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Abstract — Today’s CMOS technologies allow larger circuit
designs to fit on a single chip. However, this advantage comes at
a high price of increased process-voltage-temperature (PVT)
variations. FPGAs and their designs are no exceptions to such
variations. In fact, the same bit file loaded into two different
FPGAs of the same model can produce a significant difference in
power and thermal characteristics due to variations that exist
within the chip. Since it is increasingly difficult to control
physical variations through manufacturing tasks, there is a need
for practical ways to sense chip variations to provide a way for
circuit designers to compensate or avoid its negative effects. One
of the most critical aspects of such variation is power. Therefore,
we developed and demonstrated a high accuracy on-chip on-line
Energy-per-Component (EPC) measurement technology on
Xilinx FPGAs since 2011. However, we found that the hardware
overhead associated with such method limited the use of the
technology. Therefore, our follow-up work in Energy-per-
Operation (EPO) on Spartan FPGA with OpenRISC SoC
produced an equally accurate power monitoring technology with
drastically lower hardware overhead. While this method made
our technology more practical for SoC designs on FPGAs, it did
not produce component level power dissipation data that
previous EPC method provided. Therefore, we extend this prior
work with a new algorithm to extract EPC values from EPO
result. Despite the lower hardware overhead, this change ended
up improving the accuracy of the power result by unraveling the
instruction-level abstraction into component-level energy
consumption.
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I. INTRODUCTION

Newer CMOS technologies allow the larger design to be
integrated on a single die. However, the power density of new
chip is much higher and its process-voltage-temperature (PVT)
variation characteristics are more difficult to predict and
control. Due to higher complexity and lower predictability of
physical behavior of new chips, model-based tools no longer
play a significant role in improving chip performance or yield.
Because of this, newer designs integrate some form of on-line
power estimation, dynamic power manager, and adaptive task
scheduler to compensate for the negative effects of worsening
variations.

In computer system designs, power management methods
have shown to improve computer efficiency [2]. However, one
survey performed about two decades ago suggests that macro-
level power management techniques may have reached their
performance limits [6]. Therefore, current research efforts
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seem to point to fine-grained power management as the path
forward to additional power savings for the future digital
designs [1].

An enabling technology for an effective power
management is high accuracy fine-grained power measurement
system. Since traditional power measurement algorithms rely
on statistically derived power models and direct measurement
methods, they are proving to be either not accurate enough or
too expensive to drive fine-grained power manager. FPGAs
present additional challenges to measurement systems because
of their need to support hardware reconfiguration.

We present an efficient on-line sub-component level power
measurement method that is fine-grained and highly accurate.
In the following section, we, first, present a case study that
shows measurable variations that exist within the same chip as
well as across different chips of the same FPGA model. Then
we discuss the core concept of the technology in section 3. For
the context, we summarize our earlier application of the
concept on a microprocessor-based SoC in section 4. In
section 5, we present our new conversion technique in
extracting energy-per-component (EPC) from operation counts.
Finally, we discuss and compare our results in the last sections
of the paper.

II. PRELIMINARY TEST RESULT

To verify our hypothesis on the significance of variations
within and amongst the same model of FPGAs, we conducted a
power measurement case study.

For this study, we instantiated the OpenRISC SoC
(ORPS0C) on Digilent Atlys board instrumented with a current
sense resistor and a 1 kHz differential ADC (PMODADCS)
[30]; we computed the power by directly measuring the load
voltage and the voltage drop across the current sense resistor.
The ORPSoC design was compiled four times to generate four
heuristically produced different physical layouts for FPGA.

For our experiment, we repeated Dhrystone benchmark for
OpenRISC processor 16 times while measuring FPGA power
consumption. Table 1 presents the average energy deviation of
16 different combinations of bit files and FPGAs compared one
against another.

For each FPGA, we observe power consumption variations
between different bit files to range from 3.10% to 9.31%
(FPGA 1-4). For the same bit file across different FPGAs, we
observe variation that ranges from 5.08% to 10.91% (bit file 1-
4).  Furthermore, the table suggests a non-deterministic
distribution of variation across on-chip devices since power



deviation from one bit file to another does not change in the
same increasing or decreasing order based on which FPGA
chip was programmed.

Such range of variations in measurement suggests that
simulated power estimation software will not be able to
produce a highly accurate result. In fact, to ensure guaranteed
performance across all FPGAs, the simulator must produce the
most conservative estimates.

