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Abstract — Today’s CMOS technologies allow larger circuit 

designs to fit on a single chip.  However, this advantage comes at 
a high price of increased process-voltage-temperature (PVT) 
variations.  FPGAs and their designs are no exceptions to such 
variations.  In fact, the same bit file loaded into two different 
FPGAs of the same model can produce a significant difference in 
power and thermal characteristics due to variations that exist 
within the chip. Since it is increasingly difficult to control 
physical variations through manufacturing tasks, there is a need 
for practical ways to sense chip variations to provide a way for 
circuit designers to compensate or avoid its negative effects. One 
of the most critical aspects of such variation is power.  Therefore, 
we developed and demonstrated a high accuracy on-chip on-line 
Energy-per-Component (EPC) measurement technology on 
Xilinx FPGAs since 2011.  However, we found that the hardware 
overhead associated with such method limited the use of the 
technology.  Therefore, our follow-up work in Energy-per-
Operation (EPO) on Spartan FPGA with OpenRISC SoC 
produced an equally accurate power monitoring technology with 
drastically lower hardware overhead.  While this method made 
our technology more practical for SoC designs on FPGAs, it did 
not produce component level power dissipation data that 
previous EPC method provided.  Therefore, we extend this prior 
work with a new algorithm to extract EPC values from EPO 
result.  Despite the lower hardware overhead, this change ended 
up improving the accuracy of the power result by unraveling the 
instruction-level abstraction into component-level energy 
consumption. 
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I. INTRODUCTION 
Newer CMOS technologies allow the larger design to be 

integrated on a single die.  However, the power density of new 
chip is much higher and its process-voltage-temperature (PVT) 
variation characteristics are more difficult to predict and 
control.  Due to higher complexity and lower predictability of 
physical behavior of new chips, model-based tools no longer 
play a significant role in improving chip performance or yield.  
Because of this, newer designs integrate some form of on-line 
power estimation, dynamic power manager, and adaptive task 
scheduler to compensate for the negative effects of worsening 
variations. 

In computer system designs, power management methods 
have shown to improve computer efficiency [2]. However, one 
survey performed about two decades ago suggests that macro-
level power management techniques may have reached their 
performance limits [6].  Therefore, current research efforts 

seem to point to fine-grained power management as the path 
forward to additional power savings for the future digital 
designs [1].  

An enabling technology for an effective power 
management is high accuracy fine-grained power measurement 
system. Since traditional power measurement algorithms rely 
on statistically derived power models and direct measurement 
methods, they are proving to be either not accurate enough or 
too expensive to drive fine-grained power manager. FPGAs 
present additional challenges to measurement systems because 
of their need to support hardware reconfiguration. 

We present an efficient on-line sub-component level power 
measurement method that is fine-grained and highly accurate.  
In the following section, we, first, present a case study that 
shows measurable variations that exist within the same chip as 
well as across different chips of the same FPGA model.  Then 
we discuss the core concept of the technology in section 3.  For 
the context, we summarize our earlier application of the 
concept on a microprocessor-based SoC in section 4.  In 
section 5, we present our new conversion technique in 
extracting energy-per-component (EPC) from operation counts.  
Finally, we discuss and compare our results in the last sections 
of the paper. 

II. PRELIMINARY TEST RESULT 
To verify our hypothesis on the significance of variations 

within and amongst the same model of FPGAs, we conducted a 
power measurement case study.   

For this study, we instantiated the OpenRISC SoC 
(ORPSoC) on Digilent Atlys board instrumented with a current 
sense resistor and a 1 kHz differential ADC (PMODADC5) 
[30]; we computed the power by directly measuring the load 
voltage and the voltage drop across the current sense resistor. 
The ORPSoC design was compiled four times to generate four 
heuristically produced different physical layouts for FPGA. 

For our experiment, we repeated Dhrystone benchmark for 
OpenRISC processor 16 times while measuring FPGA power 
consumption.  Table 1 presents the average energy deviation of 
16 different combinations of bit files and FPGAs compared one 
against another. 

