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Abstract— We study covert queueing channels (CQCs), which
are a kind of covert timing channel that may be exploited in
shared queues across supposedly isolated users. In our system
model, a user sends messages to another user via his pattern of
access to the shared resource, which serves the users according
to a first come first served (FCFS) policy. One example of
such a channel is the cross-virtual network covert channel in
data center networks, resulting from the queueing effects of
the shared resource. First, we study a system comprising a
transmitter and a receiver that share a deterministic and work-
conserving FCFS scheduler, and we compute the capacity of this
channel. We also consider the effect of the presence of other
users on the information transmission rate of this channel. The
achievable information transmission rates obtained in this paper
demonstrate the possibility of significant information leakage and
great privacy threats brought by CQCs in FCFS schedulers.

Index Terms— Covert queueing channel, first-come-first-served
scheduler, capacity limit.

I. INTRODUCTION

THE existence of side and covert channels due to the

fragility of isolation mechanisms is an important privacy

and security threat in computer networks. Such channels may

be created across users, which were supposed to be isolated,

resulting in information leakage. By definition, a covert chan-

nel is a hidden communication channel, which is not intended

to exist in the system and is created furtively by users [2].

Covert channels may be exploited by a trusted user, or possibly

a malware inside a system with access to secret information to

leak it to a distrusted user. On the other hand, in a side channel

a malicious user attempts to learn private information by

observing information not intended for him. In this scenario,

there is no collaboration between the source of information

and the recipient [3].

Given that a lot of sensitive organizations such as CIA,

and US Navy and Air Force, are abandoning in-house
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infrastructure and migrating to clouds, privacy has emerged

as a serious risk for clouds. In the context of covert channels,

a disgruntled employee, a leaker, or a malware, can easily

sneak out extremely confidential and private data without

explicitly communicating with an external party (data exfil-

tration). The employee could pretend to be talking to another

trusted entity but sending out covert signals via shared queues

to someone implicitly. This would be a severe threat to

privacy leakage as it would be unbeknown to the tenant

being targeted that their data is being exfiltrated and would

bypass most defenses deployed at the host or network layer.

Typical scenarios here could be stealing cryptographic keys,

bank records, medical records, service records of military

personal, names and locations of secret offices and networks

of CIA/NSA, etc., i.e., small pieces of information that can

have detrimental consequences if leaked.

Timing channels are one of the main types of covert/side

channels, in which information is conveyed through timing

of occurrence of events (e.g., inter-arrival times of packets).

A special case of timing channels is covert/side queueing

channels, which can arise between users who share a packet

scheduler in a network. Packet schedulers serve packets from

multiple streams, which are queued in a single queue. This

causes dependencies between delays observed by users. Par-

ticularly, the delay that one user experiences depends on

the amount of traffic generated by other streams, as well as

his own traffic. Hence, a user can gain information about

other users’ traffic by observing delays of his own stream.

This dependency between the streams can breach private

information as well as create hidden communication channels

between the users.

One example of a covert/side queueing channel is the cross-

virtual network covert channel in data center networks and

cloud environments. As mentioned earlier, in recent years,

migrating to commercial clouds and data centers is becoming

increasingly popular among companies that deal with data. The

multi-tenant nature of cloud and sharing infrastructure between

several users has made data protection and avoiding informa-

tion leakage a serious challenge in such environments [4]. In

data center networks, software-defined-networks are frequently

used for load balancing [5]. This generates logically isolated

virtual networks and prevents direct data exchange. However,

since packet flows belonging to different VNs inevitably share

underlying network infrastructure (such as a router or a physi-

cal link), it is possible to transfer data across VNs through

timing channels resulting from the queueing effects of the

shared resource(s).

For data centers, the underlying premise is that resources

should be multiplexed and oversubscribed as much as possible
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Fig. 1. Covert queueing channel in a system with 2 users.

to maximize utilization and consequently profits. Hence, most

of the resources are shared (e.g., cache, system bus, memory,

NICs, switches, links, etc.). Under such a scenario, it can be

seen that there will be numerous opportunities for establishing

covert channels. Hence, a queue-sharing based channel is

certainly not the only option. However, it is the most con-

venient/practical and perhaps the only one that continues to

exist even if tenants resort to dedicated infrastructure (fully

dedicated servers are provided by cloud providers at a higher

cost, but network is always shared and no option is provided

for dedicated networking infrastructure). Two specific scenar-

ios to argue this are as follows. In the first case, there are

two mutually untrusting tenants that are placed on separate

servers. However, the first hop router and the outbound links

from then onwards are shared. In such a scenarios, there are

numerous shared queues which can be exploited to setup a

covert channel. Since the two tenants are deployed on separate

servers, none of the other media can be exploited to create

covert channels, and the only option is to use a network-based

queue-sharing channel. In the second scenario, consider a load

balancing server. Two separate tenants, each own a VM on

this load balancing server (such servers have typically very

high-end NICs and cloud vendors try to maximize sharing on

these expensive NICs). The VMs on this server simply load

balance traffic between other VMs of the tenant. Again, there

are numerous network and server-based queues that can be

exploited to setup a covert channel.

In this paper, we study covert queueing channels (CQCs) in

a shared deterministic and work-conserving first-come-first-

served (FCFS) scheduler. We present an information-theoretic

framework to describe and model the data transmission in

this channel and calculate its capacity. First, we consider a

two users setting depicted in Figure 1. In this model we

have an encoder and a decoder user. Each user possesses

a transmitter node and a receiver node. There is no direct

communication channel between the users, but they share a

packet scheduler. Hence, the delays observed by users are

correlated. Therefore, the encoder user can encode a message

in his traffic pattern and the decoder user can estimate the

message by estimating the encoder’s traffic pattern via the

delays he experiences. Next, we extend the model to study

the effect of the presence of a third user on the information

transmission rate. The approach for analyzing the effect of

the presence of the third user can be extended to calculate the

capacity of the covert queueing channel serving any number

of users.

The rest of the paper is organized as follows. We review

related works in Section II. In Section III, we describe the

system model. The capacities of the introduced channel for

the two and three user cases are calculated in Sections IV

and V, respectively. Our concluding remarks are presented in

Section VI.

II. RELATED WORKS

The existing literature on covert/side timing channels

has mainly concentrated on timing channels in which

the receiver/adversary has direct access to the timing

sequence produced by the transmitter/victim or a noisy ver-

sion of it. However, in a covert/side queueing channel,

the receiver/adversary does the inference based on the timing

of his own packets which has been influenced by the original

stream.

In a queuing side channel, where a malicious user, called an

attacker, attempts to learn another user’s private information,

the main approach used by the attacker is traffic analysis.

That is, the attacker tries to infer private information from the

victim’s traffic pattern. The attacker can have an estimation

of the features of the other user’s stream, such as packet

size and timing by emitting frequent packets in his own

sequence. Previous work shows that through traffic analysis,

the attacker can obtain various private information including

exact schedules of real-time systems [6], [7], visited web

sites [8], sent keystrokes [9], and even inferring spoken phrases

in a voice-over-IP connection [10].

In [11], Gong et al. proposed an attack where a remote

attacker learns about a legitimate user’s browser activity by

sampling the queue sizes in the downstream buffer of the

user’s DSL link. The information leakage of a queueing

side channel in an FCFS scheduler is analyzed in [12]. The

analysis of more general work-conserving policies has been

done in [13] and [14]. Gong and Kiyavash [14] presented

an analytical framework for modeling information leakage in

queuing side channels and quantify the leakage for several

common scheduling policies.

