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A Covert Queueing Channel in FCFS Schedulers

AmirEmad Ghassami™, Student Member, IEEE, and Negar Kiyavash, Senior Member, IEEE

Abstract— We study covert queueing channels (CQCs), which
are a kind of covert timing channel that may be exploited in
shared queues across supposedly isolated users. In our system
model, a user sends messages to another user via his pattern of
access to the shared resource, which serves the users according
to a first come first served (FCFS) policy. One example of
such a channel is the cross-virtual network covert channel in
data center networks, resulting from the queueing effects of
the shared resource. First, we study a system comprising a
transmitter and a receiver that share a deterministic and work-
conserving FCFS scheduler, and we compute the capacity of this
channel. We also consider the effect of the presence of other
users on the information transmission rate of this channel. The
achievable information transmission rates obtained in this paper
demonstrate the possibility of significant information leakage and
great privacy threats brought by CQCs in FCFS schedulers.

Index Terms— Covert queueing channel, first-come-first-served
scheduler, capacity limit.

I. INTRODUCTION

HE existence of side and covert channels due to the
fragility of isolation mechanisms is an important privacy
and security threat in computer networks. Such channels may
be created across users, which were supposed to be isolated,
resulting in information leakage. By definition, a covert chan-
nel is a hidden communication channel, which is not intended
to exist in the system and is created furtively by users [2].
Covert channels may be exploited by a trusted user, or possibly
a malware inside a system with access to secret information to
leak it to a distrusted user. On the other hand, in a side channel
a malicious user attempts to learn private information by
observing information not intended for him. In this scenario,
there is no collaboration between the source of information
and the recipient [3].
Given that a lot of sensitive organizations such as CIA,
and US Navy and Air Force, are abandoning in-house
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infrastructure and migrating to clouds, privacy has emerged
as a serious risk for clouds. In the context of covert channels,
a disgruntled employee, a leaker, or a malware, can easily
sneak out extremely confidential and private data without
explicitly communicating with an external party (data exfil-
tration). The employee could pretend to be talking to another
trusted entity but sending out covert signals via shared queues
to someone implicitly. This would be a severe threat to
privacy leakage as it would be unbeknown to the tenant
being targeted that their data is being exfiltrated and would
bypass most defenses deployed at the host or network layer.
Typical scenarios here could be stealing cryptographic keys,
bank records, medical records, service records of military
personal, names and locations of secret offices and networks
of CIA/NSA, etc., i.e., small pieces of information that can
have detrimental consequences if leaked.

Timing channels are one of the main types of covert/side
channels, in which information is conveyed through timing
of occurrence of events (e.g., inter-arrival times of packets).
A special case of timing channels is covert/side queueing
channels, which can arise between users who share a packet
scheduler in a network. Packet schedulers serve packets from
multiple streams, which are queued in a single queue. This
causes dependencies between delays observed by users. Par-
ticularly, the delay that one user experiences depends on
the amount of traffic generated by other streams, as well as
his own traffic. Hence, a user can gain information about
other users’ traffic by observing delays of his own stream.
This dependency between the streams can breach private
information as well as create hidden communication channels
between the users.

One example of a covert/side queueing channel is the cross-
virtual network covert channel in data center networks and
cloud environments. As mentioned earlier, in recent years,
migrating to commercial clouds and data centers is becoming
increasingly popular among companies that deal with data. The
multi-tenant nature of cloud and sharing infrastructure between
several users has made data protection and avoiding informa-
tion leakage a serious challenge in such environments [4]. In
data center networks, software-defined-networks are frequently
used for load balancing [5]. This generates logically isolated
virtual networks and prevents direct data exchange. However,
since packet flows belonging to different VNs inevitably share
underlying network infrastructure (such as a router or a physi-
cal link), it is possible to transfer data across VNs through
timing channels resulting from the queueing effects of the
shared resource(s).

For data centers, the underlying premise is that resources
should be multiplexed and oversubscribed as much as possible
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Fig. 1. Covert queueing channel in a system with 2 users.

to maximize utilization and consequently profits. Hence, most
of the resources are shared (e.g., cache, system bus, memory,
NICs, switches, links, etc.). Under such a scenario, it can be
seen that there will be numerous opportunities for establishing
covert channels. Hence, a queue-sharing based channel is
certainly not the only option. However, it is the most con-
venient/practical and perhaps the only one that continues to
exist even if tenants resort to dedicated infrastructure (fully
dedicated servers are provided by cloud providers at a higher
cost, but network is always shared and no option is provided
for dedicated networking infrastructure). Two specific scenar-
ios to argue this are as follows. In the first case, there are
two mutually untrusting tenants that are placed on separate
servers. However, the first hop router and the outbound links
from then onwards are shared. In such a scenarios, there are
numerous shared queues which can be exploited to setup a
covert channel. Since the two tenants are deployed on separate
servers, none of the other media can be exploited to create
covert channels, and the only option is to use a network-based
queue-sharing channel. In the second scenario, consider a load
balancing server. Two separate tenants, each own a VM on
this load balancing server (such servers have typically very
high-end NICs and cloud vendors try to maximize sharing on
these expensive NICs). The VMs on this server simply load
balance traffic between other VMs of the tenant. Again, there
are numerous network and server-based queues that can be
exploited to setup a covert channel.

