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ABSTRACT

In this work we show how we can build a technology platform for cognitive imaging sensors using recent advances
in recurrent neural network architectures and training methods inspired from biology. We demonstrate learning
and processing tasks specific to imaging sensors, including enhancement of sensitivity and signal-to-noise ratio
(SNR) purely through neural filtering beyond the fundamental limits sensor materials, and inferencing and
spatio-temporal pattern recognition capabilities of these networks with applications in object detection, motion
tracking and prediction. We then show designs of unit hardware cells built using complementary metal-oxide
semiconductor (CMOS) and emerging materials technologies for ultra-compact and energy-efficient embedded
neural processors for smart cameras.
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1. INTRODUCTION

Last three decades have seen the progress of Neural Networks from a statisticians playbook to the technology
behemoth running the modern information and communications technology (ICT) industry. This has largely
been made possible by advances in very large scale integration (VLSI) and transistor scaling providing evermore
powerful hardware to run neural network software. This scaling is slowing down and heading towards real
physical limits of atomic dimensions. As a result, the Moore’s Law is now being reinterpreted as a call for
deep multi-functional integration of erstwhile loosely coupled sub-systems: sensing, memory, and logic, in a
single computing substrate with a resulting increase in the “user value”. In this work, we illustrate how we can
leverage these advances to build a technology platform for truly cognitive imaging sensors, inspired from biology.

We first discuss recurrent neural network based architectures designed to process data with features laying
in both spatial and temporal dimensions (e.g. video) and associated learning techniques, in particular: Convolu-
tional Neural Network (CNN), Reservoir Computing (RC), and Hierarchical Temporal Memory (HTM), whose
hardware implementation and operation are feasible with present day technology. We then demonstrate, using
simulations, the use of these networks for learning and processing tasks specific to imaging sensors: a) Enhancing
sensitivity and SNR/D* purely through neural filtering that goes beyond the fundamental limits of detection
set by the material properties. b) Spatio-Temporal inferencing and pattern recognition capabilities built within
these networks that can be used for object detection, motion tracking, and prediction.

We then conclude by illustrating how unit hardware cells can be designed using both conventional CMOS as
well as emerging nano-materials based technologies, such as spintronics and memristors, which can enable devel-
opment of ultra-compact and energy-efficient embedded spatio-temporal neural processors for smart cameras.
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The proposed architecture for this processing task is shown in fig.1a. We assemble three separate blocks
which build the logic of processing listed above. This modularity of functionality allows us to select, design, and
optimize each of these blocks independent of each other. Since this is an ongoing project, we have chosen to
implement these three blocks using the following three types of neural networks, and the final design is subject
to optimization as the platform matures.

• Neural Filtering: Reservoir Computing, particularly Echo-State Networks (ESNs).

• Spatial Inferencing: Enhanced Region-based Convolutional Neural Networks (R-CNNs).

• Temporal Inferencing: Hierarchical Temporal Memory (HTM).

The ESN based neural filters extract a signal from the noise by learning to invert the time-dependent dis-
tortions in the images (fig.1b) introduced by the sensor and it’s operational limitations. Enhanced region-based
CNNs extract the feature and its variables of motion from samples of the camera video feed, in form of a spatial
correlation tuple. This tuple consists of the following quantities: {Tag, p, x, y, h, w, θ, φx, φy}. The Tag item
identifies the feature, in case we want to develop a multi-feature tracking camera, p represents the probability of
feature being in the image, (x, y) represent the most probable position of the feature in the image frame, (h,w)
represent the size of the feature in the image frame, θ is the rotation of the features with respect to the initial
position, and (φx, φy) represents the skew in the feature due to rotation in the 3D and its projection on the 2D
image frame. A collection of HTMs then develop equations of motions from a time-sequence of these tuples.

3. SPATIO-TEMPORAL NEURAL NETWORKS

We briefly describe the three types of neural networks we use in this work.