Most of the work in covert timing channels is devoted

to the case in which two users communicate by modulating

the timings, and the receiver sees a noisy version of the

transmitter’s inputs [15]–[23]. Also, there are many works

devoted to the detection of such channels [16], [24], [25].

The setup of CQC is new in the field of covert channels and

as far as the authors are aware, there are very few works

on this setup [1], [26], [27]. In [1] we studied a system

comprised of only a transmitter and a receiver and computed

the capacity of the covert channel. We have extended the

results of [1] by studying the effect of the presence of

other users on the information transmission rate of the CQC

(Section V). Furthermore, the treatment of the proofs in the

entire paper is now more rigorous and detailed. Specifically,

we have provided a more in depth study of the function H̃ and

its properties. This function indicates the highest amount of

information transmittable for a given packet rate of the encoder

user and a given inter-arrival time of packets of the decoder

user, and plays a fundamental role in the calculation of the

capacity.
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Fig. 2. An example of the input and output streams of the FCFS scheduler
serving two users. Time slots are separated by dotted lines. Packets with dotted
pattern belong to Ue and packets with diagonal pattern belong to Ud . Gray
packets are existing packets in the buffer, which could belong to either of the
users. We assume that one packet is buffered in the queue at time Ai .

III. SYSTEM DESCRIPTION

Consider the architecture depicted in Figure 1. In this model,

a scheduler serves packets from 2 users, Ue and Ud . Each user

Ui , i ∈ {e, d}, is modeled by a transmitter and a receiver node,

denoted by U T
i and U R

i , respectively. U R
i is the node which

receives U T
i ’s packet stream. Note that U T

i and U R
i could

correspond to the uplink and downlink of the same entity.

Ue intends to send a message to Ud , but there is no direct

channel between them. However, since U T
e and U T

d ’s packets

share the same queue, U T
e can encode messages in the arrival

times of its packets, which are passed onto Ud via queueing

delays. Therefore, a timing channel is created between users

via the delays experienced through the coupling of their traffic

due to the shared scheduler.

To receive the messages from Ue, user Ud sends a packet

stream from the node U T
d . He then uses the delays he expe-

riences by receiving the packet stream at U R
d to decode the

message. Therefore, effectively, the nodes U T
e and U R

e are

on the encoder side and the nodes U T
d and U R

d are on the

decoder side of the channel of our interest. Throughout the

paper, we call Ud ’s sent stream the probe stream.

We consider an FCFS scheduler, which is commonly used

in DSL routers. We assume this scheduler is deterministic and

work-conserving. Time is discretized into slots, and the sched-

uler is capable of processing at most one packet per time slot.

At each time slot, each user either issues one packet or remains

idle. Furthermore, we assume that all packets are the same

size. Throughout the paper, we assume that the priorities of

the users are known. Particularly, without loss of generality,

we assume that Ud has the highest priority among all users;

i.e., in the case of simultaneous arrivals, Ud ’s packet will be

served first.

Figure 2 shows an example of the input and output streams

of the system depicted in Figure 1 with an FCFS scheduler.

In this figure, the first stream is the arrival stream i.e., arrivals

from both U T
e and U T

d , depicted by dotted and diagonal

patterns, respectively. The second stream is the output stream

of user Ue (received by U R
e ), and the third one is the output

stream of user Ud (received by U R
d ). In this example, we

assume that one packet is buffered in the queue at time Ai ,

where a packet arrives from both U T
d and U T

e . If user Ue

had not sent the two packets (depicted by dotted pattern), the

second packet of user Ud , which arrives at time Ai+1 could

have departed one time slot earlier. Therefore, Ud knows that

Ue has issued two packets.

As mentioned earlier, at each time slot, each user is allowed

to either send one packet or none; hence, the input and output

packet sequences of each user could be viewed as a binary

bitstream, where ‘1’ and ‘0’ indicates whether a packet was

sent or not in the corresponding time slot.

Assume message W drawn uniformly from the message set

{1, 2, . . . , M} is transmitted by U T
e , and Ŵ is Ud ’s estimate

of the sent message. Our performance metric is the average

error probability, defined as follows.

Pe � P(W �= Ŵ ) =

M
∑

m=1

1

M
P(Ŵ �= m|W = m).

Ue encodes each message into a binary sequence of length n,

�n , to create the codebook, which is known at the decoder, Ud .

In order to send a message, U T
e emits a packet in the i -th

time slot if �i = 1 and remains idle otherwise, i.e.,

�i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 ⇒ U T
e issues a

packet in time slot i .

0 ⇒ U T
e remains

idle in time slot i .

To decode this message, U T
d sends a binary length n stream

(the probe stream) to the scheduler during the same length n

time period. User Ud will use this stream and the response

stream received at node U R
d to decode the sent message.

We define the code, rate of the code, and the channel

capacity similar to the definitions in [15], [28], and [29],

as follows.

Definition 1: An (n, M, ε)-code consists of a codebook of

M equiprobable binary codewords, where messages take on

average n time slots to be received, and the error probability

satisfies Pe ≤ ε.

Definition 2: The information transmission rate, R, of a

code is the amount of conveyed information (logarithm of the

codebook size) normalized by the average number of used time

slots for the message to be received, i.e., R = (log M)/n.

Rate may be interpreted as the average amount of information

conveyed in a single time slot.

Definition 3 (Channel Capacity): The Shannon capacity C,

for a channel is the maximum achievable rate at which one can

communicate through the channel when the average probabil-

ity of error goes to zero. In other words, C is the supremum

of rates R, which satisfy the following property [29].

∀δ > 0, ∃(n, M, εn)-code

s.t.

{

log M
n

> R − δ

εn → 0
as n → ∞.
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The following notations will be used throughout the paper.

• ri : U T
i ’s packet rate.

• Ai : Arrival time of the i -th packet in the probe stream.

• Di : Departure time of the i -th packet of the probe stream.

We assume m packets are sent by Ud during n time slots

and we have: rd = lim
n→∞

m/n.

• X i : Number of Ue’s packets sent in the interval

[Ai , Ai+1). Note that X i =
∑Ai+1−1

j=Ai
� j .

• Ti = Ai+1 − Ai : Inter-arrival time between i -th and (i +

1)-th packet of the probe stream. We denote a realization

of T by τ .

• Yi = Di+1 − Di − 1.

• X̂ i : Estimation of X i by decoder.

• Ŵ : Decoded message.

In an FCFS scheduler, Ud can have an estimation of the

number of the packets of other users between any of his

own consecutive packets. The estimation of the number of

packets in the interval [Ai , Ai+1) is accurate if the scheduler

is deterministic and work-conserving and a sufficient number

of packets is buffered in the queue at time Ai .
1 In that case,

the number of other users’ packets arriving in the interval

[Ai , Ai+1) could be simply calculated by Yi = Di+1 − Di −1.

Note that Ud cannot pinpoint the location of the sent packets;

that is, if the inter-arrival time is τ , Ud can distinguish between

τ + 1 different sets of bit streams sent during this time.

Therefore, we look at any probe stream sent during n time

slots as a combination of different inter-arrival times.

If the sum of the packet rates of the users used during

sending a message of length n is on average larger than 1,

then the message will be arrived on average during more than

n time slots. Also, this will destabilize the input queue of

the scheduler. For example, for a system with two users Ud

and Ue, if U T
d sends packets in every time slot, then sending

a packet by U T
e in any time slot would cause a delay in the

serving of the next packet of U T
d and hence could be detected.

