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ABSTRACT

For a prime p > 2, we construct integral models over p for Shimura varieties with parahoric level structure, at-
tached to Shimura data (G, X) of abelian type, such that G splits over a tamely ramified extension of Q,. The local
structure of these integral models is related to certain “local models”, which are defined group theoretically. Under some
additional assumptions, we show that these integral models satisfy a conjecture of Kottwitz which gives an explicit descrip-
tion for the trace of Frobenius action on their sheaf of nearby cycles.
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Introduction

The aim of this paper is to construct integral models for a large class of Shimura
varieties with parahoric level structure, namely for those which are of abelian type, and
such that the underlying group G splits over a tamely ramified extension. Recall that
(G, X) 1s said to be of Hodge type if the corresponding Shimura variety can be described as
a moduli space of abelian varieties equipped with a certain family of Hodge cycles. The
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Shimura data of abelian type is a larger class, which can be related to those of Hodge type.
They include almost all cases where G 1s a classical group. Our condition on the level
structure allows many cases of Shimura varieties with non-smooth reduction at p.

One application of such models is to Langlands’ program [49] to compute the
Hasse-Weil zeta function of a Shimura variety in terms of automorphic L-functions. The
zeta function has a local factor at p which is determined by the mod p points of the
integral model, as well as its local structure—specifically the sheaf of nearby cycles. The
integral models we construct are related to moduli spaces of abelian varieties (at least
indirectly), which makes it feasible to count their mod p points as in the work of Kottwitz
[46] (cf. also [44]). On the other hand, their local structure is described in terms of “local
models” which are simpler schemes given as orbit closures. In particular, we show that,
when G is unramified, the inertia acts unipotently on the sheaf of nearby cycles, and
our models verify a conjecture of Kottwitz, which determines the (semi-simple) trace of
Frobenius action on their nearby cycles rather explicitly. Such a local structure theory of
integral models for Shimura varieties with parahoric level structure was first sought by
Rapoport who took some of the first steps in extending the Langlands/Kottwitz method
to the parahoric case [62, 63].

To state our results more precisely, let p be a prime, and (G, X) a Shimura datum.
For K°* C G(Ay) a neat, compact open subgroup, the corresponding Shimura variety

Shie (G, X) = G(Q)\X x G(A/)/K°

is naturally a scheme over the reflex field E = E(G, X), which does not depend on the
choice of K°. Let K C G(Q,) be a parahoric subgroup, fix a compact open subgroup

K’ C G(A}), and let K° = KPK?. We set

Shic (G, X) =1lim_Shy(G, X).
<~ Kt

Fix v|p a prime of E, let E = E, and denote by k(v) the residue field of E. We
say that a flat Op-scheme S satisfies the extension property, if for any discrete valuation ring
R D O of mixed characteristic 0, p, the map S(R) — S(R[1/p]) is a bijection.

For the rest of the introduction, we assume that p > 2, that (G, X) is of abelian
type, and that G splits over a tamely ramified extension of Q,. We also assume that p
does not divide the order |7 (G*")| of the (algebraic) fundamental group of the derived
group G over Qp.

Proposition 0.1. — The E--scheme ShK; (G, X) admuts a G(Aﬁ)—equivaﬂant extension to a
Slat O,-scheme yK; (G, X)), satisfying the extension property. Any sufficiently small compact open KI' C

G(A;i) acts freely on fKZ (G, X), and the quotient
(G, X) 1= He (G, X) /K
is a finite Oy,-scheme extending ShK]c; (G, X)g.
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In fact one can probably prove a result such as the proposition under weaker as-
sumptions on G. The main point of our results is to describe the local structure of these
models in terms of orbit closures when G splits over a tamely ramified extension of Q. To
explain this, recall that the parahoric subgroup K7 is associated to a point of the building
x € B(G, Q,), which in turn defines, via the theory of Bruhat-Tits, a connected smooth
group scheme G° over Z,, whose generic fibre is G, and such that G°(Z,) C G(Q,) is
identified with K7. It had been conjectured by Rapoport [63, §6,7] (see also [56]), that
Shye (G, X) admits an integral model .- (G, X), whose singularities are controlled by
a “local model”, M, with an explicit group theoretic description. Although a gen-
eral definition of Mlgcx was not given in [63], it was conjectured that MI&CX, should be
equipped with an action of G°, and that there should be a smooth morphism of stacks

A S (G, X) =[G\ M,

which is to say a “local model diagram” consisting of maps of Og-schemes

ks

/ \
Fi;(G,X) Mg

where 7 is a G“°-torsor, and ¢ is smooth and G“°-equivariant. Here, G*° is the (smooth)
quotient' G°/Z,, where Z, is the Zariski closure in G° of the maximal R-split but Q-
anisotropic subtorus of the center of G. This conjecture was inspired by a similar result
for Shimura varieties of PEL type that first appeared in Deligne and one of us (G.P) [21],
and de Jong [18] for special cases, and in the book of Rapoport-Zink [64] more generally.
In particular, the work of Rapoport and Zink implies such a result for many Shimura
varieties of PEL type with parahoric level structure but with an ad-hoc definition of Mg
given case-by-case. See the survey article [58] for more information and for additional
references.

When G splits over a tamely ramified extension a candidate for Ml(‘i‘x was con-
structed in [59] by one of us (G.P) and Zhu. The construction of loc. cit. is reviewed in
Section 2, and uses the affine Grassmannian for G. In Section 2.3 we show that it also
has a more direct description as an orbit closure in a standard (z.e. not affine) Grassman-
nian. We show that these local models M can be used to control the integral models
% (G, X) in Proposition 0.1 étale locally:

' This quotient by Z, is omitted in [63] and other references. If (G, X) is of Hodge type, then Z; = {1} and so
gC,O — go.
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Theorem 0.2. — If k [k (v) is a finite extension, and z € S (G, X)(k), then there exists
w € MG (k"), with k' [« a finite extension, such that there is an isomorphism of strict henselizations

sh ~ )sh
O=7K° (GX),e — OMlng,w'
The theorem, combined with results in [59], implies the following result about the
local structure of % (G, X).

Corollary 0.3. — The special fibre S (G, X) @ k (v) s reduced, and the strict henselizations
of the local rings on Fx-(G, X) ® Kk (v) have irreducible components which are normal and Cohen-
Macaulay.

If K; is assoctated to a point x which is a special vertex in B(G, Q‘;f), then k- (G, X) @k (v)
is normal and Cohen-Macaulay.

We often obtain a more precise result, involving a slightly weaker form of the local
model diagram:

Theorem 0.4. — Suppose that either (G*, XYY has no factor of type DB, or that G is unram-
tfied over Q,, and K 15 contained in a hyperspecial subgroup. Then there exists a local model diagram

Tad
VK;

N

S (G, X) Mg

where w is a G*°-torsor and q is smooth and G*°-equivariant. In particular, for any z €
Fx (G, X) (), there exists w € MI&CX(K) such that there is an isomorphism of henselizations

h ~ h
T (G.X).2 T Ol\/ll(‘;‘7x,w'

Here, G*° denotes the connected smooth group scheme with generic fibre G
associated by Bruhat-Tits theory to the image 1™ of the point x under the canonical map
B(G,Q,) - B(G*,Q,). Under our assumptions, G** also acts on Mlgcx In fact, the
condition p 1 |7, (G%")| in the above theorem can be removed, although MI(E’CX then has
to be replaced with a slightly different local model, attached to an auxiliary Shimura
datum of Hodge type.

Below, we write . = .% (G, X). Let E be an algebraic closure of E, with residue
field kg, and F C E a subfield with F/E finite and such that Gy is split. The relationship
with Mlgx and one of the results of [59], allows us to show the following result on the
action of inertia on the sheaf of nearby cycles RW.
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Corollary 0.5. — For z € S (ky), the inertia subgroup Iy of Gal(E/F) acts unipotently on
all the stalks R\IJ‘; Af K is associated to a very special vertex” x € B(G, Q,), then Iy acts trivially

on all the stalks R\IJ; , z as above.

In fact, we also give results about the semi-simple trace of Frobenius on the sheaf
of nearby cycles of .%- (G, X). Under the assumptions of Theorem 0.4 we show, again
using results of [59], that this trace is given by a function which lies in the center of the
parahoric Hecke algebra. When G is unramified, we can deduce that .- (G, X) verifies
a more precise conjecture of Kottwitz (see [36, §7]). This was first shown by Haines-
Ngé for unramified unitary groups and for symplectic groups [37], and by Gaitsgory
in the function field case [25]. Let us give some details. Since G 1s unramified, E is an
unramified extension of Q,. We denote by E,/E the unramified extension of degree r, and
by «, its residue field. Suppose that K} C G(Q,) 1s a parahoric subgroup, and set P, =
G°(Og,). Let u be a cocharacter of G, in the conjugacy class of w;, where 4 € X. One
has the associated Bernstein function z,,, in the center of the parahoric Hecke algebra

C.(PAG(E)/P)).

Theorem 0.6. — (Rottwilz’s comjecture) Suppose that G is unramified over Q ,, and that either
(G*, XY has no factor of type DH, or K3 zs contained in a /Wgerspecial subgroup. Let r > 1 and set
q=|&,|, and d = dim Shy- (G, X). There is a natural embedding

G°(F,)\M2y (F,) < PAG(E,)/P,.
Forye 7 (k,)
(0.6.1) Tr* (Frob,, R¥) = 772, ,(w)
where w € Mlgcx (k,) corresponds to y via the local model diagram.

We now explain the methods and organization of the paper in more detail. When
K; is hyperspecial the integral models .#- (G, X) were constructed in [43] and, as ex-
pected, turn out to be smooth. However, for more general parahoric level structures K7,
many of the key arguments of [43] break down or become much more complicated.

In the first section, we prove various results about the parahoric group schemes
G°, and torsors over them. To explain these, consider a faithful minuscule representation
p : G = GL(V). In Section 1.2, we explicate a result of Landvogt [48], and show that p
induces a certain kind of embedding of buildings ¢ : B(G, Q,) — B(GL(V), Q,). This
is then used to show in Section 1.3, that for x € B(G, Q,), there is an closed embedding
of group schemes G, — GL(V),(,. The existence of such an embedding is needed in
exploiting Hodge cycles, to study integral models later in the paper. It replaces a general
result for maps of reductive groups due to Prasad-Yu [61], which was used in [43].

? By definition [59], this means that x is a special vertex in B(G, Q) and is also special in B(G, Q). Such x exist
only when G is quasi-split over Q.
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In Section 1.4, we show that a G°-torsor over the complement of the closed point
in Spec (W(F,)[«]]) extends to Spec (W(F,)[«]]), and hence is trivial. As in [43], this
result is used in an essential way in showing that the crystalline realizations of certain
Hodge cycles have good p-adic integrality properties, and eventually in relating the local
models Ml(i’“X to the integral models yK; (G, X). When G° is reductive, this extension re-
sult was proved in [16], and is a simple consequence of the analogous extension result for
vector bundles. For general parahorics G°, the proof becomes much more involved, and
uses in particular results of Gille [28] and Bayer-Fluckiger—Parimala [2], [3] on Serre’s
conjecture II. In fact, for this reason we prove the result only when G has no factors of
type Es.

In Section 2, we recall the construction of the local models M introduced in
[59]. Their definition involves the affine Grassmannian, however using the embedding
t mentioned above, we show that these local models can also be described as an orbit
closure in a Grassmannian. This description is used in Section 3, to show that any formal
neighborhood of a closed point of M supports a family of p-divisible groups, equipped
with a family of crystalline cycles. More precisely, let K/Q, be a finite extension, ¢ a
p-divisible group over Ok, and (sq,¢) C T,%® a family of Galois invariant tensors in the
Tate module T,%, whose pointwise stabilizer can be identified with the parahoric group
scheme G° C GL(T,%) (in fact we deal also with non-connected stabilizers). If D denotes
the Dieudonné module of ¢, then the crystalline counterparts of the (s4¢) are tensors
(52.0) C D[1/p]®. Using the extension result of Section 1.4, mentioned above, we show
that (s,0) C D® and that these tensors define a parahoric subgroup of GL(D) which
is isomorphic to G°. This allows us to construct the required family of p-divisible groups
over a formal neighborhood of Ml(?‘x In [43] this was done using an explicit construction
of the universal deformation, due to Faltings. However this construction does not seem
to generalize to the parahoric case, and we use instead a construction involving Zink’s
theory of displays [75] (Sections 3.1, 3.2).

Finally in Section 4, we apply all this to integral models of Shimura varieties. We
use the families of p-divisible groups over formal neighborhoods of MY, to relate M&
and 5’@ (G, X), when (G, X) is of Hodge type. In particular, these results also cover the
PEL cases of [64] and our proof then circumvents the complicated case-by-case linear
algebra arguments with lattice chains in /loc. cit., Appendix. (In some sense, the role of
these linear algebra arguments is now played by the extension result of Section 1.4.) To
extend these results to the case of abelian type Shimura data, we follow Deligne’s strategy
[20], using connected Shimura varieties and the action of G*(Q)*. As in [43] we use
a moduli theoretic description of this action, in terms of a kind of twisting of abelian
schemes. In the final subsection, we give the application to nearby cycles and Kottwitz’s
conjecture.

The application to integral models is somewhat complicated by the phenomenon
that for x € B(G, Q,), the stabilizer group scheme §G,, attached to x by Bruhat-Tits, may
not have connected special fibre. On the one hand, it is more convenient to work with
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the connected component of the identity G¢; for example, the local model diagram in
Theorem 0.4 yields an isomorphism of henselizations only when 7 is a torsor under a
smooth connected group (using Lang’s lemma). On the other hand, our arguments with
Hodge cycles yield direct results only for integral model with level K, = G,(Z,). We are
able to overcome these difficulties in most, but not quite all cases, and this is the reason
for the restriction on G in Theorem 0.4.

1. Parahoric subgroups and minuscule representations

1.1. Bruhat-Tits and parahoric group schemes

1.1.1. — Let p be a prime number. If R is an algebra over the p-adic integers Z,,
we will denote by W(R) the ring of Witt vectors with entries in R. Let £ be either a finite
extension of F, or an algebraic closure of F,. Let £ be an algebraic closure of k. We set
W = W(k), K, = Frac(W), and L = FracW(%).

In what follows, we let K be either a finite totally ramified field extension of Ky,
or the equicharacteristic local field £((7r)) of Laurent power series with coefficients in £.
We let K be an algebraic closure of K with residue field . We denote by K" C K the
maximal unramified extension of K in K, and we write O = Ok and O™ = Oku for the
valuation rings of K and K*'.

1.1.2. — Let G be a connected reductive group over K. We will denote by
B(G, K) the (extended) Bruhat-Tits building of G(K) [10, 11, 70]. We will also consider
the building B(G*, K) of the adjoint group; the central extension G — G induces a
natural G(K)-equivariant map B(G, K) — B(G*, K) which is a bijection when G is
semi-simple. In particular, we can identify B(G%", K) with B(GY, K).

If © is a non-empty bounded subset of B(G, K) which is contained in an apart-
ment, we will write G(K)q = {g € G(K) | g- x =,V x € Q} for the pointwise stabilizer
(“fixer”) of €2 in G(K) and denote by G(K)g, the “connected stabilizer” ([11, §4]). When
Q = {x} 1s a point, G(K)? is, by definition, the parahoric subgroup of G(K) that cor-
responds to x. Similarly, if €2 is an open facet, G(K)g, is the parahoric subgroup that
corresponds to the facet €2. If €2 is an open facet and x € €2, then G(K)g, = G(K)S.

Similarly, we can consider G(K"), G(K")q and G(K")g,. By the main result of
[11], there is a smooth affine group scheme Gg over Spec (O) with generic fibre G which
is uniquely characterized by the property that Go(O") = G(K"™)q. By definition, we
have G(K")g = G5 (O™), where G, is the connected component of Go. We will call G°
a “parahoric group scheme” (so these are, by definition, connected). More generally, we
will call Gg a “Bruhat-Tits group scheme” (even if € is not a facet).

Denote by Q c B(G*,K) the image of © under B(G, K) — B(G*, K). We can
then also consider the subgroup G(K)g C G(K) fixing Q. We have G(K)g C G(K)g. By
[38, Prop. 3 and Remarks 4 and 11], G(K")g, is the intersection of G(K")g (and hence,
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also of G(K")q) with the kernel G(K"), of the Kottwitz homomorphism «¢ : G(K™) —
1 (G)y. It then follows that G(K)g, is also the intersection of G(K)g with the kernel of
the Kottwitz homomorphism. As a result, using [11, (1.7.6)], we see that G° only depends
on G and the image ¥ of x in B(G*, K).

If G is semi-simple, simply connected, then k¢ is trivial and we have G(K)g, =
G(K)gq.

1.1.3. — We continue with the notations of the previous paragraph. Let o : G —
G be a central extension between connected reductive groups over K with kernel Z. By
[11,(4.2.15)], or [48, Theorem 2.1.8], o induces a canonical G(K)-equivariant map o, :
B(G,K) — B(G,K). Set & = a,(x). Then a(G(K™),) ¢ G(K™); and, by [11, (1.7.6)],

a extends to group scheme homomorphisms
:G,— G, «a:G—G:.
We record the following for future use:

Proposition 1.1.4. — Suppose that G splits over a tamely ramified extension of K and that Z.
is either a torus or is finite of rank prime to p. Then the schematic closure Z of Z. in G° is smooth over
Spec (O) and it fits in an (fppf) exact sequence

(1.1.5) 1> 25656 -1

of group schemes over Spec (O). If Z. is a torus which is a direct summand of an induced torus, then
Z = Z° is the connected Neron model of 7.

Progf: — By base change, it is enough to show the Proposition when £ is alge-
braically closed. Then both G and G are quasi-split by Steinberg’s theorem, and by our
assumption, they split after a tame finite Galois extension K'/K. Set I' = Gal(K'/K)
which is a cyclic group.

Choose a maximal split torus in G whose apartment contains x, and let T be its
centralizer. Since G is quasi-split, T is a maximal torus and we have an exact sequence

1 >7Z T3 T 1

with T a maximal torus in G. The central morphism « : G — G induces an isomor-
phism between corresponding root subgroups U, and U,. Denote by 2/, and U, their
corresponding schematic closures in G° and Q; respectively. By [11, (4.2.15), (4.3.2)], and
the construction of G2 and Gf in [11, §4.6], the morphism o induces an isomorphism
between U, (O) and U,(O), and therefore, by [11, (1 7.6)], between U, and U,. Also, by
[11, §4.4, §4.6], the schematic closure of T, resp. T, in Ge, resp. g§ is the connected

Neron model 7°, resp. T° of T, resp. T. Assume we have an fppf exact sequence

(1.1.6) > Z5T°5T°>1
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where Z is smooth and is the schematic closure of Z in 7°. Then Z is also the schematic
closure of Z in G and the quotient G°/ Z, which is representable by [1, §4], is a connected
smooth group scheme which admits a homomorphism y : G°/Z — Q; . Using again the
construction of the parahoric group schemes via schematic root data ([11, §3], [11, §4.6]
for the quasi-split case), we see that y is an isomorphism on an open neighborhood of
the identity given by the “open big cell”. By [11, (1.2.13)], ¥ is an isomorphism and this
proves the Proposition.

It remains to exhibit the exact sequence (1.1.6).

If Z 1s a torus the desired statement follows by the argument in the proof of [57,
Lemma 6.7] which gives the analogous result in the equal characteristic case.

Suppose that Z is finite of rank prime to p. By base changing to K’ we obtain
1 > 7 — T — T — 1 with T', T’ split over K'; here the prime indicates base change
extension to K'. This extends to an exact sequence of group schemes

1> Z2 5T T =1

with 77, T split tori over O’. Then Z’ = A(1), a finite multiplicative group scheme with
["-action which is the Zariski closure of Z' in 7”. (Here A is a finite abelian group with
[-action and A(1) = A ®z [, for n = exp(A), n prime to p.) As p{ n, we can see, using
Hensel’s lemma, that we have an exact sequence of smooth group schemes

(1.1.7) 1 — Resoryo0(A(1)) = Resoy0(T7) = Resoyo(T7) — 1.
By taking the I'-fixed (closed) subschemes we obtain the exact sequence
1 — Respr 0 (A(l))F — Resor/0 (T/)F — Resor/0 (71/)F.

Since #I' is prime to p, by [22, Prop. 3.1], these fixed point (closed) subgroup schemes
are also smooth over 0. The neutral components 7° and T° of T := Resor jo(THT and
T = Resorj0 (71/ )" are the connected Neron models of T and T respectively.

Since O is strictly henselian, taking O-valued points on (1.1.7) is exact. Using this
together with the long exact sequence of I'-cohomology gives an exact sequence

0— A" > T(O) = T(O) - H'(T, A).

Since HY(T, A) is finite, 7 — T has open image, and induces a surjection 7° — Te
between neutral components. Finally Z = ker(7° — 7°) is open in ker(7 — T), and
hence étale, which completes the construction of (1.1.6). 0

Remark 1.1.8. — Using similar arguments as above, we can also see that, under
the assumptions of Proposition 1.1.4, the schematic closure of Z in G, is smooth over

Spec (O) and is equal to the kernel of & : G, — G;. In general, & : G, — G is not fppf
surjective; this happens, for example, when G, = G° but g #+ Q;’.



M. KISIN, G. PAPPAS

1.1.9. — The building B(GL(V), K): Suppose that V is a finite dimensional K-
vector space. By [12, Prop. 1.8, Th. 2.11], the points of the building B(GL(V), K) are in
1-1 correspondence with graded periodic lattice chains ({A}, ¢): By definition, a periodic
lattice chain is a non-empty set of O-lattices {A} in V which is totally ordered by inclusion

and stable under multiplication by scalars. A grading ¢ is a strictly decreasing function
¢ : {A} — R which satisfies

c(n"A) =c(A)+n

where 7 is a uniformizer of O. One can check (loc. cit.) that there is an integer r > 1 (the
period) and distinct lattices A’, for : =0, ..., r — 1, such that

(1.1.10) rA"Cc AT oA A

and {A} = {A'};ez, with A/ defined by A" =n"Aiforme€ Z,0 <i <r.

The stabilizer GL(V), of the point x € B(GL(V), K) that corresponds to ({A}, ¢)
is the intersection ﬂ;;(l) GL(AY) in GL(V). By loc. cit. 3.8, 3.9, the corresponding para-
horic group scheme GL, is the Zariski closure of the diagonally embedded GL(V) —
[T, GL(V) in the product [].—y GL(A’). The group scheme GL, can also be identi-
fied with the group scheme of automorphisms Aut(A®) of the (indexed) lattice chain
A® := {A'};cz. This is true since this group of automorphisms is smooth (by [64, Ap-
pendix to Ch. 3]) and has the same O"-valued points as GL,. In fact, in [12], one finds
a similar description of the building B(GL(V)p, K) and the parahoric subgroups when
V is a finite dimensional (right) D-module, where D is a finite dimensional K-central di-
vision algebra. For x € B(GL(V)p, K), we will denote by (GL(V)p), the corresponding
parahoric group scheme.

Note here that to simplify notation we will use the symbol GL(A) to denote both
the abstract group and the corresponding group scheme over Spec (O); this should not
lead to confusion.

1.1.11. — The building B(GSp(V), K): Suppose that V is a finite dimensional
K-vector space with a perfect alternating bilinear form v : V x V — K. There 1s an in-
volution on the set of O-lattices in V given by A > AY :={v e V | ¢¥(v,x) € O,Vx € A}
In this case, the points of the building B(GSp(V),K) are in 1-1 correspondence
with “almost self-dual” graded period lattice chains ({A}, ¢) and so B(GSp(V), K) C
B(GL(V), K). (This is a variant of a special case of the results of [13] that describe
B(Sp(V), K).) Here, almost self-dual means that the set {A} is stable under the invo-
lution and that ¢(AY) = —¢(A) + m for some m € Z, independent of A. In this case, there
is an integer 7 > 1 and distinct lattices A’, for i =0, ..., r — 1, such that
(1.1.12) A C-Cc A’ (AY)

\%

c--c(a) crnta,

and for a =0, or 1, we have (A)¥ = A~ for each i. The complete chain {A} con-
sists of all scalar multiples of these lattices A” and (A?)Y. The stabilizer GSp(V), of the
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point x € B(GSp(V), K) that corresponds to ({A}, ¢) is GSp(V) N GL(V),. The cor-
responding parahoric group scheme GSP, is the schematic closure of the diagonally
embedded GSp(V) — ]_[Z:l_(r_l)_a GL(V) in the product ]_[Z:l_(,__l)_a GL(AY). As above,
by [64, Appendix to Ch. 3], this identifies with the group scheme of similitude automor-
phisms Aut({A'};cz, ¥;) of the polarized lattice chain. Here ¥; : A’ x A= — O are the
perfect alternating forms given by ¥ and we consider automorphisms that respect the v;
up to common similitude.

Consider V' = EB:;l(,fl)faV equipped with the perfect alternating K-bilinear form
Y’ : V' x V' — K given as the orthogonal direct sum J_Z:l_(,__l)_a Y. We have a natural
“diagonal” embedding GSp(V, ) — GSp(V', ¥') C GL(V’). Consider the lattice A" =
@;';L(,__l)_aAi C V. Then, by the above, the group scheme GSP, is the schematic closure
of GSp(V, ¥) in GL(A’). By replacing A’ by a scalar multiple, we can assume that ¥’
takes integral values on A’, i.e. that A’ C A”Y where the dual is with respect to V'.

1.2. Maps between Bruhat-Tits buildings

1.2.1. — In this section, we elaborate on Landvogt’s results [48] on embeddings
of Bruhat-Tits buildings induced by (faithful) representations p : G — GL(V). Here faith-
ful means that the kernel of p is trivial. Then p gives a closed immersion of group schemes
over K (see for example [17, Theorem 5.3.5]). Landvogt shows that such a p induces a
G(K)-equivariant “toral” isometric embedding B(G, K) — B(GL(V), K) (see loc. cit. for
the definition of toral); such an embedding is not uniquely determined by p but also de-
pends on the choice of the image of a given special point in B(G, K). In this section we
give a more specific construction of such an embedding when p is minuscule, see below.
This construction will be used in 2.3 for showing that local models embed in certain
Grassmannians.

1.2.2. — First suppose that G is split over K; denote by Gp a reductive model
over O. Let x, be a hyperspecial vertex of the building B(G, K) with stabilizer the
hyperspecial subgroup G (Q). Recall that there is canonical embedding B(G, K) —
B(G, K™) and we can also think of x, as a hyperspecial vertex of B(G, K").

Suppose p : G = GL(V) is a representation defined over K (not necessarily faith-
ful). Suppose we can write V = @,V,;, where for each i, p, : G = GL(V)) is a K-
representation which is irreducible and hence, since G 1is split, also geometrically irre-
ducible. Notice here that p; factors

G35 G, GL(V)

where ¢, 1s an epimorphism. If K = £((7r)), we assume that g, for each ¢, induces a sepa-
rable morphism between each root subgroup of G and its image in G;. Here G; is also a
split reductive group. Suppose that, for each ¢, A; C V; is an O-lattice such that

p:/(Go(0™)) C GL(A; ®0 O").
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We would like to give a map of buildings
t: B(G,K") - B(GL(V),K"),

such that t(x,) is the point [A] in B(GL(V), K") which is given by the O"-lattice A :=
(®:A;) ®o O". By definition, this is the point [A] := ({7"A},cz, ca), with ¢ (7"A) = n.

Proposition 1.2.3. — We assume that G s split and let x,, p : G — GL(V) be as above.
There exists a Gal(K™ /K)- and G(K™)-equivariant toral map

(1.2.4) t: B(G,K") — B(GL(V),K"),

such that 1(x,) is the point which corresponds to A @ O™ = (B;A;) ® O™ as described above.
Suppose in addition that p : G — GL(V) s _faithful. Then v is an isometric embedding and s the
unique Gal(K"" /K) - and G(K"™)-equivariant toral embedding with (x,) as above. The map v gives
by restriction a G(K)-equivariant toral isometric embedding ¢ : B(G, K) — B(GL(V), K).

Proof. — By [48, Theorem 2.1.8] and its proof, there is a canonical G(K")- and
Gal(K" /K)-equivariant toral map a; : B(G, K") — B(G;, K"). (When K = £((7)), even
though K is not perfect, we see using the separability assumption, that the proof of [48,
Theorem 2.1.8] extends.) Under this, the image of the hyperspecial x, € B(G,K) is a
hyperspecial x,; € B(G;, K). Denote by G; o the reductive group scheme over O that
corresponds to x,,. Using [11, (1.7.6)], we see that 4; extends to a group scheme homo-
morphism «; 0 : Go = G; 0. Recall that p,(Go(O")) C GL(A; ® O™).

Lemma 1.2.5. — We have G; o(O™) C GL(A; @0 O) and G; — GL(V,) extends to
a group scheme homomorphism G; o — GL(A;).