FPGA 1 FPGA2 | FPGA3 | FPGA 4
Bit file 1 0.00% 2.10% 3.30% -1.78%
Bit file 2 2.50% 3.60% -1.98% 1.82%
Bit file 3 4.80% 5.20% 2.09% -2.19%
Bit file 4 6.10% 3.90% -3.79% 7.12%

Table 1: Measured power difference between 4 different bit files of the
same design on 4 different chips of the same FPGA model

III. GROUNDWORK
Given non-deterministic variation on every single FPGA,
we developed a minimally invasive online technology that
accurately  determines  sub-component level  power
consumption [26-30]. The core concept and the groundwork
leading up to the contributed research in this paper is reviewed
in this section to establish the context.

P=%/_1qjasi+L+R (eq 1)

In the power eq. 1, L component represents the lumped sum
of leakage power and R represents residual component while
qa;s; (q = variation factor, ¢ = activity parameter, s = cv’f).
Since each type of representation is an abstraction of circuit
operation with a different level of detail, their results reflect a
different level of accuracy and overhead.

For modern circuits, accounting for activity rate at every
gate or even at the level of circuit cone incurs impractical
hardware instrumentation overhead. Therefore, we show in
[30] that our technology applied to microprocessor-based
System-on-Chip (SoC) can be optimized to remove a large
portion of the hardware sensors.

Therefore, we detect and account for issuing of each type of
SoC operation (expressed as different combinations of opcodes
and referenced addresses). Since each of these k-operation
activates the same subset of gates fixed number of times, we
can rewrite equation 1 to represent power consumed by k
components.

Ifwelet w, = q s, then, eq.1 can be reformulated as:

e m1 mz e n . .
Preas = ijlajwj +Zj:ml+1a-w,- + +Z,-=m,(71+1a,W, +L+R

Pmeas = a'1W'1 + a,2W’2 + -+ a'kwlk +L+R

=Y ad;w;+L+R (eq. 2)
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Since the number of components translates directly to the
number of instructions rather than the size of the circuit, this
conversion reduces instrumentation overhead in most modern
processors.

For our experiments, we augmented the OpenRISC
processor pipeline with an operation profiler in its instruction

decode stage. The operation profiler consists of 80 pattern
matchers that detect each instruction issued at the instruction
decode stage of the processor and 70 pattern matchers that
detect activation of peripheral components. All 150 pattern
matchers of the profiler have 16-bit counters to keep track of
all operations. According to the CAD tool log, above hardware
instruments accounts for less than 1% of the total FPGA
resource.

This methodology produced a power data that was shown
to deviate from the actual power measurement by only 2.85%.
This result is 4 to 10 times better than other state-of-the-art
methods. Additional details on our experiment setup, the
methodology, and the result are in [30].

IV. MAPPING OPERATION TO ARCHITECTURAL COMPONENTS

Our groundwork in energy per operation (EPO) method
[30] allowed us to drastically reduce hardware resource over
EPC method [26-29] while not sacrificing the accuracy of on-
line power monitoring of FPGAs. However, unlike EPC
method, EPO result does not directly map to physical
components within FPGA design. Therefore, it is difficult to
directly determine unique energy consumption rates of
different parts of a chip. Therefore, we present and evaluate a
new correlation method that automatically translates data
collected for EPO method into EPC of SoC without any
additional hardware modification.

A. Understanding Soft Microprocessor Interoperation

At a glance, obtaining EPCs of SoC using the same
instruction profilers used for EPO seems impossible.
However, there exists a close association between SoC
operation and component activity because microprocessor
control signals that activate components in a SoC.

In a typical microprocessor-based SoC, a software program
running on its processor controls all its activities. Each
instruction triggers signals that control the activity of different
sub-components of a processor and its peripheral. Therefore, it
is possible to map every instruction to various sub-components
of a microprocessor by examining its architecture.

For our FPGA platform, we had a complete hardware
description for the soft microprocessor based SoC named
OpenRISC. Therefore, we spent our time to carefully study the
code base to hierarchically map each of its instruction to the
corresponding microarchitectural components.