In this paper, we study covert queueing channels (CQCs) in
a shared deterministic and work-conserving first-come-first-
served (FCFS) scheduler. We present an information-theoretic
framework to describe and model the data transmission in
this channel and calculate its capacity. First, we consider a
two users setting depicted in Figure 1. In this model we
have an encoder and a decoder user. Each user possesses
a transmitter node and a receiver node. There is no direct
communication channel between the users, but they share a
packet scheduler. Hence, the delays observed by users are
correlated. Therefore, the encoder user can encode a message
in his traffic pattern and the decoder user can estimate the
message by estimating the encoder’s traffic pattern via the
delays he experiences. Next, we extend the model to study
the effect of the presence of a third user on the information
transmission rate. The approach for analyzing the effect of
the presence of the third user can be extended to calculate the
capacity of the covert queueing channel serving any number
of users.
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The rest of the paper is organized as follows. We review
related works in Section II. In Section III, we describe the
system model. The capacities of the introduced channel for
the two and three user cases are calculated in Sections IV
and V, respectively. Our concluding remarks are presented in
Section VI.

II. RELATED WORKS

The existing literature on covert/side timing channels
has mainly concentrated on timing channels in which
the receiver/adversary has direct access to the timing
sequence produced by the transmitter/victim or a noisy ver-
sion of it. However, in a covert/side queueing channel,
the receiver/adversary does the inference based on the timing
of his own packets which has been influenced by the original
stream.

In a queuing side channel, where a malicious user, called an
attacker, attempts to learn another user’s private information,
the main approach used by the attacker is traffic analysis.
That is, the attacker tries to infer private information from the
victim’s traffic pattern. The attacker can have an estimation
of the features of the other user’s stream, such as packet
size and timing by emitting frequent packets in his own
sequence. Previous work shows that through traffic analysis,
the attacker can obtain various private information including
exact schedules of real-time systems [6], [7], visited web
sites [8], sent keystrokes [9], and even inferring spoken phrases
in a voice-over-IP connection [10].

In [11], Gong et al. proposed an attack where a remote
attacker learns about a legitimate user’s browser activity by
sampling the queue sizes in the downstream buffer of the
user’s DSL link. The information leakage of a queueing
side channel in an FCFS scheduler is analyzed in [12]. The
analysis of more general work-conserving policies has been
done in [13] and [14]. Gong and Kiyavash [14] presented
an analytical framework for modeling information leakage in
queuing side channels and quantify the leakage for several
common scheduling policies.

Most of the work in covert timing channels is devoted
to the case in which two users communicate by modulating
the timings, and the receiver sees a noisy version of the
transmitter’s inputs [15]-[23]. Also, there are many works
devoted to the detection of such channels [16], [24], [25].
The setup of CQC is new in the field of covert channels and
as far as the authors are aware, there are very few works
on this setup [1], [26], [27]. In [1] we studied a system
comprised of only a transmitter and a receiver and computed
the capacity of the covert channel. We have extended the
results of [1] by studying the effect of the presence of
other users on the information transmission rate of the CQC
(Section V). Furthermore, the treatment of the proofs in the
entire paper is now more rigorous and detailed. Specifically,
we have provided a more in depth study of the function H and
its properties. This function indicates the highest amount of
information transmittable for a given packet rate of the encoder
user and a given inter-arrival time of packets of the decoder
user, and plays a fundamental role in the calculation of the
capacity.
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Fig. 2. An example of the input and output streams of the FCFS scheduler
serving two users. Time slots are separated by dotted lines. Packets with dotted
pattern belong to U, and packets with diagonal pattern belong to Uy. Gray
packets are existing packets in the buffer, which could belong to either of the
users. We assume that one packet is buffered in the queue at time A;.

III. SYSTEM DESCRIPTION

Consider the architecture depicted in Figure 1. In this model,
a scheduler serves packets from 2 users, U, and U,. Each user
U;,i € {e,d}, is modeled by a transmitter and a receiver node,
denoted by U and UR, respectively. UF is the node which
receives Ul.T’s packet stream. Note that Ul.T and UiR could
correspond to the uplink and downlink of the same entity.
U, intends to send a message to Uy, but there is no direct
channel between them. However, since U eT and UdT’s packets
share the same queue, UeT can encode messages in the arrival
times of its packets, which are passed onto U; via queueing
delays. Therefore, a timing channel is created between users
via the delays experienced through the coupling of their traffic
due to the shared scheduler.