Progf: — Note that a; 0(O") : Go(O™) = G; o(O™) is not always surjective. For
every root subgroup U, of G, there is a root subgroup U of G such that a; o)y : U —
U; is an isomorphism; this extends to an isomorphism of corresponding integral root
subgroups U; and U. Therefore, the O -valued points of each root subgroup U; of G;
belong to the image of a;0(O"™) and therefore lie in GL(A; ®» O"). Now let T be
a maximal split torus of G such that x, is in the apartment of T. The image T; of T
under ¢; 1s 2 maximal spit torus of G; and x,; 1s in the apartment of 'T;. Suppose that
T~ G, o C Go, resp. T~ GZZ’O C G, 0, are the Néron models of T, resp. T;. Then «; o
restricts to 7 — 7T;. By our assumption, p; gives a group scheme homomorphism 7 —
GL(A,), which amounts to a grading of A; by the character group X*(T) =X*(7) ~Z’
of T. Since the representation G — GL(V,) factors through @;, the non-zero graded
pieces of A; appear only for characters in the subgroup X°*(7;) C X*(7). This shows that
there is 7; = GL(A,) such that T — GL(A,) is the composition T — T; = GL(A)).
Hence, T:(0O") C GL(A; ® 0 O™). Since G; o(O™) is generated by U;(O™") (for all root
subgroups) and 7;(O") (see e.g. [11, 4.6]), we conclude that G; o (O™) C GL(A; @0 O™).
The second statement then follows from [11, (1.7.6)]. U
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We will now use [48, Theorem 2.2.9] to produce a G;(K")- and Gal(K"/K)-
equivariant toral isometric embedding of buildings B(G;, K") — B(GL(V,), K") that
maps x,; to y; = [A; ® o O™]. The point y; in the building of GL(V,) satisfies the con-
ditions (TOR), (STAB) and (CENT) of loc. cit.: We can easily check (TOR); (STAB) then
follows from loc. cit. Prop. 2.5.2, since both the groups are split. For the same reason,
(CENT) trivially follows from (STAB). By [48, Theorem 2.2.9, Prop. 2.2.10] it then fol-
lows that there exists a unique G;(K)-equivariant toral isometric embedding of build-
ings B(G;, K") — B(GL(V;), K") that maps x,; to y;. This map is also Gal(K"™/K)-
equivariant, since the image y; is fixed by Gal(K""/K). By composing we now ob-
tain a corresponding G(K™)- and Gal(K"/K)-equivariant toral map ¢, : B(G, K") —
B(GL(V;), K"™). By combining the maps above, we obtain a G(K™)- and Gal(K"/K)-

equivariant toral map
(1.2.6) 0 B(G.K") % [T B(GL(V). K™)
=B([T 6LV). K™) € B(GLV), K™).

See [48, Prop. 2.1.6] for the equality in the middle, above. The last embedding in the
display is obtained as follows: Since [][. GL(V,) is a Levi subgroup of GL(V), we can
apply [48, Prop. 2.1.5] and obtain an embedding which sends the point corresponding
to ([A; ®o O"]); to the point given by the O"-lattice B;(A; o O™) C Vg K. If p
1s faithful, then ¢ is injective and so it gives an embedding. The uniqueness then follows
from [48, Prop. 2.2.10]. O

Remark 1.2.7. — a) When p is faithful, the embedding ¢ as above can also be
obtained directly from the “descent” of root valuation data of [10, 9.1.19 (c)] by using
that p maps the hyperspecial subgroup Go(O™) to GL(®;(A; @0 O™)).

b) For any ¢ € R, we also have a G(K")-equivariant toral map ¢+t : B(G, K") —
B(GL(V),K"™) determined by (¢ + ¢)(x) = ({7"A},ez,can + ). This map is also
Gal(K" /K)-equivariant. For every x € B(G,K"), (¢ + ¢)(x) and t(x) have the same
stabilizer in GL(V @k K").

¢) More generally, suppose that, for each 7, we have a pair (A, ;) of a O-lattice
A; C V; and a real number 4 € R which determine the point ({"A},cz, ca, + #) In
the building B(GL(V;), K). Suppose also that p;(Go(O™)) C GL(A; ® O™), for each
. Then the proof of Proposition 1.2.3 extends to give a Gal(K""/K)- and G(K™)-

equivariant toral map
(1.2.8) 1 B(G,K") — B(GL(V),K"),

such that ¢(x,) is the image of ({"(A; ® 0 O")},ez, ¢a, + t); under the Levi embedding
[LB(GL(V,),K") = B(J[.GL(V,),K") C B(GL(V),K"). If p is faithful, this map is
an isometric embedding and is unique. Note that this ¢(x,) is not always hyperspecial.
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For example, if K= Q, and p : G = G? < GL, is the embedding of the diagonal torus,
all points of the corresponding apartment can appear as t(x,). Indeed, all points of the
apartment are translations of [Z,e; ® Z,e;] by some (¢, t,) € R’

d) Observe that in Proposition 1.2.3 and also in (c) above, the map of buildings ¢
factors through a “Levi embedding”, with the Levi subgroup determined by a decompo-
sition of the representation V as a direct sum of irreducibles; we use this in the proof of
Proposition 1.3.3. In general, there are equivariant maps that do not factor this way.

1.2.9. — For the rest of this section, unless we explicitly discuss the case K =
k((7r)), we will assume that char(K) = 0.

Let T C G be a maximal torus. We will say that p is munuscule if p ®k K is iso-
morphic to a direct sum of irreducible representations which are minuscule in the sense
that the weights of the corresponding representation of Lie(GI@f) on Vg for the Cartan
subalgebra Lie(TdI-(“) are conjugate under the Weyl group. (See [7, Ch. VI, §1, ex. 24, §4,
ex. 15].) This notion is independent of the choice of T. When G = SL, the irreducible
minuscule representations are the standard and the trivial representation.

Proposition 1.2.10. — Suppose that G s split over K and that p : G — GL(V) s minuscule
and trreducible. Assume that A, A" are two O-lattices in V such that p(Go(O™)) C GL(A ®o
O") N GL(A’ @0 O™), the intersection taking place in GL(V ®k K™). Then A and A" are in
the same homothety class, 1.e. A" = 1" A, for some n € Z.

Progf: — By [11, (1.7.6)], our assumption implies that p extends to group scheme
homomorphisms pp : Go — GL(A), pjy : Go — GL(A"). Let T C G be a maximal split
torus such that x, is in the apartment of T, and let 7 C Go be the Néron model of T.
The torus T acts on A, and we can decompose A as direct sum of weight spaces A =
@s.ew(p) Ay Since p is minuscule, the set of weights W(p) C X*(T) is an orbit W - A, of a
single highest weight Ay under the Weyl group and all the spaces V; are one dimensional
([7, Ch. VIII, §7, 3]). In particular, it follows that A ®e £ is an irreducible G ®o -
representation [41, II 2.15].

After replacing A’ by a scalar multiple, we may assume that A" C A, and that if
A’ C A ®o k denotes the image of A" in A ®p £, then A’ #{0}. Then A’ C A ®o k is
a non-zero G ®o k-subrepresentation. As A ®p £ is irreducible this implies A’ = A, and
so A" = A, as desired. O

Corollary 1.2.11. — Assume that, in addition to the above assumptions, p s faithful. If v and
" are G(K™)-equivariant toral embeddings B(G, K"™) — B(GL(V), K"), then there is t € R such
that ' =t + .

Proof. — By [48, Prop. 2.2.10], such ¢, ¢’ are determined by the points ¢(x,), t'(x,)
in B(GL(V), K™). Their stabilizers subgroups both have to contain p(Go(O"™)) and so



INTEGRAL MODELS OF SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE

by Proposition 1.2.10 they both have to be hyperspecial. Since such hyperspecial points
are determined up to translation by a real number by their stabilizer subgroups, Proposi-
tion 1.2.10 implies the result. UJ

1.2.12. — We continue to assume that G is split over K and that p : G — GL(V)
1s a K-representation.

Denote by H the split Chevalley form of G over Z,; fix a pinning (T, B, ¢) =
(Tx, By, ¢) of H over Z, and a corresponding hyperspecial vertex x, of the building
B(H, Q,) whose stabilizer is H(Z,). Choose an isomorphism G ~ H ®z, K, then we
can take Go = H ®z, O. Recall that if K" is any p-adic local field extension of K, there
is a canonical embedding B(H, Q,) — B(H, K’) and so we can also think of x, as a
hyperspecial vertex of B(G, K') for all such K.

Let V=@,V p = ®:p;, with V; = V(X)) ®q, K, V(%,) an irreducible Weyl mod-
ule of highest weight A; (for our choice of T, B) over Q,; fix a highest weight vector
v; = v, in V(};) and consider the Z,-lattice A; C V(},) given as A; = Uy - v; where
iy is the subalgebra iy of the universal enveloping algebra of H over Z, generated by
the negative root spaces acting on V(4;). This gives p; : H — GL(A,) (cf. [41]) and we
can see that the assumptions of Proposition 1.2.3 are satisfied for the choice of lattices
A;®z, O CV;=V(}) ®q, K. Hence, we have

(1.2.13) t: B(G,K") — B(GL(V),K"),

such that ¢(x,) is the point which corresponds to A ®g, oY = (@;A;) ® O as described
above. More generally, we will also consider maps ¢ that also depend on the choice of a
collection of #; € R, as in Remark 1.2.7 (c). The choice above corresponds to £, = 0. If p
1s faithful, ¢ is an embedding.

1.2.14. — We now allow G to be non-split; however, we always suppose that G
splits over a tamely ramified Galois extension K/K with Galois group I' = Gal(K/K).
We allow K/ K to be infinite, but we assume that the inertia subgroup of I' is fi-
nite.

Choose an isomorphism ¥ : G @k K> H ®z, K which identifies G(K) and H(K)
and write G(K) = H(K)" where the action of T is given by y - A = ¢(y) - y (%) with
¢: T — Aut(H)(K) the cocycle ¢(y) = - y(¥)~". The cocycle ¢ represents the class of
the form G of H in HY (", Aut(H) (K)). Our choice of pinning of H allows us to write
Aut(H) (K) as a semi-direct product

Aut(H)(K) = HYK) x 2

where E = Ep is the group of Dynkin diagram automorphisms (which is then
identified with the subgroup of automorphisms of H that respect the chosen pin-
ning).
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Under the assumption of tameness, by work of Rousseau or [60], the canonical
map B(G, K) < B(G, K) gives identifications B(G, K) = B(G, K)' = B(H, K)"; the
action of I on B(H, K) is induced by the action of I' on H(K) given above.

1.2.15. — We now assume that G is as above and consider a representation
p: G = GL(V) (ie. defined over K). In what follows, assuming in addition that p is
minuscule, we will construct a certain G(K")- and Gal(K""/K)-equivariant toral map

(1.2.16) 0 B(G, K™) = B(GL(V), K*)

which also restricts to give a map ¢ : B(G, K) — B(GL(V), K).
Assume first that p : G — GL(V) is irreducible over K; we do not assume that

p 1s faithful. We follow the arguments of [69] or [66]. (See, for example, the proof of
Theorem 7.6 in [69].) Let

D’ ={p e Endx(V) | ¢-p(@) =p(9) - 9. VgeGK)}

be the centralizer algebra of p, which is a division K-algebra. Then V is a (right) module
for the opposite K-algebra D = (D")°PP.

The Galois group I acts naturally on the set of dominant weights of G as described
in [69, 3.1]. For a dominant weight A, we denote by V, ¢ the K—subspace of V®k K
generated by all simple submodules of highest weight A. Let Ay, ..., A, be the dominant
weights A for which V, g # 0. This set is I'-stable, and we have

VexkK=a_V, ;.

The I-action on V ®k K induces a transitive action on the set of summands V. ks
which coincides with the one induced by the action of " on {A;};. As in loc. cit., we have

Vg 2 V() ®q, K

where d is an integer not depending on ¢. Denote by I') C I' the stabilizer of A;; let K,
be the corresponding field K ¢ K; € K and set V|, =V, k- The center of D can be
identified with K; and then V becomes a K;-vector space; the epimorphism V @k K —
V gk, K gives an isomorphism V ®g, K~ V). We obtain a K,-representation

,61 . GK1 — GL(V)D

which is absolutely irreducible and is such that p; ®x, K is identified with the Weyl
module representation p; : Gg = Hg — GL(V(X))g). As in loc. ct., the original K-
representation p : G — GL(V) can be obtained from p; by applying restriction of scalars
twice:

(1.2.17) P = I{CSKI/K(I{fISI‘)/Kl . ,51)
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Here, Resp/k, : GL(V)p <= GLg, (V) is given by forgetting the D-module structure, and
Resg, /x : GLg, (V) < GL(V) by forgetting the K;-module structure. More precisely, p
is the composition of

Res (1)
(1.2.18) G — Resg, x (G,) —225 Resg, x (GL(V)p)
with
(1.2.19) Resg, /x (GL(V)p) = Resg, x (GL(V)x,) = GL(V).

In fact, p; : Gg, = GL(V)p 1s a K;-form of the Weyl module p;, as follows:
The group I'; acts on G(K) = H(K) with the action given by twisting via the cocy-
cle ¢r, : T’y = Aut(H) (K). Denote by Jl(K) the subgroup of Aut(H) (K) generated by
Had(f{) together with ¢(y) for y € I'}. Since A, i1s I'j-invariant, for every a eJl(K),
the representation p; o ¢ is again irreducible of highest weight A, and so there is
0(a) e PGL(V(L) ® K) such that p; 0o a =60(a) o p;; by Schur’s lemma, 6 (a) is uniquely
determined and hence it gives a homomorphism

(1.2.20) 6:J1(K) = PGL(V(2) ® K).
As in the proof of [69, Theorem 3.3], the cocycle
¢:=60-¢:T - PGL(V(x) ® K)

defines the K~1—f0rm End(V)p = End(V(A)) ® K)Fl of End(V(4,)) and p; : Hy —
GL(V(A)) ® K) descends to

pi:Gr, = HRK)" - GL(V)p =GL(V(L) ® K)“ .

Here, the I';-fixed points are for the I'}-actions given using the cocycles ¢ and ¢ =6 - .
From here and on we will assume that K contains K*.

Proposition 1.2.21. — Assume that p, or equivalently that p,, s minuscule. We equip
B(GL(V (L)), f{) with the action of Ty induced by the standard action on GL(V () ® K) twisted
by the cocycle ¢'.

Then the G(K) = H(K) -equivariant toral map

11 : B(G,K) = B(H,K) - B(GL(V(x))),K)
guven as in the split case above is Iy -equivariant.

Progf: — By the construction of ¢; as a composition

B(H,K) — B(H/ker(p)), K) = B(GL(V(1)), K),
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we see that after replacing H by H/ker(p,), and Gk, by Gk, /ker(p,), we are reduced to
considering the situation in which we assume in addition that p; is faithful. By [48], there
is a G(K)- and I -equivariant toral isometric embedding

i1 B(G,K) = B(H, K) — B(GL(V(%)), K).

Regard now both ¢; and ¢} as two H(K)-equivariant toral isometric maps between the
buildings of the split reductive groups H(K) and GL(V(*;) ® K) over K. By Corol-
lary 1.2.11, we have (; =t + LIf with ¢t € R =X, (diag(G,,z)) ®z R. Notice now that the
Galois group T} acts trivially on X, (diag(Gy,z)). Since ¢} is ['j-equivariant this implies
that ¢, is also I'j-equivariant and this concludes the proof. UJ

1.2.22. — We continue with the above notations and assume that p is minus-
cule. Recall K contains K"; let I} C I'| be the inertia subgroup. Using [60] and Proposi-
tion 1.2.21 we see that by restricting to I,-fixed points, ¢; gives

(1.2.23) u:B(G,K}") = B(GL(V)p, K}).

The same construction also works for the translations ¢ 4 ¢, ¢ € R. This gives

t+1

(1.2.24) B(G,K™) C B(G,K}") — B(GL(V)p, K}").
Compose this with the standard equivariant embedding
B(GL(V)p, K{") = B(Resgu/ku (GL(V)p), K*) — B(GL(V), K")

given by sending Op-lattices in V to the corresponding O-lattices in the K-vector space V
(by restriction of structure from Op to O). This composition gives a G(K"™)-equivariant
toral map

c:B(G,K") — B(GL(V),K™),

which is also Gal(K"/K)-equivariant as desired. This concludes the construction of ¢
when p is minuscule and irreducible over K.

1.2.25. — In general, if p : G — GL(V) 1s a minuscule K-representation, write
it as a direct sum of K-irreducible representations p; : G — GL(V;) and then proceed
to give a G(K)-equivariant toral map ¢ : B(G, K") — B(GL(V), K") by combining
i : B(G,K") — B(GL(V;), K") given above with the Levi canonical embedding as in
(1.2.2). If p 1s faithful, the map ¢ is injective. Hence, in this case, we obtain a G(K")-
equivariant toral embedding of buildings

(1.2.26) L2 B(G,K™) — B(GL(V), K™)

which is also Gal(K""/K)-equivariant as desired.
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1.2.27. — Consider now the case K = £((;r)). Suppose we have a reductive group
G over K which splits over a tamely ramified extension K/K and a representation p :
G — GL(V). Assume that p is written as a direct sum of G-representations which are
obtained by restriction of scalars as in (1.2.17) of representations p; given as twisted Weyl
modules for minuscule dominant weights A. Here we assume that the twist is also given
in the same way as 0 is given in the characteristic O case of 1.2.15. (Note that in this case,
G-representations are not in general semi-simple modules; however, here we assume such
a direct sum decomposition and we are also giving the twisting construction as in 1.2.15
as part of our data. Also recall, a dominant weight A for a Chevalley group is minuscule
if there is no other dominant weight u with @ < A, where < denotes the usual partial
ordering of weights. This implies that the Weyl module V(4); is simple [41, II, 2.15] and
that its weights are the Weyl group orbit of A.)

Under the above assumptions, we can obtain maps of buildings ¢, as in Propo-
sition 1.2.21, and then ¢ as in (1.2.26), by carrying out the same construction as above.
(Note that, under our assumptions, H — H/ker(p,) is separable on each root subgroup—
for that see also the proof of Proposition 1.3.3 below that reduces this to the case H = SL,-
and so we can apply Proposition 1.2.3 as a step in our construction.)

1.3. Munuscule representations and group schemes

1.3.1. — We continue to assume that G splits over a tamely ramified extension
K of K with Galois group I' = Gal(f{/ K). We assume that p : G < GL(V) is a faithful
minuscule representation of G where V is a finite dimensional K-vector space. Recall the
G(K)-embedding

(1.3.2) L B(G,K) — B(GL(V), K)

constructed in the previous paragraph. This depends on a choice of an isomorphism
¥ : Gz — Hg and a hyperspecial vertex x, of B(H, K) together with choices of, for
each K-irreducible summand, a lattice A; = j; - v; given by the highest weight vector
v; € V(A) and a grading ¢,, + ¢ of the lattice chain {7"A,},cz given by 4, € R. The map ¢
appears as a restriction of a Gal(K"/K)-equivariant G(K")-embedding ¢ : B(G, K") —
B(GL(V), K™).

Proposition 1.3.3. — For any x € B(G, K), p extends to a closed immersion
Px - gx - gﬁ(v)t(x)

of group schemes over Spec (O).

Proof. — Let y = 1(x) and suppose that A} = {Aj,}iez is the periodic chain of O-
lattices in V that corresponds to » and is fixed by GL(V),. Then G(K"), = G(K*) N
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GL(V ®k K"), — GL(V @k K*), = GL(A; ®o O"). Using [11, (1.7.6)], we obtain a
group scheme homomorphism

p:G.—GL,

which we would like to show is a closed immersion. Denote by G’ the schematic clo-
sure of G in GL,; this agrees with the scheme theoretic image of p above. Notice that
»=t(x) implies G/(O") = G(K"™) N GL(V ®k K"), = G(K™), = G,(O"). Therefore,
it is enough to show that the schematic closure G of G < GL(V) in GL, is smooth
or equivalently (by the description of GL, recalled in 1.1.9), that the schematic closure
of G < []'—) GL(V) (embedded diagonally) in the O-group scheme []._, GL(A)) is
smooth.

1) We first suppose that G is split over K. Fix a maximal K-split torus T >~ G/ of
G such that x belongs to the apartment A(G, T, K) C B(G, K). To start with, we also
assume that G is semi-simple, z.e. G = G, We first assume that p is actually irreducible.
The torus T acts on V via p and we obtain the weight decomposition

(1.3.4) V = ®iewip) Va-

Since p 1s minuscule, the set of weights W(p) C X*('l) is an orbit W - A, of a single weight
Ao under the Weyl group and all the spaces V; are one dimensional ([7, Ch. VIII, §7, 3]).
Set T" = [ T1ew(p GL(V,) for the maximal torus of GL(V) that preserves the grading
above. We have p(T) C T".

For a root a € ®(G,T), we denote by U, the corresponding unipotent subgroup
of G. Set G, = (U,, U_,) for the subgroup of G generated by U, and U_,. This is isomor-
phic to either SLy or PSLy. The isomorphism takes the standard unipotent subgroups U 1
of SLy to Uy, C G. Consider now the restriction p : G, = GL(V) and the composition
with the central isogeny SLy — G,

0. SLy — GL(V).

We claim that this is a minuscule representation of SLy: Indeed, consider V as a repre-
sentation of Lie(G,) = sly. It decomposes as follows

V=& Vi = O (@r=rtrV1)-

Here [A] runs over all equivalence classes of weights in W(p) under: A" ~ A if there 1s
k € Z with ) — A = ka. By the general theory (eg [7, Ch. VIII, §7, 2, Prop. 3]), Vi
are representations of sl = (X_,, H,, X,) (a standard Chevalley basis) and there are two
cases:

a) [A] = {A} has only one element,

b) [A] has two elements and we can then assume it is of the form {A, A 4 a}.

In the first case, Vi, is the trivial representation of sk; in the second case, Vi 13
isomorphic to the standard representation of sl. Therefore, for each root a € ®(G,T),
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the composition p, : SLy — GL(V) is a minuscule representation. It now follows that p,
does not factor through PSL, and so G, has to be isomorphic to SLy.

By the construction of G,, the schematic closure 7 of T C G in G, is smooth and
so it acts on Al for all indices . Since T >~ G/ /0> We obtain decompositions

(1.3.5) A= Brewin A,

with A} , €V, rank 1 O-lattices in V;. (This implies that the point y lies in the apartment
A(GL(V), T, K) € B(GL(V), K).) We can now use this to reduce to the case that G is
SL,. Write U,,, G, >~ SL, as before.

We now allow V to be reducible and write V = @®;V; where V; are irreducible and
minuscule. By the above applied to the irreducible V;, we can write

Vi =®mVjm = O (@r=r+i V)
as before. We have
(1.3.6) A} =@ @rewiy A,

with A’ ay C V;, rank 1 O-lattices in V; ;. Here, we also use the construction of ¢, see
1.2.25 and 1.2. 3 and also Remark 1.2.7 (d). We can now see that the schematic closures
Uy, of Uy, in [[; GL(A J,) are isomorphic to the schematic closures U, of

Ui C SLQ i> 1_[ 1_[ GL(\/J',[)»])

JIAl i

in the group scheme

1_[ 1_[ GL(AJZ:, [)»]J’)

Sl

where Al e A] Ay OF A; ay @ A] sty (I cases (a) or (b) respectively). Consider classes
[A] for Wthh the SLy representation V; ;5 is not trivial, as in (b) above. We choose a basis
vector ¢, of V;; and set f;, =X, - ¢, which is a generator of V;;_,. The choice of basis
¢.1.> Jin» of Vja gives an identification of V; ;) with the standard representation of SLy.
We have
A}’w = i) . & s Ajl Aty = a"mi . S

for some m; )i, m,1),i € Z, and so under this identification, the lattices A]z iy C Vi, for
all 7, are in the same apartment for GL(V;;;), namely the standard apartment for the
chosen basis. It now follows from [12, 3.6, and 3.9 (2)] that the schematic closures of U in
nj,[kl [ GL(A\;,[M J) are smooth. Hence, the same is true for the schematic closures Us,.

By the construction of the lattices A‘,, the schematic closure of T in [T, GL(A}) s

Ji Ao
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smooth. It follows by [11, Thm. 2.2.3] that the schematic closure G/ of G in []. GL(A})
contains the smooth big open cell

]_[u_a x T x HUQ.

Hence, by [11, Cor. 2.2.5], the schematic closure G/ is smooth.

Remark 1.3.7. — The above is similar to corresponding arguments in [26, §10],
[27, §9]. Our assumption that p : G = GL(V) is minuscule is used in an essential way
in this proof. For example, the assumption that the weight spaces have dimension one is
used to reduce to the case of SLy: In general, for G split semi-simple and p irreducible,
consider p, : SLy — GL(V) as before which we write as a direct sum of irreducible rep-
resentations V = @,V,. If dim(V,) # 1, we might have two distinct summands V,, V,,,
with V, NV, #(0), V., NV, # (0). Then we cannot guarantee that Aj is equal to the
direct sum EB,(A;, NnV,).

2) Assume now that G is still split over K but is not necessarily semi-simple. The
argument above extends to this more general case by observing the following. The O™-
points 7 (O") of the Zariski closure T of T in GL, give the maximal compact subgroup
of T(K"). (Indeed, Aut(A)',) N GK™) is equal to G(K™), = G,(O") and since x is in
the apartment of T, the subgroup G(K"), contains the maximal compact subgroup of
T(K").) Then the Zariski closure T is smooth by [61, Lemma 4.1]. The rest is as before,
since the unipotent subgroups U, and their Zariski closures U, are the same for both G
and G,

3) We now consider the general case in which G splits over the tamely ramified
Galois extension K of K with group I' = Gal(K/K). By [60], we have

(1.3.8) B(G,K) =B(G,K)",

where on the right hand side, we have the fixed points of the natural action by I". For a
bounded subset Q2 C B(G, K), the Galois group I'" acts on G(K)Q. Since we are assuming
K =K", by [11, (1.7.6)], this action comes from an action of the Galois group I" on the
smooth group scheme Resp,0(Gq ) (Here, we use the subscript K to indicate that Gax

is the Bruhat-Tits group scheme over O which is associated to € considered as a subset
of B(G,K).)

Proposition 1.3.9. — As above, suppose that K /K is tamely ramified and Galois with Galois
group T'. Then we have

(RCS@/O (gQ,K))F ~Go K,
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and n particular, a closed group scheme immersion
(1.3.10) Gax = Resp,0(Gq g)-

Proof: — Since (G(f{)g)F = (G(K)F)Q = G(K)q this follows from [11, (1.7.6)] us-
ing that, by [22], the group scheme on the left hand side is smooth over O. U

By our construction of ¢ we have a commutative diagram where the horizontal
arrows are equivariant toral embeddings

B(G,K) — [ BResg, xGL(V))n, ® K, K)

(1.3.11) 4 4
B(G,K) — [ BResg, xGL(V)p.K) = B(GL(V),K),

and the vertical arrows are the natural embeddings. Here K, is the field obtained from V;
and the representation p; : G — GL(V;) over K. By our construction, the top horizontal
arrow 1s the G(K) -map of buildings (i ,);, that corresponds to

pf{ $Gr = l_[j Ha GL(V; ®x;, K)D/‘@K_MK = l_L' 1_[0 GL(V()VI) Be, K)

(Here o runs over all K-embeddings K;; — K and p can be identified with the product

over j of the base changes of (1.2.18) from K to K.) Each factor corresponds to a minus-
cule irreducible K-representation of the split group G and we can see that p;, is faithful.
The result in the split case implies that p; induces a closed immersion

(1.3.12) i G =TT, 96V 9, R),
of smooth group schemes over Og. Now, as in (1.3.10), we also have a closed immersion
Reso, 0((GLV),), () = [T Resg0(GL(V() @q, K), )-

Since, again by (1.3.10), G, = G, x — Resp,0 0, ¢ is a closed immersion, we deduce that

G.xk —> Hj Res@ﬂ/@ ((gﬁ(Vj)Dj)Lj(x))

is a closed immersion. The result now follows using [12, 3.5, 3.9]; this implies that the
natural

Resojl/o((QE(VJ')DJ)%@) - g»C(Vj)Lj(x)
corresponding to restriction of scalars
Resk,/k (GL(V)p,) = Resk, /x (GL(V))k, ) = GL(V))

(cf. (1.2.19)) 1s a closed immersion. U
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1.3.13. — We can see that the statement of Proposition 1.3.3 continues to hold,
with the same proof; in the equicharacteristic case K = £((;r)) provided we consider p :
G — GL(V) and a corresponding embedding ¢ : B(G, K") — B(GL(V), K") which
are given as in 1.2.27.

1.4. Extending torsors

1.4.1. — We continue to use the notation introduced above. Let O¢ be the p-
adic completion of W[[u]],; this is a henselian discrete valuation ring with residue field
k((w) and fraction field £ = O¢[1/p] = Ko{{u}}. For simplicity, we set D = Spec (W[[«]]),
D* =D — {(x, )} and also D[1/p] = D*[1/p] = Spec (WI[ulI[1/5]).

1.4.2. — Suppose G is a connected reductive group over Ko, and let G be a
parahoric Bruhat-Tits (smooth) group scheme over W for G; i.e. G = G? for a point x in
the Bruhat-Tits building B(G, Ky) and G = G[1/p] = G @w K.

As above, we assume that G splits over a tamely ramified extension of K. We also
assume that G has no factors of type Eg. (For our purposes, this is an acceptable assump-
tion since it is satisfied for the reductive groups corresponding to Shimura varieties.) The
main result of this section is the proof of the following:

Proposition 1.4.3. — Under the above assumptions, each G-torsor over D* s trivial, i.e. we

have H' (D>, G) = (1).

Remark 1.4.4. — When x is hyperspecial (so in particular G is quasi-split and split
over an unramified extension of K, this follows from [16] as shown in [43]. See also
Remark 1.4.15 below.

Before giving the proof of the Proposition, we need the following two Lemmas. In
the arguments below, all the cohomology groups/sets are for the fppf topology. However,
since all the coefficients here are given by smooth group schemes we could also use the
étale topology with no change.

Lemma 1.4.5. — Let Q be an induced torus over Ko, and Q° its connected Néron model
over Ox,,. Then we have

H'(D[1/p]. Q) = {1}
and

Im(H*(D*, Q°) - H*(D[1/p], Q)) = {1}.