For each FPGA, we observe power consumption variations 
between different bit files to range from 3.10% to 9.31% 
(FPGA 1-4).  For the same bit file across different FPGAs, we 
observe variation that ranges from 5.08% to 10.91% (bit file 1-
4).  Furthermore, the table suggests a non-deterministic 
distribution of variation across on-chip devices since power 
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deviation from one bit file to another does not change in the 
same increasing or decreasing order based on which FPGA 
chip was programmed. 

Such range of variations in measurement suggests that 
simulated power estimation software will not be able to 
produce a highly accurate result.  In fact, to ensure guaranteed 
performance across all FPGAs, the simulator must produce the 
most conservative estimates. 

 

 

III. GROUNDWORK 
Given non-deterministic variation on every single FPGA, 

we developed a minimally invasive online technology that 
accurately determines sub-component level power 
consumption [26-30].  The core concept and the groundwork 
leading up to the contributed research in this paper is reviewed 
in this section to establish the context. 
 

             (eq. 1) 
 

In the power eq. 1, L component represents the lumped sum 
of leakage power and R represents residual component while 
qjajsj (q = variation factor, a = activity parameter, s = cv2f).  
Since each type of representation is an abstraction of circuit 
operation with a different level of detail, their results reflect a 
different level of accuracy and overhead. 

For modern circuits, accounting for activity rate at every 
gate or even at the level of circuit cone incurs impractical 
hardware instrumentation overhead. Therefore, we show in 
[30] that our technology applied to microprocessor-based 
System-on-Chip (SoC) can be optimized to remove a large 
portion of the hardware sensors. 

Therefore, we detect and account for issuing of each type of 
SoC operation (expressed as different combinations of opcodes 
and referenced addresses).  Since each of these k-operation 
activates the same subset of gates fixed number of times, we 
can rewrite equation 1 to represent power consumed by k 
components. 
 If we let jjj sqw =  then, eq.1 can be reformulated as: 

 

 
 
   

            (eq. 2) 
 
Since the number of components translates directly to the 

number of instructions rather than the size of the circuit, this 
conversion reduces instrumentation overhead in most modern 
processors. 

For our experiments, we augmented the OpenRISC 
processor pipeline with an operation profiler in its instruction 

decode stage.  The operation profiler consists of 80 pattern 
matchers that detect each instruction issued at the instruction 
decode stage of the processor and 70 pattern matchers that 
detect activation of peripheral components.  All 150 pattern 
matchers of the profiler have 16-bit counters to keep track of 
all operations. According to the CAD tool log, above hardware 
instruments accounts for less than 1% of the total FPGA 
resource. 

This methodology produced a power data that was shown 
to deviate from the actual power measurement by only 2.85%.  
This result is 4 to 10 times better than other state-of-the-art 
methods.  Additional details on our experiment setup, the 
methodology, and the result are in [30].  

IV. MAPPING OPERATION TO ARCHITECTURAL COMPONENTS 
Our groundwork in energy per operation (EPO) method 

[30] allowed us to drastically reduce hardware resource over 
EPC method [26-29] while not sacrificing the accuracy of on-
line power monitoring of FPGAs.  However, unlike EPC 
method, EPO result does not directly map to physical 
components within FPGA design. Therefore, it is difficult to 
directly determine unique energy consumption rates of 
different parts of a chip.  Therefore, we present and evaluate a 
new correlation method that automatically translates data 
collected for EPO method into EPC of SoC without any 
additional hardware modification. 
A. Understanding Soft Microprocessor Interoperation 

At a glance, obtaining EPCs of SoC using the same 
instruction profilers used for EPO seems impossible.  
However, there exists a close association between SoC 
operation and component activity because microprocessor 
control signals that activate components in a SoC. 

In a typical microprocessor-based SoC, a software program 
running on its processor controls all its activities.  Each 
instruction triggers signals that control the activity of different 
sub-components of a processor and its peripheral.  Therefore, it 
is possible to map every instruction to various sub-components 
of a microprocessor by examining its architecture.  

For our FPGA platform, we had a complete hardware 
description for the soft microprocessor based SoC named 
OpenRISC. Therefore, we spent our time to carefully study the 
code base to hierarchically map each of its instruction to the 
corresponding microarchitectural components.  