At the first level of the hierarchy, the instructions were
divided based on their operation types. This classification
resulted in seven sets: ALU, Multiply-and-Accumulate, Shift-
Rotate, Branch, Load-Store, Compare and Floating-Point
Operations. Then, an additional level of components was used
to differentiate different power draw across the instructions
within each set. By doing this, we not only identified power
consumed by the parts of the circuit that are unique to each
subset of instructions but the power consumed by the shared
parts of the circuit.

Based on this study of OpenRISC architecture, we mapped
80 OpenRISC instructions are to 55 physically identifiable
microarchitecture components. Table 2 is an example of this
instruction-to-component map (3 levels of sub-components
within ALU).



No | Component Name |OpenRISC Instructions
1 ALU 18-23, 53-58, 64

1.1 ALU ARITH 18-23, 53-58
1.2 ALU SHROT 25-28, 60-61
1.3 ALU SPL 65-70

14 ALU SPRS 18-19, 53-55
1.1.1 | ALU ARITH ADD 18-19, 53-54
1.1.2 | ALU ARITH AND 20, 56
1.1.3| ALU ARITH OR 21,57
1.14 | ALU ARITH SUB 55
1.1.5 | ALU ARITH XOR 22,58

Table 2: OpenRISC Instruction to ALU Sub-component Map

B. Instructions to Component Activations

For this task, we made no additional hardware
modifications to the OpenRISC SoC that we changed for EPO
method. The hardware operation profiler in this SoC counted
the executed instructions and peripheral operations at runtime.
Then a new software function was used to convert all of the
operation counts into mapped sub-component activation
counts. More specifically, the new function converted samples
of 80 instruction counts into 55 sub-component activation
counts by simply adding the instruction count values to
mapped hardware sub-component activation count registers.
Since other 70 operation counts are directly associated with
peripheral SoC components, these counts were directly used as
physical component activation counts.
C. Calibration and Power Extraction

Based the fundamentals of regression and estimation [7],
we can solve for EPCs using operation activation count data,
and the associated power measurements collected during a
fixed period. For our experiments, we assume that dynamic
thermal profile of a chip is the main contributor to any changes
in leakage power. Since heat transfer is relatively slow
compared to the digital circuit activities, we assume that
leakage is relatively stable over a short period.

By converting operation counts to sub-component
activation counts, unknown components in Eq. 2 was reduced

from 151 down to 126 (125 EPC coefficients of the sub-
components and a total leakage power component); thereby
drastically reducing computation and memory requirements.
For 56 unknown components, the equation can be re-written as
the following:

— V125
Pmeas_ j=1ajo

+L+R (eq. 3)

To reduce the computation complexity, we used the matrix
inversion lemma presented by Mendel [7] to reduce the matrix
inversion into an arithmetic division.

Along with this adaptation, we designed a light-weight
regressive independent component analysis (ICA [20])
algorithm to minimize R for a given window of sample data.
After subsequent EPC computation, the time window of the
equation is shifted by a single sample to re-compute the new
EPCs through regressive minimization of the residual
component of the newly added equation. When this algorithm
was applied to sliding time window of actual measured data,
we observed that EPOs and leakage values converged to stable
values. These stable weights are used by our system to
compute power consumed by all of the monitored sub-
components.

Since thermal and voltage profile of a chip changes over
time, our algorithm can be applied continually to extract the
best possible solution under any given condition.

D. Benchmark Programs

Since embedded Linux runs on OpenRISC SoC, there are
many programs that we can use to evaluate our system.
However, we learned that existing benchmark suites for
OpenRISC exercised all parts of the SoC. Therefore, in
addition to a benchmark suite, we custom wrote a number of
programs to activate all of the sub-components and extract
their EPCs.

We used Coremark benchmark suite for OpenRISC to
exercise several components of the SoC. This benchmark is
built to exercise the processor and some of its associated
peripherals. In addition to activating all parts of the processor,
it exercises the memory DMA, Wishbone BUS, and parts of
VGA during its execution. Like the EPO experiments, we
created a script to run each of the benchmark kernels 100,000
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Figure 3: Results run-time EPC measurements for benchmark programs



iterations.

OpenRISC SoC has peripherals including UART, GPIO,
and additional DMA engines that were not activated by the
Coremark. Therefore, we wrote a Telnet communication
program that used Memory, UART, and DMA interface. A
separate program was created for GPIO. Since GPIOs have
additional circuits to drive larger external loads, we created a
program that used the GPIO and the Interrupt interface to
toggle an external light-emitting-diode (LED).