Proof. — By assumption () is a product of tori of the form Resk /k, G, for K/Kg a
finite extension, and we may assume () = Resg /i, Gy,. For the first claim we have

H'(D[1/p], Q) = H'(Spec Okl[ull[1/4], G.) = {1}
as Ok[[ull[1/p] is a UFD.
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For the second claim, note that we have a tautological character Qg — G, which
extends to a map of smooth groups over O, Q°|o, — G, since Gy, is the connected
Néron model of its generic fibre. Finally, we obtain a map Q° — Resoy 0k, Gm, and it
suffices to show that H*(D*, Respy /O, G,,) = {1}, or equivalently H? (D(XQK, G, ={1}.

By purity of the Brauer group (e.g. [33, Part II, Prop. 2.3] or [33, part III,
Thm. 6.1 (b)], and the fact that Ok [[«]] is strictly henselian, we have

H? (DY, , Gu) = H Doy, Gu) = HX(Gal(k/h), Gy).

Our assumptions on £ imply the final group is trivial. U

Lemma 1.4.6. — Suppose that G s quasi-splt, semi-simple and simply connected with no
factors of type Eig. Then H'(D[1/p], G) = {1}.

Progf: — Note that D[1/p] = Spec (W[[«]l[1/p]) 1s regular Noetherian of dimen-
sion 1. Set IC = Frac(W[[«]]). This is a field of cohomological dimension 2: Indeed, if
£ # p, the £-cohomological dimension (see [67]) c¢d,(K) of K is 2 by results of Gab-
ber. (This verifies a conjecture of M. Artin, see [SGA4 X] or [40, Exp. XVIII].) On the
other hand, cd,(K) = 2 was shown by Kato, see [47], or [24] for a more general result.
We now use results on Serre’s conjecture II: By [28], if H is a semi-simple, simply con-
nected quasi-split reductive group with no Eg factors, then H' (XC, H) = (1). (This uses
earlier more general results for groups of classical type, by Bayer-Fluckinger—Parimala,
see [2], [3]. See also [30] for a survey.) Therefore, H' (K, G) = {1}.

Now let B C G be a Borel and T C G a maximal torus. Let ] — D[1/p] be a G-
torsor. Since H' (K, G) = (1), ] has a section defined on a non-empty open subscheme
U of D[1/p]. This gives a section of the associated G/B-bundle ] x¢ G/B — U. Since
D[1/p] is affine, regular of Krull dimension 1 and ] x¢ G/B — U is proper, this section
extends to a section defined over D[1/p]. This defines a reduction of the structure group
of J from G to B, i.e. a B-torsor J' — D[1/p] so that ] >~ ] x® G. Now notice that all
B-torsors over D[1/p] are trivial. Indeed, B is a successive extension of the maximal torus
T and unipotent groups of the form Resg//x,G,. By an argument as in Lemma 1.4.5,
all torsors for these unipotent groups are trivial Similarly, since the torus T is induced,
H!(D[1/p], T) = {1} by Lemma 1.4.5. It follows that the G-torsor ] is trivial; hence
H!(D[1/41, G) = {1}. O

Proof of Proposition 1.4.3. — Suppose that J — D* is a G-torsor. We begin by con-
sidering the case when £ is algebraically closed. Then, by Steinberg’s theorem G is quasi-
split, z.e. it contains a Borel subgroup B defined over K;. The variety of Borel subgroups
G/B 1s projective over K.

Step 1. The base change Jo. — Spec (O¢) s a trivial G @z, Og-torsor.
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Indeed, the fibre Jy) — Spec (k(w)) is a trivial G Qw k((w))-torsor: This last
group is an extension of a connected reductive group by a unipotent group both defined
over k. (Recall here that the special fibre of G = G? is connected.) Since the cohomolog-
ical dimension of k() is 1 ([67, II 3.3]), the result then follows by Steinberg’s theorem
([67, III. 2.3, Remark 1)]) and the fact that H' (k((»)), G,) = {0}. Since O¢ is henselian
with residue field £(w)) and Jo, — Spec (O¢) is smooth, a section of Jo, over k() lifts
to a section over O¢.

Step 2. The base change J[1/p] — DI1/p] is a trivial G-torsor.

By [15], there is a flasque resolution
(1.4.7) 1-2Z->G—>G—1
with Z a flasque (central) torus, G semi-simple simply connected and at the same time
(1.4.8) >G5 G->Q—1

with Q an induced torus (i.e. Q > [, Resk,/k, G where K;/Kj are finite tamely ramified
extensions). Recall that a torus Z over K is called flasque if for every open subgroup
I'cl= Gal(KO / Ko) we have H'(I', X, (7)) = 0. Since Z is central, it is contained in the
centralizer T = Z(S) of any maximal K-split torus S of G. Actually, in this case we see
(loc. cit.) that these centralizer maximal tori of both G%" and G are induced. (This will be
used later.) Since we are assuming that G splits after a tamely ramified (and hence cyclic)
extension of K the flasque torus Z is also a direct summand of an induced torus (see [14,
Prop. 1]; this uses a result of Endo-Miyata on permutation Galois modules) so we have
Z xx, Z' >~ Q) for some torus Z’, and with Q' an induced torus.

By Lemmas 1.4.5 and 1.4.6, we have H'(D[1/p], C}) = {1}. Hence it suffices to
show that the image of J in H*(D[1/p], Z) is trivial. By Proposition 1.1.4, there is an
exact sequence of smooth group schemes over W

(1.4.9) 1> 2°>G60—->G—1

where Z is the finite type Neron model ([11, §4.4]) of the torus Z and G= g 1s the para-
horic group scheme for the group G that corresponds to ¥ € B(G™, Ky) = B(G‘ld Ky).
Hence the image of 7 in H*(D[1/p], Z) is its image under the composite map

H'(D*, G) —» H*(D*, 2°) - H*(D[1/], Z).
This 1s trivial by Lemma 1.4.5, since Z is a direct summand of an induced torus.
Step 3. We have GOW[[ull[1/pD\G(E)/G(O¢) = {1}.

Assuming this, let us show that the G-torsor J is trivial. Indeed, from Steps 1 and
2 we have sections @, and a[1/p] of the torsor J — D* over Og and D[1/p] respectively.
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Consider g-a, = a[1/p], g € G(E), with both sections restricted on Spec (£). The triviality
of the double cosets above implies that we can modify these sections to achieve g = 1. Now
observe that D[1/p] L Spec (Og) — D* is a cover in the fpqc topology; by Grothendieck’s
theorem on full faithfulness of fpqc descent data (e, [6, Chap. 6, Thm. 6 (a)]) we can
conclude that the torsor J is trivial over D, cf. [29, Appendix].

We now turn to showing the triviality of the double cosets above. Pick an alcove in
the Bruhat-Tits building of G over K, whose closure contains x. The connected stabilizer
of any point in that alcove is an Iwahori subgroup Z for which Z(Og) C G(O¢). This
shows that it is enough to assume that G = Z, i.e. that G is an Iwahori group scheme.

Now denote by W, the affine Weyl group of G(Ky), which is generated by the
simple reflections s5;, t =1, ..., m, along the walls of the alcove. The reflections s; are
all represented by elements of G(Kg). There are corresponding parahorics G; such
that Z(W) = G(W) C G;(W) with G;,(W) = G(W) U G(W)s5,G(W). Then also G;(O¢) =
G(O)UG(O¢)s:.G(O¢). The cosets G:(Og) /G (Opg) are parametrized by the £(«))-valued
points of the projective line P': To be more precise, let G; be the maximal reductive quo-
tient of the special fibre ?i = G; @w k. The derived group Gfd of G; is SLy or PSL,.
Since G; is smooth and Og is p-adically complete, reduction modulo p gives surjective
homomorphisms

Gi(Og) = Gi(k((w))-

Composing this with the surjection @(k((u))) — G;(k((w)) gives surjective homomor-
phisms

Gi(Og) = Gy(k((w)) — 1.

Now the group G(Og) is the inverse image by ¢; of a Borel subgroup B;(£(w)) C
G;(k((w))). This gives

(1.4.10) Gi(Oe)/G(Og) = Gilk(()) /Bi(k((w)) = P' (k(())-

Similarly, since G; is smooth over W, by Hensel’s lemma, reduction modulo p gives a
surjective homomorphism G;(W[[u]l) — G;(k[[«]]). As before, we obtain similar surjective
homomorphisms

Gi(WIul) 2> G(k[ul)) — 1
which give
(1.4.11) G:(WILelD) /G WILll) — P (kllull).

These isomorphisms (1.4.10) and (1.4.11) are compatible via W[[u]] = O¢g, which mod-
ulo p induces A[[ul]l = k(). Since P! is proper, P! (k[u]]) = P'(k((x))). Hence if x; €
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Gi(Og)/G(O¢), we can find g € G:(WIul) C G(W[ull[1/p]) so that x; = g - G(O¢).

Hence
(1.4.12) Gi(O¢) = G;(WllulD) - G(O¢).
Now, for each n > 1, and ¢}, ..., 7, integers in [1, m], consider the map

gi1 (OS)X' : 'Xgi,,(OS) - G(S)/Q(Og), (yla oo a,yn) =1 ',yn'g(oé')

which factors via the quotient by the action of G(Og)" given by

(yla L) a,yn) : (/71, L) apn) = ()’1/71471_1))2/7% e apﬂ_,l],ynpn)

Start with (yy,...,7,) as above. By (1.4.12), there is p; € G(O¢) so that y1p, =g €
Gi, (W[[ul)). Consider p; 'y, € G(0£)G,(O¢) C G, (O¢). Applying (1.4.12) again, we see
that there is py € G(Op) so that p; ' yops = go € G;, (W[[u]]). Continuing, we find (g, . . ., g,)
and (p1,....p) € G(Og)" with g € G, (Wllul) € GWIull[1/p]) and (i, ..., ) -
p1s--s ) = (a1, ..., g). This gives

o0 GO0g) =g18 - g - G(O¢).

Denote by G(€)! the subgroup of G(E) generated by all the parahoric subgroups
G:(O¢). The above calculation implies that the image of G(W[[«]l[1/p]) in G(E)/G(Os¢)
contains G(E)'/G(O¢).

The group G(E)' coincides with the subgroup generated by all parahoric sub-
groups of G(€) considered in [11, 5.2.11]. As above, choose a maximal split torus S C G
whose apartment contains x, and let 7 C G, be the closure of its centralizer T = Z(S).
By loc. cit. 5.2.4, G(E)" is also the subgroup generated by 7°(O¢) and the £-valued points
of the root subgroups of G. (Notice that we have 7°(Og) C G(Og) C G(E)'.) We now
have

(1.4.13) GE)=T(E) GE).

Now consider the quotient T(E)/T°(Og). The natural homomorphism T(Ky) — T(E)
gives a surjection T(Ky)/T°(W) — T(E)/T°(O¢). When the torus T is induced this
follows from [11, 4.4.14]. In our more general case, we have, as in Step 2, T'= T/Z with
T induced and Z flasque. As above, since Z is a direct summand of an induced torus,
we have H'(€,7) = (1). Hence, T(§) — T(E) is surjective and the desired surjectivity
above then follows from the corresponding property for T. Therefore, (1.4.13) gives

(1.4.14) G(E) =T(Ky) -G(©&)'.

Since T(Ky) € G(W[[«]l[1/p]), this completes the proof of the proposition in the case
when £ is algebraically closed.
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Step 4. The proposition holds for any k.

Write Do, = Spec OL[[«]] and Dy, C Do, the complement of the closed point.
Denote by f : Do, — D the projection. Then /*(J) is equipped with a G-equivariant
descent datum for the morphism f. By what we have already seen f*(J) is a trivial
G-torsor over Dy, , and we may consider this descent datum as a descent datum on
G X px D(XgL. Since G is affine this extends to an effective, G-equivariant descent datum on

G xp D, , which produces a G-torsor on j over D extending J .
Finally J has a section over the closed point of D by Lang’s lemma, and hence
over D by smoothness. It follows that J and hence J is a trivial G-torsor. O

Remark 1.4.15. — Under the additional hypothesis that G is split over K, and
that the subgroup G(W) = G,(W) is contained in a hyperspecial subgroup Gw(W) we
can give a quicker proof of Proposition 1.4.3. (Notice then that by [38], G = G,, since
the Kottwitz invariant homomorphism vanishes on G, (W) C Gyw(W).) We sketch the
argument below:

Recall that there is a representation Gy <> GL,, ,y which is a closed immersion
such that the quotient GL, \y/ Gy is an affine scheme ([16], [43]). Under our assumption,
there is a parabolic subgroup Q C Gy = Gw ®w £ such that G(W) C Gw(W) is the
preimage of Q(k) C Gy (k). In this case, G is given as the dilatation ([6], [72]) of Gy —
Spec (W) along the subgroup Q C Gy ®w £ of its special fibre.

We can now write Q) as the scheme theoretic intersection of Gyw ®w 4 and a
parabolic subgroup Q' in GL, ;. The dilation of GL, ,y — Spec (W) along Q' is a para-
horic subgroup GL, scheme for GL, which is given as the stabilizer of a corresponding
lattice chain. We have a closed group scheme immersion G < GL, such that the quo-
tient GL£,/G is affine: Indeed, the quotient GL,/G can be identified as the dilatation of
the affine scheme GL, v/Gyw along the closed subscheme Q'/Q of'its closed fibre. Such
dilatations of affine schemes are also affine. Now use, as in [16], [43], the fact that any
morphism D* — X with X affine extends to D — X to reduce the proof to the case that
the group is G = GL, and the parahoric subgroup G =GL,.

When G = GL,, a G-torsor over a scheme T is given (cf. [64, Appendix to Chap. 3])
by a periodic chain (F;, ¢;); of locally free rank n Op-modules F; with maps ¢; : F; —
Fiy1 such that, for all 7, the quotients F;;/¢;(F;) are locally free Or/pOr-modules of
fixed rank 7; (which depends on our choice of y). (By “periodic” one means that there is
a > 1 such that F;,, = F; and the composition @, ,_1 - @+ - ¢; is multiplication by p,
for all 7.) Since D is regular Noetherian of dimension 2 and D — D> has codimension 2,
a periodic chain (F;, ¢;) over D* uniquely extends to a periodic chain (.7}l~, @;) over D.
If (F;, ¢;) satisfies the above condition on the quotients, then so does the extended chain
(.7:}, ¢;): Indeed, by the above, the W[[«]]-modules .7}1/ @i(.ﬁ) have projective dimension
1, and are annihilated by p. By the Auslander-Buchsbaum theorem .7:"1 / (ﬁi(]}i) has only
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trivial u-torsion; therefore, it is free over W[[u]l/pWI[u]l = A[[«]]. This establishes that the
G-torsor over D* extends to a G-torsor over D which then has to be trivial as before.

2. Local models

2.1. The local models

2.1.1. — We now recall the definition of the local models from [59, §7]. We
continue to use the notation of the previous section, but we assume that K/Q, is a finite
unramified extension of Q. Suppose that (G, {u}, K) is a triple, with

— G a connected reductive group over K,

— {u} a conjugacy class of a geometric cocharacter i : Gng, = Gg,, and

— K C G(K) a parahoric subgroup which is the connected stabilizer of the point
x € B(G,K).

We assume that G splits over a tame extension of K and that p is minuscule.’

Suppose that E C Qﬁ is the local reflex field, i.e. the extension of K which is the
field of definition of the conjugacy class {u}.

In [59, §3], there is a construction of a smooth affine group scheme G over O[]
which specializes to the parahoric group scheme G := G° over O after the base change
Olu] — O given by u > p (loc. cit. §4), and such that G = G|oy,,,1) is reductive. There
1s a corresponding ind-projective ind-scheme (the global affine Grassmannian) Grg a1 —
A' = Spec (O[u]) (loc. cit. §6). The base change Grgai Xa1 Spec (K) under Olu] — K
given by u > p can be identified with the affine Grassmannian Grg x of G over K. (Recall
that Grg x represents the fpqc sheaf associated to the quotient R = G(R((?))/GR[[¢]]);
the identification is via ¢ = u — p.)

The cocharacter  defines a projective homogeneous space Gg,/P,-1 over Qp
Here, P, denotes the parabolic subgroup that corresponds to the coweight v; by defi-
nition, the Lie algebra Lie(P,) contains all the root subgroups U, for roots a such that
a-v:G, — G, is a non-negative power of the identity character. Since the conjugacy
class {it} 1s defined over E we can see that this homogeneous space has a canonical model
X, defined over E (notice however, that X, might not have any E-rational point). If G is
quasi-split, then {} has a representative u : G, — G which is actually defined over E
(43, 1.1.3] then we can write X, = Gg/P,-1 which has an E-rational point.

Since p is minuscule, the corresponding affine Schubert variety with Q,,—points
S,.(Q,) = G(Q, I u(t)G(Q,1)/G(Q,[¢]) in the affine Grassmannian Grg x Xk Q,,
is closed, see [58, p. 146]. Our assumption that the conjugacy class {i} is defined over E
implies that S, (Qp) is Gal(Q,, /E)-equivariant and so it corresponds to a closed subvari-
ety S, of the ind-projective Grg x Xk E. The natural left action of G(Q,,[It]]) on S, (Q',,)

% Recall that p is minuscule if {a, u) € {—1, 0, 1} for every root a of GQp'
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is transitive and the stabilizer of (f) is H,, := G(Q, 1) N u()G(Q, MM u(H)~". Let T
be a maximal torus of GQ[J which contains the image of w. Then H, contains T(Qpﬂt]]).
Since p is minuscule, we can see that H, contains the kernel of the canonical homo-
morphism Ua(Qp[[t]]) — Ua(Qp), for all roots a of GQp. We conclude that H,, contains
the kernel of G(Q,[[l) — G(Q,); by definition, the image of H, in G(Q,) is equal to
P, (Q,,) Hence, S, can be Gg- equivariantly identified with X,,.

The local model Mlgc{ W = = M"(G, {u}), is by definition the Zariski closure of
X, C Grgx Xk E in Grg a1 Xa! Spec (Og) where the base change O[u] — Oy is given
by u+ p. By its construction, Ml(i’“{ ... 18 @ projective flat scheme over Spec (O) which
admits an action of the group scheme G x o Op. We recall:

Theorem 2.1.2 (/59, Theorem 9.1]). — Suppose in addition that p does not divide the order
of the (algebraic) fundamental group 1v,(G") of the derived group of G. Then the scheme Mlg{ W
normal. The geometric special fibre of Mlgc{ ). 15 reduced and admats a stratification with locally closed
smooth strata; the closure of each stratum is normal and Cohen-Macaulay. U

loc

Corollary 2.1.3. — Under the above assumptions, the base change M, . ® oy, Or, is normal,
Jor every finite extension L/E.

Proof. — Using Theorem 2.1.2, we see that the special fibre of MOC Gy ®0p, OL i
reduced. The result then follows as in [59, Prop. 9.2]. O

2.1.4. — For simplicity, we will often write M instead of Mlg{ .0 When {u}
and x are understood. When the data (G, {ut}, K) are obtained, as in the next chapters,
from global Shimura data (G, X, [],K)) after the choice of a prime v|p of the reflex field
E(G, X), we will often write Mlgcx instead of Mlgc{ ..« In particular, in this we take ¢ to
be in the conjugacy class of u, for 4 € X.

We now recall some points of the construction of the group schemes G and G.
We will only need these details when the reductive group G is quasi-split over K; then
this construction is somewhat more straightforward and proceeds as follows. (Notice that
Steinberg’s theorem implies that we can make sure that this assumption is always satisfied
after enlarging the unramified extension K/Q,.)

Choose a maximal K-split torus S of G. Since G is quasi-split, the central-
izer T = Z¢(S) 1s a maximal torus of G. Also choose a Borel subgroup B of G de-
fined over K that contains S and consider the corresponding based root datum R* :=
(X (T), A, X*(T), A") where A C @ is the set of simple roots that corresponds to B in
the root system ® = ®(G, T). Denote again by H the split Chevalley form of G over Z,,
and choose a pinning (T, By, ¢) of H over Z,. The corresponding based root datum of
H agrees with R*. Set E := Eg = Aut(R™").
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The quasi-split group G over K is described by a Ey-torsor over K; this splits over a
tame finite extension K € K C Q',, and can thus by described via a group homomorphism
& Gal(Q,,/K) — E that factors through I'k = Gal(K/K). As explained in [59, 3.2,
3.3], & corresponds to & : 7, (Spec (O[«*']), Spec (Q,)) — E, with O[«*'] — Q,, given
by u > p, i.e. to a E-torsor over O[u*']. (This specializes to the above E-torsor over K
after u > p.) This now gives a quasi-split reductive group scheme G over O[«*'] which
can be described explicitly as follows: Our choice of pinning (T, By, ¢) of H identifies
E with the group of automorphisms of H that respect the pinning. Now there is an K-
isomorphism

(2.1.5) ¥ :G S (Resg x(H®0 K))
where y € I' acts on the right hand side via £(y) ® y. Set

(2-1.6) g = (RCSOOIU:H ]/(’)[uil](H ®O[ui'] O()[U:H])F

where Oy[v¥']/O[u*'] is the T'-cover which is described in [59, 3.2] and which special-
izes to K/K after base changing by u > p.

Now for x in the building B(G, K) pick the torus S so that x is in the apart-
ment A(G, S, K) of S; the construction in [59, Theorem 4.1] gives a smooth affine
group scheme G over O[u] that extends G and specializes to G after base changing
by Olu] = K, u+> p. Let k denote either K or k. Then, [59, 4.1] provides an iden-
tification of the apartment A(G, S, K) in B(G, K) with an apartment in the building
B(G ®@op21; k(w), k() of the group Gy = G ®opt k (w); here k (w) is consid-
ered as a discretely valued field with uniformizer « and residue field k. Then G ® oy, « [[u]l
1s the parahoric group scheme over k[[«]] which is the connected stabilizer of the point
X () corresponding to x under this identification.

2.2. Local models and central extensions

2.2.1. — The results of this paragraph will be used only in Section 4.6. We start
with the following:

Proposition 2.2.2. — Suppose that o : Gy = Gy is a central extension of reductive groups over
Q, and let x, € B(G,Q,), xo = a,(x1) € B(Gy, Q). Assume that G\, Gy split over a tamely
ramified extension of Q,, and denote by G;, i =1, 2, the corresponding parahoric group scheme G, over
Spec(Z,). The group scheme homomorphism o : G, — Gy extends to a group scheme homomorphism
a:G, — G, over X = Spec (Z,[u]). This gives a,, : Grg, x — Grg, x and by specializing at
u= p, we obtain a morphism ot : Grg z, — Grg, z,.

Progf: — We will use the notations and constructions of [59, §2, 3, 4]. Suppose that
H, are the split forms of G; over Z,; we can choose pinnings (T}, B;, ¢,) of H; and a central
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isogeny B : H; — Hj that respects the pinnings in the sense that we have (1) C Ty,
B(B1) C By, B(e) =¢,. Let Zy C T be the kernel of B. The quasi-split form G1 is given
by a group homomorphism I' — E; whose image lies in the subgroup 8] C &) that
preserves Zy. We have 8] — &y and this gives I' — &y which defines the quasi-split form
Gy together with a central @® : G — Gj. The construction of the quasi-split groups
G?¥ over Spec (Z/)[uil]) in loc. cit., see also above, shows that a® extends to a central
isogeny a® : GI" — G7'. To obtain G, over Spec (Z,[«*']), we set for an Z,[«*']-algebra
R (see [59, 3.3.4])

Gal(Z}' /Z))

G(R) = (G (2 (1] 2,0 R))

where the action of Frobenius ¢ € Gal(er/Zp) is given by Int(g,) - o with Int(g,) a
certain element G}’ (Z;r[uil]). Using G, = G54, we can see that we obtain a central
isogeny & : G, = G, over Spec(Z,[«*']). It remains to see that & extends to a group
scheme homomorphism « : G, — G, between the parahoric group schemes G, over X =
Spec (Zy[u]). Asin [59, 4.2.1], it is enough to show that the base change & ®z 1,41 Q, ()
extends to a group homomorphism between the parahoric group schemes over Q f[[u]]
that correspond to the points x; g () In the building of G(Q,((w))) that correspond to x;,
as in [59, 4.1.3]; this then follows from the construction in loc. ¢it. The rest then follows
from this and the definition of the affine Grassmannians Grg x in [59, 6.2]. 0

2.2.3.— Suppose G is a reductive group over Q, which splits over a tamely rami-
fied extension, and denote by ad : G — G the natural homomorphism. If x € B(G, Q,)
with ¥ = ad, (x) € B(G%, Q,), we have a morphism
loc loc
ad MC SAutx - M(x‘d {tad},x ®Ol- ad OF
which is given using the definition of the local model and Proposition 2.2.2 applied to
ad : G — G*. For simplicity, we will denote the parahoric group scheme for G that

corresponds to x by G, we will also use G*, resp. G4, for the corresponding parahoric
group schemes for G*, resp. G

Proposition 2.2.4. — Assume 1,(GY) has order prime to p. Then the morphism ad, induces

an 1somorphism

1
ad M(“)C{ﬂ} X (1\/[(5‘d {iad}x ®OP ad OF)

loc

where the largel 15 the normalization of the base change of M (, - . The isomorphism ad,] is equiv-
ariant with respect to ad : G — G** and hence, the natural action of G on Mlg{ . Jactors through an

action of G*.
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Proof: — Since G* is smooth, the natural action of G*! on Mlgﬁd’ (tad) F extends to
the normalization of the base change. By the definitions, the morphism ad, 1s equivariant
with respect to ad : G — G*%. Since by Theorem 2.1.2, M, , is normal, ad, induces
a morphism ad, as above which is also equivariant. From the definition, one sees that
ad, ®p, E is an isomorphism. Using [59, Cor. 6.6], we see that the morphism ad, ®o, &
is given by restricting the corresponding natural morphism Grp, — Grpa of affine Grass-
mannians. Here the group schemes P, =G ®z, 41 kl[u]] and P24 = Qad Oz, kl[u]] are as in
loc. cit. We can now see that the induced morphism from each connected component of
Grp, to Grpa gives a finite to one map on A-valued points. (See [57, §6 (a), (b)], especially
the proof of (6.19) there.) Hence, the restriction ad, ®p, £ is quasi-finite. Since both its
source and target are normal and proper, it follows, using Zariski’s main theorem, that
ad, is an isomorphism. OJ

2.2.5. — We assume that we have two triples (G, {u}, K), (G, {i'}, K'), over
K =Q, asin 2.1.1 that, in addition, satisfy the following:

a) There is a central isogeny o : G — G’%" which induces an isomorphism o** :
(G, {taad) = (G, {uy ),

b) The parahoric subgroups K C G(Q,), K' C G'(Q,), correspond to points
x € B(G,Q,), ¥ € B(G',Q,), that map to the same point X in B(G*, Q) =
B(G'*, Q,), where the identification is via ¢™® as in (a),

c¢) The prime p does not divide the order of 7, (G'9").

Under the assumptions (a)—(c), we will compare the local models Ml(‘f{m’x and

Mlc‘ff’m,}‘x,. Let E, resp. E/, the reflex field of (G, {u}), resp. (G, {'}), and denote by
E.q the reflex field of (G, {1,4}). Using (a) above, we obtain E,q C E, E.

Denote by C the kernel of . By (c), C is a finite group scheme of rank prime to p.
For simplicity, we will denote the parahoric group schemes that correspond to x by G, G,
etc. The central isogeny extends to a group scheme homomorphism « : G4 — G'4", We
have G* = G’*, and by Proposition 1.1.4,

(2.2.6) g/dcr ~ gdcr/c

where C is the (smooth) schematic closure of C in G and the isomorphism is induced
by «.
Proposition 2.2.7. — Under the assumptions (a)—(c), there is an isomorphism
loc ~ loc
MG,{M},x X0y, OEE’ —> MG’,{;//},x’ ®OF/ OEE/

which is equivariant with respect to o : G4 — G’

Here the source, resp. target, of the isomorphism admits an action of the group
scheme G4, resp. G'9", by restricting the natural action of G, resp. of G'.
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Proof. — Under the assumptions (a)—(c), the order of ;(G*") C 7;(G'%") is also
prime to p. Hence, Proposition 2.2.4 applies to both G and G’ to produce isomorphisms
ad;, ad,”. Consider now

~\~! “1 . nfloc ~_ 3 floc
(ad; ) - T-ad,: Méf{u},x ®OE OEF/ - M((“)C ®OF/ OFF/

BTSN

Here we use the natural isomorphism

T: (Mad ®0Ead OE)N ®O}«; OEE/ :) (Mad ®0Ead OE/)N ®OE’ OEE/v

which exists since, by Corollary 2.1.3, both its source and target are normal, and there-
fore agree with the normalization of M4 ®o0,, Okr . (In this we set Mg = Mlgﬁd’ ) 3
for simplicity.) It remains to show the claimed equivariance property. Using flatness, we
see that it is enough to check this on the generic fibres; there it follows easily from the

definitions. 0

2.3. Embedding local models in Grassmannians

2.3.1. — Here we assume that K = Q,, and that (G, {u}, K) is as above. Suppose
we also have a faithful symplectic representation p : G = GSp(V) C GL(V). We suppose
that the composite p - 1s conjugate to the minuscule coweight 1y of GSp(V) given by
a+> diag(a?, 1¥)) and that the symplectic representation p is minuscule (cf. table [20]
1.3.9). We also assume that G C GL(V) contains the diagonal torus G, of scalars. We
will call such a p a (local) Hodge embedding.