Therefore, in each time slot, U T
e could simply idle to signal

a bit ‘0’ or send a packet to signal a bit ‘1’, resulting in the

information rate of 1/1.5 bit per time slot in the case that bits

are equiprobable. But, this scheme is not feasible in practice

as it would destabilize the queue and result in severe packet

drops.

In our model, we do not have any restrictions on the number

of time slots in which the data transmission is happening.

Therefore, the arrival sequence can be arbitrarily long, and

hence, queue stability is required. In order to have queue

stability, it suffices that the total packet arrival rate does not

exceed the service rate, which for a deterministic and work-

conserving scheduler is equal to 1 (see Appendix VI for the

proof of stability which is based on a Lyapunov stability

1If the service rate of the scheduler is equal to 1, there should be at least
Ai+1 − Ai − 1 packets buffered in the queue at time Ai . Therefore, user Ud
needs to know the queue length. This is feasible using the following formula.

q(Ai ) = Di − Ai − 1

where q(Ai ) denotes the queue length at the time that the i-th packet in the
probe stream arrives at the queue. The extra 1 in the formula is the time
needed for the i-th packet of the probe stream to be served. Therefore, user
Ud should always be aware of the queue length and keep it sufficiently large
by sending extra packets when needed.

argument for the general case that the serving rate is assumed

to be 0 ≤ ρ ≤ 1 and arbitrary number of users is considered).

Specifically, for the case of two users we need

re + rd < 1. (1)

On the other hand, if the sum of the packet rates of the users

used during sending a message of length n is on average less

than 1, the length of the input queue may become less than

the value required for accurate estimation of the number of

the packets of other users between any of Ud ’s consecutive

packets. Consequently, this creates an extra source of error

for Ud in estimating X i ’s. In other words, for any given

scheme with sum of the packet rates less than 1, increasing

rd increases the resolution available for user Ud by removing

the aforementioned extra source of error. Hence, Ud can have

a better estimation of the number of other users’ sent packets.

To avoid this extra source of error, we focus on the coding

schemes where the sum of the rates is 1. Therefore, in the

case of two users, in order to achieve the highest information

rate, the operation point should tend to the line re + rd = 1.

IV. TWO-USER CASE

In this section, using achievability and converse arguments,

the capacity of the introduced system is calculated for a system

with a deterministic and work-conserving FCFS scheduler

serving packets from two users.

As depicted in Figure 1, user Ue is attempting to send a

message to Ud through the covert queueing channel between

them. Note that since we have considered service rate of 1 for

the FCFS scheduler and users can agree on the packet stream

sent by U T
d ahead of time, the feedback U R

e is already available

at the encoder. Therefore, the following Markov chain holds

W → Xm → Y m → Ŵ . (2)

Note that as mentioned earlier, if there is a sufficient number

of packets buffered in the shared queue, X̂ i could be accurately

estimated as Yi .

The main result of this section is the following theorem,

the proof of which is developed in the rest of the section.

Theorem 1: The capacity of the timing channel in a shared

FCFS scheduler with service rate 1 depicted in Figure 1 is

equal to 0.8114 bits per time slot, which can be obtained by

solving the following optimization problem.

C = max
α,γ1,γ2

αH̃ (γ1, 1) + (1 − α)H̃ (γ2,
1

2
)

s.t . α(γ1 + 1) + (1 − α)(γ2 +
1

2
) = 1, (3)

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2

and the function

H̃ : [0, 1] × { 1
k

: k ∈ N} 
→ [0, 1] is defined as

H̃(γ,
1

k
) =

1

k
max

X∈{0,1,...,k}
E[X ]=kγ

H (X), k ∈ N, 0 ≤ γ ≤ 1. (4)

The function H̃(γ, 1
k
) indicates the ratio of highest amount of

information that a random variable with support {0, . . . , k}

and mean kγ can contain, to the number of bits used for
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transmitting this information. We first investigate some of the

properties of the function H̃ .

Lemma 1: Let Uk ∼ Unif({0, 1, . . . , k}). The distribution

which achieves the optimum value in (4) is the tilted version

of Unif({0, 1, . . . , k}) with parameter λ; that is

PX (i) =
eiλ

∑k
i=0 eiλ

, i ∈ {0, 1, . . . , k},

where λ = (ψ ′
Uk

)−1(kγ ), where the function ψ ′
Uk

(·) is the

derivative of the log-moment generating function of Uk .

See Appendix VI for the proof of Lemma 1.

Lemma 2: The function H̃ could be computed using the

following expression.

H̃ (γ,
1

k
) =

1

k
[log2(k + 1) − ψ∗

Uk
(kγ ) log2 e], (5)

where Uk ∼ Unif({0, 1, . . . , k}), and the function ψ∗
Uk

(·) is the

rate function given by the Legendre-Fenchel transform of the

log-moment generating function ψUk (·),

ψ∗
Uk

(γ ) = sup
λ∈R

{λγ − ψUk (λ)}. (6)

In order to prove this lemma, first we note that for any random

variable X defined over the set {0, 1, . . . , k},

H (X) =

k
∑

i=0

PX (i) log
1

PX (i)

=

k
∑

i=0

PX (i) log (k + 1) −

k
∑

i=0

PX (i) log
PX (i)

1
k+1

= log (k + 1) − D(PX ||Uk),

where D(PX ||Uk) denotes the KL-divergence between PX

and Uk . Therefore, in order to maximize H (X), we need

to minimize D(PX ||Uk). Using the following well-known

fact [30], concludes the lemma.

min
E[X ]=kγ

D(PX ||Uk) = ψ∗
Uk

(kγ ) log2 e. (7)

Figure 3 shows the function H̃ (γ, 1
k
) for different values of γ

and k ∈ {1, 2, 3}.

Lemma 3: The function H̃(·, ·) is concave in pair (γ,
1

k
)

in the sense that for integers k1, k2, k3, and for values 0 ≤

γ1, γ2, γ3 ≤ 1, and for α ∈ [0, 1], such that α(γ1,
1

k1
) + (1 −

α)(γ3,
1

k3
) = (γ2,

1

k2
), we have

αH̃ (γ1,
1

k1
) + (1 − α)H̃ (γ3,

1

k3
) ≤ H̃ (γ2,

1

k2
). (8)

See Appendix VI for the proof of Lemma 3.

Substituting (5) in (3) and solving it, the capacity of the

timing channel in the shared FCFS scheduler with service rate

1 depicted in Figure 1 is equal to 0.8114 bits per time slot,

achieved by α = 0.177, γ1 = 0.43 and γ2 = 0.407.

Lemma 4: For all γ ∈ [0, 1] and k ∈ N, we have

H̃(γ,
1

k
) = H̃(1 − γ,

1

k
).

See Appendix VI for the proof of Lemma 4.

Fig. 3. H̃(γ, 1
k
) for different values of γ and k ∈ {1, 2, 3}.

In the following, the proof of Theorem 1 is given. The proof

is based on converse and achievability arguments.

A. Converse

In the converse side, the ultimate goal is to prove that

C ≤ max
α,γ1,γ2

αH̃ (γ1, 1) + (1 − α)H̃ (γ2,
1

2
)

s.t. α(γ1 + 1) + (1 − α)(γ2 +
1

2
) = 1,

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2

. We break the proof into

two lemmas. First in Lemma 5, we find an upper bound on the

information rate, which consists of a weighted summation of

possible maximum information rates for different inter-arrival

times of the packets in the probe stream, which satisfies the

stability constraint. Then in Lemma 6, we upper bound the

summation with one which only corresponds to inter-arrival

times of 1 and 2.