At the first level of the hierarchy, the instructions were 
divided based on their operation types.  This classification 
resulted in seven sets: ALU, Multiply-and-Accumulate, Shift-
Rotate, Branch, Load-Store, Compare and Floating-Point 
Operations.   Then, an additional level of components was used 
to differentiate different power draw across the instructions 
within each set. By doing this, we not only identified power 
consumed by the parts of the circuit that are unique to each 
subset of instructions but the power consumed by the shared 
parts of the circuit.    

Based on this study of OpenRISC architecture, we mapped 
80 OpenRISC instructions are to 55 physically identifiable 
microarchitecture components.  Table 2 is an example of this 
instruction-to-component map (3 levels of sub-components 
within ALU).  

 FPGA 1 FPGA 2 FPGA 3 FPGA 4 

Bit file 1 0.00% 2.10% 3.30% -1.78% 

Bit file 2 2.50% 3.60% -1.98% 1.82% 

Bit file 3 4.80% 5.20% 2.09% -2.19% 

Bit file 4 6.10% 3.90% -3.79% 7.12% 

Table 1: Measured power difference between 4 different bit files of the 
same design on 4 different chips of the same FPGA model 
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B. Instructions to Component Activations 

For this task, we made no additional hardware 
modifications to the OpenRISC SoC that we changed for EPO 
method.  The hardware operation profiler in this SoC counted 
the executed instructions and peripheral operations at runtime.  
Then a new software function was used to convert all of the 
operation counts into mapped sub-component activation 
counts.  More specifically, the new function converted samples 
of 80 instruction counts into 55 sub-component activation 
counts by simply adding the instruction count values to 
mapped hardware sub-component activation count registers.  
Since other 70 operation counts are directly associated with 
peripheral SoC components, these counts were directly used as 
physical component activation counts. 
C. Calibration and Power Extraction 

Based the fundamentals of regression and estimation [7], 
we can solve for EPCs using operation activation count data, 
and the associated power measurements collected during a 
fixed period.  For our experiments, we assume that dynamic 
thermal profile of a chip is the main contributor to any changes 
in leakage power.  Since heat transfer is relatively slow 
compared to the digital circuit activities, we assume that 
leakage is relatively stable over a short period. 

By converting operation counts to sub-component 
activation counts, unknown components in Eq. 2 was reduced 

from 151 down to 126 (125 EPC coefficients of the sub-
components and a total leakage power component); thereby 
drastically reducing computation and memory requirements.  
For 56 unknown components, the equation can be re-written as 
the following: 

 
                (eq. 3) 

 
 To reduce the computation complexity, we used the matrix 

inversion lemma presented by Mendel [7] to reduce the matrix 
inversion into an arithmetic division. 

Along with this adaptation, we designed a light-weight 
regressive independent component analysis (ICA [20]) 
algorithm to minimize R for a given window of sample data. 
After subsequent EPC computation, the time window of the 
equation is shifted by a single sample to re-compute the new 
EPCs through regressive minimization of the residual 
component of the newly added equation.  When this algorithm 
was applied to sliding time window of actual measured data, 
we observed that EPOs and leakage values converged to stable 
values.  These stable weights are used by our system to 
compute power consumed by all of the monitored sub-
components. 

Since thermal and voltage profile of a chip changes over 
time, our algorithm can be applied continually to extract the 
best possible solution under any given condition. 
D. Benchmark Programs 

Since embedded Linux runs on OpenRISC SoC, there are 
many programs that we can use to evaluate our system.  
However, we learned that existing benchmark suites for 
OpenRISC exercised all parts of the SoC.  Therefore, in 
addition to a benchmark suite, we custom wrote a number of 
programs to activate all of the sub-components and extract 
their EPCs. 

We used Coremark benchmark suite for OpenRISC to 
exercise several components of the SoC. This benchmark is 
built to exercise the processor and some of its associated 
peripherals. In addition to activating all parts of the processor, 
it exercises the memory DMA, Wishbone BUS, and parts of 
VGA during its execution. Like the EPO experiments, we 
created a script to run each of the benchmark kernels 100,000 

 