Choose an Q,-split torus A such that x € A(G, A, Q,) C B(G, Q,); choose also a
maximal Q)'-split torus S in G that contains A and is defined over Q,, (such a torus exists
by [11, 5.1.12]); since Gy is quasi-split, T = Z¢(S) is a maximal torus of G which is
defined over Q,, and splits over K. Suppose we also choose a pinning (T, By, ¢) of the
split Chevalley form H of G over Z,. Again, since G splits over K and Gqy 1s quasi-split,

we can choose ¥ : Gz — Hy that maps T to (Tj)g and is such that the Borel subgroup
¥~ (B)g) C Gg is defined over Q. Then for y in the inertia Iz = Gal(K/(KNQ)),
() =v-y@)! € Aut(H) (K) preserves (Ty)g and (By)g. Furthermore, by compos-
ing ¥ with the (conjugation) action of an element of Tya(K) we can suppose that ¢(y)
is a diagram automorphism, ze. it preserves the pinning (T'y, By, ¢) Xz, K. Recall now
that starting with the pinning (Ty, By, ¢) of H, the isomorphism v, the choice of irre-
ducible summands V;, and for each such summand, the choice of a highest weight vector
v; and the lattice chain gradings given by the translations ¢ € R, we have constructed in

r

the previous paragraph a G(Q})-equivariant toral embedding

(2.3.2) 1 B(G, Q) = B(GL(V), Q)
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which is also Gal(Q}'/Q,)-equivariant. Note that there is also a canonical equivariant
toral embedding

s: B(GSp(V), QYY) — B(GL(V), Q%).

Lemma 2.3.3. — There ts a choice of the above data such that ¢ factors
B(G,QY) & B(GSp(V), QYY) > B(GL(V), Q).

Progf- — We will use results of Satake [66] on symplectic representations. Con-
sider the similitude character x : G C GL(V) — G,, and denote by G, C G its ker-
nel so that p(Gy) C Sp(V). We have B(G, Q") = B(G, Q) x R, B(GSp(V), Q)) =
B(Sp((V), Q‘;f) x R and we can see that it is enough to show that there is a choice of
data as above such that the corresponding ¢ maps B(G, Q;‘f) to B(Sp(V), Q;r). Fol-
lowing [66], we canonically decompose V = @®,V, as the direct sum of its Q-primary
G-summands. (Recall that a G-representation W is called Q -primary when for every two
absolutely irreducible G-summands Wi and Wy of W ®q, Q,, there is 0 € Gal(Q,/Q,)
such that W; >~ 0 (Wj) as G-representations.) As in loc. cit., there are three different types
of Q,-primary components of V that can be distinguished as follows. If W, is a geomet-
rically irreducible G,-summand of V, ®q, QJJ we have:

a) W/ >~W,, )
b) WY ~ o (W,), for some o € Gal(Q,/Q,), or,
c) W/ #0(W,),forallo € Gal(Q,/Q,).

Using our construction of ¢ and the discussion in [66, 2.1] we can easily reduce to the
case that either V.=V, is Q,-primary and of type (a) or (b), or V=V, @V with V,
of type (c). Assume that V=V, and is of type (a). Note that V here does not have to
be Q-irreducible but we can write V.= V'®" where V' is Q -irreducible. The set-up of
1.2.15 applies to the Q-irreducible G,-representation V'. By [66, Theorem 1] (using the
notation of 1.2.15 for V') we see that there is a field extension K, /K, a central division
algebra D over K with an involution of the first kind, a right D-module V| and a left D-
module Vy, with m = dimp (Vy), together with a non-degenerate e-hermitian, resp. (—¢)-
hermitian, form £, on V/, resp. iy on Vy, such that the following is true: The restriction
of p to G, factors as the composition of

G — RCSKl/K(Gl,KI)

with the restriction of scalars of

Gix, 23 U(V,/D, hy) x UD\Va, hy) > Sp(V)),

and the natural Resg, /,x (Sp(V)) = Sp(V). (Here, V|, = V| ®p Vy is V which has a K-
module structure; V| supports a non-degenerate alternating form given via the D/K,
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trace of the tensor product of A and ‘hy, see loc. cit. Recall that V| ®x, K is an irre-
ducible Weyl module.) By the main result of [48] there exists an equivariant toral map ¢} :
B(G,K{) — B(U(V,/D, k), Ki"); in fact, this is obtained by taking Gal(K/K“l")-ﬁxed
points of a Gal(K/K'")-equivariant toral map ¢ (K) : B(G,, K) — B(U(V}/D, k), K).
Using the uniqueness argument in the proof of Proposition 1.2.21 we see that the map
t}, when composed with B(U(V/ /D, &), K}") C B(GLp(V)), K\") agrees with ¢ + ¢; as
in (1.2.23), for a suitable choice of translation ¢. The result now follows from the con-
struction of ¢ and the above. The argument for type (b) is similar. Finally, in type (c) the
alternating form on V is given by the duality between the Lagrangian subspaces V, and
VY in V. This case is simpler and is also left to the reader. O

2.3.4. — Yor x € B(G,Q,) as before, consider the parahoric group scheme
GSP. of GSp(V) that corresponds to z =j(x). As before, set y = t(x). Since z = s(»),
the corresponding (periodic) lattice chain A} is self-dual. We have affine smooth group
scheme homomorphisms

(2.3.5) p:G.— GSP.— GL,.

By Proposition 1.3.3, G, — GL, and therefore G, — GSP. is a closed immersion.

The corresponding local model Mlégp = Mlégp(v), (o). for the group GSp(V), its
standard minuscule coweight py and the periodic self dual lattice chain A? that corre-
sponds to z was considered by Gortz in [31]; in this case, this agrees with the correspond-
ing local model of [59] as explained in /loc. cit.. The generic fibre of Mlggp over Q, is the
Lagrangian Grassmannian LGr(V) of maximal isotropic subspaces in V. The standard
embedding GSP, — GL, induces a closed immersion Mlégp = M vy, (a0l - Since the
composition of p with p is conjugate to the standard minuscule coweight g of GSp(V)
the embedding p induces a closed immersion

(2.3.6) X, <> LGr(V) ®q, E.

Proposition 2.3.7. — With the above assumptions and notations, (2.3.6) extends to a closed
immersion

loc __ loc loc
(2.3.8) MG = Mg .0 = MSspwi.: 2, Ok

Progf. — For simplicity, we set L= QJ" and E’ = EL. It is enough to show that the
base change (2.3.6) xp, E extends to a closed immersion

loc 1
(2.3.9) Mg ®0x O = M) o), ®2, O

Indeed, assuming this, we easily verify that (2.3.9) descends over O by checking the
descent condition on the generic fibre.
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Now recall that, by construction ([59]), we have Mlg’“{u}’x ®o, O = MI(J?CL"{M}’X,
where Mléfﬂ{ﬂ}’x is the local model for the triple (G, {i}, x) over L. (Here, we use the
obvious extension of the definition of local models over L = Q') Using the above
we now see that it will be enough to show the closed immersion claim for the local
model over Oy associated to the triple (Gy, {i}, x) and the (faithful) representation
oL = p ®q, L.: G, = GL(Vy) over L obtained by base change.

Asin 1.2, write p = H;‘ p; with p; : G — GL(V)) irreducible over Q,,. We return to
the set-up of 1.2.15 for p; over the base field Q,,; we can choose the field Qp there so that

LC Q,,. We have representations
Pia, Go, =Hg, — GL(V(;1) ®q, Q,).

Let T'j; be the subgroup of Gal(Qp /Q,) fixing the weight A;; and Q,, ;; the corresponding
subfield of Qp. Set I;; for the subgroup of I';; with fixed field L.Q, ;. For simplicity, set
L, =LQ,; D L. After taking fixed points, i.e. descending, by the action of I;; described
in 1.2.15 we obtain

~ : = W
pir, G, = (Ho )W — (GL(V() ®q, Q)
Recall that Gy, 1s quasi-split by Steinberg’s theorem. In fact, we can assume that the action

of I;; preserves the Borel subgroup wil((BH)Qp). Then the argument in the proof of

Theorem 3.3 in [69] shows that the group I;; acts via a cocycle I;; - GL(V(%;)) ®q, Qp)
which lifts the cocycle ¢’ of 1.2.15 (see also Step 1 below). This allows us to view p;1 1, as
a representation

pjﬁLj : G, — GL(Vj’.)

where Vi = (V(4)1) ®q, Qp)lﬂ is a L-vector space such that V} @y, Qp =V(;) Qq, Qp.
Consider the composition

/ wunli) | |
,0]»’L : GL — RCSL/-/L(GL].) > RCSL//L(GL(V/)) —> GL(V/’L)’

where V7, is, by definition, V} regarded as a L-vector space by restriction of scalars.
The base change p1, := p ®q, L can be identified with

[T 11 o} ,
pr: G —% l_L [ GL(Vj1) c GL(VL)

where Vi, :=@®; @, V}; and 7 runs over a finite set of Q -automorphisms 7 : L —> L that
depends on j and is in bijection with the orbit {7 (4;1)}. As in Proposition 1.2.21 we obtain

an equivariant map of buildings

§: B(G, 1) > B(GL(V)). L)
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which as in 1.2.22 produces a G(L)-equivariant map of buildings
(2.3.10) y: B(G, L) = B(GL(V;,), L),

corresponding to ,OJ-CL G, — GL(V]{’L). Sety]{ :=1j1.(x). The image of (7 ()/J(’L)),-,, under
the natural equivariant embedding

1_[,- [T B(GL(V;.).L) € B(GL(V1), L)

is y =(x) € B(GL(V), Q,) C B(GL(Vy), L).

For simplicity, we set O = O, = O™ and denote by £ the residue field of Oy,. Using
[59, Prop. 8.1] and the above, we see that it is enough to show that py, : G, < GL(Vy)
extends to a group scheme homomorphism p o' G — GL(N,) over Spec (Olu]) (for
some periodic O[u]-lattice chain N,) which satisfies the following condition from loc. cit.
8.1.1:

(*) The Zariski closure of G ®oy, k() in GL(N, ®oyy llu]]) is a smooth group
scheme which stabilizes the point x, and p o @0t kllu]l identifies the group scheme
G Qo k(w) = Q;’k«”» with the neutral component of that Zariski closure.

(The homomorphism p , - then produces a corresponding morphism between lo-
cal models as in [59]. Actually, [59, 8.1] discusses embeddings into group schemes related
to GSp instead of GL but the argument is the same.) In fact, we will first show that, for
allj, p ]L : G, —> GL(V’) and ,0 :GL—> GL(V’ 1) as above, suitably extend. Then we
will deduce that pr also extends in the desn"ed way We will do this in several steps:

Step 1. We first show that, for all j, p 1 and p!; extend to representations over Lau-
rent polynomial rings with coefficients in (’) If ¢; is the (ramification) degree of L;/L, we
consider the cover Ofu] — O[v], u+> v9. We identify the generic fibre of the specializa—
tion of this cover under u +— p with L;/L. Recall that we start with a point x in the building
B(G, Q,) C B(G, L) which lies in the apartment A(G, S, L) of the L-split torus S. We
have chosen a pinning (Ty, By, ¢) of the Chevalley split form H of G over Z, which
gives a hyperspecial point x, of B(H, Q) in the apartment of the standard torus Ty. We
have also chosen the isomorphism ¥ : Gg, = Hg, asin (2.3.1). In particular, Tg maps
isomorphically under ¥ to the standard torus (TH)Qﬁ and, in fact, ¢(y) = - y ()"
preserves the pinning, ze. it is a diagram automorphism.

Recall that p;; g, 1s given by a Weyl module V(%)) ®q, Qp for the highest weight

Aj1 of H. For simplicity, we will write A; instead of ;. Recall we fix a vector v; € V(4;) of
highest weight A; and consider the Z, —lattlce A; C V()» ) given by A; = i - v; as before.
Consider the O- lattlce Li=A; Ry, (’) in V(%)) ®Q L; we then have a representation

;.. Ho = GL(L))

over O such that p;, ®o le = ,ojf’Ll_ ®1, Q’b Every y in the inertial group I; =
Gal(Q},/Lj) C E preserves A;. Hence, p;, ®0 Qp and (p;, - ¥) ®o Qp are equivalent
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representations and so there is A, € GL(V(})) ®q, Q,) with y(9)A, = A,g for all

g€ H(Qp). In fact, this identity makes sense and is still true for all g € ;. The ma-
trix A,, takes v; to a multiple of v;; we can normalize A, to assume that A, - v; = v;. Then
A, is uniquely determined. Since the action of E on H is by diagram automorphisms, y
preserves ;. Hence

Ay () :A},(ill_{ : Uj) cy: (ul_{) Ay C -y = A

i.e. A, preserves £; and hence A, gives an equivalence of the O-representations p;, and
P;0 - ¥Y. We thus obtain A : I; — GL(L)), A(y) = A,, which we can see is a group ho-
momorphism. Therefore we obtain a group scheme homomorphism

23.11)  p : (Resouyom(H ®0 Olwl)” — GL((£; 80 Olw1)").

If x € X*(Ty) is a weight of Ty and £, is the corresponding weight space of £;, so that
L; =@, L;;, then A, (L;,) = L, ;. Since the Ij;-cover O[w]/O[v] is tame, the O[v]-
module (£; ® O[w])"" is finitely generated and projective and hence free (e.g by [68]),
of rank d/ = dimy, (V}); Similarly, its direct summands ((©y5, <1, L) ®o Olw]) (the
sum is for the weights in a I;;-orbit) are O[v]-free. Choose a basis 4 that respects this de-
composition; this allows us to identify the target GL((£; ®o O[w]¥) with GLde((’)[v]).

By restricting p. to O[v*'] we obtain a representation
—J,0

(2.3.12) Bj/',(')[vil] : (RCS(’)[wil]/O[vil](H R0 O[wil]))lﬂ — GLy (O[vil])

that extends p]{,L/_. Set d; = d¢;. By the definition of G (see 2.1.4), the source of (2.3.12) is

isomorphic to G Qo217 O[v*'], and so we have a group scheme homomorphism

(2.3.13) g — RCS(’)[vj:l]/O[uj:l] ((ResO[wil]/o[vil](H ®O O[wil]))ljl).
To obtain an extension

B},oluﬂ] : G — GL,(O[«])

of p/;, we now compose (2.3.13) with Resolvill/@[uill(ﬁjf O[uil]) followed by the homo-

morphism GLdj;(O[vﬂ]) — Gl (O[u*']) given by restriction of scalars from O[v*!] to
Ol[«*"]. Notice that

(2.3.14) Olv] ~ O[u]’

as Olu]-modules and so the target of the last map can be indeed identified with
GLdj(O[uil]). (Here and in other places, “extends” is meant in the sense that there is

an equivalence between the base change of Bj/ Ot by ut> p and p!; .) We see that with
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the choice of basis of V', obtained by specializing 4 by O[u] — L, u+> p, and using
(2.3.14) above, the image p;; (S) of S is contained in the standard maximal torus of GL.
Then

y1.: B(G,L) = B(GL(V],),L) = B(GL,, L),

maps the apartment of the torus S to the apartment of the standard maximal torus of
GL,.

Step 2. We will now show that B/-, O] extends to a homomorphism
L. O g — Autor,(N,)
of group schemes over Spec (O[u]). Here N, = N;, C O[«*']% is a periodic chain of
finitely generated O[u]-free rank ¢; submodules of O[uil] 7asin [59,5.2]. Set y:=y; =
tj,1.(x); this choice will allow us to determme the chain N,. (For simplicity, in what follows,
we sometimes omit the subscript j.) This is done as follows: Recall that we have chosen a
basis over O[u] that allows us to identify the apartments of the standard torus of GL, over
L, L((«)) and £((«)), and that y is on the apartment of this torus over L. The identification
gives a point yy) for GL,;(L({(«))) which is in the apartment of this standard torus; this
then corresponds to a Li[u«]]-lattice chain A in L((»))? and we take N, = A, N O[«*']“.
We can see that N, has the desired properties to form a periodic O[u]-lattice chain.
The construction of G also gives a point xy,) in the building for G ®o,+1; L(«)). The
point Xy, by the same reason, then also maps to the point yy, for GL,;(L({())). (The
point yr, is also the image of x1,) by a map 1, : B(G, L(w)) — B(GL,, L((w))
that can be defined as before using our choices.) Since for G = Spec (A) we have A =
A1 N (A ®o LILu)), it will be enough to show that ,0  On Qo2 L(w) extends
to a group scheme homomorphism of the corresponding parahorlc group schemes over
L{[«]]; this now follows from our choice of N, above. We can now see that

— l_L H, P o G Hi= ]_L ]_[r Autop(N;.)

extends the base change p, = p ®q, L: G, — ]_[j 1, GL(V; ;) C GL(Vy).

Step 3. It remains to show that p o, Satisfies condition (¥) above.

This will be obtained using the results and arguments of the previous paragraphs
by observing that p Ol Qo1 k() 1s minuscule. In fact, by construction, this representa-
tion satisfies the assumptions described in 1.2.27.

Set F = k(w), F = k(). Asin 1.2.27 we see that p o1 OOl F produces a G(F) =

H(F)—equivariant and Gal(F/ F)-equivariant toral embedding
i : BH, F) - B(GL,, T),

with n = dim,(Vy). This embedding is obtained using the decomposition into irre-
ducibles and the descent data given as above. By its construction, t; has the following
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property: It maps the apartment of the standard torus of H(F) to the standard apartment
of GL,(F) compatibly with the identifications of apartments over F and Qp and with the
maps between the buildings over Q, as above. It also sends xp to yp (Where these are
points are determined from x and » by our choices above as in 2.1.4). We now see that
1.3.13, which is a version of Proposition 1.3.3 in the equicharacteristic case, implies the
desired statement. UJ

2.3.15. — We now return to the previous set-up, as in 2.3.1. Asin 1.1.11, GSP,
is the stabilizer of a periodic self-dual (with respect to the form ) lattice chain £ =
{A"};cz in V. Index the chain as in 1.1.11; in particular, assume that (A%)Y = A~ with
a=0orl.SetV = GB;;I_(,_I)_aV equipped with the perfect alternating K-bilinear form
Y’ as in 1.1.11. Consider the lattice V/Z,, = @;;l(,_fl)iapj\i C V’; then V/Z,, C V’Zj The
closed immersion . < GSp(Vy,, ') composed with p : G, — H_ gives a closed group
scheme immersion

p' G GSp(Vy, ¥') C GL(Vy,).

This shows that by composing p with the embedding above, we can assume that the

point y is hyperspecial. The corresponding local model Mlgi(v/)) (1) OVET Z, is the smooth

Grassmannian Gr(V’Zp) classifying subbundles F C V/Zp ®z, Os of rank dimg,(V'). We
thus obtain

Corollary 2.3.16. — Assume p : G — GSp(V, ) comes from a Hodge embedding as
above. We can find a new Hodge embedding p' : G — GSp(V', ¥') and a lattice V/Z,, C V' with

Vz, C Vg, such that p" induces a closed immersion
(2.3.17) M (.0 = Gr(Vy) @z, Op

of schemes over Of,.

3. Deformations of p-divisible groups

3.1. A construction for the universal deformation

3.1.1. — We continue to use the notations introduced in (1.1.1). In particular, we
write W =W (k) and Ky = W[1/p]. Unless we mention otherwise, we assume p > 2. The
aim of this section is to construct the versal deformation space of a p-divisible group over
k using Zink’s theory of displays.

3.1.2. — Let R be a complete local ring with residue field £, and maximal
ideal m.
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Recall [74] §2 (see also [50]), that we have a subring WR) = W(k) & W(m) C
W(R), where W(m) C W(R) consists of Witt vectors (w ):>1 such that w; € m and {w,};>,
goes to 0 m-adically. We write ¢ for the Frobenius on W(R) and V for the Verschiebung.

LetIx C W(R) denote the kernel of the projection W(R) — R. We recall that the
Verschiebung V on W(R) maps W(R) isomorphically to Iz, and we write V™' : Iz —
W(R) for the inverse map. Note that

o(Ir) = p(V(W(R)) = (¢V)(W(R)) = pW(R).

3.1.3. — Recall [73] that a Dieudonné display over R is a tuple (M, M,, @, ®,)
where

(i) M is a finite free W(R)-module.
(i) M, C M is an W(R)-submodule such that

rRMcM, cM

and M/M, is a projective R-module.

(1) ®: M — M is a g-semi-linear map

(iv) @, : M, - M is a ¢-semi-linear map whose image generates M as a W(R)-
module, and which satisfies

@, (V(w)m) = wd(m); weW(R), meM.

We will sometimes write M = M/IRM and M, = M, /IxM. We think of M as a
filtered R-module, with Fil’M = M and Fil'M = M,.
If we take w = 1 and m € M}, in the equation in (iv) above, we obtain

P (m) = V(1) @y (m) = pP,(m).

We will be particularly interested in cases where W(R), and hence W(R), is p-
torsion free. This condition holds when R is p-torsion free, or when p- R =0, and R is
reduced. In this case, the tuple (M, M, ®, @) i1s determined by (M, M,, ®,) satisfying
(1), (11) and (iv) above. Indeed, we define ® by setting ® (m) = @, (V(1)m) for m € M. Then
forw € W(R) and m € M we have

@1 (V(w)m) = @, (V(w)V(Dm) = pw® (V(1)m)) = pwP (m),
and hence ®;(V(w)m) = wd(m) as W(R) is p-torsion free.

When W(R) is p-torsion free, we will also refer to the tuple (M, M,, ®,) satisfying
(1), (11) and (iv) as a Dieudonné display over R.
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3.1.4. — Let M, M,, &, @) be a Dieudonné display over R. The condition

(i1) implies that we may write M as a sum of W(R)-submodules M = L & T such that
M, =L @& IRT. Such a direct sum is called a normal decomposition for M.
Denote by M, the image of the W(R)-module homomorphism

¢* (D) : M, :=W(R) ®, vy Mi = "M = W(R) ®, vy M

induced by the inclusion : : M|, — M.

Note that M, and the notion of a normal decomposition depends only on M and
the submodule M, and not on ® and ®,.

Lemma 3.1.5. — Suppose that W(R) s p-torsion free. Let M be a_free W(R)-module, and
M, C M a submodule, with IxM C M, and M /M, a projective R-module, and let M =L @ T be
a normal decomposition for M. Then

a) The W (R)-module M, is isomorphic to @* (L) @ pp* (T) =~ W(R)?, with d = rkgyq,M,
and in particular depends only on the reduction of (M, M) modulo p.

b) If (M, M, @) is a Dieudonné display over R, then the linearization of ®,, ¥ : 9*M; —
M factors as a composition

@f:(p*Ml—>l\~/Ili>M

with ¥ an W(R) -module 1somorphism.
¢) Conversely, suppose we are given

WM, :=Im(p*M, — ¢*M) = M.

There 1s a unique Dieudonné display over R, (M, M, @) which produces our given (M, M, V) via

the construction in (b).

Progf. — (a) follows immediately from that fact that ¢ (Iz) = pW(R).

For (b) we first show that ®¥% : ¢*M; — M factors through M. It is enough to
show that pfb? vanishes on the kernel K of ¢*(2) : ¢*M; — ¢*M. But p®, = &, and so
pP% = ®% 0 *(i); this obviously vanishes on K. We write ®% = W o (¢*M, — Ml) with
a surjective W : M, ~ M which is necessarily an isomorphism, as M, and M are free over
W(R) of the same rank.

For (c) define ®, : M} — M by

D (m) =V Qm)

where | ® m; denotes the image of 1 @ m; € W(R) ®pwry Mi = ¢*M; in ¢*M. Them
@, is clearly g-linear and its linearization ®% : ¢*M, — M is surjective. U
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3.1.6. — Let R — R’ be a morphism of complete local rings with residue field £.
A Dicudonné display (M, M;, ®, @) over R, has a base change to R’ (cf. [75] Defn. 20),
given by Mp = M Qg W(R ), and

My, = ker(Mg = M/M; ®g R)
= Im(M,; ®gw W(R) = My) + Iy Mg

Then ® on My is defined as the ¢ semi-linear extension of ® on M. The map ®, on
Mg 1s the unique @-semilinear map My'; — My’ which satisfies

@ (wm) =pw) ® D (m) weW(R'), meM,
and
O, (Vw)®@m)=w®d(m) weW(R).meM.

The existence and uniqueness of such a map follows, as in loc. cit., from the existence of
a normal decomposition. In particular, if R — R’ is surjective, we have the notion of a
deformation to R of a display over R’.

If W(R) and W(R') are p-torsion free then using a normal decomposition one
finds that there is a natural isomorphism MR/ 1 = M1 OW®) W(R ), and the diagram

~ v
©*(M,) M, M

I

] (MR’I) E— MR’I —_— MR’

commutes. Here Wy denotes the map associated to the Dieudonné display over R" by
Lemma 3.1.5.

3.1.7.— Let ¥ be a p-divisible group over R, and denote by D(¥) its contravari-
ant Dieudonné crystal. By the main theorem of [73], D(¥) (W(R)) has a natural struc-
ture of Dieudonné display over R, and the functor ¢4 + D(¥) (W(R)) induces an anti-
equivalence between p-divisible groups over R, and Dieudonné WR)- -display over R.
More precisely, the equivalence of loc. cit. uses the covariant Dieudonné crystal, and we
compose the functor defined there with Cartier duality. Under this anti-equivalence, base
change for Dieudonné displays, defined in the previous paragraph corresponds to base
change for p-divisible groups [50] Thm. 3.19.

3.1.8. — Let %, be a p-divisible group over £. We now use the above to construct
the versal deformation space of 4.
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Let D =D(¥4,)(W), and let (D, Dy, ®, ®,) be the Dieudonné display correspond-
ing to %. By Lemma 3.1.5, this data is given by an isomorphism W, : D, = e*M)=D

The filtration on D (%) (k) corresponds to a parabolic subgroup Py C GL(D ®w k).
Fix a lifting of Py to a parabolic subgroup P C GL(D). Write M = GL(D)/P and
denote by Ml = SpfR, the completion of GL(D)/P along the image of the identity in
GL(D ®w £), so that R is a power series ring over W.

Set M =D Qv W(R) and let M; € M/IxM be the direct summand correspond-
ing to the parabolic subgroup gPg~! C GL(D) over MIOC where ¢ € (GL(D)/P)(R) is
the universal point. We denote by M; C M the preimage of M, in M. Let W : M, =M
be an W(R) linear isomorphism which reduces to Wy mod mg. Then (M, M;, W) corre-
sponds to a Dieudonné display over R, and hence to a p-divisible group % over R which
deforms %.

Lemma 3.1.9. — Let ag = my, + pR. There is a canonical commutative diagram

M, ®wr WR/ar) ——— @*(Mgag)

|

D, ®w W(R/ar) —— ¢*(D) @y W(R/ag)
where the horizontal maps are induced by the natural inclusions 1\7[1 — @*(MR) and 131 — ¢*(D).

Proof. — L@ T be a normal decomposition for (Mg ay, Mr/ag,1), and let Ly @ T
be the induced normal decomposition for (D,D;). Observe that the Frobenius on
W(R/ayR) factors as

WR/ag) > W5 W - W(R/ag).

Hence the submodule ¢*(T) C ¢*(Mg/q,) is identified with ¢*(T)) ®w W(R/ ag) C
D ®y W(R/ag). An analogous remark applies to L.
For any Z,-module N write p ® N = pZ, ®z, N. Then

(3.1.10) M, ®qw WR/ar) = ¢*(L) @ p® ¢*(T)
= (¢*(Lo) ® p ® 9" (T)) ®w W(R/ag)
=D, @y WR/ap).

This produces the left isomorphism in the lemma, and one checks immediately the dia-
gram commutes, and is independent of the choice of normal decomposition. O



INTEGRAL MODELS OF SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE

3.1.11. — We say that W is constant modulo ag if the composite map
D, ®w W(R/GR) =M, AW W(R/QR) —f> Mg/qx =D ®w W(R/GR)
1s equal to W ® 1.
Lemma 3.1.12. — If U is constant mod ag then the deformation 9r of %y is versal.

Proof. — We have two displays over R/ag. One obtained from (M, M;, ®, ®,) by
the base change R — R/ag, and one obtained from (D, D, ®, ®,) by the base change
k — R/ag. We denote the corresponding morphisms ®; by ®; and ®, , respectively.

Let l\A/IR/aR,l C Mg/ o be the submodule

(3.1.13) Mg /ap.1 = Mg /ag.1 + W(mg/ar)Mg /g
=D, Qw W(R/QR) + W(mg/ap) Mg g C Mgjag-

We regard R/agr — £ as a thickening with trivial divided powers. By [73] Thm. 3, the
morphisms ®; and @, ( extend uniquely to g-semilinear maps

D, P MR/aR,l - MR/aR-

We claim that if W is constant mod agr then CTDI = &)1,0. Assuming this, the lemma follows
from [73] Thm. 4, and the versality of the filtration M, C M/ar =D ®w R. (As well
as, of course, the main theorem of loc. ¢it. giving the equivalence between displays and
p-divisible groups.)

To show the claim, note that we may regard mg/ag as a W(R/ ar)-submodule
of W(mg/ag), by sendmg aemg/ag to [a]. Let LG T be a normal decomposition for
(MR/ag, MR/ag,1). Then MR/aR 1 =RTOL®Ig), T, and <I>1 is given by sending agr T
to 0, and on L @ Ir,q, T, 1s given by the map

L& Ixe,T— ¢"(L) ®p® ¢*(T) = M, ®gr) WR/ar) — Mg a.