Lemma 5: For the timing channel in a shared FCFS sched-

uler with service rate 1 depicted in Figure 1, any code

consisting of a codebook of M equiprobable binary codewords,

where messages take on average n time slots to be received,

satisfies

1

n
log M ≤

n
∑

τ=1

[πτ H̃ (µτ ,
1

τ
)] + εn, (9)

where
∑n

τ=1 πτ (µτ + 1
τ ) = 1, and for all τ , 0 ≤ µτ ≤ 1

2
.

In this expression, εn = 1
n
(H (Pe)+Pe log2 (M − 1)), πτ is the
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portion of time that user Ud sends packets with inter-arrival

time equal to τ in the probe stream, and µτ is U T
e ’s average

packet rate when the inter-arrival time is equal to τ .

Proof: We first we note that

1

n
log M

(a)
=

1

n
H (W )

(b)
=

1

n
H (W |τm)

=
1

n
I (W ; Ŵ |τm) +

1

n
H (W |Ŵ , τm)

(c)
≤

1

n
I (W ; Ŵ |τm) + εn

(d)
≤

1

n
I (Xm ; Y m |τm) + εn,

where (a) holds because W is a uniform random variable over

the set of messages {1, . . . , M}, (b) follows from the fact that

the chosen message is independent of the inter-arrival time

of decoder’s packets, (c) follows from Fano’s inequality with

εn = 1
n
(H (Pe) + Pe log2 (M − 1)), and (d) follows from data

processing inequality in Markov chain in (2). Therefore,

1

n
log M ≤

1

n
[H (Xm|τm) − H (Xm|Y m, τm)] + εn

≤
1

n
H (Xm |τm) + εn

≤
1

n

m
∑

j=1

H (X j |τ
m) + εn

≤
1

n

m
∑

j=1

max
PX j |τ

m

H (X j |τ
m) + εn .

In the maximization above, the mean of the distribution PX j |τm

is E[X j |τ
m ]. As mentioned in Section III, in order to find

the maximum information rate while having stability, we are

interested in the asymptotic regime in which the operating

point is converging to the line re + rd = 1. Therefore,

the information rate is upper bounded by having the set of

means, {E[X1|τ
m], E[X2|τ

m], . . . , E[Xm |τm]} satisfying the

constraint 1
n

∑m
j=1 E[X j |τ

m] + rd = 1. Let ξ j =
E[X j |τ

m ]

τ j
.

Using (4), we have

max
PX j |τ

m

E[X j |τ
m ]=τ j ξ j

H (X j |τ
m) = τ j H̃(ξ j ,

1

τ j

), (10)

where as mentioned in Lemma 1, the distribution for each X j

which achieves the maximum value in (10) is the tilted distrib-

ution of Uτ j with parameter λ, such that λ = (ψ ′
Uτ j

)−1(τ jξ j ).

Therefore, we will have:

1

n
log M ≤

1

n

m
∑

j=1

τ j H̃(ξ j ,
1

τ j

) + εn,

such that the set {ξ1, ξ2, . . . , ξm} satisfies the constraint
1
n

∑m
j=1 τ jξ j + rd = 1. The inter-arrival times take values

in the set {1, 2, . . . , n}. Therefore, in the summation above

we can fix the value of inter-arrival time on the value τ and

count the number of times that τ j has that value. Defining mτ

as the number of times that the inter-arrival time is equal to

τ (note that n =
∑n

τ=1 τ · mτ ), we can break the summation

above as follows.

1

n
log M ≤

1

n

n
∑

τ=1

[

mτ
∑

k=1

τ H̃ (µτ,k,
1

τ
)] + εn

=
1

n

n
∑

τ=1

[τ

mτ
∑

k=1

H̃(µτ,k ,
1

τ
)] + εn

=
1

n

n
∑

τ=1

[τ · mτ

mτ
∑

k=1

1

mτ
H̃(µτ,k,

1

τ
)] + εn,

where µτ,k is equal to the k-th ξ j which has τ j = τ .

By Lemma 3, the function H̃(·, ·) is a concave function of

its first argument. Therefore, by Jensen’s inequality,

mτ
∑

k=1

1

mτ
H̃(µτ,k,

1

τ
) ≤ H̃ (µτ ,

1

τ
), (11)

where µτ = 1
mτ

∑mτ
k=1 µτ,k . Using (11) and the equation

n =
∑n

τ=1 τ · mτ , we have

1

n
log M ≤

n
∑

τ=1

[
τ · mτ

∑n
τ=1 τ · mτ

H̃ (µτ ,
1

τ
)] + εn

=

n
∑

τ=1

[πτ H̃(µτ ,
1

τ
)] + εn, (12)

where πτ = (τ · mτ )/(
∑n

τ=1 τ · mτ ).

The packet rates of the users could be written as follows.

re =
1

n

m
∑

j=1

τ jξ j =
1

n

n
∑

τ=1

mτ
∑

k=1

τµτ,k

=
1

n

n
∑

τ=1

τmτ
1

mτ

mτ
∑

k=1

µτ,k =

n
∑

τ=1

1

n
τmτµτ

=

n
∑

τ=1

τ · mτ
∑n

τ=1 τ · mτ
µτ =

n
∑

τ=1

πτµτ ,

and

rd =

n
∑

τ=1

πτ
1

τ
.

Therefore, the constraint could be written as follows.

n
∑

τ=1

πτ (µτ +
1

τ
) = 1. (13)

Suppose the set of pairs {(µτ ,
1
τ )}n

τ=1 satisfies (13) and max-

imizes the right hand side of (12). By Lemma 4, there exists

another set of pairs {(µ̂τ ,
1
τ )}n

τ=1 with µ̂τ defined as

µ̂τ =

{

µτ if 0 ≤ µτ ≤ 1
2
,

1 − µτ if 1
2

≤ µτ ≤ 1,

that gives the same value for the right-hand side of (12), but

it has
∑n

τ=1 πτ (µ̂τ + 1
τ ) ≤

∑n
τ=1 πτ (µτ + 1

τ ). Therefore, Ud

can increase his packet rate and increase the information rate

using the values µ̂τ . Hence, in the maximizing set, for all

τ , we have 0 ≤ µτ ≤ 1
2

. Therefore, the optimal operating
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point will be on the line re + rd = 1, with 0 ≤ re ≤ 1
2

and
1
2

≤ rd ≤ 1. �

Applying Lemma 3, we can replace all pairs of form

(µτ ,
1
τ
), τ ≥ 2, with a single pair of form (µ, 1

2
).

Lemma 6: For any set of pairs S = {(µτ ,
1
τ ), τ ∈ [n]},

where for all τ , 0 ≤ µτ ≤ 1
2

, with weights {πτ , τ ∈ [n]} with

operating point on the line 0 ≤ re ≤ 1
2

and 1
2

≤ rd ≤ 1, there

exists 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2

such that

α(γ1 + 1) + (1 − α)(γ2 +
1

2
) = 1,

and

n
∑

τ=1

[πτ H̃(µτ ,
1

τ
)] ≤ αH̃ (γ1, 1) + (1 − α)H̃ (γ2,

1

2
).

Proof: For all τ ∈ {3, . . . , n}, there exists βτ ∈ [0, 1],

such that

βτ (µ1, 1) + (1 − βτ )(µτ ,
1

τ
) = (µτ

2,
1

2
).