Lastly, we included two commonly used applications for
Linux, grep and gzip. We included these programs because
they were computationally intensive and designed to exercise
several components of the SoC during its execution.

E. Experimental Result

As with EPO experiments, data for operation counts and
power measurements were collected for calibration and
computation of energy. However, an extra processing step was
added to convert operation counts into sub-component
activation counts. This converted data was used in eq. 3 to
extract EPC for all of 125 components, total leakage power,
and residual power.

Then the EPCs were multiplied with the sub-component
activity counts to compute precise power distribution of sub-
components of the design during the execution of the test
bench. Figure 3 shows the power distribution profile result
listing top eight sub-components, listed in the order of highest
to lowest power weight values, within the OpenRISC processor
core, the sum of peripheral component power, and the sum of
the miscellaneous component power of the SoC.

V. DATA ANALYSIS

While analyzing our experimental data, we observed
interesting issues and solutions that system designers may
consider for the best system performance and cost.
A. Time Synchronization

In a microprocessor-based SoC, it is often difficult to
precisely synchronize sampling of the internal digital sensor
and a direct power measurement data due to non-deterministic
behaviors of software interrupts and queuing delays. Because
of this uncertainty, we needed a way to adjust the alignment of

the power data and the component activation count data.
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During our implementation process, we found that
changing time delay of the external power monitoring
instrument was not only difficult but imprecise. Instead, we
decided to change our digital sensors to sample at a much
higher sampling rate than that of power measurements. Given
this higher resolution operation count data, we were able to not
only compute the lower resolution count data that matched the
sampling rate of the power measurements but also change the
time alignment of the data by changing the grouping of the
higher resolution samples for the computation.

This flexibility allowed us to iteratively shift the time
alignment for operation count data before applying our
regressive algorithm on the data and power measurements to
extract EPCs. One interesting observation of the iteration data
shown in Figure 4 is that the EPC values for all of the tested
shift alignment converged to the same value. But more
importantly, we found that the best time alignment caused the
EPC values to converge the fastest.

This one-time software-based method allowed us to
eliminate the need to time synchronize these sets of data using
specialized hardware.
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Figure 5: EPC convergence rates given different ADC measurements

B. Noise Suppression

Current sense resistor with a signal amplifier and ADC may
be considered the best method of obtaining the ground truth
power measurement.  However, it has some practical
challenges including that of the trade-off between
cost/sampling rate/accuracy, calibration error in resistors, the
effect of aging, and noise introduced by instrumentation
components.

To evaluate the impact of differences in power
measurement quality, we design an experiment with two
different external ADCs collecting power measurements for the
same FPGA. The first ADC (ADC;) was a higher quality ADC
with the sampling rate of 5 KHz. The second ADC (ADC;)
was a much lower quality ADC with a slower sampling rate of
1 KHz.

As expected, the convergence rate for the EPCs using
higher quality measurements was, indeed, faster than the lower
quality measurements as shown in Figure 5. However, we
found that both results converged to the same EPC values for
all of the component.



We observed that our algorithm’s ability to suppress noise
numerically allowed the system to produce an accurate final
result despite the differences in sampling rates and quality of
power measurements. In practice, this difference in calibration
time needed for convergence is so small that using higher
quality measurement instrument may only incur higher
resource cost without any gain in measurement accuracy.

C. Measurement Accuracy

The EPO method assigns a single instruction count value to
summarize various component utilization. While this method
proves to work sufficiently well, it leaves a small room for
measurement error by ignoring physical aspects of the system.
In other words, while there are physical components shared
between multiple instructions, EPO method merges all of the
power consumed by the components into a single value and
effectively making each of the components as separate entities
even though many of the components used by different
operations. Because of this, any accidental correlation between
noise and operation execution pattern would cause EPO result
to absorb the noise. This error, in turn, negatively affects the
rest of the EPO computation. On the other hand, identifying
physical components for each operation and grouping activity
counts of components reduces the number of unknown
components and strengthens the noise filtering function of the
algorithm.
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Figure 6: Power deviation plot for the Dhrystone benchmark

To quantify this deviation, we used the same dataset
collected for EPO work for EPC experiment. Figure 6 shows a
deviation plot of the total power values derived from extracted
EPO and EPC from external power measurements while
executing Dhrystone benchmark. For this benchmark, we
found that the maximum deviation of power derived from EPO
method was at about 2.35% from direct measurements while
EPC method yielded a closer result with 1.80% maximum
deviation. Similarly, we compared the power results against
the directly measured power data for all of the benchmark
programs and found that the maximum deviation for EPO
method was approximately 2.85% while EPC method produced
better results with the maximum deviation of 1.85%.