In particular, we see that there is a natural map (p*(l\A/[R/aR,l) — Ml AW w) W(R/ ag),
which is independent of the choice of W, and that the linearization &)fﬁ of &, factors
through this map and is induced by W. As in the proof of Lemma 3.1.9, this map de-
pends only on T and not on T. An analogous remark applies to CiDLO. Thus, we obtain a
diagram

N ~ A w
Mg/ag, 1 —— M1 Qary WR/ar) ———— Mg/ax

Yo®1

My ap.i —— D @w W(R/ag) —— D Qyw W(R/ag)




M. KISIN, G. PAPPAS

where the composite horizontal maps are @, and P, respectively, the left square com-
mutes, and the right square commutes if W is constant mod ag. This proves the claim. [J

3.1.14. — We assume from now on that W is constant mod ag, so that % is
versal. Equivalently, M = My is versal for deformations of displays. Let S" — S be a
surjection of W-algebras. If ¥ is a p-divisible group over S, we denote by Def(%s; S') the
set of isomorphism classes of deformations of % to S’. We will apply this when S — S
has nilpotent kernel, in which case a deformation of % to S’ has no automorphisms. If
/A — S is amap of W-algebras, we denote by Def(f; S’) the set of lifts of / to a map
A — S'. For any ring A we denote by A[e] = A[X]/X? the dual numbers over A.

Lemma 3.1.15. — Let K/K be afinte extension, with ring of integers Ok . Let & : R — Ok
be a map of W-algebras, and Y; the induced p-divisible group over Ox.. The map

Def(&; Oklel) — Def(%; Oklel)

is a byection.

Progf: — Let Rog, = R ®w Ok. Let &k : Ro, — Ok be the induced map of Ok-
algebras, and I = ker(éx) C Rp,. Then Def(§; Ok[€]) is in bijection with the set of lifts
of &k to a map of Ok-algebras Rp, — Ok[€], and the latter set is naturally in bijection
with Homp, (I/1?, € - Ok). In particular, Def(&; Ok[€]) is naturally a free Og-module.
Similarly Def(¥;; Okl[€]) is naturally a free Og-module; it may be identified with the
tangent space to a point in a Grassmannian over Ok. One checks easily that the map in
the lemma is a map of Og-modules.

Now let & : R — /" be the map to the residue field £ over Ox. We again denote
by ¥, the base change of ¥ to £'. Consider the diagram

Def(¢; Okle]) —— Def(¥:; Oklel)

| |

Def(&y; K[e]) —— Def(%); K[€]).

Here the vertical maps are given by specializing maps, respectively p-divisible groups via
the map Ok — k. The map at the bottom is obtained from the map of Og-modules
in the top row by applying ®o, k. This is obvious for the term on the left, and for the
term on the right it follows from the description of Def(¥;, Ok[€]) and Def(¢, £'[€]) in
terms of Grothendieck-Messing theory. Since % is versal the map on the bottom is an
isomorphism, and hence so is the map of free Ox-modules at the top. O

3.1.16. — We end with the following lemma, which will be needed later
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Lemma 3.1.17. — Let A be a complete local, p-torsion_free, W-algebra, with my C pA for
some integer N. Let My = (Mu, Ma 1, @, @) be a deformation of the Dieudonné display D to a

Dueudonné display over A. Then there is a unique, Frobenius equivariant map

D®z,Q,—~ M\s®z,Q,

lifting the identity on D.

Proof. — Lift the identity on D, to an arbitrary W-linear map s : D — Mj. Denote
by ®; the Frobenius on D. Then

doso CD(TI —SE W(mA)HOI’Il\V(D, MA) ®Z/; Q[)'

Hence, it suffices to give a complete separated topology T on W(A) ®z, Q, such that for
any x € W(my,), p~"¢"(x) — 0. Indeed, then the sum

}:s—I—ZCD’”o(CDosoq)al—s)oCD(;m
m=0

o0
=5+ E d"*loso CID(;’"_1 —®"os0P"

m=0

converges to an element of Homw (D, M) ®z, Q, in 7 and is Frobenius invariant.
To define T we consider the maps defined by the Witt polynomials

WA) @7, Q, =S T A/,

n=>0

Now A is equipped with its p-adic topology. This induces a topology on A[l/p], and
hence on [],.,A[1/p]. We take 7 to be the coarsest topology such that the above map is
continuous.

To see that T has the required property, let x = (xo, x1,...) € W(m,). Then we
have to show that for n >0

n+m

p_mw” ((pm(x)) :p_mw7z+rrz(X) = Zpl'—mxiﬁ"ﬁ”’i N 0

=0

as m — o0. For 0 # y € A[1/p], write v,(y) for the greatest integer such that yp~ " € A.
Let @ be any positive integer. Since x € W(m,), {x};>; goes to 0 mu-adically and
hence p-adically. Thus there exists i > 0 such that v,(x;) > a for ¢ > 7. Then also

. n+m—i ) . . nt+m—i .
vp(pl_’”xf ) > a. For 1 <1, vp(pl_’”xf ) > a, for m sufficiently large. [
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3.1.18. — Suppose A = Ok, where K/K is a finite, totally ramified extension
with uniformizer 7r. Then we may apply the previous lemma, and obtain

D ®Zp Q/, - M ®Zp Q,[i —> (M/I(QKM) ®Zﬁ Q,[?‘

The right hand side is a filtered K-vector space, and the composite gives D ®z, Q, the
structure of a weakly admissible ¢-module. It is the weakly admissible module corre-
sponding to the p-divisible group attached to M = Mo, . This is easily deduced from [8],
Prop. 5.1.3, using the map S — W(Ox) given by u — [ ], where, as in loc. cit, S the
p-adic completion of W[u, E(u)'/1!];>,.

3.2. Deformations with crystalline cycles

3.2.1. — We continue to use the notation above. For the remainder of Section 3,
we assume that £ 1s algebraically closed, as this simplifies the discussion. The reader can
check that for any £, the same results go through after replacing £ by a finite extension.

For any ring A and a finite free A-module N, we denote by N® the direct sum
of all A-modules which can be formed from N by using the operations of taking tensor
products, duals, and symmetric and exterior powers.

Suppose that (s,,0) C D® is a collection of g-invariant sections whose images in
D® ®yy £ lie in Fil’. Suppose that the pointwise stabilizer of (s,.0) is a smooth subgroup
G C GL(D), with G ®z, Q,, a connected reductive group G. As usual, we denote by G°
the neutral component of G which is also a smooth affine group scheme over Z,.

We assume the following conditions hold:

(3.2.2) There exists an isomorphism ¢*(D) = D taking 5,0 ® 1 to s4.0.
(3.2.3) H'(D*,G°) = {1},

where, as before D* denotes the complement of the closed point in D = Spec G, where

S = W[u]l.
3.2.4) G C GL(D ®z, Q,) contains the scalars.

3.2.5. — Recall, that we fixed a parabolic subgroup P C GL(D) lifting the
parabolic subgroup Py C GL(D ®y £), corresponding to the filtration on D ®yy £, and we
wrote M = GL(D)/P, and SpfR = M for the completion of M along the identity.

Let K'/K, be a finite extension, and y : R — K’ a K'-valued point such that s, €
Filoy* (M®). Then the stabilizer of p* (M) C Iy M) is a parabolic subgroup P, C GL(D),
defined over K', which is conjugate to P, and induced by a G-valued cocharacter , [43]
Lemma 1.4.5.* Let E C K’ be the local reflex field of W,y. That is, E D K is the field of

* The last line of the proof of lc. cit requires a correction, since the group scheme Aut®(w) is not in general
reductive, so one cannot apply (1.1.3) to it. One should replace that line by:
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definition of the G-conjugacy class of w,. Then the orbit G - » C (GL(D)/P)g; is defined
over E. Let M be the closure M of G -y C (GL(D)/P)e,.. Note that My depends
only on the G-conjugacy class of u,, and not on y.

Let M be the vector bundle D ®w Oy on M and M; € M the subbundle
corresponding to universal parabolic subgroup of GL(D) over M" . These restrict to the
bundles denoted by the same symbols on M Since G fixes the So.0 Pointwise, we have
5a.0 € Fil"M® over Mléi

We denote by MiS¢ = SpfRg the completion of MI(S’C along (the image of) the iden-
tity in GL(D ®y £). Then 1\/[IOC depends only the G-conjugacy class of ,, and the spe-
cialization of y in (GL(D)/P) ® k. By construction Rg, is a quotient of R = R @y Ok.

We remark that, in the special situation considered in Section 2, the definition of
Ml given there for p = ,uy_l agrees with the one in this section by Proposition 2.3.7.
More precisely, if G is defined over Q,, then in Section 2, M&® was defined as a scheme
over the integers of the reflex field of u, over Q,, and its base change to Oy D W(£) is
what we denote M in the present subsection.

Let K/Ky, be a totally ramified, finite extension. Let w be a uniformizer of K,
with Eisenstein polynomial E(x). We regard Ok as a G-algebra via u — . Write Mg =
D ®w &. Note that this is an exception to our usual convention, for which, for a ring A,
M,isa W(A)—module

Lemma 3.2.6. — Let & : Rg — Ok be an Ox-valued point, and let F C Mg denote the
preimage of §*(M,). Then ¥ s a free G-module and

(1) sy0 € F® C F®[1/E(w)] = Mg[l/E(u)].
2) The scheme Isom,_ . (F, Mg) consisting of isomorphisms respecting the tensors (sq.0), is
==(5a,0) g P 4 g ,
a trivial G-torsor over S.

Proof. — Since Mg /F is a free Og-module and Ox = G/E(x)& has projective
dimension 1 over G, F is free over G.

Clearly, the remaining two statements hold over D[1/E(x)] = Spec S[1/E(«)]
since F[I/E(u)] = M@[I/E(u)] in fact ISOHI( )(F|D [1/E@)]> MG'D[I/E(u)]) is a trivial g
torsor. By [43] Lemma 1.4.5 there exists a G—Valued cocharacter i, defined over K, such
that £*(M,;) C £*(M) is the ﬁltratlon induced by u. Let 60 denote the completion of
S[1/p] at the ideal E(x)&. Then (‘50 1sa K- algebra and F®gs (‘50 =EwupEw)! ‘Mg, .
Hence F®g 60 =g-Mg, forsome g € G(GO), since we are assuming that G contains the
subgroup of scalars. As the s, o are G-invariant, this implies that (1) holds over Spec 60

and hence over D*, and that Isom ,(Flpx, Mg|p~) 1s a G-torsor. Moreover, we have
su0 € F® =T(D*, F®), which proves (l)

Let (D)®€ denote the Tannakian category generated by the G-representation D. By Tannakian duality, (D)®¢
is a subcategory of (D)®, and the filtration on (D)® ®xk, K induces a filtration on (D)®:6 ®xk, K. Hence the filtration on
D ®k, Kis G-split by (1.1.3).
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Next we show that the G-torsor Isom  (F,Mg)|p~ can be reduced to a G°-torsor.
There is an exact sequence of étale sheaves on Spec W

(3.2.7) 1>G - G—4I)—>1

where I' is finite (constant) on Spec (k) and : : Spec £ < Spec W is the natural immersion.
Taking étale cohomology over D* gives an exact sequence of pointed sets

(3.2.8) H'(D*,G°) - H'(D*,G) — H'(D* @ £, T).

We saw above that the restriction of Isom . (F, Me)|p~ to Spec S[1/E(«)], and hence
to D* ®w & = Spec k((w)), is a trivial G-torsor. Thus ISﬂ(M])(F, Mg)|px can be reduced
to a G°-torsor.

Since H'(D*, G°) = {1}, the torsor ISﬂ(MVO)(F, Mg)|p= 1s trivial, and there 1s an
isomorphism F = Mg over D* respecting the s,. Such an isomorphism necessarily ex-
tends over D, which proves the two statements. 0J

Lemma 3.2.9. — Let & : R — Ox. Then

(1) S0 € M%w =M, OWR) W(OK)®.
(2) The scheme

T =Isom (1\7[1 OWR) W(Ox), M OWR) W(OK))

Ser,

is a G-torsor over W(Ox).

Progf- — As remarked in 3.1.6, we have
My ®w W(OK) = Moy, C " (5" D) = 9" (Moy)

so the first statement in (1) makes sense.

Let & — W(Ox) be the unique Frobenius equivariant map lifting the identity
on Ok. This is given by u+> [7]. Choose a decomposition Mg = L. & T as G-modules
such that F =L & E(«)T. Applying QsW(Ox) to L® T gives a normal decomposition
of (MOK, M(’)K,l)~ R

Note that E([7r]) is not a zero divisor in W(Ox). To see note this that

wi(E([71)) = wo (¢ (E([71))) = wo (E[7"]) = E(="),

which is non-zero for n > 1. Thus if z € W(OK) satisfies z - E([r]) = 0, then w,(2) =0
for n> 1. But this implies w,(¢(2)) = 0 for n > 0, so ¢(z) = 0 and hence z = 0. Thus

¢*(F) ®s W(Ox) = ¢*(L®s W(Ox) @ EWT ®s W(Ok))
(3.2.10) = ¢*(L ®s W(OK)) + p¢*(T ®s W(Ox)) = Mo, 1.
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Thus both parts of the lemma follow from the corresponding statements in Lemma 3.2.6,
and the fact that the s, are g-invariant. O

Corollary 3.2.11. — Suppose that R 1s normal. Then
500 €M | =M? ®qw W(RG)
and
T =Isom, (M ®qr WRG). M @ar WRG))

is a trivial G-torsor over W(RG).

Progf: — Since Rg 1s normal, it follow from [19] Proposition 7.3.6, that if s €
Rg[1/p] is an element such that &(s) € Ok for every finite extension K/E and & : Rg —
Ok, then s € Rg.

Now suppose [ € W(Rg) is non-zero. Then f is divisible by p in W(R) ifand only
if £(f) is divisible by p for every & as above. To see this note that p~'f € W(R) ifand only
certain universal polynomials in w,(f), n =0, 1,2, ..., with coeflicients in Z[1/p] take
values in Rg. By what we just saw, this is equivalent to asking that the same polynomials
in w,(£(f)) take values in Ok for all £, which is the same as p~'&(f) € W((’)K). Now the
first claim of the Corollary follows from (1) of Lemma 3.2.9.

By Lemma 3.2.9, for every & as above, §*(7) is a trivial G-torsor. By [65,
Thm. 4.1.2] this implies that 7 is flat over W(RG), as Mg ker(W(S )) = 0. Moreover,
T has a non-empty fibre over the closed point of Spec W(R). Hence 7T is a G-torsor,
which is necessarily trivial as £ is algebraically closed. U

3.2.12. — For the remainder of the section we assume that Rg is normal, so that
the conditions of Corollary 3.2.11(2) are satisfied.

Let ag, = m%{E + mpRg, where p € Og is a uniformizer. Note that Rp/ag, =
R/ag. Choose an isomorphism W, : K/IRGJ = Mg, which respects the s,0, and such
that Wg,, 1s constant modulo ag, in the sense that the reduction of W, modulo ag, is
induced by the isomorphism W, ® 1 of 3.1.11. Note that this is possible as G is smooth,
and if Wy, is constant modulo ag, then the map 1’\V/IRG,1 OWRre) W(RG /ar;) — Mg, Jarg
does respect the s, . Finally, lift Wy, to any isomorphism W : K‘/IRE,I = Mg, which is
constant mod ag,.

Asin 3.1.8, (Mg,, MREJ, W) gives rise to a Dieudonné display over Ry, and hence
to a p-divisible group %, over Rg. If R} is a versal deformation Og-algebra for ¥,
then %, is induced by a map j : R, — Rg. Since Rp/ag, = R/ag, it follows from
Lemma 3.1.12 that j i1s an isomorphism mod m(f{;5 + . Hence j is a surjection, and
hence an isomorphism, as both rings are smooth over Oy of the same dimension. In
particular, %, is versal.
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Lemma 3.2.13. — With the notation and assumplions of Lemma 3.1.17, suppose that
t € D®, and i € MY are Frobenius invariant with 1 lifting t, and that there is an W-linear section
s:D — M, sending t to t. Then the map of Lemma 3.1.17

D ®z,Q, ~ My ®z, Q,

sends t to 1.

Proof. — The proof of Lemma 3.1.17 shows that the map there is given by a con-
vergent sum

o0
s+ E d"oso CID(T'”_1 —®"os0 P,

m=0

Since ¢ and 7 are Frobenius invariant, this map sends ¢ to s(¢) = 1. O

Lemma 3.2.14. — Let K/E be a finite extension, & : Rg — Ok, and let Moy be the
Dieudonné display over Ok induced by &. Let Moy () be any deformation of Moy to a Dieudonné
display over Ok €], and let 5, denote the image of sy under the map

(3.2.15) D®®z,Q,—~ Mg, ®z,Q,

guwen by Lemma 3.1.17. Then the following conditions are equivalent

The deformation Moy e is induced by a Ut E : R — Okle] of &.

Any bft & : R — Okle] of & which induces Moy e factors through R.
maps to an element s, € Fil’ Moy (e)® Qz, Q.

€ M%K[e], maps to s, € Fil’ (MOK[G])Q

(1
2
(3
(

)
)
)
4)

S
S

Proof: — We first check that (1) implies (4). By construction, Mg, =D ®w WRe),
and under this identification the tensors s, € M%G are Frobenius invariant, and their
images in M%’G lie in Fil’. In particular, if (1) holds, we obtain in this way Frobenius
invariant tensors 5, € Mg, which map to Filol\_/[%K[ ¢+ To show (4), we have to check
5, =35. If s : D — Moy} denotes the tautological inclusion, then s sends s, to 5, so (4)
follows by Lemma 3.2.13

We obviously have (4) implies (3), and (2) implies (1) so it remains to show that (3)
implies (2). For this we show that the space of lifts € such that (3) holds, is an Ox-module,
and that its rank is equal to the dimension of Rg[1/p]. By [73] Thms. 3, 4, for any
deformation Mo, ] of M, as a display, there is a Frobenius equivariant identification

(3.2.16) MOK[G] = M(QK ®\A\’Y(OK) W(OK[G])

of the underlying W(OK[G ])-modules, and isomorphism classes of deformations corre-
spond bijectively to lifts of Mo, 1 C Mo, to a direct summand Mo, (e).1 C Moyg[e]-
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To see which deformations satisfy the condition in (3), we identify Mo, ®z, Q,
with D ®w W(OK)[I /pl using the isomorphism of Lemma 3.1.17. Combing this with
(3.2.16), Moy (e ®z, Q, 1s Frobenius equivariantly identified with D ®yy W((’)K[e])[l/p].
As above, one sees that s, is taken to 5, under this identification. In particular, this
1dentifies MOK[E] ® Q'/, with DK[e] =D Rw K[G], and giVCS DKQ[E] =D Rw Ko[E], the
structure of a weakly admissible filtered ¢-module, which is a self extension of Dk, =
D ®w K. The filtration on Dy is obtained by translating the constant filtration arising
from the filtration on Dx = D ®w K, by an element 1 4 €/ for some % € Endg (Dk).
Let P C GL(Dg) be the subgroup respecting the filtration on Dk, and consider the
map

Endg,(Dk,) = (D) ; g+ g(s00)-

Since s 0 1s Frobenius invariant and in F il°, this is a map of weakly admissible, filtered ¢-
modules, and hence is strict for filtrations. It follows that if g(s,.0) € Fil’D® for all o, then
g € Lie G + Lie P; C Endg (Dk). We apply this to the element . If s, o € (1 + €h)Fil’Dg,
we have 4 - 5, € Fil'Dg, so & € Lie G + Lie P;. Thus we may assume /4 € Lie G. Con-
versely, if 4 € Lie G then s, 0 € (1 + €n)Fil'Dg.

Thus the set of lifts of Mo, C Moy to a direct summand Moye.1 € Mog[e such
that s, € Filol\_/I%K[ ¢ Can be identified with an Ok -module of rank equal to

dim Lie G/(Lie P; N Lie G) = dim Rg[1/4].

Let Defg(§; Okle]) denote the set of lifts of & to a map Rg — Okle], and let
Defc(Mpy, Okl€]) denote the set of isomorphism classes of deformations of Mo, to
a Dieudonné¢ display over Ok|[€] satisfying (3). Then we have a map

DﬁfG@; OK[G]) - DefG(MOK§ OK[G])

which is injective by the versality of %, and Lemma 3.1.15. We have just seen that
both source and target are Og-modules of the same rank. If é : Ry — Oklée] is a lift
of & inducing Moy (¢ € Defs(Mo,; Okle€]), this shows that for n large enough, the
composite of & with the map Ok[e] — Okle] given by € > p'e factors through R.
Since this last map is injective, this shows that & factors through R and proves that (3)
implies (2). O

Proposition 3.2.17. — Let K/E be a finite extension, and Yo a deformation of 9y satisfying
the following conditions.

(1) Under the canonical isomorphism D(9o, ) (Ok) ® o K =D ®k, K = Dy, the filtration
on (Y0, ) (Ox) ®oy K is induced by a G-valued cocharacter conjugate to (L.
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(2) The sq4.0 Uft to Frobenius invariant tensors s, € D(goK)(W(OK))QZ’, and there 1s an
somorphism

D @y W(Ox) = D (%o, ) (W(Ok))

laking sy 10 S4.

Then any morphism & : Ry, — Ok inducing Yo, factors through Rg.

Progf- — The map in (2) induces a map
D — D(%o,) (W(OK)) @0 W =D(%)(W) =D.

which takes s, to 4.0, hence is given by an element of G(W). Lifting this element to
G(W(Ox)), we may modify the map in (2) and assume it lifts the identity on D. Then
Lemma 3.2.13 implies that the 5, are the images of s, 0 under the canonical map given
by Lemma 3.1.17. Denote by s, € D(%0,)(Ox)® the image of ,.

Let Do, = D ®yw Ok, and consider the filtration on Dp, induced by the iso-
morphism Do, = D (%, )(Ok) arising from the map in (2). This map takes 54,0 to 54,
and hence differs from the isomorphism in (1) by an element of G(K). In particular,
the induced filtration on De, corresponds to a parabolic subgroup G-conjugate to P,,
SO Sy € FﬂOD%K. As this filtration lifts the one on D ®yy £, it corresponds to a point
9 :Rg = Ok. As R depends only on the reduction of y, and the conjugacy class of
My, we may assume y =)' (and K’ = K) in order to simplify notation.

Let Moy, Moy.1, @1, ®) be the Dieudonné display corresponding to », and W :
K/IOK,I = My, the isomorphism associated by Lemma 3.1.5. Recall that, by construction,
Mo, is identified with D @ W(OK), and W takes s, ¢ to s,.0. By what we have just seen,
oy arises from a morphism W' : KI/I@KJ = M@K, which takes s, to 54,0 (because the 5,
are fixed by Frobenius), and reduces to ¥, : D, = D.

We now construct a Dieudonné display over S = Ok[['T]]. First consider the base
change of Moy, Moy.1, 1, P) to S, Mg, Mg 1, Py, P). The map Ok[[T] - Ok x, Ok
given by T+ (0, ) is surjective, and hence so is W(OK[IT]]) — W(OK) Xw W(OK).
Hence, by Corollary 3.2.11, there exists an isomorphism W : I\N/Ig_l = M which takes s, ¢
to 54,0, and specializes to (W, ¥') under T — (0, ). We take Mg to be the Dieudonné
display over S associated to Wg by Lemma 3.1.5.

Now let & : Ry — Ok be a map inducing %o, . By versality, we may lift the map
(9, &) : R = Ok x; Ok to a map § : Rg — S which induces Mg, and we may identify
the Dicudonné display Mg with the base change of My, by £. We will show that £ factors
through R, which implies that & does also.

For n > 1, let S, = S/T", and denote by Ms, the base change of Mg to S,.

Let I, = ker(Ry, 5 S — S,), and let J¢ = ker(Rp — Rg). Let n =ker(y : Rg — Ok),
and Ji, = ker(Rg — (Rg/n")[1/p]). By Lemma 3.2.13, under the canonical map
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given by Lemma 3.1.17, s, € D® is mapped to s, € Mg. It follows that, for the
Dieudonné display Mgy 1y, the map of Lemma 3.1.17 sends 540 t0 Sy0. In particu-
lar, by Lemma 3.2.14, any map Ry — Ok|€] which factors through Ry /I, N J¢,, factors
through Rg.

Now let I = kerg, and R, = Rp/I N Jg, and consider a map 6 : Ri;[1/p] — K][e]
which lifts y. After replacing € by p~"€ we may assume that 6 induces amap R, — Ok[€].
We also write 6 for the induced map Ry — K[e]. Since (INJg)[1/p] = N, ((LNJOI1/pD),
and the decreasing sequence of E-subspaces 6((I, N J{)[1/p]) C € - K must stabilize,
we see that 6(I, N JE) = 0 for some n. Hence 6 factors through R by what we saw
above. This implies that the tangent spaces of Ri;[1/p] and Rg[1/p] at n are equal. Since
Rg[1/p] is regular, we have

dim, R [1/p] < dim,qm n/n® = dim, Rg[1/p] < dim, RL[1/p].

(Here dim, denotes the dimension at n.) It follows that dim, R;[1/p] = dim,m n/n?,
which implies that R;[1/p] is regular at n, and Rg;  [1/p] = Re.o[1/p]. In particular,

JG ®Z/, Q,}; C In ®Z/, Q,py

soJo C (1,8z,Q,) NRg =1, as Rg /1, is p-torsion free. Finally, Joc C NI, =1, s0 § factors
through R¢ and so does &. O

3.3. Deformations with étale cycles

3.3.1. — We continue to use the notation above, so in particular £ is alge-
braically closed. Set I'x = Gal(K/K). Denote by Repy.” the category of crystalline I'k-

criso

representations, and by Repp the category of I'k-stable Z,-lattices spanning a repre-

cris

sentation in Repy.”. For V a crystalline representation, recall Fontaine’s functors
Dcris (V) = (Bcris ®Qp V)FK and DdR(V) = (BdR ®Qp V)FK'

Fix a uniformiser w € K, and let E(xz) € W[u] be the Eisenstein polynomial for 7.
We have the ¢-equivariant inclusion G — W((’)K) introduced above. As above, we de-
note by D* the complement of the closed point in Spec &.

Let Mod‘f6 denote the category of finite free G-modules 9 equipped with a Frobe-

nius semi-linear isomorphism
1®¢: e (M[1/E@] =M[1/E®W].
For M e Modf6 and ¢ an integer, we set
Fil'p* () = ¢* () N (1 ® )" (E(w)'IM).

If we view K as a G-algebra via u — m, then this induces a filtration on ¢*(9M) ®¢ K.
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Theorem 3.3.2. — There exists a_fully faithful tensor functor
M : Repffli;" — Mods,

which is compatible with formation of symmetric and exterior powers, and such that L — DN(L) |p~ 25
exact. If Liis in Repr°, V=L ®z, Q,, and M = M(L), then

(1) There are canonical isomorphisms
Deis(V) = 9/uM(1/p] and D (V) = ¢* (M) ®e K

where the first isomorphism s compatible with Frobenius, and the second isomorphism is
compatible with filtrations.

2) fL="T,9" :=Homg, (1,94, Z,) for a p-divisible group G over Ok, then there is a
canonical 1somorphism

D(#)(W(Ox)) = W(Ok) ®e., M
such that the induced map
D(#)(Ok) = Ok ®¢ ¢ (M) > Do (T,4”)

is compatible with filirations. In particular, if 9y = 9 & k then D(4,) (W) s canonically
wdentified with @™ (M /udN).

Progf. — Except for the claim that L = 91(L)|px is exact, this follows from [43]
1.2.1, 1.4.2.°> More precisely, let S be the p-adic completion of W[, E(u)'/i!];=1. Then the
first isomorphism in (2) is constructed in loc. cit. with S in place of W(Ox), and we obtain
the isomorphism in (2) using the continuous extension S <> W(OK) of & — W((’)K).

To see the exactness of L = 9(L)|px, let L* be an exact sequence in Rep%rlij". We
have to show that 9(L*)|p~ is exact. Let Q be a cohomology group of MM(L*)|px.

By (1) the support of Q on D* ®z, Q, is disjoint from the ideal E(x), and in
particular is contained in a finite number of closed points. There is an isomorphism
" (Q[1/Ew] = QJ1/E(w)], which implies that the support of Q on D* ®z, Q,, is empty.
Finally, the support of Q) does not contain the ideal (p), by [43] 1.2.1(2),s0 Q =0. U

3.3.3. — Suppose that L is in Repcrrlf", and let 5,4 € L% be a collection of T'k-
invariant tensors, which define a subgroup G C GL(L), which is smooth over Z, with
reductive generic fibre G. Applying the functor 9 we obtain corresponding tensors 5, €

ML)®.

> Note also that T,¢* should be replaced by the linear dual T,9" of T,¢ in (1.4.2), (1.4.3) and (1.5.11) of the
published version of loc. cit.
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Note that, since the s, ¢ are I'k-invariant, the action I'x on L gives rise to a repre-
sentation

p:Txk — G(Q,).

Recall the Kottwitz homomorphism «¢ : G(Ky) — m,(G);, where I = Gal(K/K,). We
have the following Lemma, due to Wintenberger.

Proposition 3.3.4. — ([71]) The tmage of the crystalline representation
p: Tk — G(Q,)

is contained n ker k.

Progf: — 'This 1s proved in [71, Lemme 1] when K = K, however the proof there
goes over verbatim without this assumption. Note that we are using here that £ is alge-
braically closed. O

Lemma 3.3.5. — Suppose that H' (D>, G°) = {1}, and p factors through G°(Z,). Then
there is an 1somorphism

L®z, & — M(L)

taking sy 10 5.