Clearly, the set {(µ1, 1), (µ2,
1
2
), (µ3

2,
1
2
), . . . , (µn

2,
1
2
)} can

also give the same operating point as S does. By Lemma 3,

βτ H̃(µ1, 1)+(1−βτ)H̃(µτ ,
1

τ
)≤ H̃ (µτ

2,
1

2
), ∀τ ∈{3, . . . , n}.

Therefore,

n
∑

τ=1

πτ H̃(µτ ,
1

τ
)

= ζ1 H̃ (µ1, 1) + ζ2 H̃(µ2,
1

2
) +

n
∑

τ=3

ζτ (βτ H̃ (µ1, 1)

+ (1 − βτ )H̃(µτ ,
1

τ
))

≤ ζ1 H̃ (µ1, 1) + ζ2 H̃ (µ2,
1

2
) +

n
∑

τ=3

ζτ H̃ (µτ
2,

1

2
)

≤ ζ1 H̃ (µ1, 1) + (1 − ζ1)H̃(
ζ2µ2 +

∑n
τ=3 ζτµ

τ
2

1 − ζ1
,

1

2
), (14)

where π1 = ζ1 +
∑n

τ=3 ζτβτ , π2 = ζ2 and πτ = ζτ (1 − βτ )

for 3 ≤ τ ≤ n, and we have used Lemma 3 again in the last

inequality. �

From Lemmas 5 and 6 we have

1

n
log M ≤ αH̃ (γ1, 1) + (1 − α)H̃ (γ2,

1

2
) + εn

≤ max
α,γ1,γ2

αH̃ (γ1, 1) + (1 − α)H̃ (γ2,
1

2
) + εn.

Letting n → ∞, εn goes to zero and we have

C ≤ max
α,γ1,γ2

αH̃ (γ1, 1) + (1 − α)H̃ (γ2,
1

2
)

s.t . α(γ1 + 1) + (1 − α)(γ2 +
1

2
) = 1,

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2

. This completes the

proof of the converse part.

B. Achievability

The sequence of steps in our achievability scheme is as

follows:

Generating the Codebook: The codebook C is generated by

combining two codebooks C1 and C2, which are designed for

the cases that the inter-arrival times in the probe stream are

1 and 2, respectively.

• Set α = 0.177 − δ, for a small and positive value of δ.

• To generate C1, fix a binary distribution P1 such that

P1(1) = 0.43 and P1(0) = 0.57. Generate a binary

codebook C1 containing 2αnR1 sequences of length αn

of i.i.d. entries according to P1.

• To generate C2, fix a ternary distribution P2 over set of

symbols {a0, a1, a2} such that P2(a0) = 0.43, P2(a1) =

0.325 and P2(a2) = 0.245. Generate a ternary codebook

C2 containing 2(1−α)nR2 sequences of length 1
2
(1−α)n of

i.i.d. entries according to P2. Substituting a0 with 00, a1

with 10, and a2 with 11, we will have 2(1−α)nR2 binary

sequences of length (1 − α)n.

• Combine C1 and C2 to get C, such that C has

2n(αR1+(1−α)R2) binary sequences of length n where we

concatenate i -th row of C1 with j -th row of C2 to make the

((i −1)(2(1−α)nR2)+ j)-th row of C (note that 2(1−α)nR2 is

the number of rows in C2). Rows of C are our codewords.

In above, n should be chosen such that αn R1, αn, (1−α)n R2

and 1
2
(1 − α)n are all integers.

Encoding: To send message m, U T
e sends the corresponding

row of C, that is, he sends the corresponding part of m from

C1 in the first αn time slots and the corresponding part of m

from C2 in the rest of (1 − α)n time slots.

Decoding: Recall that U T
d sends a binary length n stream to

the scheduler during the same length n time period. Here, U T
d

sends the stream of all ones (one packet in each time slot) in

the first αn time slots and sends bit stream of concatenated

10’s for the rest of (1−α)n time slots. Assuming the queue is

not empty,2 since there is no noise in the system, the decoder

can always learn the exact sequence sent by Ue.

Consequently, we will have:

C ≥
log2 2n(αR1+(1−α)R2)

n
= αR1 + (1 − α)R2.

In infinite block-length regime, where n → ∞, we can choose

R1 = H (P1), R2 = 1
2

H (P2) and find codebooks C1 and C2

such that this scheme satisfies the rate constraint. Therefore,

C ≥ αH (P1) + (1 − α)
1

2
H (P2).

Substituting the values in the expression above, and letting δ

go to zero, we see that the rate 0.8114 bits per time slot is

achievable.

V. THREE-USER CASE

As an extension to the basic problem, in this section we

consider the case that a third user is also using the shared

2Since in our achievable scheme U T
d

’s packets are spaced by either
one or two time slots, it is enough to have one packet buffered in the queue,
where since we are working in the heavy traffic regime, it will not be a
problem.
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Fig. 4. Covert queueing channel in a system with three users.

Fig. 5. Channel between the encoder and the decoder of the system for the
case that the inter-arrival time of two packets of the probe stream is 2.

scheduler. We add user Up to our basic system model. This

user has nodes U T
p and U R

p as his transmitter and receiver

nodes, respectively (Figure 4). We assume that node U T
p sends

packets according to a Bernoulli process with rate rp to the

shared scheduler. The shared scheduler is again assumed to

be FCFS with service rate 1 and we analyze the capacity for

coding schemes satisfying queueing stability condition in the

asymptotic regime where the operating point is converging to

the line re + rp + rd = 1. Also, in this section we consider

the extra assumption that the inter-arrival time of the packets

in the probe stream is upper bounded by the value τmax .

Assuming that a sufficient number of packets are buffered

in the shared queue, user Ud can still count the number of

packets sent by the other two users between any of his own

consecutive packets, yet he cannot distinguish between packets

sent by user Ue and the packets sent by user Up . Hence, user

Ud has uncertainty in estimating the values of X . We model

this uncertainty as a noise in receiving X . Suppose U T
d sends

two packets with τi = 2. Each of the other users can possibly

send at most 2 packets in the interval [Ai , Ai+1) and hence,

Y ∈ {0, 1, 2, 3, 4}. Therefore, we have the channel shown

in Figure 5 for this example. In the general case, for the inter-

arrival time τ , given X = x , we have Y ∈ {x + 0, . . . , x + τ }

such that

Pr(Y = i + x |X = x) =

(

τ

i

)

(rp)
i (1 − rp)τ−i ,

i ∈ {0, . . . , τ }, (15)

which is a binomial distribution Bin(τ, rp). Therefore, the sup-

port of the random variable Y is {0, 1, . . . , 2τ }. For the

Fig. 6. The graphical model representing the statistical relation between W ,

Xm , Y m and Ŵ .

mean of Y , we have

E[Y |τ ] = E[E[Y |X, τ ]|τ ] = E[X + τrp|τ ] = τ (re + rp).

(16)

Because of user Up’s stream, the encoder is not aware of

the stream received at node U R
e beforehand and this output

can provide information to the encoder about U T
p ’s stream.

The more packets node U T
e sends to the scheduler, the more

information this stream contains about U T
p ’s stream. Using this

information, the encoder can have an estimation of the output

of the channel at the decoder’s side and hence, it could be

considered as a noisy feedback to the encoder. Figure 6 shows

the graphical model for random variables in our system.

The main result of this section is evaluation of the capacity

of the introduced channel, presented in Theorem 2. In the

following, the subscript rp denotes that the calculation is done

when the rate of Up is rp .