VI. RELATED WORKS
The FPGA manufacturers provide simulation-based power
estimation techniques that use a pre-evaluated library of power
utilization for various devices. These libraries consist of power

usage by different types of lookup tables and other on-chip
analog components such as phase-locked-loop (PLL). This
information is used along with the lookup table and component
usage on the target FPGA by the user designs to estimate
power.

In this estimation technique, an initial offline capacitive
power model is built based on total power measurements and
event sets [3-5,8-10,12-16]. A power model is built associating
total current drawn by the platform and performance counter
values that indicate various events on the processor. Further,
Iyer et al. [11] build a system that updates this power model
on-chip before its first use by the power management unit.

In this technique, direct current measurements or values
from simulations are used to derive average power dissipated
per instruction [12,17-19]. The energy per instruction is
modeled using offline regression analysis based on the
collected power data, access rates, execution times and
instruction counts. These values are then used to estimate the
energy consumed by a program at runtime [21-24].

The related works mentioned in this paper share the core
equation of our original work sub-component level power
monitoring [26-28]. While we demonstrated all of our works
using Xilinx FPGA based platforms, another group of
researchers has recently produced a result on Altera FPGA
based platforms with similar accuracy and resolution using an
algorithm based on the same underlying theory and
methodology; verifying that the approach is applicable across
different platforms [25].

However, we deliberately point out that our contribution in
this paper is the method of architectural association, data
conversion, and modified use of digital counters. Also, we
integrated software interface in a commodity Operating System
that allowed real-time access and processing of the
measurements using a user-level application.

VII. CONCLUSION

This paper presents a low overhead hardware/software co-
designed method for measuring power consumed by sub-
components of FPGA-based SoCs. We used compact hardware
sensors in instruction decode stage of a processor to collect
executed instruction counts. Then we converted the instruction
execution patterns into physical component activities within
the SoC during runtime. Using this data and the total chip
power measurements, we presented an automated method that
successfully extracted accurate EPC. Through several
benchmark experiments, we showed that our method could
measure all the subcomponent power at a higher sampling rate
than other methods we surveyed. Furthermore, the
experiments show that our results are closer to the ground truth
than the other traditional methods. The in-depth comparison in
Table 3 reveals additional advantages in our method over
others. However, we find that the biggest strength of our
method is an accurate on-line calibration using fine-grained on-
chip digital sensors and an external power sensor.

We contend that such accurate but practical method of
online component level power measurements will provide the
means for future adaptive circuit designs to function optimally
even in the presence of worsening PVT variations found in
current and emerging fabrication technologies.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES
V. De, “Fine-Grain Power
Microprocessors,” ISSCC 2013.
M. Pedram, J. Rabaey, ‘“Power-Aware Design
Methodologies,” Kluwer Academic Publishers, 2002.
K. R. Stokke, “High-Precision Power Modelling of the
Tegra K1 Variable SMP Processor Architecture,” IEEE
Symp. On Embedded Multicore/Many-core Systems-on-
Chip (MCSoC), France, Sept. 2016.
D.Brooks et al. “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations.” ISCA-27, June
2000.
C. Isci and M. Martonosi, “Runtime Power Monitoring in
High-End Processors: Methodology and Empirical Data,”
Proc. MICRO, 2003, pp. 93-104.
M.Pedram, and H. Vaishnav. “Power optimization in
VLSI layout: a survey.” Journal of VLSI signal
processing systems for signal, image and video
technology 15.3 (1997): 221-232.
J.Mendel, “Lessons in Estimation Theory for Signal
Processing, Communication and Control,” Prentice-Hall,
Englewood-Cliffs, NJ, 1995.
V. Tiwari et al., “Instruction Level Power Analysis And
Optimization Of Software.” In Technologies for wireless
computing, pp. 139-154, Springer, 1996.
P. Landman, J. Rabaey, “Architectural Power Analysis:
The Dual Bit Type Method,” IEEE TVLSI, pp. 173-187,
June 1995.
W. Wu et al. “A Systematic Method For Functional Unit
Power Estimation In Microprocessors,” In Proceedings of
the 43rd DAC, pp. 554-557, July 2006.
A. lyer, D. Marculescu, “Power Aware Microarchitecture
Resource Scaling,” Proceedings of the conference on
DATE, 2001.
S. Lee et al., “An Accurate Instruction-Level Energy
Consumption Model For Embedded RISC Processors,”
ACM SIGPLAN Notices. Vol. 36. No. 8. ACM, 2001.
P. Kalla et al.,, “SEA: Fast Power Estimation For
Microarchitectures,” Proceedings of the 2003 ASP-DAC
Conference, 2003.
A. Carroll, H. Gernot, “An Analysis of Power
Consumption in a Smartphone,” USENIX Annual
Technical Conference. 2010.
S. Hong, H. Kim, “An Integrated GPU Power And
Performance Model,” ACM SIGARCH Computer
Architecture News. Vol. 38. No. 3. ACM, 2010.
J. Haid et al., “Run-Time Energy Estimation In System-
On-A-Chip Designs,” In Proceedings of the 2003 ASP-
DAC, pp. 595-599, January 2003.

