

Phenology modeling and predicting ecosystem
function

Following our observation in the BLater start of green-up co-
incides with faster green-up^ section that the length of green-
up is correlated with the timing of budburst, we explored how
well a degree-day model could account for year to year vari-
ation in the timing of the start and end of green-up. We for-
mulated two models. The first assumes both budburst and leaf
maturity have the same base temperature for the calculation of
degree days (Eqs. 3 and 4) while the second allows for differ-
ent base temperatures for each process (Tb,1 for degree days
prior to budburst and Tb,2 for degree days between budburst
and leaf maturity). The one-base temperature model has the
same structure as the phenology sub-model of PnET-Day.
While the PnET-Day default parameterization sets t0 = 1
(i.e., January 1), Tb = 0 °C, F1* = 100 °Cd, and F2* = 800
°Cd, here we optimized parameters for both the one- and
two-base temperature models using phenology observations
of different species fromHarvard Forest. We find that both the
one- and two-base temperature models had similar RMSE for
most species (Table 1). Consequently, the one-base tempera-
ture model, with one less parameter, had lower AICc than the
two-base temperature model for all species except yellow
birch (lower AICc indicates a model is better supported by
the data). Estimated parameters for the one-base temperature
model indicate that the starting date of degree-day accumula-
tion is over 2 months later than the PnET default of January 1
(range DOY 74–106 across species, standard errors ~ 1 day)
and that except for yellow birch, base temperatures are greater
than zero. Compared to the regression models, which predict-
ed the length of green-up using only the timing of budburst
(average model RMSE 3.7 days across species), GDDmodels
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Table 1 Regression statistics (slope ± 1 SE, correlation, p value and
RMSE) for Fig. 3. Model fitting results for the one- and two-base
temperature models based on situ phenology observations from Harvard
Forest, including fitted parameters ± 1 SE, and RMSEs for prediction of
BB and L75 dates and length of green-up (days fromBB to L75). Species
are ACRU (Acer rubrum, red maple), ACSA (Acer saccharum, sugar

maple), BEAL (Betula alleghaniensis, yellow birch), FRAM (Fraxinus
americana, white ash), QUAL (Quercus alba, white oak), and QURU
(Quercus rubra, red oak). ΔAICc indicates the difference in AICc
between the two- and one-base temperature models; a positive value
indicates the two-base temperature model has a larger AICc and is less
supported by the data

ACRU ACSA BEAL FRAM QUAL QURU

Regression Slope (dd−1) − 0.22 ± 0.14 − 0.37 ± 0.18 − 0.29 ± 0.14 − 0.31 ± 0.13 0.26 ± 0.01 − 0.40 ± 0.16
r − 0.34 − 0.42 − 0.41 − 0.46 − 0.51 − 0.49
p 0.122 0.051 0.057 0.031 0.014 0.020

RMSE green-up (d) 3.5 4.8 3.8 2.8 2.8 4.3

One base temp t0 (DOY) 79 ± 0.74 80 ± 1.2 74 ± 1.3 106 ± 0.64 82 ± 0.70 89 ± 0.64

Tb (°C) 1.4 ± 0.25 4.1 ± 0.41 − 4.2 ± 0.68 3.2 ± 0.45 5.8 ± 0.15 3.8 ± 0.38

F1* (°Cd) 264 ± 9.8 133 ± 10 549 ± 37 165 ± 12 166 ± 5.1 169 ± 12

F2* (°Cd) 225 ± 7.5 137 ± 8.3 288 ± 17 227 ± 9.2 152 ± 5.5 193 ± 9.0

RMSE BB (d) 2.7 2.4 4.1 2.5 2.8 3.4

RMSE L75 (d) 3.1 3.3 3.4 2.0 1.7 2.3

RMSE green-up (d) 2.9 2.6 3.8 2.8 2.8 4.0

Two base temps t0 (DOY) 79 ± 0.68 81 ± 1.2 56 ± 1.1 106 ± 0.70 82 ± 1.2 90 ± 0.60

Tb,1 (°C) 1.3 ± 0.21 4.7 ± 0.51 − 9.7 ± 0.66 2.6 ± 0.65 5.8 ± 0.18 3.3 ± 0.33

Tb,2 (°C) 2.3 ± 0.75 5.3 ± 0.48 4.8 ± 0.86 1.6 ± 1.7 5.4 ± 0.72 3.8 ± 0.60

F1* (°Cd) 267 ± 8.3 122 ± 13 985 ± 46 180 ± 17 167 ± 6.0 175 ± 10

F2* (°Cd) 207 ± 16 115 ± 8.7 134 ± 15 261 ± 38 168 ± 15 201 ± 13

RMSE BB (d) 2.7 2.5 4.1 2.5 2.8 3.5

RMSE L75 (d) 3.1 3.2 2.9 1.9 1.8 2.2

RMSE green-up (d) 2.9 2.8 4.0 2.7 2.3 3.7

ΔAICc 1.6 2.1 −2.4 2.7 3.4 1.5

Fig. 4 aAerial image of the study
area at Harvard Forest in May,
2015. b Relation between grid
cell mean start of green-up and
length of green-up, for 10 m grid
cells in drone imagery averaged
over the years 2013, 2014, and
2015 (n = 137, r = − 0.87, p <
0.001, slope = − 1.61 ± 0.08). c
Start of green-up dates (day of
year) for 10m grid cells. d Length
of green-up (days). Grid cells
shown in white failed to generate
dates, primarily due to low GCC

amplitude associated with
evergreen trees
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driven by temperature resulted in a better fit to the data for the
duration of leaf expansion (average RMSE 3.2 days for the
one-base temperature model).