Proof. — Write Og. =lim L; with L; C Og. of finite Z,-rank and G°-stable, as

€]
in [9], Lemma 3.1. Let 9M(Og-) := hm M(Ly). Since L= M(L)|px is an exact faithful

tensor functor by Theorem 3.3.2, it follows from [9], Thm. 4.3, that MM(Oge)|p~ is a
sheaf of algebras on D* and that P° = Spec (M(Og-))px is naturally a G°-torsor. If we
carry out the same construction with G in place of G° we obtain a G-torsor P over D*.
By construction, there is a G°-equivariant map P° — P, so P is obtained from P° by
pushing out by G° — G. Our assumptions imply that P° is trivial and hence so is P.
Now let P’ C Hom(L ®z, &, MM (L)) be the scheme of isomorphisms L. ®z, & =
M(L) taking s, to 5,. By [9], Thm. 4.5 there is a natural isomorphism M(L) = G\'P x L.
where G actson P x Lviag- (p,¢) = (pg~", ge). This implies that there is a G-equivariant
inclusion P C P’|px, so P'|px = P is a trivial G-torsor. Hence P’ has a section over D*,
and the resulting isomorphism necessarily extends to Spec &. UJ

Corollary 3.3.6. — Suppose that G splits over a tamely ramafied extension, and has no_factors
of type B, and that G = G, for some x € B(G, Q,), so that G° is a parahoric group scheme. Then

there is an 1somorphism
L®z 6 > ML)

laking sy 10 5.
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Proof. — By [38] Prop. 3, G°(Z,) = G(Z,) N ker k. Hence, by Proposition 3.3.4,
the action of I'k on L factors through G°(Z,). Moreover, H'(D*, G°) = {1}, by Proposi-
tion 1.4.3, so the Corollary follows from Lemma 3.3.5. UJ

3.3.7. — Keep the assumptions introduced in (3.3.3). Suppose that L =T,%4",
where ¢ is a p-divisible group over Ok with special fibre ¢,. We denote by s, €
FﬂODcriS(Tng ®z, Q,)® the g-invariant tensors corresponding to s, ¢ via the p-adic com-
parison isomorphism.

Assume from now on that G = G, for some x € B(G, Q,), and that G splits over
tamely ramified extension, and has no factors of type Eg.

Proposition 3.3.8. — We have 540 € D(%)(W)®, where we view D(4,)(W) C
Dess(T,9 ®z, Q) va the isomorphisms of Theorem 3.3.2, and the sy Ufi to @-invariant ten-
so15 5 € D(9)(W(OK)) which map into FiI'D(4)(Ok)®.

T here exists an isomorphism
D(@)(W(Ox)) = W(Ox) 8z, T,94"
taking Sq 10 S In particular, there exists an isomorphism
D(G)(W) =W ®,, T,9"

taking sg.o 10 Sg.é1-

Proof: — Let ﬁﬁf M(T,4"), and 5, € M? the tensors corresponding to sy . We
may view 5, in D(¥)(W(Ox))® via the isomorphism

D(9)(W(O)) ZW(Ox) ®,.6 M

of Theorem 3.3.2. which also implies that these elements specialize to s,,0 € D(¥,)(W)®,
and map into Fil’'D(¥4)(Ok)®.

By Proposition 3.3.6 there is an isomorphism 9 = T,4" ®z, & taking 5, to s, and
the remaining statements in the lemma follow from the isomorphism D(¥) (W(OK)) =

W(Ox) ®,.6 M. 0

3.3.9. — Set D = D(%))(W). By Proposition 3.3.8, we may identify the sub-
group Gy C GL(D) defined by the 5,0 with G ®z, W. This identification is indepen-
dent of the choice of isomorphism D =W ®z, T,%" up to Gw-conjugacy. We write
Gk, = Gw Qw K.

Corollary 3.3.10. — With the above assumptions and notation, let s, € D(9)(O)® denote
the image of 5. Then there exists an isomorphism

D(¥)(Ox) =D ®w Ok
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taking s, to sy, and lifling the identity on D(,) (k). In particular, there is a Gy, -valued cocharacter
Iy such

(1) The filtration on D @ K induced by the canonical isomorphism
D @w K=D(#)(Ok) ®ox K

is gwen by a Gy, -valued cocharacter Gy, -conjugate to L.
(2) 1, tnduces a filtration on D which lifis the filtration on D @ k =D (%) ().

Proof. — By Proposition 3.3.8, there is an isomorphism 7 : D(¢)(Ox) = D ®w Ok
taking s, to s,0. Since the scheme of such isomorphisms forms a Gy-torsor, we may
assume that this isomorphism lifts the identity on D(%;)(k), and we consider the induced
filtration on D ®yw Ok. As above, since s, € Fil’'D(¥)(Ox)®, this filtration is given by a
Gg,-valued cocharacter u,, which satisfies (2) by construction.

As ¢ differs from the canonical map D ®@w K = D(¥4)(Ok) ®oy K by the action of
an element of Gk, (K), u, satisfies (1). O

3.3.11. — Keep the assumptions above. We apply the construction of Sec-
tions 3.1.8 and 3.2 to the p-divisible group ¥ equipped with the tensors s, 0. Thus Py C
GL(D ®w £) is a parabolic corresponding to the filtration on D @y £, and P C GL(D)
a lifting of Py. The filtration in Corollary 3.3.10 is given by a point y € GL(D)/P, which
reduces to Py, and we have the formal completions of the local models

M = M)l,oc = SpfR, and ﬂ\/lléc = 1(\/[183, = SpfRg,

defined over O, corresponding to the orbit G - y C (GL(D)/P)o, which is defined over
the reflex field E/K, of u,.

Note that, by Proposition 3.3.8, (D, (s,)) satisfies the condition (3.2.2). As Gy =
g ®z, W, we have H'(D*, G3,) = {1}, and (3.2.3) is satisfied. We also assume from now
on that

(3.3.12) Rg 1s normal and G contains the scalars.

Then the assumptions in 3.2.12(2) are satisfied, and we may fix an isomorphism W : M, =
M lifting Wy, such that W is constant modulo ag,, and such that its base change W, to
W(Rg) respects the 4.

Proposition 3.3.13. — Let 9" be a deformation of G, defined over some finite extension K/E
such that

(1) The filtration on D @y, K corresponding to 9" is given by a G-valued cocharacter which
is G-conjugale to JL,.
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) There exists Galois nvariant tensors s, .. € (T,4'V)® which correspond to s, o under the
a,ét V4 s
p-adic comparison isomorphism.

Then any morphism Ry, — Oy which induces G’ factors through R.

Proof. — By Lemma 3.3.8, ¢’ satisfies the conditions (1) and (2) of Proposi-
tion 3.2.17, which implies the present Proposition. 0J

4. Shimura varieties and local models

4.1. Shimura varieties of Hodge type

4.1.1. — Let G be a connected reductive group over Q and X a conjugacy class
of maps of algebraic groups over R

h:S= RESC/RG,” — GR,

such that (G, X) is a Shimura datum [20] §2.1.
For any C-algebra R, we have R @g C = R X ¢*(R) where ¢ denotes complex
conjugation, and we denote by u, the cocharacter given on R-points by

R* - (R x *(R)) = (R ®& €)* = S(R) > G (R).

We set wy, = ;' st

Let A; denote the finite adeles over Q, and Aff C A, the subgroup of adeles with
trivial component at p. Let K= K,K’ C G(Ay) where K, C G(Q,), and K’ C G(Afi) are
compact open subgroups.

If K? is sufficiently small then

Shk(G, X)¢ = G(Q\X x G(A/)/K

has a natural structure of an algebraic variety over G, which has a model, Shx(G, X) over
a number field E = E(G, X), which is the minimal field of definition of the conjugacy
class of ;. We will always assume in the following that K’ is sufficiently small that the
quotient above exists as an algebraic variety.

We will sometimes consider the E-schemes

Sh(G, X) = lim Shk(G, X),
and
Sh, (G, X) = lim Shg(G, X),

where K runs through all compact open subgroups in the first limit and through all com-
pact open subgroups with a fixed factor K, at p in the second limit. These exist as the
transition maps are finite, hence affine.
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4.1.2. — Fix a Q-vector space V with a perfect alternating pairing ¥. For any Q-
algebra R, we write Vg =V ®¢ R. Let GSp = GSp(V, ¥) be the corresponding group
of symplectic similitudes, and let S* be the Siegel double space, defined as the set of maps
h: 8 — GSpg such that

(1) The G*-action on Vg gives rise to a Hodge structure of type (-1, 0), (0, —1):
VeV e Vil
(2) (x,9) = ¥ (x, h(2)y) is (positive or negative) definite on Vg.

4.1.3. — For the rest of this subsection we will assume that there is an embedding
of Shimura data ¢ : (G, X) < (GSp, S*). We will sometimes write G for Gq, =G ®q
Q,, when there is no risk of confusion. We will assume from now on that the following
conditions hold

(4.1.4) G splits over a tamely ramified extension of Q,, and that p{ | (Gd“) l.

Fix x € B(G, Q,) and let G = G, be the smooth Z,-group scheme with generic
fibre G, which is the stabilizer of x, so that G° is a parahoric group scheme.

4.1.5. — The table [20] 1.3.9 shows that the symplectic representation ¢ is mi-
nuscule. In Section 1.2 we constructed a toral embedding B(G, Q,) — B(GSp, Q) as-
sociated to ¢. For simplicity, we again denote by ¢ this embedding of buildings. Let GSP
be the smooth Z,-group scheme defined by ¢(x), and let Vz, C Vg, be the Z,-lattice
corresponding to the image of x in B(GL(VQP), Q).

By Lemma 1.3.3 ¢ induces a closed embedding of Z,-group schemes G < GSP.
By the discussion in (2.3.15) and Corollary 2.3.16, after replacing ¢ by another symplectic
embedding, we may and do assume that GSP is the group scheme corresponding to a
lattice Vz, C Vg, such that Vz, C VE}I, and that ¢ induces an embedding of local models
Mg < Mlégp,si-

These models have a more concrete description: Let Pj-1 C GL(Vz,) be a
parabolic defined over Z,, and corresponding to a cocharacter in the conjugacy class
of ,u,l_l for 4 € X. Let u be a G-valued cocharacter, defined over Q,, and in the G-
conjugacy class of p;. The orbit G - y C GL(Vgz,)/P;-1, where y is the filtration defined
by 1!, depends only on X and not on the choice of i, and is defined over E. By Propo-
sition 2.3.7, the Og-scheme Ml(‘icx agrees, (as a subscheme of Mlggp’si) with the closure of
G- u CGL(Vg,)/Pj1.

4.1.6. — Let Vz(ﬁ) = Vz, N Vg, and fix a Z-lattice Vz C Vg such that Vz ®z
Z;, = Vz, and Vz C V. The choice of lattice Vz gives rise to an interpretation of
Shy (GSp, S*) as a moduli space of polarized abelian varieties.
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Consider the Zariski closure Gz, of G in GL(Vz,); then Gz, ®z, Z, =d4.
Set K, = G(Z,), and K, = GSP(Z,). We set K = K,K’ and similarly for K'. By [43]
Lemma 2.1.2, for any compact open subgroup K’ C G(Ajﬁ) there exists K¥ C GSp(Aj;)
such that ¢ induces an embedding over E

Shx (G, X) <> Shy(GSp, S¥).

®

4.1.7. — We now introduce Hodge cycles. Fix a collection of tensors (s,) C Vz<,,)

whose stabilizer is Gz, . This is possible by [43] Lemma 1.3.2.

Let #: A — Shg(G, X) denote the restriction to Shx (G, X) of the universal abelian
scheme, and let V = R'%,Q° be the de Rham cohomology of A. As in [43] §2.2, the s,
give rise to a collection of absolute Hodge cycles s, qr € V®, defined over the reflex field E.

Now let k D E be a field of characteristic 0, and k an algebraic closure of k. Fix an
embedding Q, <> G and an embedding of E-algebras o : k < C. Let x € Shg (G, X) (k)
and denote by A, the corresponding abelian variety over k. Denote by Hy(A,(C), Q)
the Betti cohomology of A,(C). Write HéR (A,) for its de Rham cohomology and
H{ (A.z) = H} (A z, Q,) for the p-adic étale cohomology of A, ; = A, ®, k. The em-
bedding o induces isomorphisms

Hlp (A) ®.c G=Hy(A(C), Q) ® C=H'(A.z, Q) ®q, C.

Let sy qr.» denote the fibre of s, qr over x, and s, ¢, € H(;(Ax,,;)é9 the image of s, gr , under
the composite of the above two isomorphisms. As in [43] Lemma 2.2.1 one sees that sy ¢,
1s Gal(k /k)-invariant and, in particular, independent of the choices made above.

4.2. Integral models

4.2.1. — We keep the notation and assumptions introduced above.

Fix a prime v|p of E, and let O be the ring of integers of E, and £, the residue field
of v. The choice of lattice V gives rise to an interpretation of Shx (GSp, S¥) as a moduli
space of polarized abelian varieties, and hence to a natural integral model .% (GSp, S¥)
over Z,, and hence over O,,. We denote by .7 (G, X) the closure of Shx(G, X) in the
Oy-scheme . (GSp, S*), and by % (G, X), the normalization of .-#x(G, X)~.

Fix an algebraic closure Qp of Q,, and an embedding v : E — Qﬁ. Let E =E,,
so that E is the local reflex field of (G, {u,}). We denote by £ the residue field of Qj, and
write W = W(£) and Ky = W[1/p]. Set E*" = E - K, in the completion of Q,,.

Let K/E*™ be a finite extension, and let x € Shx(G, X)(K) be a point which ad-
mits a specialization x € . (G, X)(k). Let ¢, denote the p-divisible group over the
Ok-valued point corresponding to x, and % its special fibre. Write D; = D(4:)(W).
Let 5,0 € D? ®z, Q, be the p-invariant tensors corresponding to sy ¢, under the p-adic
comparison isomorphism, and Gk, C GL(D; ®z, Q) the group defined by (s..0). The
filtration on Dk corresponding to %, corresponds to a parabolic in Gk, ®k, K by [43]
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Lemma 1.4.5 (in the terminology of loc. cit., this filtration is G-split). This is induced by a
G-valued cocharacter which lies in the G-conjugacy class of ;.

We use the notation of 3.3.11 applied with ¢ = ¥,. Thus we have a parabolic
subgroup P C GL(D5;), and a point y = y(x) € (GL(D53)/P)(K), which specializes to Py =
P ®w £, and is induced by a G-valued cocharacter w,, which is conjugate to p;-1. We
obtain formal local models MlOC = SpfR and MlOC = SpfR¢ defined over Oy, the latter

being obtained by Completlng the orbit closure lec = Gg, -(x) C GL(D3)/P at the
specialization of y.

Proposition 4.2.2. — Let Us be the completion of S (G, X)ogu at X. Then the irreducible
component of U: containing x 1s 1somorphic to Ml(‘jc as formal schemes over Oy

Proof. — Recall that we are assuming that G splits over a tamely ramified exten-
sion, and that G° is a parahoric group scheme. Note that Gk, C GL(D; ®z, Q) contains
the scalars, since G C GL(Vgq) contains the image of w;, and R¢ is normal by The-
orem 2.1.2. It follows that the conditions imposed in the construction of (3.3.11) are
satisfied, and we can equip D ®yw R with the structure of a Dieudonné display over R
satisfying the conditions in 3.2.12.

In particular, this construction allows us to view R as a versal deformation ring for
¢, so there exists a map © : U; —> MlOC such that the p-divisible group correspondlng to

the chosen Dieudonné display over R pulls back to the p-divisible group over Us arising
from the universal family of abelian schemes over U.. By the Serre-Tate theorem, © is
a closed embedding, and it suffices to show that it factors through MIOC since both MIO‘

and Us have the same dimension.

Let K’ D E™ be any finite extension and «" € U:(K) a point lying on the same
irreducible component of U; as x. The same argument as in [43] Proposition 2.3.5
shows that s, ¢ v corresponds to s, under the p-adic comparison isomorphism for the
p-divisible group ¥,: Let U and ng denote the analytic spaces over E' attached to SpfR
and U; respectively [19, §7]. Since Dr = D ®yw R underlies an F-isocrystal on R, the
sections s,,o extend uniquely to parallel sections 5,9 € D% ¢ [42, 3.1]. The isomorphism
H!, (A;/W) @ K' Z H/; (A,) takes 540 t0 Suolv [4, §2.9]. Now (Spo — Soar) o 15 2
parallel section of DR|Ugﬂ which vanishes at x by construction. Hence it vanishes on the
irreducible component of ﬁin containing x, and in particular at ¥, so that 5,0/ = Sy.ar v -
Finally s, s v and sy ¢ correspond under the p-adic comparison isomorphism [3].

Since the filtration on D: ®k, K’ corresponding to ¥, is given by a cocharacter
which is conjugate to ;. It follows from Lemma 3.3.13 that «’ is induced by a point
of Ml‘)L Since this holds for any x/, it follows that ® factors through MlOL U

4.2.3. — Let kg denote the residue field of E. If £'/kg is an extension of perfect
fields, and z € M« (), we denote by M ®wyy) WH) by My ,, and by MISCX ., the

completion of Ml(i"x ., at the image of z.
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Corollary 4.2.4. — Let x € YK(GL\X) be a closed pownt of characteristic p. Then there exists
z€ M@ (k) such that U, is isomorphic to M . over Opr.

Progf: — By Proposition 3.3.8 we may identify the subgroup Gy C GL(D) with
the pullback to Opw of G C GL(Vg,). Hence the lemma follows from Proposition 4.2.2.
The fact that y corresponds to a parabolic of G was already remarked above. U

4.2.5. — We continue to assume that G splits over a tamely ramified extension
of Q, and that p does not divide the order of 77;(G%"). The relationship between the
integral model .« (G, X) and local models can be globalized. To explain this, recall that
we have the bundle V = R'4,Q°* over Shy(G, X) given by first de Rham cohomology
of the universal abelian scheme and a collection of absolute Hodge cycles s, 4z € V®, all
defined over the reflex field E. The bundle ) extends to a bundle V over the O, -scheme
(G, X). _

Consider now the G-torsor Shy(G, X) over Shx(G, X) classifying trivializations
[V =V that preserve the tensors, .e. with f®(s,) = S.ar.-

Proposition 4.2.6. — The sy qr extend to tensors s, gr € V® over (G, X). The scheme
F(G,X) that classifies trivializations f Vé@) = VY with f®(s4) = Syars IS @ G-torsor over
Sk (G, X).

Progf. — As in the proof of Corollary 3.2.11, since %« (G, X) is normal, to show
that s, qr belongs to Ve itis enough to check that for every & : Spec (Ox) — (G, X)
with K a finite extension of E, s, 4r ¢ 1s in £*())) (Where we again denote by & the K-valued
point corresponding to &). A result of Blasius and Wintenberger [5] asserts that the p-adic
comparison isomorphism takes sy ¢ t0 Sp.ar¢.” Let % denote the pullback via & of the
universal p-divisible group over (G, X). If M = M(T,¥4,”) then by Theorem 3.3.2,

we have
sware € Ok ®s 9" (M® =D(¥:)(Ox)® =& (V)°.
It follows by Proposition 3.3.8 that § *(%(G, X)) is a G-torsor. Arguing as in the

proof of Corollary 3.2.11, we see that .7 (G, X) is a G-torsor. O
Theorem 4.2.7. — Under the above assumptions, there exists a diagram of morphisms
(4.2.8) F(G, X)o,
/ X
c7K(C}’ X)O}; Mlg?xv

® Indeed this result was already used implicitly via the citation of [43] in the proof of Lemma 4.2.2 above.
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of Oy -schemes, in which:

— 70 is the G-torsor given by Proposition 4.2.6,
— q 15 G-equivariant and smooth of relative dimension dim G.

Proof: — Let K/E" be a finite extension, and x € Shy(G, X)(K) be a point which
admits a specialization x € % (G, X)(k). We use the notation introduced in 4.2.1.
In particular, we have the orbit closure M := Gy, - »(x) C GL(D;)/P. By Proposi-
tion 3.3.4 and Lemma 3.3.8, we have s,z € D? and if N/[lgf is the scheme over Mlgc
which parametrizes isomorphisms f : D; = V%ﬁ ®z, W such that f ®(50.0.5) = ¢, then
Mlgc =P x M{‘, where P is a trivial Gy-torsor. In particular Mlcf“ is a G-torsor over Mi°.
We define a map of Opu-schemes ¢ : K/II(Q)C — Mg by taking (f, F) to /7' (F). One
sees easily that ¢° is a G-torsor. Thus we have a diagram

(4.2.9) M

loc loc
M¢ M

with 77'°¢ and ¢'°¢ are G-torsors. N

To construct the morphism ¢, let (x, ) be an S-valued point of .7 (G, X). We
send (x, /) to the inverse image /' (F) C Véﬁ ® Os of the Hodge filtration F C V(S) =
R'%,Q8% /59 which is an S-valued point of G1.(Vg,)/P;. Now consider the diagram of Og-
schemes

(4.2.10) F(G,X)o,

/ x
tyK(CL)()OE GL(VZp)/Ph

loc

We have to show that ¢ factors through M5 and that the resulting morphism to M
1s smooth of relative dimension dim G. To do this it suffices to show these properties for
the corresponding morphism in the diagram of Ogu«-schemes

(4.2.11) Us X 46300, Tx(G. X)o,

— T

j=)

GL(Vz)/P.
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Here we have written U for the affine scheme with the same affine ring as the formal
scheme Uy, and the map on the left of the diagram is obtained by pulling back 7 by
U; = Z(G, X)p,. One sees directly from the definitions that this last diagram can be
identified with the one obtained from 4.2.9 by pulling back 7'°¢ by the isomorphism
U; E Mg — M, given by Proposition 4.2.2. Since ¢ has the required properties, so
does g¢. 0J

Corollary 4.2.12. — Under the above assumptions, the scheme .S«(G, X) has reduced special
Sibre. If K, = K7, ie. K, is parahoric, then the geometric special fibre (G, X) ®o, k admits a
stratification with locally closed strata parametrized by the p-admassible set of Kottwitz and Rapoport
(e.g. [59], 9.1.2); the closure of each stratum is normal and Cohen-Macaulay.

Progf- — 'This follows from the existence of the diagram (4.2.8) and [59] Theo-
rem 1.1 by the standard argument (see loc. cit. Theorem 1.2.) Indeed, the stratification is
obtained from a G-stratification on the geometric special fibre Mg ®¢, k which is given

by realizing this as a union of affine Schubert varieties in an affine Grassmannian. 0J

Corollary 4.2.13. — Under the above assumptions, including K, = K7, gien a point z €
kG, X)(F), kg CF,, there is w € Mlcc;’fX(Fq), well defined up to the action of G(F,) on
1\/IlcofX (F,), such that we have an isomorphism of henselizations

h ~ h
OyK(G'X)’Z o Ol\’llc??x,w :

Progf. — For simplicity, set . = #«(G, X). Lang’s lemma applied to the torsor
mg, for the smooth connected group scheme Gg, implies that there is z € .(F,) that lifts
z1em(2) =z, an’gl/ we take w = ¢(2). Since both 7 and ¢ are smooth, we there is a section
SE?C (ngyz) — . which extends Z and is such that the composition 4 : Spec (Og,’z) —

& — MY induces an injection of tangent spaces at z and w. This injection is necessarily
an isomorphism and so & is formally étale. The result follows. U

Remark 4.2.14. — a) We expect that the map ¢: QSF’Z(G, X) — M is surjective.
However, we don’t know how to uniquely characterize the model .7« (G, X) of Shy (G, X)
in general, even after assuming this statement. However, see 4.6.27 for a partial result in
this direction.

b) Assume that G is unramified over Q,, i.e. quasi-split over Q, and split over an
unramified extension of Q,. Then given x € B(G, Q,), such that G2(Z,) is contained
in a hyperspecial subgroup, there is x" € B(G, Q,) such that G = G,. (One can take &’
to be a generic point of the smallest facet that contains x, see e.g Lemma 7.0.2 of the
Corrigendum for [35].) Therefore, in this case, Theorem 4.2.7 and its corollaries can be
applied to Shimura varieties for all such parahoric subgroups of G(Q,).
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4.3. Integral models for parahoric level

4.3.1. — We will use the results of the previous section to construct integral
models for Shimura varieties of Hodge type with parahoric level structure. That is, where
the level structure at p is given by G°(Z,). We keep the notation introduced above, and
write K = G°(Z,) and K* = K)K’. We denote by G the universal cover of G, We begin
with two lemmas.

Lemma 4.3.2. — The composite of the maps

(i), h

G(E)/G(E) = G(Q,)/G(Q,) = G(Q,)/G(Q,)K;

is trivial on OF . Here the furst map is induced by the conjugacy class of ;" for h € X, and the second
map is gwen by the norm Ngq,.

Proof: — Let Ey C E be the maximal unramified subfield of E, and set K
G2 (Ok,). It suffices to show that the composite

P Eo —

B Gy /G ) G (B /GEDK .

kills O, since then the lemma follows by applying N, g, -

To show this, we may replace E by E - Ej, where Ej is a finite unramified extension
of Ey, and assume that G is quasi-split over Ej. Let T be the centralizer of a maximal
split torus in Gg,. Then [M,L_l] contains a cocharacter u € X,(T), defined over E. After
replacing K7 - by a conjugate subgroup, we may assume that the point x € B(G, Eg)
defining G° is in the apartment corresponding to T

Let 7° denote the connected Néron model of T. Coonsider the composite

NE/E,
Rh/hon_>Rh/hoT — T.

The corresponding map on Eg-points sends Of to a bounded subgroup of T(Ey). If
Iy, = Gal(Qp /Eo), then m (Rg g, G”Z)FEU = Z 1s torsion free, and in particular, the image
of Of in 71 (R, Go)ry, and 71 (T)ry, is trivial. Hence the above map sends Oy into
T°(Oy,). Since T°(Oy,) C K > the lemma follows. O

4.3.3. — Now let C =ker(G — G%). For ¢ € H'(Q, C), and [ a finite prime,
denote by ¢; € H'(Q), C) the image of ¢. Until further notice, we assume that G satisfies
the following condition.

(4.3.4) If c € H'(Q, C) satisfies ¢, = 0 for [ # p, then ¢, = 0.

The condition will be removed at the end, and so does not appear in our final result.
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Lemma 4.3.5. — For K sufficiently small
G(Q) NK C K.

Proof. — Let p : G — G denote the natural map. By [20, Cor. 2.0.5, 2.0.13], we
may choose K’ sufficiently small that

K'NG(Q) C (p(}(Aj”i) NG(Q))-Uc G(A)),

where U is any subgroup of finite index in the p-units in Z(Q).
By [20, Prop. 2.0.4(i1)], our assumption that (4.3.4) holds implies that

pG(A)) NG(Q) = pG(A) NG(Q).

Here the intersection on the left (resp. right) is taken in G(Afi) (resp. G(Ay)). Thus KN

G(Q) C p(~}(Af) - U. In particular for U and K’ sufficiently small KN G(Q) C K° by
[38], Prop. 3. U

4.3.6. — Let G(Q), denote the preimage of G*(R) " in G(Q), and let G(Q);
be the closure of G(Q) in G(Ay). Denote by %k (G, X) the normalization of (G, X)
in Shy- (G, X).

Proposition 4.3.7. — If K satisfies the smallness assumption imposed in (4.1.1) then the
covering S (G, X) = S(G, X) s élale. If K is sufficiently small, this covering splits over an
unramified extension of Of.

Proof. — By [20] 2.1.3.1, the connected components of Shy-(G,X) (resp.
Shg (G, X)) over Qp form a torsor under G(Ay)/G(Q),K® (resp. G(Ay)/G(Q),K), which
is an abelian group. Suppose that K’ is sufficiently small, so that the conclusion of
Lemma 4.3.5 holds. Then

70 (Sh (G, X)g,) = 70(Shk(G, X)g,)
1s a torsor under
G(Q)K/G(Q), K> = G(Q) KK, /G(Q) K'K; =K,/(G(Q)K° NK))
=K,/K}.
As K,/K? transitively on the geometric fibres of
(4.3.8) Shg- (G, X) — Shg(G, X)

this implies that (4.3.8) is a K, /K/-torsor which becomes trivial over Qp. Lemma 4.3.2

together with [20], Thm. 2.6.3, which describes the action of Gal(Q/E) on the geomet-
rically connected components of Shge (G, X), now imply that this torsor actually splits
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after base changing to an unramified extension of E. This proves the Proposition for K’
sufficiently small.

To show the Proposition for any K’ (still satisfying the smallness assumption
imposed in (4.1.1)), Let K” C K’ such that the Proposition holds for K' = KK, and
K = K”K?. Then, by what we have shown above together with Proposition 4.2.2, the
maps

o (G, X) » S (G, X) = H(G,X)

are finite étale. Since the composite of these maps factors through .#- (G, X), it follows
that

e (G, X) = (G, X)

1s finite étale. O

Corollary 4.3.9. — The geometrically connected components of -7, ke (G, X) are defined over the
maximal extension of E that s unramified over primes dividing p.

Progf. — This follows from 4.3.2, as well as [20], Thm. 2.6.3, which describes the
action of Gal(Q/E) on the geometrically connected components of Sth (G, X). [

4.3.10. — The pullback of the torsor 7 introduced in Theorem 4.2.7, by the
morphism % (G, X) = .%«(G, X) produces a G-torsor

7° 1 Fee(G,X) = S (G, X).

We conjecture that this G-torsor has a reduction to a G°-torsor, although we are unable
to prove this.