3.1 Reservoir Computing

Reservoir Computing (RC) is a model of computing built to handle time-varying data and learn correlations and
patterns in them.1,2 RC consists of a collection of loosely coupled neurons with structural recurrence (feedback-
loops) on which a time-varying signal u(t) is imposed. The state of the reservoir x(t) as a result at any time is
given by a combination of previous states x(t− 1) and the input signal u(t). The new state x(t) as a result is an
integral of the signal over its previous samples u(t), u(t−1), u(t−2) . . . This gives rise to temporal-memory in the
reservoir (also called echo-states, past signal being echoed throughout the network), and allows it to be used as
a temporal correlator.3 To prevent runaway positive feedback of signal (energy) driving the reservoir dynamics
to chaos, a decay term is incorporated which fades the effect of the previous samples during the integration
(dissipation due to friction). The dynamical equation for the reservoir shown in fig.2a is given by:

dx

dt
= −ηx+ α tanh(W selfx(t) +W inu(t) +W fby(t)) (1)

y(t) = W outx(t) (2)

The output of the RC is extracted by a weighted sum of all the states of the reservoir. During learning, only
the weight W out is adjusted using a simple regression. The training can be performed in both batch as well as
online modes.

It should be noted that the RCs are limited by the choices of network parameters such as the size of the
network, decay rate, spectral radius of W self etc. which fix the characteristic window size and the envelope
shape of the temporal integration in the reservoir. Therefore, we choose HTMs rather than RCs for temporal
inferencing, since we do not want to a priori fix these critical characteristics. We have chosen to use RC for the
task of neural filtering, as it has been used to successfully perform an equivalent task in digital communication:
channel equalization.4 This neural filtering can be applied at both pixel or feature level.



3.2 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets or CNNs) are an application of learning techniques applied to images,
and are an extension to traditional image processing techniques. The dataframe is assumed to have a meaningful
2D spatial relation, i.e. pixels close to each other are highly correlated and compose parts of an image.5

The central operation of CNNs is the convolution operation (fig.3a), where a “kernel” Uj×k matrix is mul-
tiplied to an image Am×n, (m > j, n > k) in a sliding manner. Mathematically it is represented as the linear
operation (in spatial domain) as:

B = U ∗A (3)

It should be noted that the result of the convolution operation B is often trimmed, using a pooling operation,
where at any point, a few adjacent pixels are represented using a single pixel data. As an example, a pooling
window of 3× 3 will reduce a 100× 100 image to a 33× 33 image.

In traditional image processing,6 the U is pre-calculated and designed to perform a specific operation (say edge
detection, blurring, contrast enhancement etc.). In CNNs, these kernels are obtained through backpropagation
techniques. The central purpose of most CNN applications are to classify features present in the image into
target categories. As an example, consider an image consists of hand-written number and letters. The CNN can
be trained to extract the number or a letter occurring in the image.

CNNs in general need to be trained in a supervised setting, i.e. during its training it needs to be told the
error in classification at its output, so that the CNN can adjust the convolutional kernels. Therefore, training
of the targeted feature set for our platform will need to be performed offline. However, once trained on that
particular feature set, the rest of the platform can learn, adapt, and predict online and in real-time.

3.3 Hierarchical Temporal Memories

HTMs are a neural network specialized for time-series data/temporal modeling, prediction and anomaly detec-
tion. Its design and learning methodology has been developed keeping in mind the design and operation of
neocortices in sentient organisms, which perform the task of temporal integration of information and prediction
seamlessly and in real time.7,8

In HTM, the neurons or “cells” are organized in a 3D stack as shown in fig.4a. The structural interconnectivity
in these cells is designed to be highly recurrent (i.e. with feedback loops) which allows temporal correlations
between samples to persist in the network hence the name temporal memory. In HTM a Hebbian like rule is
implemented for learning, where the connections between the cells (dendritic connections) is formed or unformed
depending upon the degree of correlations between two cells during the operation of the network.9 In fact, there
is no separate learning phase for the complete network and the dendritic connections are updated online and in
real-time during the processing,10 which makes it suitable for temporal inferencing.

Since the temporal memory size can be dynamically changed in the HTM, unlike RC, it is a more suitable
network for the task of temporal correlation.

4. NEURAL FILTERING AND PROCESSING TASKS

4.1 Filtering by Learning

The neural filtering presently implemented is inspired by an equivalent task in digital communication called
channel equalization. The source of the information produces a bitstream, which passes through a channel and
is distorted in a non-linear fashion. Therefore it is not possible to simply apply a linear filter to extract the
pure signal component. Instead, the effect of channel has to be reversed by creating an inverse of the channel
characteristics, typically done in frequency domain using principal component analysis based methods.