Theorem 2: If the rate of Up is rp , the capacity of the

timing channel in a shared FCFS scheduler with service rate

1 depicted in Figure 4 is given by

C(rp) = max
α,γ1,γ2,τ

α Ĩrp (γ1,
1

τ
) + (1 − α) Ĩrp (γ2,

1

τ + 1
)

s.t . α(γ1 +
1

τ
) + (1 − α)(γ2 +

1

τ + 1
) = 1 − rp,

(17)

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1 and 1 ≤ τ ≤ τmax − 1.

The function Ĩrp : [0, 1] × { 1
k

: k ∈ N} 
→ [0, 1] is defined as

Ĩrp (γ,
1

k
) =

1

k
max

X∈{0,1,...,k}
E[X ]=kγ

Irp (X; Y ), k ∈ N, 0 ≤ γ ≤ 1.

(18)

The proof is based on converse and achievability arguments.

Before giving the proof, we first investigate some of the

properties of the function Ĩ .

Lemma 7: The function Ĩrp could be computed using the

following expression.

Ĩrp (γ,
1

k
) =

1

k
Ȟrp(γ,

1

k
) −

1

k
H (Bin(k, rp)), (19)

where Ȟrp(γ,
1

k
) = max

X∈{0,1,...,k}
E[X ]=kγ

Hrp(Y ) and the second term

is the entropy of the binomial distribution with parameters k

and rp .



GHASSAMI AND KIYAVASH: CQC IN FCFS SCHEDULERS 1559

Fig. 7. Ĩrp (γ, 1
k ) for different values of γ and k ∈ {1, 2, 3} and rp ∈ {0, 0.1, 0.2}.

See Appendix VI for the proof of Lemma 7.

In order to calculate Ȟrp(γ, 1
k
), the following optimization

problem should be solved.

max
PX ≥0

log2 e

2k
∑

i=0

PY (i) ln(
1

PY (i)
)

s.t.

{
∑k

i=0 i PX (i) = E[X] = kγ,
∑k

i=0 PX (i) = 1,
(20)

where PY = PX ∗ PBin(k,rp), that is,

PY (i) =

k
∑

j=0

PX ( j)PBin(k,rp)(i − j), i ∈ {0, 1, . . . , 2k}. (21)

Figure 7 shows the functions Ĩ0(γ, 1
k
), Ĩ0.1(γ, 1

k
) and

Ĩ0.2(γ, 1
k
) for different values of γ and k ∈ {1, 2, 3}.

Lemma 8: For all 0 ≤ rp ≤ 1, integers 1 ≤ k1, k2, k3 ≤

τmax , values 0 ≤ γ1, γ2, γ3 ≤ 1, and α ∈ [0, 1], such that

α(γ1,
1

k1
) + (1 − α)(γ3,

1

k3
) = (γ2,

1

k2
), we have

α Ĩrp (γ1,
1

k1
) + (1 − α) Ĩrp (γ3,

1

k3
) ≤ Ĩrp (γ2,

1

k2
). (22)

See Appendix VI for the proof of Lemma 8.

Using the mentioned properties, the capacity of the timing

channel in the shared FCFS scheduler of Figure 4 for different

values of rp can be calculated. Figure 8 shows the value of

the capacity with respect to rp .

The following proof of Theorem 2 is based on converse and

achievability arguments.

A. Converse

For the converse part, similar to the approach in Section IV,

first we find an upper bound on the information rate, which

consists of a weighted summation of possible maximum

information rates for different inter-arrival times of the packets

in the probe stream, which satisfies the stability constraint;

and then we further bound it with a summation which only

corresponds to two inter-arrival times.

Suppose the rate of Up is rp . Similar to the proof of

Lemma 5, for the timing channel in a shared FCFS scheduler

with service rate 1 depicted in Figure 4, any code consisting

Fig. 8. Capacity of the timing channel in the shared FCFS scheduler of
Figure 4 for different values of rp .

of a codebook of M equiprobable binary codewords, where

messages take on average n time slots to be received, satisfies

1

n
log M ≤

1

n
Irp (W ; Ŵ |τm) + εn

(a)
≤

1

n
Irp (W ; Y m |τm) + εn,

where εn = 1
n
(H (Pe)+ Pe log2 (M − 1)) and (a) follows from

data processing inequality in the model in Figure 6. Therefore,

1

n
log M ≤

1

n

m
∑

j=1

Irp (W ; Y j |Y
j−1τm) + εn

≤
1

n

m
∑

j=1

Irp (W, Y j−1; Y j |τ
m) + εn

(a)
≤

1

n

m
∑

j=1

Irp (X j ; Y j |τ
m) + εn

≤
1

n

m
∑

j=1

max
PX j |τ

m

Irp (X j ; Y j |τ
m) + εn,

where (a) again follows from data processing inequality

in the model in Figure 6. In the maximization above,

the mean of the distribution PX j |τm is E[X j |τ
m] and in

order to find the maximum information rate, the set of

means, {E[X1|τ
m], E[X2|τ

m], . . . , E[Xm |τm]}, should satisfy
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the constraint re + rp + rd = 1, that is, 1
n

∑m
j=1 E[X j |τ

m] +

rp + rd = 1. Let ξ j =
E[X j |τ

m ]

τ j
. Using (18), we have

max
PX j |τ

m

E[X j |τ
m ]=τ j ξ j

Irp (X j ; Y j |τ
m) = τ j Ĩrp (ξ j ,

1

τ j

). (23)

This implies that

1

n
log M ≤ 1

n

m
∑

j=1

τ j Ĩ (ξ j ,
1
τ j

) + εn.

Next, using Lemma 8 and similar to the proof of Lemma 5,

by breaking the summation, using Jensen’s inequality and the

equation n =
∑τmax

τ=1 τ · mτ , we will have

1

n
log M ≤

τmax
∑

τ=1

πτ Ĩrp (µτ ,
1
τ
) + εn, (24)

where µτ is the average of ξ j ’s which have τ j = τ and

πτ = (τ · mτ )/(
∑τmax

τ=1 τ · mτ ). In this expression, πτ could be

interpreted as the portion of time that user Ud sends packets

with inter-arrival time equal to τ .

Also, using the same approach as the one used in the proof

of Lemma 5, the constraint of the problem could be written

as follows.
τmax
∑

τ=1

πτ (µτ +
1

τ
) = 1 − rp. (25)

Suppose the set of pairs S = {(µτ ,
1
τ
), τ ∈ [τmax]} with

weights {πτ , τ ∈ [τmax]} gives
∑τmax

τ=1 πτ Ĩrp (µτ ,
1
τ ) and has

its operating point on the line re + rd = 1 − rp , and we have
1
τ∗ ≤

∑τmax

τ=1 πτ
1
τ ≤ 1

τ∗+1
, for some 1 ≤ τ ∗ ≤ τmax − 1.

We have

βτ (µτ∗+1,
1

τ∗+1
) + (1 − βτ )(µτ ,

1
τ ) = (µτ

τ∗,
1

τ ∗
),

τ ≤ τ ∗ − 1,

βτ (µτ∗, 1
τ∗ ) + (1 − βτ )(µτ ,

1
τ
) = (µτ

τ∗+1,
1

τ ∗ + 1
),

τ ≥ τ ∗ + 2,

for some βτ ∈ [0, 1]. Clearly, set {(µ1
τ∗,

1
τ∗ ), · · · , (µτ∗−1

τ∗ , 1
τ∗ ),

(µτ∗, 1
τ∗ ), (µτ∗+1,

1
τ∗+1

), (µτ∗+2
τ∗+1,

1
τ∗+1

), · · · , (µ
τmax

τ∗+1,
1

τ∗+1
)}

can give the same operating point as S does. Therefore, using

the technique presented in (14) and twice use of Lemma 8

we have

1

n
log M ≤ α Ĩrp (γ1,

1

τ ∗
) + (1 − α) Ĩrp (γ2,

1

τ ∗ + 1
) + εn

≤ max
α,γ1,γ2,τ

α Ĩrp (γ1,
1

τ
) + (1 − α) Ĩrp (γ2,

1

τ + 1
) + εn .