Accurate representation of vegetation phenology has sub-
stantial impacts on the prediction of ecosystem services
(Richardson et al. 2012). To examine the impact of the relation
between the timing of budburst and velocity of green-up on
NPP, we used the ecosystem model PnET driven by local
climate data and phenology observations at Harvard Forest.
We find that later budburst of red oak, which tended to be
associated with shorter green-up (Fig. 3f), was also correlated
with lower modeled spring NPP (4.5 ± 1.1 gC m−2 lower
spring time NPP per 1 day later BB; r = − 0.69, p < 0.001;
Fig. S1). The latest red oak green-up of the observation period
(DOY 136) was associated with a spring time NPP of as little
as 203 gCm−2 in 1 year, while the earliest green-up (DOY
114) had an NPP of 366 gC m−2, an 80% increase. These
results underscore other researchers’ empirical findings that
the timing of spring phenophases have a large effect on early
season productivity (Keenan et al. 2014).

To inform future efforts in predictive modeling of spring
phenophases and their relation to ecosystem function, we
compared a fitted phenology sub-model, as well as the default
phenology model parameterization in PnET, to results driven
by observational data. Compared to the default model, the
fitted model predicted the timing of red oak BB and L75 more
accurately. The tendency of the default model was to predict
budburst much earlier than observed (biased 39 days early on
average across years, interannual r = 0.16, p > 0.05), and L75
later than observed (biased 13 days late, r = 0.62, p < 0.01),
however the fitted model had relatively little bias and relative-
ly high interannual correlation (BB bias 1 day date, r = 0.83,
p < 0.001; L75 bias 0 days, r = 0.90, p < 0.001) (Fig. 5a, b).
Consequently, RMSE from the default parameters was 40 and
14 days for BB and L75, but 3.4 and 2.3 days for the fitted
model, respectively.

Due to biases in modeled budburst dates, modeled NPP
began to increase earlier in the year under the default mod-
el than with prescribed phenology, before reaching similar
levels later in spring around DOY 140 (multi-year average
NPP time series shown in Fig. 5c). Because of this, the
default model resulted in an overestimate of annual spring
NPP by an average of 51 gC m−2 per year, and
overestimated total spring NPP for the 22-year period by
17% in comparison to the results from prescribed phenol-
ogy (Fig. 5d). On the other hand, the fitted sub-model was
within 1 gC m−2 per year on average and within 1% of
prescribed phenology results for total spring NPP over
the 22-year period. This shows that optimizing the param-
eters of the degree day model, as opposed to using default
parameters for deciduous trees in PnET, yields results that
are substantially closer to model runs driven by observa-
tional phenology data from Harvard Forest.

Discussion

We used a combination of phenological data from sources
including widely geographically distributed ecosystem-scale
observations (phenocams), long term observations of individ-
ual trees, and fine-scale measurements of landscape phenolo-
gy with a drone to examine the association between the timing
of the start of springtime canopy development and the velocity
of leaf expansion. Our results show that when leaves start to
develop later in the year, they proceed more quickly from
budburst through leaf expansion. We noted significant inter-
annual trends of less than 1 day faster green-up per day later
start of green-up (− 0.47 ± 0.036 days per day at phenocam
sites, − 0.31 ± 0.06 for trees under long-term observation).
The spatial association across fine-scale landscape units with-
in a single site was stronger (− 1.61 ± 0.08 days per day from
aerial drone observations), indicating this phenomenon is both
widespread and pronounced at the within-ecosystem level.