4.4. Twisting abelian varieties

4.4.1. — In the next three subsections, we deduce the consequences of the above
results for Shimura varieties of abelian type. Many of the arguments of [43] §3 in the hy-
perspecial case go over unchanged, so we discuss in detail only those points which do not.
One of these concerns the definition of the action of G*(Q)™ on the models Z, (G, X)
constructed above. In the hyperspecial case the models %k, (G, X) satisfy Milne’s exten-
sion property. This implies the action of G*(Q)" on the generic fibre extends to the
whole model, and it sufficed in [43] to give a description of this action on the level of
abelian varieties up to isogeny. In the case considered here, we do not have an ana-
logue of the extension property, and we need to give a direct description of the action of
G*(Q)™. This requires a refined form of the twisting construction in §3.1 of /oc. cit.
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4.4.2. — Let A be a commutative ring with identity, Z a flat, affine group scheme
over SpecA, and P a Z-torsor. Note that by flat base change, the coherent cohomology
of P vanishes, so P is affine. We write O and Op for the afhne rings of Z and P
respectively. If M is an A-module, a Z-action on M is a map of fppf sheaves Z — AutM.
Giving a Z-action on M is equivalent to giving M the structure of an Oz-comodule. For
any such M the subsheaf M? may be regarded as an A-submodule of M by descent.

Lemma 4.4.3. — With the notation above, the natural map
(4.4.4) M R4 Op)* @4 Op — M®, Op

is an 1somorphism

Proof. — Let 7y, my be the morphisms Z Xg,..o P — P given by sending (z, /)
to zh and £ respectively. A semi-linear action of Z on an Op module N gives rise to an
isomorphism 7;(N) = 75 (N), which via the isomorphism Z x P =P x P is nothing but
a descent datum for the morphism P — Spec A. We apply this to N =M ®, Op. The
lemma now follows by faithfully flat descent, since Z is flat over A and hence sois P. U

4.4.5. — We now suppose that Z is of finite type, and that A C Q. For S a
scheme we define the A-isogeny category of abelian schemes over S to be the category
obtained from the category of abelian schemes over S by tensoring the Hom groups by
®zA. An object A in this category is called an abelian scheme up to A-isogeny over S. For T
an S-scheme we set A(T) = Homg(T, A) ®z A.

Let A be an abelian scheme up to A-isogeny over S. Denote by Aut, (A) the A-
group whose points in an A-algebra R are given by

Aut, (A)(R) = ((Ends.A) ®zR)".

Let Z and P be as above, and suppose that we are given a map of A-groups Z —
Aut, (A). We define a pre-sheaf A" in the fppf topology of S by setting

z
AP (T) = (A(T) ®¢ Op)".
Lemma 4.4.6. — A" is a sheaf; represented by an abelian scheme up to A-isogeny.

Progf- — By a result of Moret-Bailly, [55] Thm. 1.6, there exists a finite, integral,
torsion free A-algebra A’ such that P(A’) is non-empty. Specializing (4.4.4) by the map
Op — A’ we obtain an isomorphism A” ®, A’ = A ®, A’. Since A’ is a free A-module
A ®a A’ is an abelian scheme up to A-isogeny.

We may assume that FrA’ is Galois over Q, when A” is the Gal(FrA'/Q)-
invariants of A” ®, A’. Hence A" is the kernel of a map of abelian schemes up to
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A-isogeny. Write this map as #n~! - f where 7 is an integer which is invertible in A, and f
is a map of abelian schemes. Let B be the connected component of the identity of ker(f),
and view B as an abelian scheme up to A-isogeny. The cokernel of the natural inclusion
B C A7 is a torsion sheaf; so the natural map B ®, A’ — A ®, A’ induced by (4.4.4) is
an isomorphism, which implies that B = A”. U

4.4.7. — Keeping the above assumptions, denote by A* the dual abelian scheme.
By an A-polarization, we mean an isomorphism A — A* of abelian schemes up to A-
isogeny, some multiple of which can be realized as a polarization of abelian schemes. Two
A-polarizations are said to be equivalent if they differ by a multiplication by an element
of A*. A weak A-polarization is an equivalence class of A-polarizations.

Let ¢ : Z — G,, be a character. We will denote by A(c) the abelian scheme up to
A-isogeny A equipped with the map Z — Aut, A obtained by multiplying the natural
action by ¢. Let A : A — A* be a weak A-polarization. We have a canonical map 7 —
Aut, (A*). We say that A is a ¢-polarization if the induced map A — A*(¢) is compatible
with Z-actions. The same argument as in [43] Lemma 3.1.5 proves the following

Lemma 4.4.8. — There is a natwal isomorphism (A)F = AP Ifh: A — A* is a
c-polarization, then there is a unique weak A-polarization \¥ : AP — AP* such that the diagram

2Pl
AP @\ Op —— A™* @4 Op

L b

A@A 073 — A* ®a (973

commutes up to an element of O5%. Here the map on the right is obtained by composing AT* = (A*)7
with the isomorphism of (4.4.4).

4.5. The adjoint group action

4.5.1. — We now return to the assumptions and notations of Section 4.2. In
particular, we have an embedding of Shimura data (G, X) C (GSp, S*) where GSp =
GSp(Vg) and Vg is equipped with a lattice Vz, and an embedding

Shy(G, X) <> Shi(GSp, $*).

Let B be an abelian scheme up to Z,-isogeny over a Z,-scheme T. Set Vi(B) =
l(igl i B[#n] and

V!(B)z,, = V'(B) ®2Zy, = V'(B) ®,Q,
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Suppose B has dimension n dimg Vg/2 and its equipped with a weak Z -1 isogeny A
We denote by Isom(VAp v (B)q) the pro-étale sheaf of isomorphisms VAﬁ v (B)g

which are Compatlble with the pairings induced by ¥ and A up to a A/ -scalar. Then
Isom(VAp \ (B)g) /K" is an étale sheal.

A pomt x € S (GSp, S¥)(T) corresponds to a triple (A,, A,, &’), where A, is an
abelian scheme over T up to Z,-isogeny, equipped with a weak Z,-polarization A,, and

et € D (1. som (V. V(A o) /).

If x € (G, X)(T), then as in [43] (3.2.4), &/ can be promoted to a section &/ €
(T, Isorn(VA; , VI(A)g)/K). Similarly, if x € i (G, X)(T), then we obtain an ele-
ment ‘

e’ € lim F(T Isom( A VI(A, )Q)/ Kp)

<~ Kt

We denote by Z = ZGZ(/,) the closure in Gz, of the center of the Q-group G.

Lemma 4.5.2. — If x € (G, X)(T), then there is a natural embedding

Z— Auty (A,).

Proof. — It suffices to construct the embedding for the universal point with T =
Z(G, X), and by [23] I, 2.7 it suffices to consider T = Shy (G, X).

By [43] Lemmas 3.2.2, 3.4.1 there is a natural embedding Z ®z,, Q — MQ(AX).
For y € Shy (G, X)(C) this embedding specializes to the one induced by the natural action
of G on H,(A,(C), Q), obtained by choosing a lift y € X x G(Ay) of y. In particular, since
Gz, 1s a subgroup of GL(Vz, ), we obtain maps

7 — Auty (A) — GL(Vg,).

As the composite 1s a closed embedding, so is the first map. Hence we get an embedding

Z = Autg (A). O

4.5.3. — Let G;C:M =Gz, /Zcq,, v € Gz, (Z()) and P the fibre of Gz, — G;fp)
over y. Then P is a 2., -tOrSOT. Fix a Galois extension F/Q such that P admits an
Or, ) = Or ®z Z,-point y. Such a point exists by the result of Moret-Bailly used in
the proof of Lemma 4.4.6 above. Applying lemma 4.5.2 and specializing (4.4.4) by y we

obtain a Z-isogeny

. AP ™~
oA, Xz, Or.p =~ A, ®z, Or.»-
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Lemma 4.5.4. — The composite

};71 8{? ~ ol ~ P
(4.5.5) Vy ®F — Vy 8o F — VI(A) Qo F — V/(AF) ®q F
s Gal(¥/Q)-invariant and induces a section

P St P h.,—1
el € D(T, som(Vy, V/(A7) o) /YKy ')
Progf: — This is identical to the proof of [43] Lemma 3.4. U

4.5.6. — We recall the notation of [20]. Let H be a group equipped with an ac-
tion of a group A, and I' C H a A-stable subgroup. Suppose given a A-equivariant map
¢ : ' — A where A acts on itself by inner automorphisms, and suppose that for y € I',
@(y) acts on H as inner conjugation by y. Then the elements of the form (y, ¢(y)™")
form a normal subgroup of the semi-direct product H X A. We denote by H *r A the
quotient of H X A by this subgroup.

For a subgroup H C G(R) denote by H, the preimage in H of G*(R)™, the con-
nected component of the identity in G*(R). As usual, we write G*(Q)" = G*4(Q) N
Gad (R)+

There is an action of G**(Q)™ on Sh(G, X) induced by the action by conjugation
of G on itself. Combining this with the action of G(A,) on Sh(G, X), gives rise to a right
action of

2 (G) :==GA)/2(Q)” *cw©), /29 Gt

on Sh(G, X) where Z(Q)™~ denotes the closure of Z¢(Q) in G(Ay).
Let G(Q)7 denote the closure of G(Q) in G(Ay) and set

A (G)° =G(Q);/2(Q)” *c@, /20 G Q7.

This group depends only on G%' and not on G; it is equal to the completion of G*(Q )™
with respect to the topology whose open sets are images of congruence subgroups in
GY(Q) [20] 2.7.12. This definition will be used in the next subsection.

The action of G**(Q)™ on Sh(G, X) induces an action of the group G* (Z;)" on
Shg, (G, X). This gives rise to an action of

B(Gz,)) = G(A))/Z(Z)~ 6z 2@y G Zp)*t

on Shg, (G, X). Here Z(Z,))~ denotes the closure of Z(Z,) in G(A?).

Lemma 4.5.7. — Let y € G*(Z,))*, and P the fibre of Gz, — G;‘iﬁ) over y. For'l' a
Z ) -scheme and x € 7, k, (G, X) (1), the assignment

(Ao A el) > (A7 27, 817)
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induces a map
i, (G, X) > H, (G, X)

whose genenic fibre agrees with the map induced by conjugation by y .
Combining the G* (Z )" -action with the natural action of G (A ) on YK/} (G, X) wnduces an
action of B(Gg,,) on Fx, (G, X).

Progf: — 'The assignment induces a map
4, (G, X) = i (GSp, $7).

The same argument as in [43] Lemma 3.2.6 shows that on generic fibres this map fac-
tors through #, (G, X) and induces the map obtained from the conjugation by y. The
lemma follows from the definition of yKP(G, X) as the normalization of the closure of
Shy, (G, X) in F (GSp, S*).

The final claim follows from the analogous result on generic fibres, which is easily
checked on complex points. 0J

4.5.8. — Recall that in Theorem 4.2.7 we defined a Gz, -torsor 5’K(G X))o
and we denote by YKP YK/)(G X)), its pullback to #k, (G, X). Let Y 7 he the Gad -

torsor obEaJmed from 5”@. We remark that the map ¢ in (4.2.8) 0bv1ously factors
through y@d.

_ We will show that the action of #(Gg,,) on (G, X) defined above, can be lifted
to Y@d.

Lemma 4.5.9. — The action of G“‘(Z(p))Jr on yK/,(G, X) Ufis to an action on %d as a
Gdld -torsor. If we equip M10L with the trivial B(Gg,,))-action, the maps in the diagram of Ok.-schemes

(4.5.10) Fad

(G, X) M

are B(Gg,,,)-equivariant. Moreover any sufficiently small K C G(AJ/,]-) acts freely on Lf;é]d, and the
map

Zad p loc
YKP / K= Mg

induced by q is smooth of relative dimension dim G,
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Proof. — We begin by defining the action of G*(Z,))" on 574,2/(1 Let S be an Og-
scheme, and (x, f) € {57;/,(8) where x € YK/](G, X)(S), and f is a map [ : V%p ® Oy =
Rlﬁﬂh s Let y € G*Y(Z))", and P the corresponding Z-torsor. Choose a number

field F, Galois over Q, and a section y € P(Op). For o € Gal(F/Q) set¢; (o) = o(y)y L.
Consider the composite

7():Vz, ® Os® (’)F% R'LQY ® OF§ RUQYp s ® Of.

Then (y(x), y(f)) € yKﬁ(S ® OF). Since o (15 ) =¢;(0)7 "1y for o € Gal(F/Q) by [43],
Lemma 3.4.3, (y (x), y(f)) induces a point on‘d(S), which depends only on the image
of (x,f) in yad(S) and on y.

This shows that (x, /) = (y(x), y(f)) induces an action of Gad(Z(p))+ on YK‘T{
lifting the action on %k, (G, X). That the map ¢ is G*Y(Z,)*-equivariant, follows from
the fact that the map LTI in the definition of y (f) respects Hodge filtrations, as it arises
from a map of abelian varletles

Now lift the action of % € G(Ap ) to yKﬁ by sending (x,f) to (A(x),f). It re-
mains to show that this, together with the action of G*(Z,))", defined above, defines
an action of L@(Gz@)) n 5%(1 To do this we have to check it defines an action of

G(A ) X Gad(Z(ﬁ))Jr such that G(Z)+ acts trivially. If 2 € G(A ) and g € Gad(Z(j,)) ,
then as G(A ) 3 G*(Z )" acts on F, (G, X), we have

g(b(g . N)) =gl . ¢7'(N))) =g(hlg™ ). g (N)
= (ghg™' (0).f),

which implies that G(Aji) X Gz‘d(Z(p))Jr acts on 5’;/].

If y lifts to y € G(Z;))+, then (y, 7 (x) = x. More precisely, (7,7 ") (x) cor-
responds to the triple (AP &7 0 7, A7), and ¢; : AT = A, induces an isomorphism of
this triple with (A,, &7, 1,). Slrmlarly, 1ntertw1nes the isomorphisms /" and y (f), which
proves that G(Z ) acts trivially on yKﬁ

The final statement follows immediately from the construction of 52%;1' UJ

4.6. Shimura varieties of abelian type

We continue to use the notation and assumptions of the previous subsection.

4.6.1. — We will define the analogues of 27 (G)° and &7 (G) for Z)-valued
points, but we need some preparation.

Suppose S is an affine Q-scheme, and let Sz, be a flat, affine Z,-scheme, with

generic fibre S® Q,,. Then there is a canonical Z,-scheme Sz, with generic fibre S such
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that SZ@ ®z, Z,= SZ/J. Indeed Sz(ﬁ) is the spectrum of the ring obtained by intersecting
the global functions on Sz, and S inside those on S ® Q.

Recall the smooth model Gz, is defined by a point x € B(G, Q,,), and that we set
G%C(lﬁ) = Gz, /Zz, Let Gdz‘;;) be the closure of G*" in Gz,,- We denote by G° = G%(p),
the connected component of the identity. It is the parahoric group scheme attached to x.
More precisely, x defines a parahoric group scheme over Z,, which descends to Z, via

the general construction described above. Similarly, let G*° = G%C(l; and G9° = Gg™°

be the parahoric models of G* and G% respectively, defined by the image, x*, of x
in B(G*, Q,) = B(G*", Q,). Note that, in general, G%‘Z’) is not equal to the neutral

component (G4 )° of G%(:m’ but see (2) below.

Z)
Lemma 4.6.2. — We have

(1) Gdzi;) is the stabilizer of x*. In particular, Gczli;)c’ is the connected component of the identity
Qdeer

Zgy:
(2) Suppose that either the center Z.¢; is connected or that Zeer has rank prime to p. Then Gak°

Zg)
is the connected component of the identity of Gaz‘ip) = Gz, /Zz,,- In particular, there is a

map of L) -group schemes G%‘(i;’) — G%‘im, extending the identity on generic fibres.

Proof. — Let Gdzir = GCZIC(;) ®z, Z;. Let x4 e B(GYer, Q,) C B(G,Q,) be the
preimage of x*! under the identification B(G*",Q,) = B(G*,Q,). Then Gu: —
GL(Vz,).,, is a closed embedding by Proposition 1.3.3, and similarly for G Thus,
the closure of G in G, is smooth, and coincides with gﬁ,iﬁ, the group scheme stabilizer
of x4, On the other hand, G, can be naturally identified with G, (cf. [70] 3.4.1). In par-
ticular, the closure of G in G, is smooth, and coincides with the group scheme stabilizer
of ¥*%. Now (1), which is the corresponding statement over Z,, follows.

Let us consider (2). Note that by the functoriality of the group schemes stabilizing a
point of the building, there is always a map (G%(:ﬁ))" — G%‘(l;’) (see 1.1.3). If Z 1s connected
(2) follows immediately from Proposition 1.1.4. Suppose that Zga has rank prime to p.

Then (1) together with 1.1.4 applied to G%* implies that G;(i;’) is the quotient of G%:;)" by

the Zariski closure of the center Zgar. This provides a map G;C('; — Gz, /722, = Gazc('m

which gives the inverse G%(i;’) — (G%d(p) °. O

4.6.3. — Let Z° denote the Zariski closure of Z in G°. We denote by Z°(Z )~
the closure of Z°(Z,) in 7Z°(Ay). Note that the image of Z°(Z,))™ in Z° (A?) coincides
with the closure of Z°(Z ;) in Z° (Ajfi).

Let
A (Gz,) = [G(A)) x Gy, (Z)]/Z(Z )" %@y /ze) G Zi) ™
C A (G)
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and
«@;(Gz(m)o =G*(Zy)/2(Zy)~ KGo(Z))+/Z(Z ) G**° (Z(/;))+ C Z(G)°

where G°(Z,))7 denotes the closure of G°(Z,) in G(A’;) x G(Z,).
We set

A (Gz,)) = G(A)) /Z(Z)™ *co @y, 22, G Zp)

and
A (Gz,))° =G (Zy) 7 Z(Zy)~ *co@ys 2@y G @)™,

where G°(Z ;)7 is the closure of G°(Z,)+ in G(Aj’r). Note that the difference between
o (Gz,,) and the group B (Gz,,) defined in the previous section is that the former is
defined using parahoric models of G and G.

In what follows, we will assume that either Z = Zg is connected or that Zgde has
rank prime to p. Under this assumption, by Lemma 4.6.2 (2) and Lemma 4.5.7, the
action of &7 (Gg,,) on Shy, (G, X) extends to -#k, (G, X). As in Section 4.3, we denote by
5”,(; (G, X) the normalization of #, (G, X) in ShK; (G, X). Then the action of .&7 (Gz,,)
on ShK; (G, X) extends to 5”.(; (G, X).

Lemma 4.6.4. — We have

(1) gQ;(Gz(p))o is the closure of G**°(Z )" in <7 (G)°.
(2) A (Gg,,)° is the completion of G™°(Z,)) " with respect to the topology generated by images
of sets of the form GY™°(Z ;) N K.

Proof. — (1) 1s immediate from the definitions. Using [20] 2.0.13, one sees that
A (Gg,,)° is the completion of G**(Z,)" with respect to the topology generated by
images of sets of the form

G (Zy)+ N (KNG (Q)-U

where U is a finite index subgroup of the group of p-units in Z;(Q). Suppose g = hu €
G°(Z))+ with ke KN G (Q) and u € U. Then / fixes ¥, so h € Gder(Z(p))+. As in the
proof of Lemma 4.3.5, this implies that # € GY™°(Z;) , for K small enough. Thus for K’
small enough the image of the set above is equal to K’ N G*™°(Z,)) ;.. This proves (2). 0

4.6.5. — Fix a connected component X* C X. We denote by Sh(G,X)" C
Sh(G, X) the connected Shimura variety corresponding to the choice of X*, and sim-
ilarly for ShK; (G, X))t C ShK; (G, X). Let E? C E denote the maximal extension of E
which is unramified at primes dividing p. By 4.3.2 and [20], Thm. 2.6.3, the action of
Gal(E/E) on ShK; (G, X)" factors through Gal(E’/E). We again denote by ShK; (G, X)*
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the E”-scheme obtained from Shs (G, X)* by descent, and by yK; (G, X)* C yK; (G, X)
the corresponding component of yK; (G, X), which is defined over Og ® O).
Let £(Gy, ,) C  (Gg,,) x Gal(E//E) denote the stabilizer of Shy: (G, X)* C

ShKo (G, X) (Vlewed as E’-schemes), and let & (Gz( )) C o (Gz(p)) x Gal(E/E) denote the
stablhzer of Sh(G, X)* C Sh(G, X).

Lemma 4.6.6. — We have

(1) (5’(G°Z(ﬁ>) (resp. <§~"(G°Z(ﬁ>)) is an extension of Gal(E’/E) (resp. Gal(E/E)) by
A (Gg,,))° (resp. o/ (Gg,)°)-

(2) There are canonical isomorphisms

A (Gz,) * o7 Gy e &(Gy,,) = o (Gy,) x Gal( E'/E)
Q{(le) *%(GZW)O go( Z )) JZ{N(GZ(,,)) X Gal(I_E/E),

where an element (yréa(G%(p)) (resp. cg"(G%(p) )) acts on W(Gz@)) (resp. &i(Gz@) )) via
conjugation by its image in 7 (G, ).

Proof: — Let EX* =E* N (E®q R)**. Consider the composite map

M/z

(4.6.7) AL /B (E® R =AL B+ G(AL) /G(E); 2 G(A)/G(Q);

where G(E)] = (Rg/G)(Q);. If x € AJ;X JE**, then by weak approximation x has a
representative (x,) € Af * with x, € (’)X for all v|p. Hence, by Lemma 4.3.2, the image
of x under (4.6.7) 1s contained in G(A’ ) X GZ()(Z/,)/GO(Z(I,))Z. By [20], Thm. 2.6.3, the
action of Gal(E/E) on the geometrically connected components of Sh(G, X) is given by
the composite of (4.6.7) and the class field theory isomorphism. This proves the claim
that é"(G ) is an extension of Gal(E/E) by %(Gz(ﬁ)) )

It follows that the action of Gal(E”/E) on the geometrically connected components
of She (G, X) is given by the induced map

Gal(E’/E) — G(A}) x G;

Z)

(Z,)/G*(Z)); Gy, (Zy)
= G(A))/G*(Z)%.

This shows that & (G%(p)) is an extension of Gal(E’/E) by &/ (Gg,,)°. Now (2) follows
easily. U

4.6.8. — Let Gy be a reductive group over Q equipped with a central isogeny
o G — Gg“r. Let x, € B(Go, Q,) with xl}‘d = x4, We denote by G, the model of G,



INTEGRAL MODELS OF SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE

defined as the stabilizer of xp, and by Gy z, and G;Zw the group schemes over Z,
corresponding to Gy and G5. Write K5, )= Gs(Z,).

Suppose that we have a Shimura datum (Gy, Xy) such that o induces an isomor-
phism of Shimura data

(0,5 = (G, X1).
By the real approximation theorem, after replacing X, by its conjugate by some element
of G;d(Q), we may assume that the image of Xy C X;d contains X*. We denote by E,
the reflex field (Gy, Xy), and we set E' = E - Ey. We denote by @@E’(GZP)) and é"Er(G‘i(/}))
the pullbacks of 5’(G°Z(ﬁ)) and g’(G%@)) by Gal(E”/E') — Gal(E’/E) and Gal(E/E’) —

Gal(E/E) respectively. 5
We have the groups o7 (G) and .27 (G,)° defined as above, and we set

A (Gaoz,) = Go(A)) /26, (Z) ™ %32, 120y G (Zip) ™,

and similarly for o (Gaz,,)°- Note that the group G**°(Z,))" is exactly the same one
which appeared in the definition of & (Gg,,).
As in Corollary 4.3.9, the geometrically connected components of ShKS'ﬁ(GQ, X9)

are defined over Ej. We define & (Gg’zw)) C A (Gagz,) % Gal(Eg /Ey) as the stabilizer of
ShKS.,, (G, X))t C Sthp(Gg, Xy). As in the proof of, Lemma 4.6.6, this is an extension of
Gal(E)/Ey) by 4/ (Gaz,,)°.

Similarly, we define & (Gg,z(,,)) as above. It is an extension of Gal(E/E,) by
A (Gag,,)°.

Lemma 4.6.9. — There exist natural maps of extensions
6e(Gy,) = 6(Gs4,) and &e(Gy,) — E(Gsy,)

Proof. — (cf. [20] 2.5.6) Let Gs be the connected component of the identity of
G X Gy, and X3 the conjugacy class of homomorphisms § — Gs g induced by X
and Xy. Repeating the above definitions for G; we obtain an extension & (Gg,z(/})). Note
that the reflex field of (Gs, X3) is E’, and Gg“r = G, Thus Gj satisfies the condition
(4.3.4), as we are assuming G does. In particular, we have & (Gsz,)° = &/ (Gg,,)° by
Lemma 4.6.4(2). It follows that the natural map & (Gg’zw) — é"E/(G"Z(ﬁ)) Is an isomor-
phism of extensions. The first map of the lemma is given by the composite

gE’ (Goz(p)) = (/j@( ;,Z(f,)) - g(G;,Z(P))'

The construction for the second map is analogous. O
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Lemma 4.6.10. — The diagram

(4.6.11) «QZ(GZ@)O — *‘ZX(GZZ@))

J J

A (G)° ——— A (Gy)
is commutative and Cartesian. In particular, the morphism of complexes
((Gzy)* = o (Goz,)) = (#(G) = A (Gy))

induces a bijection on kernels and an injection on cokernels.

Progf: — (cf. [43] Lemma 3.3.3.) We remark that the top map is well defined by
Lemma 4.6.4(1). The diagram commutes, since G**°(Z,)" is naturally a subgroup of

each term, i1s dense in (JZ; (Gz,,)°, and all the maps are the identity on Gade (Zy)™".

Suppose that (g, y) € sZ;(GQ,Z@)) is in the image of (g1, y1) € &/ (G)°. Since g
may be approximated by an element of G(Q),, we may assume that g; is in the image
of G(Aﬁ) x G°(Z,). Since gy = g1y in Gad(A/), we have y; =gf1gy € Gad°(Z(p))+ SO

(@1, 1) € o (Gz,,)°. Thus the diagram in the lemma 1s Cartesian. ]

4.6.12. — By Lemma 4.6.10 we have an inclusion

A (Gz,))\A (Gaz,) = A (Gg,))\A (Gaz,)/K3,
= A (G)\F (Gy) /K3,
Let J C G2(Q,) denote a set which maps bijectively to a set of coset representatives
for the image of & (Gyz,,) in %(G)°\d(Gg)/K§‘p.

Recall, we assume either that the center Z of G is connected or that Zge has rank
prime to p.

Lemma 4.6.13. — There ts an isomorphism of E-schemes with G (A’;) x Gal(E/E’)-action
~ + o U‘
Shyg (G2, Xo) = [[ShK;; (G.X)" x (Gaz,) ]/ (Gz,)°]
where h € 2 (Gg,,))° acts on o/ (Gg,,)) by lefl multiplication by h~".

Proof- — By [20] 2.5.6, there is a morphism of extensions &g (G) — &(Gy), and

in particular, an isomorphism

A (Go) * 7y 6 (G) = Gy (Ay) x Gal(E/E).
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We equip Sh(G, X)* x &7 (G,) with a right action of 8¢ (G) given by (s, @) -¢ = (s, ¢ ' ae),
and with the action of 27 (G») induced by right multiplication of .27 (G,) on itself. Here ¢
denotes the image of ¢ under

Ee(G) = E(Gy) = A (Gy).

This induces an action of .7 (Gy) X &g/ (G) on Sh(G, X)™ x &7 (G,), which descends to
an action of &7 (Gy) *4 Gy &g (G) on [Sh(G, X)" x 7 (Gy)]/ % (G)°.

By [20] 2.7.11, 2.7.13, using the above isomorphism gives an isomorphism of E-
schemes with Gy(Ay) x Gal(E/E')-action

Sh(Gs, X5) = [Sh(G, X)* x &/ (Gy) ]/ (G)°.

Dividing both sides by K; , we obtain an isomorphism of E-schemes with GQ(A}{:-) X
Gal(E/E')-action

(4.6.14) Shs, (G, X) = [Sh(G, X)* x o/ (Gy) /K3, |/ (G)°
=] [[Sh(G. X)" x 7 (G2, )]/ 4 (Gz,))°.

J

Since K; N (Gz,,)° is contained in the kernel of the composite

A (Gg,))* = A (Gg,,)* — o (G, )",

the final quotient above is equal to
[ [[Shee (G, X)" x o7 (Ga.z,))j]/ 4 (Gz,))°.
JeJ

The lemma follows. O
Corollary 4.6.15. — The Ogr vy = Ogr @ O(yy-scheme
oI
(4.6.16) Fs (Ga. Xo) = [[F6(G.X)" % #(Gaz,)]/ (G, )]

has a natural structure of a Of,) = O @0 Ov)-scheme with Gq (A;i) -action, and is a model for
ShK;p(GQ, Xo). The local rings on YK;/?(GQ, Xy) ®o O, are étale locally isomorphic to those on

1
MSTX ®Ov O:) .

Proof- — As observed in 4.6.3, the action of &7 (Gz(ﬁ)) on ShK;; (G, X) extends to
YK; (G,X).Hence & (G°Z(ﬁ)) acts on the Ogs (,)-scheme YK; (G,X)*. Using Lemma 4.6.9,

as above, there is an isomorphism

A (Goz,) %o/(Ga, - G2 (G, ) = Go(A) x Gal( E?/E)).
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In particular, the right side of (4.6.16) is an Og» (,)-scheme with an action of Gy (Aﬁ) X
Gal(E”/E'). Hence by Galois descent it is naturally an O, -scheme with an action of
Gy (A?). The first statement is now a consequence of Lemma 4.6.13.

