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Abstract—In this work, we leverage the information-theoretic
notion of transfer entropy theory to study causal information
flow in epidemic spreading over temporal networks. An improved
understanding of causal information flow may lead to the early
detection of population segments that should be monitored
or immunized to enhance epidemic containment. We focus on
activity driven networks, which constitute a powerful and elegant
paradigm to capture the inherent time-varying nature of contacts
and population heterogeneity. Our preliminary results confirm
our intuition that individuals who have a higher propensity in
contacting others are responsible for the largest information
transfer. Moreover, we find that epidemic parameters such as the
probability of infection and recovery may dominate the spreading
phenomenon over heterogeneities in the contact formation.

I. INTRODUCTION

Temporal networks have recently gained traction in the
research community to offer a more realistic description of
collective dynamics in engineering and science [1], [2]. A tem-
poral network is a network where the links are continuously
created and removed as time progresses. One of the classical
approaches to study temporal networks is to integrate them
over time to form a static network, encapsulating all the links
that have at least appeared once during the time evolution.
Then, the integrated network is studied using classical tools
in network theory [3], [4]. The recent availability of large
time-resolved datasets, collected over long time spans, allows
for unprecedented empirical analysis and the development of
theoretic frameworks for temporal networks [5].

Activity driven networks (ADNS) are a promising modeling
paradigm in temporal networks, which naturally accounts for
the heterogeneity of nodes in the propensity to create contacts
with their peers. ADNs provide a simple and elegant means
to model the presence of hubs that, in the temporal case, are
nodes that are most likely to generate contacts with the rest
of the network [6]. Each node of an ADN is characterized by
a constant activity rate, which quantifies the probability per
unit time that a node is active, namely, capable of generating
links.

Major contributions in ADN-related studies have been di-
rected toward understanding the dynamics of epidemic diffu-
sion processes. A seminal work by Perra et al. [6] introduced
the notion of ADNs and explored the Susceptible-Infected-
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Susceptible (SIS) model. Issues on the control of the contagion
and the critical immunization threshold have been tackled
in [7]. The influence of individual behavior on the epidemic
outbreak has been elucidated by our group in [8]. Further
efforts have been devoted to map the Susceptible-Infected-
Removed (SIR) model to percolation problems [9]. The effect
of node memory has been treated in [10], and community
structures have been investigated in [11], [12]. Most of these
studies are based on extensive simulation campaigns: an alter-
native formulation of ADNs based on a continuous-time model
and a discrete distribution of activity rate has been recently
established by our group in [13], [14]. This approach favors a
complete analytical treatment and the prediction of the entire
dynamics of the epidemic spreading.

Much effort is currently being devoted to steer ADN
models from the simulation of simple epidemic processes
to comprehensive characterization of realistic spreading. For
example, in [15], [16], we have proposed an ADN model
with behavioral patterns and the adoption of time-varying
containment protocols to simulate and predict the dynamics of
the 2014-2015 Ebola Virus Disease in Liberia. The proposed
model, calibrated on available field data, can predict the
spreading dynamics over a long time horizon and supports
what-if analysis on the effect of the introduction of timely
containment interventions.

Toward implementing effective containment strategies, epi-
demic models would benefit from analysis tools to detect
individuals that are most responsible for the epidemic prop-
agation. This issue has been widely studied in the literature
for static networks, using two main approaches: preventive
and reactive immunization. Preventive immunization leverages
information about individuals obtained before the epidemic
inception [17], [18]. Within preventive approaches, targeted
immunization uses information on topological properties of
individuals (e.g., node degree and betweenness centrality). On
the other hand, reactive immunization focuses on the dynamics
of the epidemic spreading, accounting for dynamical aspects
of the network and of the epidemic itself to detect the most
important individuals to be vaccinated [19], [20].

Further work has been devoted to detect social network
sensors, a restricted subset of individuals to be monitored to



get ahead of the epidemics, before it hits a wide portion of
the population [21], [22].