Although the phenomena of later springs greening up
more quickly was not observed in a study of forest trees
using 5 years of observational data (Donnelly et al. 2017),
it was observed in a study of both woody and herbaceous
plants from a high-Arctic site with 14 years of data
(Westergaard-Nielsen et al. 2017), as well as a study com-
paring a canopy of forest trees in two contrasting springs
(Richardson et al. 2009). In the present study, many of the
phenocam sites had relatively short time series (records at 23
out of 51 sites were < 5 years). As the phenocam record
grows longer, the evidence for interrelation of spring
phenophases at individual sites should become clearer.
Other methodologies may also provide useful tools to fur-
ther examine the timing and rate of spring green-up; satellite
remote sensing, such as the MODIS record (Hwang et al.
2011), would provide a landscape-level tool to integrate
larger ecosystems over decadal time scales and is an inter-
esting direction for possible future study. However we note
that even phenocam records as short as 2 years allow for
examination of contrasts between springs with different
weather and phenology (e.g., Richardson et al. 2009), and
provide a ground-truth of directly interpretable image data
not available from satellite remote sensing (Klosterman et al.
2014). The large number and wide climatic distribution of
phenocam sites used in this study (Fig. 1, Table S1) allowed
us to leverage the power of the network in space-for-time
fashion, to examine ecosystem-level correlation between the
timing of the start and duration of green-up. We were able to
use 301 site-years of ecosystem-scale phenocam data across
multiple sites to complement 22 years of organism-scale
observational data and fine-scale landscape observations
(10 m resolution drone photography) from a single site.
This enabled us to capture a wide range of climatic variabil-
ity and spatial scale, to provide a diverse set of evidence for
later springs progressing more quickly.
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In examining the climatic drivers of the relationship be-
tween start and duration of leaf-out, previous research showed
that over 2 years with contrasting springs, warm temperatures
early in 1 year led to an earlier budburst, while subsequent
cold temperatures delayed the progression of leaf expansion.
However the opposite temperature phenomena in the other
year led to later budburst but faster leaf development
(Richardson et al. 2009). In that study, as well as others,
degree-day models proved useful to represent not only the
beginning, but also the duration of leaf expansion
(Richardson et al. 2006; Yu et al. 2016). In this study, we
parameterized-degree day models using budburst and leaf ex-
pansion data and explored whether the optimal base tempera-
tures for budburst and leaf expansion were different. We found
that for all six tree species we modeled, a single base temper-
ature for both budburst and leaf expansion led to very similar
model quality of fit (RMSEs within 1 day between the two
models for each species), with the one-base temperature mod-
el better supported by the data for five species. Our results
lend support to the concept of modeling leaf emergence and
expansion with degree day models, although similar to what

Migliavacca et al. (2012) and Richardson and O’Keefe (2009)
did for budburst models, we fit all parameters of the degree
day model (start date, base temperature, and critical sums) to
observational data. We obtained improved results when com-
pared with an approach using arbitrary values for parameters,
such as a January 1 start date and 0 °C base temperature (Aber
et al. 1996; Yu et al. 2016; Donnelly et al. 2017).

While the one-base temperature model we parameterized
here has the same structure as the phenology sub-model of the
ecosystem model PnET, we found that using parameters fit to
observational data resulted in substantial differences in pre-
dicted springtime NPP as compared to the default parameters
of PnET. The default phenology parameters resulted in NPP
predictions 17% greater than PnET runs with phenology pre-
scribed by observational data, while the fit parameters resulted
in less than a 1% difference. This was mainly due to an early
bias in budburst predictions relative to observations under the
default parameters, similar to many terrestrial biosphere
models (Richardson et al. 2012). We found that more accurate
prediction of the beginning and velocity of leaf expansion
improved model representation of the seasonality of NPP.
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Fig. 5 a Predicted BB dates versus observational data for the fitted model
(Bx^ symbols, RMSE 3.4 days, biased 1 day late on average, interannual
r = 0.83, p < 0.001) and PnET default parameters (square symbols,
RMSE 40 days, biased 39 days early, r = 0.16, p > 0.05). b The same
for L75 dates (fitted model RMSE 2.3 days, biased 0 days, r = 0.90, p <
0.001; default parameters RMSE 14 days, biased 13 days late, r = 0.62,
p < 0.01). c Three-day averaged NPP (mean across all years) during

spring from prescribed runs (circle symbols), the fitted phenology
model (line with Bx^ symbols), and the PnET default phenology
parameters (line with square symbols). d Annual sums of modeled
springtime NPP (April–May–June) for the fitted phenology model (Bx^
symbols) and the PnET default (square symbols), plotted against results
from model runs using prescribed phenology
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Conclusion

We found abundant evidence for a link between the timing of
the start of spring and the velocity of green-up in deciduous
forests of North America: when green-up starts later, it pro-
ceeds more quickly. The strongest association was noted
across fine-scale landscape units within a forest ecosystem
(r = − 0.87, p < 0.001), although the same phenomenon was
found in direct observations of trees (p < 0.05 for three of six
species, p < 0.1 for two of the other three) and across 301 site-
years of phenocam observations (r = − 0.60, p < 0.001). We
found that a degree-day model, where all the parameters had
been fit using observational data, could accurately describe
interannual variation in both budburst and leaf maturity using
a single base temperature for both phenophase transitions.
This result supports the conclusion that the faster progression
of later green-ups is generally driven by the warmer tempera-
tures that typically occur later in spring.When implemented as
a subroutine of the ecosystem model PnET, the one-base tem-
perature model fit to observational data resulted in spring NPP
predictions substantially closer to results from prescribed phe-
nology (within 1% on average over the 22-year study period),
than the default phenology parameters of PnET (17% overes-
timate). These results illustrate the link between two key
spring phenophases in deciduous forests and show the impor-
tance of accurately modeling them for predictions of ecosys-
tem function.
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