Management  in

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. S. Shao, D. Brooks, “Energy Characterization And
Instruction-Level Energy Model Of Intel's Xeon Phi
Processor,” In Proceedings of the ISLPED, pp. 389-394,
September 2013.

A. Annamalai et al., “Reducing Energy per Instruction via
Dynamic Resource Allocation and Voltage and
Frequency Adaptation in Asymmetric Multicores,” In
ISVLSI, pp. 436-441, July 014.

W.J. Song, W et al., “Instruction-based energy estimation
methodology for asymmetric manycore processor
simulations.” In Proceedings of the 5th International
Conference on Simulation Tools and Techniques, pp.
166-171, March 2012.

A. Hyvarinen et al., “Independent Component Analysis,
John Wiley and Sons, New York, 2001.

E. Handschin et al., “Bad Data Analysis For Power
System State Estimation,” IEEE Transactions on Power
Apparatus and Systems, 94(2), 329-337, 1975.

F. C. Schweppe, “Power System Static-State Estimation,
Part III: Implementation,” IEEE Transactions on Power
Apparatus and Systems, (1), 130-135, 1970.

V. Tiwari et al., “ Instruction Level Power Analysis And
Optimization Of Software,” In Technologies For Wireless
Computing, pp. 139-154, Springer, 1996.

H. Mehta et al., “Accurate Estimation Of Combinational
Circuit Activity.” In Proceedings Of The 32nd Annual
ACM/IEEE DAC, pp. 618-622, January 1995.

K E. Hung, et. al., “KAPow: A System Identification
Approach to Online Per-module Power Estimation in
FPGA Designs,” in Field-Programmable Custom
Computing Machines (FCCM), 2016 IEEE 24th Annual
International Symposium on, 2016, pp. 56—63.

Y. H. Cho, S. Bhargav, A. Goodney, “Digital Circuit
Power Measurements using Numerical Analysis,” US
Patent 9,618,547 B2, January 24, 2012 (issued April 11,
2017).

S. Bhargav, Y. H. Cho, “Measuring Power Digitally with
Numerical Analysis,” ACM SIGMETRICS, London, UK,
June 2012.

Y. H. Cho, S. Bhargav, A. Goodney, “Digital Signal
Transition Counters for Digital Integrated Circuits,” US
Patent Application 14/226,085, March 26, 2014.

S. Bhargav, Y. H. Cho, “Accurate Power Measurement
Technique for Digital Systems using Independent
Component Analysis,” IEEE DCIS 2015, Estoril,
Portugal, November 25-27, 2015.

S. Bhargav, R. K. Prabakar, Y. H. Cho, “Accurate In-situ
Runtime Measurement of Energy per Operation of
System-on-Chip on FPGA,” IEEE Reconfig 2015,
Mexico, December 2015.



	I. Introduction
	II. Preliminary Test Result
	III. GroundWork
	IV. Mapping Operation to Architectural Components
	A. Understanding Soft Microprocessor Interoperation
	B. Instructions to Component Activations
	C. Calibration and Power Extraction
	D. Benchmark Programs
	E. Experimental Result

	V. Data Analysis
	A. Time Synchronization
	B. Noise Suppression
	C. Measurement Accuracy

	VI. Related Works
	VII. Conclusion
	References