Similar studies on temporal networks are being recently
conducted, leveraging temporal correlation techniques [23],
or the relationship between vaccination strategies and an
optimal choice of sentinels toward an early detection of the
outbreak [24]. Although promising results are being obtained,
research in this field is still in its infancy.

Here, we leverage an information-theoretic approach toward
a preliminary study of the causal information flow in ADNs.
Revealing patterns in causal information flow may lead to the
introduction of new, data-driven metrics to select key individ-
uals in an epidemic process. In an information-theoretic sense,
we seek to elucidate how uncertainty propagates in the system
and attempt to learn the causal basis of the propagation [25],
[26]. Thus, a large information flow from a node to others in
the network may tell us that such a specific node is critical for
the outbreak and should be promptly monitored or immunized.

In this work, we use transfer entropy (TE) to study causal
information flow between class of nodes [27]. Transfer entropy
has been used to tackle a wide range of applications, such as
in finance [28], neuroscience [29], biology [30], and public
policies [31]. In our application, information flow quantified
by TE corresponds to the reduction of the uncertainty in the
prediction of the future in the epidemic dynamics of a class
of individuals due to the knowledge of the past epidemic
dynamics of another class of individuals.

This paper reports the results of a preliminary study on
the topic of information transfer in ADNs, aiming at quan-
tifying information flow during an epidemic process and its
dependence on i) the propensity of nodes to make contact with
others; and ii) the epidemic parameters. The paper is organized
as follows: Section II provides the necessary background on
ADNSs, epidemic processes on ADNSs, and transfer entropy.
Simulation results are reported and commented in Section III,
and our conclusions are summarized in Section IV

II. PROBLEM STATEMENT

A. Activity-Driven Networks

An ADN is a temporal network, whose dynamics is typically
described in discrete time. The n nodes that comprise the
network are characterized by an individual activity rate. Such
rates are collected in a vector a = [a1,as,- - ,ay,]|, Where
a; € [0,1] is the probability that node ¢ becomes active in
a time-step. Activation rates are drawn by a given probability
distribution. It has been observed that a power law distribution
with exponent in the range [2,3] offers a satisfactory fit for
real socio-technical systems [6], [16].

When a node is active, it connects randomly to m other
nodes in the network. An epidemic process is then run on the
resulting, possibly disconnected, network. Links formed in a
time-step are removed and the process resumes to the new
time-step.

Network nodes do not have memory of their past history,
such that the link formation at each time-step is independent

from past instances of the network topology. Thus, the in-
tegration of the network along 7' time-steps may produce a
degree distribution with a broad variability, comprising hubs
that correspond to nodes with the highest activation rates [6].

Figure 1 illustrates the temporal integration process of an
ADN with n = 15 nodes and m = 3 links per active node.
We observe that hubs tend to form already from ¢ = 4 in
correspondence of nodes with the highest acvitity, marked in
red in the figure.

t=1

Fig. 1. Temporal integration of the first 4 time-steps of the link formation
process of an ADN with n = 15 nodes and m = 3 link per active node. Red
links indicate the connections that are created in the current time-step. Black
links result from the integration over the previous time-steps. Red nodes have
high activity rate aj, = 0.3 and gray nodes have low activity rate a; = 0.05.
Node size is proportional to the node degree.

B. Susceptible-Infected-Susceptible Model in an ADN

In a SIS model, each node in a time-step ¢ is characterized
by two possible states, susceptible or infected. At time-step ¢,
once the network of contacts is formed according to the ADN
process, a susceptible node ¢ can contract the disease from
a neighbor j, which was in the infected state at time ¢ — 1,
with probability A. Moreover, a node that was in the infected
state at time ¢t — 1 can recover at time ¢ with probability u.
An example of an SIS process over an ADN is illustrated in
Fig. 2.