We use the temporal modeling capabilities of RC to perform this task, where the channel is the detector
which introduces distortions and noise due to its physical limitations. The process is illustrated in fig.2b, where
the detector (channel) introduces distortion and noise on the original signal d(t) through an unknown function
q(z) and as a result the output is given by:











variables can be manipulated by passing a current through them enabling a write mechanism. Most prominent
use case for these materials at present is in non-volatile memory, where spintronics in particular has made a niche
for itself as a possible successor of NAND flash. We describe how these materials can be used to build hardware
units for neurons. We will focus on spintronics, but the central principles can be transferred to memristive
systems as well.

A general hardware neuron model is shown in fig.5b. The input side has a natural delay line built from a
resistor and a capacitor, which stores the state of the cell. The charge on the capacitor Qin determines whether
the device will switch (Qin ≥ Qc) or not (Qin < Qc). The output transfer function f(αdQin

dt
) is a non-linear one,

typically tanh(z) but can be others like rectified linear units (ReLU) etc. There is also a additive white Gaussian
noise (AWGN) current source in parallel to the transfer function and generates the output noise for the neuron.
This noise is particularly critical in implementing the stochasticity that is needed in modern neural learning and
optimization algorithms. The characteristic switching function is given by:

Iout = f(α
dQin

dt
) + βIrnd (7)

This generalized behavior is demonstrated by a variety of materials (fig.5c). Magnetic Tunnel Junction (see21

for a comprehensive review) built using soft-magnets or super-paramagnets are a particularly attractive option
for implementing stochastic neurons, even though deterministic neurons using hard-magnets have also been
proposed, e.g. see.22 The degree of hardness of magnets is characterized by the height of its internal energy
barrier separating the two minimum energy states. This energy barrier is a function of it material parameters
(saturation magnetization Ms, uniaxial anisotropy field strength (Hk), and volume Ω) and is given by:

U =
MsHkΩ

2
(8)

This determines the state retention time (degree of hardness) that can be captured by:

τ = τ0 exp(
U

kT
) (9)

where attempt frequency τ0 is typically 0.1−1 ns. Therefore for U ≤ 1kT , the retention time of the magnet is
a few ns or less. An input current Iin, converted to a spin transfer torque by passing through a polarizing layer,
if strong enough can align the magnet to a preferable direction. Therefore, if we sweep the Iin, the instantaneous
response of the device is given by:

Iout ∝ mout
z = sgn(tanh(κmin

z (Iin) + rnd(−1,+1)) (10)

However, the long time average of the of the output Iout follows a tanh(z) characteristic, and therefore
matches the requirement of a binary stochastic neuron, which is the general neuron model used in most deep
learning algorithms. The metallic leads of the device can automatically add the currents, whereas the synaptic
weights can be implemented by controlled conductors, since I = GV . A hybrid crossbar array of programmable
memristors can compactly implement these programmable synaptic connections at the junctions and the neurons
at the periphery (fig.5e).

These networks can then be used in a variety of neural network designs, including combinatorial optimization
solvers, Boltzmann Machines (BMs) and Deep Belief Networks (DBNs), and Reservoir Computers (RCs), some of
the central types of neural networks we have discussed here. Please see the refs.23–26 for more detailed exposition
and applications.



6. SUMMARY

In this work, we presented an architecture for a smart camera platform that will eventually employ a combination
of best-in-class neural networks to perform its principle tasks: a) neural filtering, b) spatio-temporal inferencing.
The platform has been designed with an application of user defined feature tracking and prediction in mind. The
platform is generic enough to be applied to a wide variety of established and emerging fields including defense,
automated vehicles, and autonomous sensor networks.

We described the three classes of neural networks used in the work and demonstrated learning and prediction
tasks individually from these networks. Using Reservoir Computing, we demonstrated signal recovery by inverse
modeling of a noisy detector (fig.2). Using enhanced CNNs we demonstrated extraction of a feature, along with
its variables of motion within an image frame (fig.3). Using HTM, we demonstrated learning and prediction of
the trajectory of a feature in the image frame (fig.4).

We further pointed out possible hardware implementation of neurons for energy-efficient processing that can
be embedded close to the image sensor. We discussed how digital neurons can be implemented on present day
FPGAs and how it is possible to leverage the physics of emerging nano-materials to enhance conventional CMOS
based computing in directly implementing neural networks in large scale circuits.
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