Letting n → ∞, εn goes to zero and we get the desired result.

B. Achievability

For a given value of rp , we first use the expression obtained

in the converse to obtain optimal choice for parameters α, γ1,

γ2 and τ . Because of Lemma 8, in order to find the optimal

τ , we can start with τ = 1 and optimize other parameters

and then calculate α Ĩrp (γ1,
1
τ
) + (1 − α) Ĩrp (γ2,

1
τ+1

) and in

each step, increase the value of τ by 1, stopping whenever the

obtained value is decreased compared to the previous step.

For instance, for rp ≤ 0.1, the optimal τ is 1, and hence the

procedure stops after checking two steps. After calculating

optimal parameters α∗, γ ∗
1 , γ ∗

2 and τ ∗, the optimal input

distributions P∗
1 and P∗

2 could be obtained using optimization

problem (20).

Achieving the proposed upper bound could be done by a

method exactly similar to the one used in Subsection IV-B. The

sequence of steps in our achievability scheme is as follows.

Generating the Codebook: The codebook C is generated by

combining two codebooks C1 and C2, which are designed for

the cases that the inter-arrival times in the probe stream are

τ ∗ and τ ∗ + 1, respectively.

• Set α = α∗ − δ, for a small and positive value of δ.

• To generate C1, consider the (τ ∗ + 1)-ary distribution P∗
1

over set of symbols {a0, . . . , aτ∗}. Generate a (τ ∗ + 1)-

ary codebook C1 containing 2αnR1 sequences of length
1
τ∗ αn of i.i.d. entries according to P∗

1 . Substitute ai with a

binary sequence of i 1’s followed by τ ∗−i 0’s. Therefore,

we will have 2αnR1 binary sequences of length αn.

• To generate C2, consider the (τ ∗ + 2)-ary distribution P∗
2

over set of symbols {a0, . . . , aτ∗+1}. Generate a (τ ∗ +2)-

ary codebook C2 containing 2(1−α)nR2 sequences of length
1

τ∗+1
(1 −α)n of i.i.d. entries according to P∗

2 . Substitute

ai with a binary sequence of i 1’s followed by τ ∗ + 1 − i

0’s. Therefore, we will have 2(1−α)nR2 binary sequences

of length (1 − α)n.

• Similar to the approach in Subsection IV-B, combine

C1 and C2 to get C, such that C has 2n(αR1+(1−α)R2)

binary sequences of length n. Rows of C are our

codewords.

The encoding and decoding parts are exactly similar to the

approach in Subsection IV-B, and we avoid repeating them,

except that here U T
d sends a sequence with inter-arrival times

of τ ∗ in the first αn time slots and τ ∗ + 1 for the rest of

(1 − α)n time slots. Note that unlike the case with two users,

here due to the presence of user Up , we have noise in the

channel. A standard random coding approach [28, Ch. 7]

shows that in infinite block-length regime, where n → ∞,

we can choose R1 = 1
τ∗ Irp (X; Y ), with X having distribution

P∗
1 , with channel described in (15), i.e., R1 = Ĩrp (γ

∗
1 , 1

τ∗ ),

and R2 = 1
τ∗+1

Irp (X; Y ), with X having distribution P∗
2 , with

channel described in (15), i.e., R2 = Ĩrp (γ
∗
2 , 1

τ∗+1
). Therefore,

we have

C ≥ α Ĩrp (γ
∗
1 ,

1

τ ∗
) + (1 − α) Ĩrp (γ

∗
2 ,

1

τ ∗ + 1
).

Letting δ go to zero, completes the achievability proof.

VI. CONCLUSION

We studied convert queueing channels (CQCs) that can

occur through delays experienced by users who are sharing

a scheduler. As the scheduling policy plays a crucial role

in the possible information transmission rate in this type of

channel, we focused on deterministic and work-conserving

FCFS scheduling policy. An information-theoretic framework

was proposed to derive the capacity of the CQC under this
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scheduling policy. First, we studied a system comprising

a transmitter and a receiver that share a deterministic and

work-conserving FCFS scheduler. We obtained the maximum

information transmission rate in this CQC and showed that

an information leakage rate as high as 0.8114 bits per time

slot is possible. We also considered the effect of the presence

of other users on the information transmission rate of this

channel. We extended the model to include a third user who

also uses the shared resource and studied the effect of the

presence of this user on the information transmission rate. The

solution approach presented in this extension can be applied to

calculate the capacity of the covert queueing channel among

any number of users. The achievable information transmission

rates obtained from this study demonstrate the possibility

of significant information leakage and great privacy threats

brought by CQCs in FCFS schedulers. Based on this result,

special attention must be paid to CQCs in high security

systems. Finding the capacity of CQCs under other scheduling

policies, especially non-deterministic policies, remains to be

done in the research area of covert communications and is

considered as the main direction for future work. Furthermore,

a comprehensive study is required to design suitable schedul-

ing policies that can simultaneously guarantee adequate levels

of both security and throughput.

APPENDIX A

PROOF OF STABILITY

Consider the system model with M users and service rate

ρ, and let µ =
∑M

i=1 ri . We denote arrival, service and queue

length at time k, with a(k), s(k) and q(k), respectively, and

we have

q(k + 1) = (q(k) + a(k) − s(k))+.

Using Foster-Lyapunov theorem with Lyapunov function

V (q(k)) = (q(k))2 and calculating the drift, we have

E[q2(k +1) − q2(k)|q(k) = q] ≤ E[(q + a − s)2 − q2]

= E[2q(a−s)]+ E[(a − s)2],

where E[(a − s)2] is a constant and we denote it by K .

Therefore, for some ε > 0, if µ < ρ, for large enough value

of q , we have

E[q2(k + 1) − q2(k)|q(k) = q] ≤ 2q(µ − ρ) + K ≤ −ε,

which implies the stability.

APPENDIX B

PROOF OF LEMMA 1

In order to find the optimum distribution, PX , the optimiza-

tion problem could be written as follows.

max
PX ≥0

log2 e

k
∑

i=0

PX (i) ln(
1

PX (i)
)

s.t .

{
∑k

i=0 i PX (i) = E[X] = kγ,
∑k

i=0 PX (i) = 1,
(26)

which could be solved using the Lagrange multipliers method.

The Lagrangian function would be as follows.

k
∑

i=0

PX (i) ln(
1

PX (i)
) + λ(

k
∑

i=0

i PX (i) − kγ )

+ ρ(

k
∑

i=0

PX (i) − 1).

Setting the derivative with respect to PX (i) equal to zero,

we get ln( 1
PX (i)

) − 1 + iλ + ρ = 0, which implies that

PX (i) = eρ−1 · eiλ. (27)

Also, from the second constraint we have

k
∑

i=0

eρ−1 · eiλ = 1 ⇒ eρ−1 =
1

∑k
i=0 eiλ

. (28)

Combining (27) and (28), we have

PX (i) =
eiλ

∑k
i=0 eiλ

,

which is the tilted distribution of Uk with parameter λ.