A critical epidemic threshold for the ratio \/pu exists, such
that the epidemic becomes endemic when the threshold is
passed. As a result, after a transient phase, the average number
of infected nodes fluctuates around a stationary value, which
is also known as the endemic state. For a SIS process on
ADN:Ss, such a critical threshold is regulated by the following
expression [6], [8], [13], [14]:

A > i%) 1)
poma) +/(a?)
where () indicates average, and a? is the activity vector a
squared element-wise. The expected increment of infected
nodes with a given activity rate z in a time-step of unitary
length is described by the following equation [6]:
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where N, is the number of nodes with activity rate z, and 2’ is
the set of nodes with activity rate different from z. We observe




that the number of infected nodes in Eq. (2) is a nonlinear
combination of the number of infected nodes with different
activity rates at the previous time-step. This consideration
makes TE suitable for our purposes, whereas other data-driven
metrics, like Granger causality [25], may not be used to tackle
these nonlinear phenomena.
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Fig. 2. An SIS epidemic model evolving on an ADN with N = 5 nodes and
m = 1 links per active node. Nodes’ health states are encircled, and active
nodes are highlighted by a thick yellow border. (a) At the last phase of time
t, the ADN is disconnected and nodes 2, 3, and 5 are infected. In the first
phase of time-step ¢ + 1 (b) nodes 1, 3, and 5 become active and contact
nodes 2, 4, and 3, respectively; (c) the epidemic process evolves, so that node
2 infects node 1, node 3 remains in the infected state, node 4 remains in the
susceptible state, and node 5 recovers; and (d) time ¢ has elapsed and all the
network edges are removed before a new time increment is initiated.
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C. Transfer Entropy Between Activity Classes

We define an activity class x as the subset of the network
nodes whose activity lays within a fixed real range [w, ,w;].
We extend the notation in Eq. (2) by defining the aggregate
variables Ifc and I;, which represent the number of infected
nodes at time-step ¢ that belong to class x and y respectively.
For a generic class, indicated with “e”, the sample space of
It is indicated with Z,. Such a sample space is an integer
interval 0,...N,, where N, is the number of nodes in the
activity class.

Transfer entropy from class = to class y quantifies the
reduction of the uncertainty in the prediction of the future of
the dynamics of class y due to the knowledge of the dynamics
of class x, and is defined through three steps [27]. First,
conditioned entropy within class y measures the uncertainty
in I/ given the knowledge of I!. It is defined as

H(1,L) =
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Then, the entropy of class y conditioned to both I’ and I} is
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Finally, TE from class x to class y is
TE*?Y = H(ILP 1Y) — HIH I, IE) =
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The following section demonstrates how TE can be used to
gain insight in the epidemic spreading.
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IIT. RESULTS

We consider an ADN composed of N = 900 nodes divided
in three distinct classes of activity, each characterized by a
singleton value: N;, = 300 nodes with high activity a;, = 0.9;
N,, = 300 nodes with moderate activity a,, = 0.6; and N; =
300 nodes with low activity a; = 0.3. We set the number of
links generated by an active node to m = 1.

We execute the first set of simulations by fixing the SIS
infection and recovery probabilities to A = 0.8 and p = 0.4,
respectively. A simple application of Eq. (1) reveals that
these values are above the epidemic threshold. A seed of
10% of randomly distributed nodes is initially placed. We
perform 1,000 independent simulations of the SIS process,
with simulation length equal to 7" = 100,000 time-steps. In
this work, we focus on the stationary state of the epidemic
spreading. To this aim, the first 1,000 time samples are
removed from each time series.

We estimate the TE between each pair of classes. Since
numerical issues may arise when the cardinality of the sample
spaces is large, we aggregate the sample spaces into smaller
ones. Specifically, we collapse the N, = 300 possible states
of Z, into N, = 30 aggregated states, by binning Z, into
groups of 10 elements. This procedure has the drawback of
reducing the amount of information that we are able to extract
from data, however, it is necessary to reduce the error in the
estimation of the TE, with time series of a length of 7" =

100, 000 steps.
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Fig. 3. TE among each pair of activity classes estimated on 1, 000 indepen-
dent simulations. The symbols [, m, h correspond to low, middle, and high
activity, respectively. Boxes represent the 25-75 percentile range, whiskers
represent the extreme values, and orange lines the median one.