No Component Name OpenRISC Instructions 
1 ALU 18-23, 53-58, 64 

1.1 ALU_ARITH 18-23, 53-58 
1.2 ALU_SHROT 25-28, 60–61 
1.3 ALU_SPL 65-70 
1.4 ALU_SPRS 18-19, 53-55  

1.1.1 ALU_ARITH_ADD 18-19, 53-54 
1.1.2 ALU_ARITH_AND 20, 56 
1.1.3 ALU_ARITH_OR 21, 57 
1.1.4 ALU_ARITH_SUB 55 
1.1.5 ALU_ARITH_XOR 22, 58 
Table 2: OpenRISC Instruction to ALU Sub-component Map 

 

 
Figure 3: Results run-time EPC measurements for benchmark programs 
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iterations. 
OpenRISC SoC has peripherals including UART, GPIO, 

and additional DMA engines that were not activated by the 
Coremark. Therefore, we wrote a Telnet communication 
program that used Memory, UART, and DMA interface. A 
separate program was created for GPIO.  Since GPIOs have 
additional circuits to drive larger external loads, we created a 
program that used the GPIO and the Interrupt interface to 
toggle an external light-emitting-diode (LED). 

Lastly, we included two commonly used applications for 
Linux, grep and gzip.  We included these programs because 
they were computationally intensive and designed to exercise 
several components of the SoC during its execution. 
E. Experimental Result 

As with EPO experiments, data for operation counts and 
power measurements were collected for calibration and 
computation of energy.  However, an extra processing step was 
added to convert operation counts into sub-component 
activation counts.  This converted data was used in eq. 3 to 
extract EPC for all of 125 components, total leakage power, 
and residual power. 

Then the EPCs were multiplied with the sub-component 
activity counts to compute precise power distribution of sub-
components of the design during the execution of the test 
bench.  Figure 3 shows the power distribution profile result 
listing top eight sub-components, listed in the order of highest 
to lowest power weight values, within the OpenRISC processor 
core, the sum of peripheral component power, and the sum of 
the miscellaneous component power of the SoC. 

V. DATA ANALYSIS 
While analyzing our experimental data, we observed 

interesting issues and solutions that system designers may 
consider for the best system performance and cost. 
A. Time Synchronization 

In a microprocessor-based SoC, it is often difficult to 
precisely synchronize sampling of the internal digital sensor 
and a direct power measurement data due to non-deterministic 
behaviors of software interrupts and queuing delays.  Because 
of this uncertainty, we needed a way to adjust the alignment of 
the power data and the component activation count data.   

 

During our implementation process, we found that 
changing time delay of the external power monitoring 
instrument was not only difficult but imprecise.  Instead, we 
decided to change our digital sensors to sample at a much 
higher sampling rate than that of power measurements.  Given 
this higher resolution operation count data, we were able to not 
only compute the lower resolution count data that matched the 
sampling rate of the power measurements but also change the 
time alignment of the data by changing the grouping of the 
higher resolution samples for the computation. 

This flexibility allowed us to iteratively shift the time 
alignment for operation count data before applying our 
regressive algorithm on the data and power measurements to 
extract EPCs. One interesting observation of the iteration data 
shown in Figure 4 is that the EPC values for all of the tested 
shift alignment converged to the same value.  But more 
importantly, we found that the best time alignment caused the 
EPC values to converge the fastest. 

This one-time software-based method allowed us to 
eliminate the need to time synchronize these sets of data using 
specialized hardware. 

 
B. Noise Suppression 

Current sense resistor with a signal amplifier and ADC may 
be considered the best method of obtaining the ground truth 
power measurement.  However, it has some practical 
challenges including that of the trade-off between 
cost/sampling rate/accuracy, calibration error in resistors, the 
effect of aging, and noise introduced by instrumentation 
components.   

To evaluate the impact of differences in power 
measurement quality, we design an experiment with two 
different external ADCs collecting power measurements for the 
same FPGA.  The first ADC (ADC1) was a higher quality ADC 
with the sampling rate of 5 KHz.  The second ADC (ADC2) 
was a much lower quality ADC with a slower sampling rate of 
1 KHz.   

As expected, the convergence rate for the EPCs using 
higher quality measurements was, indeed, faster than the lower 
quality measurements as shown in Figure 5.  However, we 
found that both results converged to the same EPC values for 
all of the component. 

 
Figure 4: Number of Iteration required for EPC convergence versus 

timestamp offset between power data and component count 

 

 
Figure 5: EPC convergence rates given different ADC measurements 
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