In order to calculate λ, from the first constraint,

kγ =

k
∑

i=0

i PX (i) =

k
∑

i=0

i
eiλ

∑k
i=0 eiλ

=

k
∑

i=0

ieiλ

k
∑

i=0

eiλ

=
E[UkeUkλ]

E[eUkλ]
=

d

dλ
(ln E[eUkλ]) = ψ ′

Uk
(λ).

APPENDIX C

PROOF OF LEMMA 3

First we note that

H̃ (γ,
1

k
)

=
1

k
[log2(k + 1) − ψ∗

Uk
(kγ ) log2 e]

= [
1

k
log2(k + 1) −

1

k
sup

λ
{kγ λ − log(

∑k
i=0 eiλ

k + 1
)} log2 e]

= −sup
λ

{γ λ log2 e −
1

k
log2(

k
∑

i=0

eiλ)}.

Therefore, if we can show that for any given λ the function

h(γ, 1
k
) = γ λ log2 e − 1

k
log2(

∑k
i=0 eiλ) is convex, then since

the supremum of convex functions is convex, we can conclude

the desired concavity of the function H̃(·, ·).

Noting that 1
k

log2(
∑k

i=0 eiλ) = 1
k

log2(
1−e(k+1)λ

1−eλ ), to prove

the convexity of h(·, ·), it suffices to prove that the function

g(x) = x log( 1−e( 1
x +1)λ

1−eλ ), 0 < x ≤ 1, is concave. This is true

from the concavity of the function ĝ(x) = log( 1−e(x+1)λ

1−eλ ), and

the fact that for any function f , x f ( 1
x
) is concave if f (x) is

concave. The concavity of the function ĝ(·) can be easily seen

by taking its second derivative.
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APPENDIX D

PROOF OF LEMMA 4

For a given γ and support set {0, 1, . . . , k}, suppose the

distribution P∗
X is defined over {0, 1, . . . , k} and has mean

EP∗ [X] = kγ and

max
X∈{0,1,...,k}
E[X ]=kγ

1

k
H (X) =

1

k
H (P∗

X ).

Define distribution QX as QX (i) = P∗
X (k − i), 0 ≤ i ≤ k.

Therefore the entropy of QX will be the same as the entropy

of P∗
X and we have

EQ [X] =

k
∑

i=0

i QX (i) =

k
∑

i=0

i P∗
X (k − i)

= −

k
∑

i=0

(−k + (k − i))P∗
X (k − i)

= k −

k
∑

i=0

(k − i)P∗
X (k − i) = k − kγ = k(1 − γ ).

Hence, we have

H̃ (γ,
1

k
) = max

X∈{0,1,...,k}
E[X ]=kγ

1

k
H (X) =

1

k
H (P∗

X) =
1

k
H (QX )

≤ max
X∈{0,1,...,k}

E[X ]=k(1−γ )

1

k
H (X) = H̃(1 − γ,

1

k
). (29)

Similarly, suppose for the distribution Q∗
X , defined over

{0, 1, . . . , k} and with mean EQ∗[X] = k(1 − γ ),

max
X∈{0,1,...,k}

E[X ]=k(1−γ )

1

k
H (X) =

1

k
H (Q∗

X ).

Define distribution PX as PX (i) = Q∗
X (k − i), 0 ≤ i ≤ k.

Therefore the entropy of PX will be the same as the entropy

of Q∗
X and we have

EP [X] =

k
∑

i=0

i PX (i) =

k
∑

i=0

i Q∗
X (k − i)

= −

k
∑

i=0

(−k + (k − i))Q∗
X (k − i)

= k −

k
∑

i=0

(k − i)Q∗
X (k − i) = k − k(1 − γ ) = kγ.

Hence, we have

H̃(1 − γ,
1

k
) = max

X∈{0,1,...,k}
E[X ]=k(1−γ )

1

k
H (X) =

1

k
H (Q∗

X) =
1

k
H (PX )

≤ max
X∈{0,1,...,k}
E[X ]=kγ

1

k
H (X) = H̃ (γ,

1

k
). (30)

Comparing (29) and (30) gives the desired result.

APPENDIX E
PROOF OF LEMMA 7

Ĩrp (γ,
1

k
)

= max
X∈{0,1,...,k}
E[X ]=kγ

1

k
Irp (X; Y )

= max
X∈{0,1,...,k}
E[X ]=kγ

1

k
[Hrp(Y ) − Hrp(Y |X)]

= max
X∈{0,1,...,k}
E[X ]=kγ

1

k
[Hrp(Y ) −

k
∑

x=0

PX (x)Hrp(Y |X = x)]

(a)
= max

X∈{0,1,...,k}
E[X ]=kγ

1

k
[Hrp(Y ) −

k
∑

x=0

PX (x)H (Bin(k, rp))]

= max
X∈{0,1,...,k}
E[X ]=kγ

1

k
[Hrp(Y ) − H (Bin(k, rp))]

= max
X∈{0,1,...,k}
E[X ]=kγ

1

k
Hrp(Y ) −

1

k
H (Bin(k, rp))

=
1

k
Ȟrp(γ,

1

k
) −

1

k
H (Bin(k, rp)),

where (a) follows from (15).

APPENDIX F

PROOF OF LEMMA 8

We first prove that the function Ĩ (·, ·) is concave in its

first argument. Let P∗
X1

and P∗
X3

be the optimum distributions

resulted from optimization problem (20) for parameters (γ1,
1
k
)

and (γ3,
1
k
), respectively. Therefore for any 0 ≤ α ≤ 1,

α Ĩrp (γ1,
1

k
) + (1 − α) Ĩrp (γ3,

1

k
)

(a)
=

1

k
αH (P∗

X1
∗ Bin(k, rp)) +

1

k
(1 − α)H (P∗

X3
∗ Bin(k, rp))

−
1

k
H (Bin(k, rp))

(b)
≤

1

k
H (α(P∗

X1
∗ Bin(k, rp)) + (1 − α)(P∗

X3
∗ Bin(k, rp)))

−
1

k
H (Bin(k, rp))

≤
1

k
max

X∈{0,1,...,k}
E[X ]=k(αγ1+(1−α)γ3)

H (PX ∗ Bin(k, rp))

−
1

k
H (Bin(k, rp))

= Ĩrp (αγ1 + (1 − α)γ3,
1

k
),

where (a) follows from Lemma 7 and (b) follows from the

concavity of the entropy function.

Because of the complexity and lack of symmetry or structure

in the function Ĩ , there is no straightforward analytic method

for proving its concavity. But we notice that it is suffices to

show that for all 2 ≤ k ≤ τmax − 1, and α such that

α
1

k − 1
+ (1 − α)

1

k + 1
=

1

k
, (31)
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we have

α Ĩrp (γ1,
1

k − 1
) + (1 − α) Ĩrp (γ3,

1

k + 1
)

≤ Ĩrp (αγ1 + (1 − α)γ3,
1

k
). (32)

From (31) we have α =
k − 1

2k
, hence using Lemma 7, (32)

reduces to

2Ȟrp(γ2,
1

k
) − Ȟrp(γ1,

1

k − 1
)

− Ȟrp(γ3,
1

k + 1
) + f (k, rp) ≥ 0, (33)

where f (k, rp) = H (Bin(k − 1, rp)) + H (Bin(k + 1, rp)) −

2H (Bin(k, rp)). Noting that the left-hand side is a Lipschitz

continuous function of γ1, γ3 (away from zero), and rp and

the fact that k takes finitely many values, the validation of

inequality (33) can be done numerically.
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