Figure 3 illustrates a box-plot of TE between each pair of
classes. In agreement with our intuition, we observe that the



highest activity class elicits the largest information transfer,
and that information transfer decreases with activity. This
suggests that nodes with high activity are more influential and
knowledge about their dynamics is critical to reconstruct the
entire spreading process from partial knowledge. We also note
that the strength of the interaction between activity classes
increases with the level of activity. In other words, from Fig. 3,
we find that TE from medium to high activity classes is higher
than TE from medium to low activity classes, and TE from
low to high activity classes is higher than TE from low to
medium activity classes. Finally, we note that despite activity
classes are equally spaced, the corresponding TE values are
not.

A second set of simulations is devoted to investigate how
TE from a class to all the other classes is influenced by the
SIS parameters of the infection, namely, the probability of
infection A and that of recovery . Toward this aim, we define
the average TE from a class x to all the other classes as

follows:
Zy#w TEm%y

TE-t—}. —
( ) o

; (6)
where n. is the number of classes. In this second set of sim-
ulations, we fix first 4 = 0.4 and we let A vary in the interval
[0.42,1.0]. Then, we fix A = 0.8 and we let p vary in the
interval [0.10, 0.80]. The range of the parameters guarantee the
attainment of the endemic state, since the epidemic threshold
in Eq. (1) is always passed.

Figure 4 illustrates the trend of (T'E**) from one class
to all the others, as a function of the infection probability
A. Simulation results confirm that, even in this aggregated
formulation, transfer entropy from higher activity classes is
always larger than that from lower activity classes. Also, we
observe that (T E*®) decreases with increasing values of \.
This is due to the fact that a high value of the contagion
probability leads to a saturation to high values of I’ for all
the classes, such that the information content is mostly driven
by the infection probability rather than the node activity. This
explanation is also confirmed by observing that the separation
between the three entropy values for each class tends to
reduce for higher values of A, that is, the activity rate plays a
secondary role in the propagation of the infection.

Figure 5 illustrates the trend (T'E*®) from one class
to all the others, as a function of the recovery probability
1. Opposite to the trend if Fig. 4, in Fig. 5 we find that
(TE*7*) increases for high values of p. For low values
of p, the large average time needed for a node to recover
from the disease leads to a condition with most of the nodes
permanently infected. In such a condition, the activity value
has a modest effect on the epidemic dynamics. On the other
hand, when g attains large values, the activity takes a key
role in the information spreading and (T'E**) from higher
activity classes is larger than that from lower activity classes.

IV. CONCLUSIONS

Here, we have established an information-theoretic approach
to study causal information flow in epidemic spreading in
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Fig. 4. Average TE from each class x to all the other classes as a function of
the infection probability A. We fix p = 0.4 and A € [0.42, 1.0]. Each point
is an average of 100 independent simulations.
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Fig. 5. Average TE from each class z to all the other classes as a function
of the recovery probability p. We fix A = 0.8 and p € [0.10,0.80]. Each
point is an average of 100 independent simulations.

temporal networks. We have proposed the use of transfer
entropy to identify critical network nodes more influential
in the spreading process. Activity-driven networks have been
selected as a modeling paradigm for temporal networks, as
they are able to encapsulate the inherent heterogeneity in the
propensity to generate contacts with others.

Our simulations confirm intuition, in that network nodes
that are most likely to generate contacts with others are
the most influential in the epidemic spreading. On the other
hand, when epidemic parameters such as the infection or
the recovery probability attain extreme values, the individual
propensity of a node to make contacts assumes a secondary
role. Further work will deal with an analytical characterization
of casual information flow, immunization strategies based on
information transfer, and the assessment of the transient phase
of the epidemic spreading.
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