" The second statement then follows from Theorem 4.2.7 and Proposition 4.3.7 once
we show that

A(G, Gy) :=ker(# (Gg,))° =  (Gaz,))

acts freely on ., (G, X) ™. For this we follow the proof of [43] Prop. 3.4.6, which can be
modified to work in our present setting because we have defined the twisting construction
o/ + /T on the level of abelian varieties and not just in the isogeny category.

Let (h,y™) € A(G,Gy) with h € G(Ai) andy € Gad"(Z(p))*. Denote by P the Z-
torsor associated to y, and fix a Galois extension F/Q and a point y € P (O, ) lifting y.

Let x € yK; (G, X)(T), where T is the spectrum of an algebraically closed field,
and suppose that (4, y ') fixes x. Write (A,, A, &*) for the corresponding triple. Then by
Lemma 4.5.7, for every compact open subgroup K/ C G(A;) there exists a Z,-isogeny
o =a(K) : A, = AP respecting weak Z,-polarizations, and such that the left hand
square of the following diagram commutes modulo K’. (That is up to multiplication by
an element of K’ on the bottom left hand corner.)

(4.6.17) V(A ®F —+ VAPY®F — — V(A) ®F

a®l
&t T &P T b T
vhy p!

VA ®F s VRA®F — VoA QF

while the right square commutes by the definition of &#” .

For K’ sufficiently small, the map «(K’) is unique. Hence if K’ is sufficiently small
then « does not depend on K, and we may assume that 4.6.17 commutes.

Note that the composite of the maps in the lower row of 4.6.17 is Ay ~!. Since
(h,y™") € A(G, Gy), we have hy ! € Z(A} ® F), so

tyoa € Z(A7®F) N (Auty A (Or ) = Z(Or ) C (AutgA) (Af ®F).

Hence hy~' € Z(Ok ), and after replacing 7 with another lift, we may assume that
hy~'=1.Then y is Gal(F/Q) invariant, so y € G(Z,).

In this case the action of (4, ') on ShK; (G, X) i1s by the natural right action of
hy~'e G(Ay), which is given by the action of yle G(Q,), since hy~'=11in G(A;). It
follows from Lemma 4.3.5 that 7' € G°(Z,)), so (h,y ") = 1. O



INTEGRAL MODELS OF SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE

Corollary 4.6.18. — Extend v to an embedding v' : E' — E", and set &' = E.,. We equip
MISCX with the trivial Go (A ) action. There is a diagram of Oy -schemes with Go (A ) action

(4.6.19) S

2.p

TN

iz, (G, X) Mg

where 7T 15 a Gad -torsor, and q s Gad -equivariant.
Moreover any sufficiently small compact open Kp C Go(A ) acts freely on yKad , and the mor-
phism y“di, /K — M, tnduced by q, is smooth of relative dimension dim G*.

Progf. — By Lemma 4.6.2, the #(Gg,,)-action on the Gad -torsor y Z given by
Lemma 4.5.9, restricts to an 2/ (Gz,,)-action. Let ,5’£§+ denote the pullback of 5” s
to yK (G, X)O .- Denote by @@EH(GZ ) the pullback of (a@E/(G" ,) by Gal(E"/E) —
Gal(E’/E'). Then the stabilizer of YKZTJ’ in o (Gg,,) X Gal(E“r/E’) is é‘)EH(GZ( ). Set

(4.6.20) T =[[ & x  (Goz,))/ (Gz,)°]”

Note that the group ker(o/ (Gz,)° — o (Gaz,,)) need not be finite, but this causes no
difficulty in the formation of the quotient; see [44, E.7].
As above, f,ﬁ;{ is equipped with an action of GQ(Aﬁ) x Gal(E"/E’), and de-

scends to an Oy-scheme with Gy (Al Al ) action. By construction, it is a G‘"‘d—torsor over

5’K (GQ, Xy), and ¢ is Gi -equlvarlant The final claim can be checked over Opu, when
it follows easily from Lemma 4.5.9. U

4.6.21. — Let (H,Y) be a Shimura datum with H*! a classical group. Recall
([20], cf. [43] 3.4.13) that there is central isogeny H — H? (which depends also on Y if H
has a factor of type D) such that (H, Y) is of abelian type if and only if HY" is a quotient
of H*.

For the remainder of this subsection we let (Go, X5) be a Shimura datum of abelian
type with reflex field E,. We choose x, € B(Go, Q,), and we denote by K3 , C G»(Q,) the
corresponding compact open, parahoric subgroup and by K, , C Gy (Q,,) the stabilizer
of x9. As always we assume p > 2.

Lemma 4.6.22. — Suppose that Go splits over a tamely ramified extension of Q,,. Then there
exists a Shimura datum of Hodge type (G, X), together with a central isogeny G — G4, which
induces an isomorphism (G, X*) = (G, ng). Moreover, (G, X) can be chosen to satisfy the
Jollowing conditions.
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(1) 71 (GY) is a 2-group, and is trivial if (G*, X*) has no factors of type D®. Moreover G
satisfies the condition (4.3.4).

(2) G splits over a tamely ramified extension of Q.

(3) If E denote the reflex field of (G, X) and E' = E - Eq, then any primes vo|p of Eo splits
completely in E'.

(4) Zg 15 a torus.

5) X, (G"‘b)IQp s lorsion free, where 1o, C Go, denoles the imertia subgroup.

Proof. — Write G3* = []; G, where each G; is Q-simple and adjoint. Then G; =
Resy, /oG] where F; is totally real, and G; is absolutely simple over F; and adjoint. Since
we are assuming that G splits over a tamely ramified extension of Q, each F; is tamely
ramified over p.

Choose (G, X) of Hodge type such that there exists a central isogeny G — G§
inducing an isomorphism of Shimura data (G*, X*) = (G;d, ng). By [20] 2.3.10, we
may choose G so that GY" = [ Resy, /QG?. Then 7, (G"") is an elementary 2-group (the
only contributions comes from factors G’ of type DM, and in particular p 1 |7 (G*).
Moreover, ker(GY" — G%) has the form [T Res,oC; where each C; is either trivial,
or (. In particular one sees using Cebotarev density that the condition (4.3.4) is satisfied.

Next we explain how to choose (G, X) so that G splits over a tamely ramified ex-
tension of Q,, and any prime v|p of E*! = E(G™, X*) splits completely in E = E(G, X).
Suppose first that G* = Resy/oG’. Following [20] 2.3, let I, be the set of real places v of F
such that G'(F,) is compact, and I,, the real places of F not in I,. Let K/F be a quadratic,
totally imaginary extension of I in which the primes above p split completely. Fix an iso-
morphism G = Qp. Then Gal(Q,,/Q,,) acts on the embeddings K < C. Let T be a set
of embeddings K < C which map bijectively to I, and such that if 7 € Gal(Qp /Q,)
preserves I, then it preserves T. This is possible since all the primes of I above p split
completely in K.

Define a morphism /1 : G* — K ®¢ R by requiring that K ®, G has type (-1, 0)
ifo €T, type (0,—1) if 0 € T, and type (0, 0) otherwise. If T € Gal(Qp/Q'p) fixes E*,
then in particular it preserves I, and hence preserves T, and fixes E(K*, /). This implies
that any prime of E*! above p splits completely in E** - E(K*, kr). By [20] 2.3.10, (G, X)
may be chosen so that E = E* . E(K*, Ar). In particular, any prime of E*! over p splits
completely in E. Moreover, the construction of loc. ¢cit produces a group such that Z¢ is
contained in a product of Zgdr, K*, and a torus which splits over the fixed field of the
subgroup of Gal(Q/Q) which acts trivially on the Dynkin diagram of G*. In particular
G splits over a tamely ramified extension of Q,. In general, when G* is not assumed
simple, the above construction applies to each of the factors Resy,/oG!. Finally, any prime
Vo|p of Ey splits completely in E' =E - E,.

We will now show that we can arrange so that, in addition, the center Z of G is
connected. Let (G, X) <> (GSp(V), S*) be the Hodge embedding. Choose / € X corre-
sponding to a special point; there is a maximal torus Ty in G defined over Q, such that £
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factors through Tg. By an argument as in [43], proof of Prop. 2.2.4, one sees that z and
Ty can be chosen so that T splits over a tamely ramified extension of Q. Observe that
Tor/wi(G,,) is compact, as Tor/w,(G,,) = GSp(Vr)/diag(G,,) and the centralizer of /
in GSp(Vr)/diag(G,,) is compact. Consider G’ = (G x T)/Zg. Then the center of G’
1s Ty (which is connected), and G, G" have the same derived group.

Let W= Homy,(V, V) (Q:-linear maps which are Z;-equivariant). The group G’
acts on W via ((g, £) - f)(x) = gf (" 'x). Since W contains G, one sees easily see that this
G/'-action is faithful. We equip W with a Hodge structure by writing W = Homyz(V,, V),
where Vy is V with trivial Hodge structure; the corresponding Deligne cocharacter /" of
G’ 1s given by 2 x 1. Then W has type {(—1, 0), (0, —1)}. Since Tor/w;(G,,) is compact,
it follows that ad #'(¢) gives a Cartan involution on Gg/wy(G,,). Hence, we can apply
[20] Prop. 2.3.2, to obtain an alternating form on W and a corresponding Hodge em-
bedding (G', X') < (GSp(W), S\iv). Notice again that all primes of Ey above p split in
E, - E(G, X)).

Finally, we show that (G, X) may be chosen to satisfy the last condition. We may
assume that (G, X) already satisfies the first four conditions. In particular Zg is a torus,
which splits over a tamely ramified extension of Q. Since (G, X) is of Hodge type, Zg
splits over a CM field F. Let Fy be the totally real subfield of F. Let F, be a quadratic
imaginary field in which p splits, and which is linearly disjoint from F, and set I =F - F,.
The I is a CM field, and we denote by I its totally real subfield.

Let T and T, be the tori whose Q-points are given by F’* and ker(F* — F°)
respectively. Fix an embedding Q < Q,. The action of complex conjugation on X, ('T)
does not coincide with that of any element of the inertia subgroup Ig,, since the latter
acts trivially on F{. In particular X, (TO)IQ/; =X, (T)i;‘1 is torsion free since X, (T) is an
induced Galois module. Here ¢ denotes complex conjugation.

Since Zg/w;(G,)(R) is contained in a compact real Lie group, ¢ acts by —1
on X*(Zgar). Hence for some integers n, r there exists an embedding X*(Zgar) —
X*(Ty[n]"). Denote by T, the pushout of

1 — Toln] — T, > T, — 1

by the corresponding map Ty[n]" = Zgar. Then Zger C Ty, and T, /Zgar = T7. Let
(Zc)o C Z be the subtorus corresponding to X,(Z¢)="' C X,(Z¢). There is an em-
bedding (Zg)o < T}, for some integer s. Set G' = (G x T} x T}) /(Zgar X (Z)o), where
Zgar X (Z.)o acts on G via the multiplication Zgar X (Zg)o — (Zg)o. Let X' be the G'-
conjugacy class induced by X. Then (G, X') has the same reflex field as (G, X), and
satisfies the first four conditions of the Lemma. Moreover, one sees as above that (G’, X')
is of Hodge type.

We have G = G, and (Z¢')o/Zgir = (T} x T3)/Zgie with 7z € Zae acting by
(2, 27"). Hence we have an exact sequence

0— X, (T}) > X.((Ze)o/Zger) = Xo(T )/ Zgaer) — 0.
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In particular, X, ((Z¢)o/ ZGder)IQp is torsion free. Finally X,(G'®) is an extension of Z by
X, ((Z)o/Zgar), so X, (G'2P) lo, is torsion free. O

Theorem 4.6.23. — If Gy splits over a tamely ramified extension of Q,,, then there exists a
Shimura datum of Hodge type (G, X) such that the conditions of Corollary 4.6.15 are satisfied, and
all primes vo|p of Eq split completely in E'. In particular, for any prime vy |p of Ey, the construction in
Corollary 4.6.15 gves rise to a Gy (Ajff) -equivariant Ok, ., -scheme, YK; (Go, Xy) with the following
properties.

(1) cng‘ll(GQ, Xy) s étale locally 1somorphic to Mlgcx
©2) Ifpt 11 (GY™)], then ng‘ﬁ (Go, Xy) s étale locally isomorphic to MIS;XQ.
(8) For any discrete valuation ring R of mixed characteristic O, p the map

iz, (G, X9)(R) = Hig (G, X,) (R[1/p])

i a byection.
(4) If (G, XY has no_factors of type DB, then (G, X) can be chosen so that there exists a
diagram of Oy, -schemes with G (Aﬁ) -action

(4.6.24) i;;p

TN
Fi (G2, Xs) M,
where 7 15 a Gg‘z -torson, q 1s Ggfigp -equivariant, and for any sufficiently small, compact
open Ké C G(AJ@), the map flf; / Kg — M, induced by q is smooth of relative dimen-
5, ,
sion dim G,
. o . . , :
In particular, if k' s a finite extension of k (vy), and y € YK;p ("), then there exists
Z € MISCX («") such that

h

h
e O 1 .
k3, Mgz

(5) If Goq, s unramified, and there exists xy, € B(Gg, Q) with Gy s = Gy .a, then
sXo
(G, X) can be chosen so that the construction in Corollary 4.6.15 applies with x, in place

of x9, and gives rise to an O, ,,-scheme yK;p(GQ, Xy) satisfying the conclusion of (4)
above.

Progf: — We apply Lemma 4.6.22 and choose (G, X) satistfying conditions (1)-(4)
of that Lemma. As before, after conjugating X by an element of G*/(Q ), we may assume
that X € X* = X3 contains some connected component X; of Xy. Then (2) and (4)
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imply that the conditions of Corollary 4.6.15 are satisfied, and (3) implies that vy extends
to a place v" of E’ such that E' = E, ,,,. The claim (1) in the Theorem then follows from
Corollary 4.6.18. The claim (2) follows by combining this with Proposition 2.2.7.

Let

YK/’) (GSp, Si) =Ilim 1,VK;1K,,, (GSp, Si)
<~ K/)

where yK//)K/p (GSp, S*) is defined in 4.2.1. Then yK;](GSp, S*) satisfies the extension
property in (3), by the Néron-Ogg-Shafarevich criterion. Indeed a R[1/p] point of
5’% (GSp, S*) defines an abelian variety over R[1/p], together with a trivialization of
its [-adic Tate module for any / # p. Hence the abelian variety has good reduction, and
the R[1/p]-point comes from an R-point. Now (3) follows for (Gg, Xy) of Hodge type
and then of abelian type, by construction.

To see (4), we choose (G, X) satisfying (5) of Lemma 4.6.22. Since in this case
71 (G4 = {1}, we have 7,(G) = X,(G®), and m, (G)IQp is torsion free. In particular, if
x € B(G, Q,) lifts %9, the Kottwitz map kg is trivial on Qx(zzr), and G, = G°. Hence the
existence of the diagram in (4) of the Theorem follows by combining Corollary 4.6.18
with Lemma 4.6.2. The final claim in (4) follows by Lang’s lemma.

For (5), choose x, € B(G,, Q,) such that QQ’x;d = Q;’ng. Then Gy ., (Z)") C G2(Q))
consists of those points which map to gzxénd (Z,") and into the maximal bounded subgroup

of G5’ (Q,"). In particular Gy ,(Z}") C Gy ,(Z)") and for any g € Gy  (Z}"), kG, () maps
to 0 in 77, (G3") and X.(G3"). Hence k¢, (g) = 0, and g% =05,

Now choose (G, X) satistying (1)—(4) of Lemma 4.6.22. From the construction one
sees easily that one may in fact choose (G, X) so that Gq, is unramified. Choose x €
B(G, Q,) lifting x’;d, The condition on ), implies that the Kottwitz map « : gx(z;;r) —
71 (G) factors through X,(Z¢), and hence is trivial, as the latter group has no torsion.
Hence G, = G?. Now (5) follows using the same argument as in (4). O

Remark 4.6.25. — a) If K’g C Gy (Al/i) is sufficiently small, the conclusions of
Theorem 4.6.23 about étale local structure also hold for the quotient ,VKg (Gy, Xy) =
i, (G, X) /K.

b) The form of Theorem 4.6.23 is that a particular construction gives a model of
the Shimura variety with parahoric level structure with the described properties. Unfor-
tunately we do not know how to characterize the models constructed in Theorem 4.6.23,
for example using an extension property as in the hyperspecial case. However, it seems
to us that this should not be a problem in applications. For example, the methods of [52]
should show that the models we construct are proper when the group G* is anisotropic
over Q (so the corresponding Shimura variety is proper). Secondly, the construction
should be well adapted for applications involving computation of the zeta function (see
[44]) for the hyperspecial case.
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c) Theorem 0.4 of the Introduction follows from Theorem 4.6.23(4), (5), by using
Proposition 2.2.7 and Remark 4.2.14.

Corollary 4.6.26. — Let p > 2 and (G, X) be a Shimura datum of abelian type’ with reflex
Sield B, such that G splts over a tamely ramified extension of Q,,. Let x € B(G, Q) and K; C G(Q,)
the corresponding compact open, parahoric subgroup. Suppose v|p is a prime of E, and assume that K is
sufficiently small.

Then the special fibre of the integral model S-(G, X) over Og.,, constructed above is reduced;
the geometric analytic branches of the special fibre at each point are normal and Cohen-Macaulay.

If x is a special vertex in B(G, Q") then the special fibre in normal (hence analytically unibranch
at each point) and Cohen-Macaulay.

Progf- — 'This follows from Theorem 4.6.23 combined with [59] Theorem 9.1 and
Corollary 9.4 applied to the local model for the corresponding Hodge type group (de-
noted by G in Theorem 4.6.23 and its proof). In particular, p > 2 implies the assumption
on the fundamental group needed in [59]. 0J

4.6.27. — Tor a Shimura datum (Gy, Xy) of abelian type, as in 4.6.23, the con-
struction of the integral model Y@ (Gg, Xy) depends on the choice of Shimura datum
(G, X), as well as the choice of symplectic embedding (G, X) <> (GSp, S*). It seems
reasonable to conjecture that the resulting integral model is independent of all choices,
but we do not know how to prove this in general; by the argument in [54, §2], the ex-
tension property in 4.6.23(3) is enough to guarantee only that two such models contain
isomorphic open neighborhoods containing all generic points of the special fibre. We give
show the independence in the special case:

Proposition 4.6.28. — Let (G, X) be as i Corollary 4.6.26, and suppose that K3 , is a very
special parahoric subgroup and that G* is absolutely simple. Then the model ks (G, X) does not
depend on the choices made in its construction.

Progf. — Consider any Shimura datum (G, X), such that G* is absolutely simple.
Let e X* andlet T C Géd be a maximal torus with u, € X,(T), and B D T a Borel
subgroup of G for which ;' is dominant. We denote by P D B the parabolic subgroup of
G corresponding to ,LLh_l, and by N C P the unipotent radical. Since w, is minuscule, and
G is absolutely simple, there is exactly one simple root which is contained in Lie (N),
and it generates the space of characters X*(P) of P. For any compact open subgroup
K C G(Ay), any such character x gives rise to a line bundle w, on Shk(G, X) which is
defined over the reflex field [53]. The group X*(P) = Z, has a unique generator x, such
that w,, is ample, and we write wg for w,,.

7 Note that the group Gy in Theorem 4.6.23 is now denoted by G.
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Now let (G, X) be as in Corollary 4.6.26, and assume that K7 is very special.
Then Z- (G, X) has normal special fibre. We claim that any irreducible component
of Fk(G, X) has irreducible special fibre. From the construction, it suffices to prove
this when (G, X) is of Hodge type. By [52] there is an open embedding .%- (G, X) <
7 (G, X) whose complement is a relative Cartier divisor, and such that 7 (G, X) has
normal special fibre. This implies the claim, first for ?Ko(G, X) in place of .#- (G, X)
by Stein factorization, and then for .%- (G, X).

In particular, any extension of a line bundle on Shi- (G, X) to % (G, X) is unique,
in the sense that any two extensions differ by an automorphism of w¢ which is a scalar
on any irreducible component of Shy- (G, X). We will first show that for some 7 > 0, 03"
extends to an ample line bundle £ on % (G, X). For that one reduces easily to the case of
(G, X) of Hodge type. For any symplectic embedding ¢ : (G, X) < (GSp, S, ¢ *(wasp)
is ample, and corresponds to a character of P. Hence it is equal to w&" for some n > 0.
Since wgsp has an ample extension, (*(wgs,) has an ample extension, by construction.

Now suppose that we have two (a priori) different models . = (G, X) and
S = S (G, X) of Shy- (G, X) with ample line bundles £ and £’ which extend the
same power @d". As remarked above, . and .’ contain isomorphic open subschemes
containing all generic points of the special fibres. Moreover, as above, we can assume that
the isomorphism between these open subschemes lifts to an isomorphism between the
corresponding restrictions of £ and £'. Assume that U is a common open neighborhood
of . and .#”, which contains the generic fibre and all generic points of the special fibres.
Then, since 5’ and .’ are normal, we have I'(.%7, L&) = T'(U, a)®"]) =I0(Y, L'¥Y).
Since both £ and £ are ample, this allows us to view both .#” and .%" as open subschemes
of Proj(A), with A = @20 T (U, 0g”).

To show .¥ = y , it is now enough to verify that .7 (k) = .7’ (k), where £ is an
algebraic closure of F,. By flatness each £-valued point of . lifts to an R-valued point
of . where R is some strictly henselian discrete valuation ring of mixed characteristic 0,
and similarly for .. Since F:(G, X) — .7 is pro-¢étale, the R-valued point of . lifts
to an R-valued point of 5/}(; (G, X), and similarly for .” and 5”}(/; (G, X). The result now

follows using the extension property 4.6.23(3) and the fact that Proj(A) is separated. [J

4.7. Nearby cycles

We now give some results about the nearby cycles of the integral models . (G, X)
over Og,, which can be obtained easily by combining the above with results of [59] about
the nearby cycles of local models.

4.7.1.— Let/#pbea prime Set S = Spec (Of), n = Spec (E), s = Spec (kg), so
that (S, s, n) is a henselian trait. Let E be an algebraic closure of E, with residue field g,
and write 7 = Spec (E), 5 = Spec (k) and S for the normalization of S in 7. If f : X — S
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is a scheme of finite type and F in D*(X,), Q,) we set
RY(X, F) = i,Rj*(F;)

for the “complex” of nearby cycles. Here i : X; < Xg andj : X; <> Xy are the closed and
open immersions of the geometric special and generic fibres and /5 is the pull-back of F
to X;. Recall that R¥ (X, F) is an object in D’(X;, Q) which supports a continuous ac-
tion of I'y = Gal(1/n) compatible with the action on X; via I'y = Gal(7/n) — Gal(s/s).
See [39] for more details. For a point x € X(F,), F, D g, and corresponding geometric
point x = Spec (5) = X, the inertia subgroup Iy C I'y acts on the stalk RW (X, F); and
one can define [62] the semi-simple trace of Frobenius

Tr* (Frob,, RU (X, F)s).

We will denote RW (X, Q) simply by RWX,
We refer the reader to [32], [34], [37], for more details, additional references and
background on nearby cycles of integral models of Shimura varieties.

4.7.2. — Tor the following result, the notation and hypotheses are as in Corol-
lary 4.6.26. In addition, we denote by F C E a tamely ramified, finite extension of E over
which G splits.” In particular, we have x € B(G, Q,), and the group schemes G = G, and
G = jﬂl For notational simplicity, we set . = % (G, X).

Corollary 4.7.3. — The inertia subgroup 1p of Gal(E/F) acts unipotently on all the stalks
R\IJZ JJor zin (k). If x € B(G, Q) is a very special vertex, then 1y acts trivially on all the stalks
R\IJZ/ , 2 as above.

Proof. — 'This follows from Corollary 4.6.26, [59] Theorems 10.9 and 10.12, and
the fact that the stalk of the nearby cycles at z with its inertia action depends only on the
strict henselization of the local ring at z. O

4.7.4. — Now suppose that there exists a G(A;)-equivariant local model diagram
ad
(4.7.5) YK;
/ \
F(G,Xo) M

where 7 a G**-torsor, ¢ is a G**°-equivariant map, any sufficiently small compact open
K C G(Aj/;), acts freely on YK"‘;, and the map y,%},d /K — Mgy induced by ¢ is smooth

8 Note that the conditions of Corollary 4.6.26 imply that E is tamely ramified over Q,,, so F is also.
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of relative dimension dim G*. Such a diagram exists when p 4 |7,(G%")| and, either
(G, X) has no factors of type D, or G is unramified over Q, and KJ 1s contained
in a hyperspecial, by Theorem 0.4.

Suppose y € .7 (F,), where F, D k. Using Lang’s Lemma we see that there is a
point w € Mlng(Fq), well-defined up to the action of gad"(Fq), such that we have an
isomorphism of henselizations

(4.7.6) 0, ~0y

MEw”
This in turn implies an equality of semi-simple traces

1\11(3(‘,

(4.7.7) Tr" (Frob),, R\IJ}-’? ) =Tr" (Frobw, RY, ("X).
Set r = [F, : kg]. Consider the function
v, S (F)—>Q:  ¥,() :=Tr"(Frob,, R¥).

(The function v, appears in the Langlands-Kottwitz method for the calculation of the
factor at v of the semi-simple zeta function of the Shimura variety Shy- (G, X).) By (4.7.7)
Y, factors as a composition

S (F,) = G°(F)\ME(F,) % Q
where

= M
@ MF) = Q5 ¢ (w) =Tr"(Frob,, R¥; “¥).

4.7.8. — In [59] there is a construction of a reductive group G’ over F,((?)),
resp. a parahoric subgroup scheme G’ over F,[[¢]], of the “same type” as G, resp. G°;
in particular, we can identify the special fibres of G° and G’ over F,. We have an
G'(F,[4ID-equivariant embedding MI(SCX (F,) C G'(F,(1) /G (F,tN), with G'(F,[[1]]) act-
ing on Ml(?CX via G°(F,). Set P, = G'(F,[[¢]]). We have

G°(F)\M¢x (F,) C P\G'(F,((1)))/ P].

We again denote by ¢, the extension by 0 of ¢, to G'(F,((¢)))/P,. Then ¢, is P,-equivariant
and so it gives

¢, € H,(G,G) =C.(P\G'(F,(1))/P)

in the parahoric Hecke algebra of compactly supported P’-bivariant locally constant Q -
valued functions on G'(F,((#))) under convolution (see [59] §10.4.2.). By loc. cit., The-
orem 10.14, for all » > 1, the function ¢, belongs to the center of the Hecke algebra
H,(G, 6.



M. KISIN, G. PAPPAS

4.7.9. — Let us now assume in addition that G is unramified over Q,, p {

|77, (G97)|, and that either (G*, X*?) has no factor of type D, or K; 1s contained in a

hyperspecial. Then we can apply the above discussion to the local model diagram given
by Theorem 4.6.23 (4), (5).

The extension E/Q,, is unramified; denote by E, C L the unramified extension of

E of degree r = [F, : k] with residue field F, and by O, = W(F,) the ring of integers of

E, Set P, = G°(0,), P, = G'(F[[t]]). By the construction of G/, for each > 1, there is a

natural bijection
(4.7.10) P\G'(F,((1))/P. = P\G(E,) /P,
which gives

G°(F)\M¢ (F,) = P\G(E,)/P,.

Using this, we can view ¢, : G° (Fq)\Mlng(Fq) — Q_[ as an element of the parahoric
Hecke algebra C.(P,\G(E,)/P,). Set d = dim(Shk- (G, X)) and let u be a cocharacter in
the conjugacy class of .

Theorem 4.7.11. — (Rottwitz’s comjecture) Suppose that (G, X) s of abelian type with G
unramified, p1 |7, (G|, and either (G*, XYY has no_factor of type DB, or K; 15 contained n a
hyperspecial. For y € 7/ (F,), we have
(4.7.12) " (F rob

7y

RW7) = ¢z, . (w)

where w € M corresponds to y and z,,., is the Bernstein function attached to (4 in the center of the
parahoric Hecke algebra C.(P,\G(E,)/P,).

Progf: — See [51] (also the work of Haines [34—-36]) for the definition of the Bern-
stein function g, ,.

Let us pick an alcove in the apartment of the standard split torus S (cf. 2.1.4) whose
closure contains x and let xy be a hyperspecial vertex in the same closure. This alcove
defines an Iwahori group scheme Z" over F[[¢]]. Set I! = Z'(F,[[]]) so that I, C P,. We also
set K = G| (F,[[7]]), where G| is the reductive group scheme corresponding to xy. Then
K is a maximal compact subgroup of G'(F,((#))) and we also have I/ C K.

By [59] Theorem 10.16, for each r > 1, the function ¢, is the unique element
of the center Z(C,(P\G'(F,((#)))/P,)) whose image under the Bernstein isomorphism
(= 1) - (—* 1p) ™" obtained by composing the convolutions ([35] Theorem 3.1.1)

1 Z(CONG(E,(0)/1) > Z(C.PACE,(0)/ P)).
g Z(CING (E(0)/1) > C.(KAG (F,(0)/K).
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1s the characteristic function IK;_SH,K; where s, € G'(F,((1))) is the element determined by
the coweight u" of G' which corresponds to w as in [59]. (Note that the result in loc. cit.
is given for the intersection complex Q,[d](d/2).) It follows from the compatibility of

the Bernstein and Satake isomorphisms that ¢, is qd/ Qz;ﬂ .» where z;w, 1s the Bernstein

function in the center of the parahoric Hecke algebra C,.(P)\G'(F,((#)))/P}). It remains
to note that (4.7.10) induces an algebra isomorphism

(4.7.13) C,(P\G'(F,((0))/P) = C.(P\G(E)/P)

which takes the Bernstein function 2, , to z,, , and the result then follows from (4.7.7). U
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