To receive the messages from U,, user U, sends a packet
stream from the node UdT. He then uses the delays he expe-
riences by receiving the packet stream at U Lf to decode the
message. Therefore, effectively, the nodes UeT and UeR are
on the encoder side and the nodes U dT and U (f are on the
decoder side of the channel of our interest. Throughout the
paper, we call U;’s sent stream the probe stream.

We consider an FCFS scheduler, which is commonly used
in DSL routers. We assume this scheduler is deterministic and
work-conserving. Time is discretized into slots, and the sched-
uler is capable of processing at most one packet per time slot.
At each time slot, each user either issues one packet or remains
idle. Furthermore, we assume that all packets are the same
size. Throughout the paper, we assume that the priorities of
the users are known. Particularly, without loss of generality,
we assume that Uy has the highest priority among all users;
i.e., in the case of simultaneous arrivals, U;’s packet will be
served first.

Figure 2 shows an example of the input and output streams
of the system depicted in Figure 1 with an FCFS scheduler.
In this figure, the first stream is the arrival stream i.e., arrivals
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from both Ul and U], depicted by dotted and diagonal
patterns, respectively. The second stream is the output stream
of user U, (received by U, eR), and the third one is the output
stream of user Uy (received by U f). In this example, we
assume that one packet is buffered in the queue at time A;,
where a packet arrives from both Ul and U[. If user U,
had not sent the two packets (depicted by dotted pattern), the
second packet of user Uy, which arrives at time A;1; could
have departed one time slot earlier. Therefore, U; knows that
U, has issued two packets.

As mentioned earlier, at each time slot, each user is allowed
to either send one packet or none; hence, the input and output
packet sequences of each user could be viewed as a binary
bitstream, where ‘1’ and ‘0’ indicates whether a packet was
sent or not in the corresponding time slot.

Assume message W drawn uniformly from the message set
{1,2,..., M} is transmitted by UeT, and W is Uy’s estimate
of the sent message. Our performance metric is the average
error probability, defined as follows.

M
P2 PW £ W)= > POV £ mW = m).

m=1

U, encodes each message into a binary sequence of length n,
A", to create the codebook, which is known at the decoder, Uy,.

In order to send a message, U eT emits a packet in the i-th
time slot if A; = 1 and remains idle otherwise, i.e.,

1 = UT issues a
packet in time slot i.
0 = U! remains
idle in time slot i.

A=

To decode this message, UdT sends a binary length n stream
(the probe stream) to the scheduler during the same length n
time period. User Uy will use this stream and the response
stream received at node U f to decode the sent message.

We define the code, rate of the code, and the channel
capacity similar to the definitions in [15], [28], and [29],
as follows.

Definition 1: An (n, M, €)-code consists of a codebook of
M equiprobable binary codewords, where messages take on
average n time slots to be received, and the error probability
satisfies P, < €.

Definition 2: The information transmission rate, R, of a
code is the amount of conveyed information (logarithm of the
codebook size) normalized by the average number of used time
slots for the message to be received, i.e., R = (logM)/n.
Rate may be interpreted as the average amount of information
conveyed in a single time slot.

Definition 3 (Channel Capacity): The Shannon capacity C,
for a channel is the maximum achievable rate at which one can
communicate through the channel when the average probabil-
ity of error goes to zero. In other words, C is the supremum
of rates R, which satisfy the following property [29].

Vo > 0, I(n, M, e€,)-code
[ loeM S R—»
S.1. n
€& —> 0

as n — oQ.
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The following notations will be used throughout the paper.

o 1 Ul.T’s packet rate.

o A;: Arrival time of the i-th packet in the probe stream.

o D;: Departure time of the i-th packet of the probe stream.
We assume m packets are sent by U, during n time slots
and we have: rg = lim m/n.

n—0o0

e X;: Number of U,’s packets sent in the interval
[Ai, Ai41). Note that X; = 37717 A

o T; = Ajy1 — A;: Inter-arrival time between i-th and (i +
1)-th packet of the probe stream. We denote a realization
of T by 7.

. YA,' =Dj;1 — D; — 1.

o X;: Estimation of X; by decoder.

« W: Decoded message.

In an FCFS scheduler, U; can have an estimation of the
number of the packets of other users between any of his
own consecutive packets. The estimation of the number of
packets in the interval [A;, A;+1) is accurate if the scheduler
is deterministic and work-conserving and a sufficient number
of packets is buffered in the queue at time A;.! In that case,
the number of other users’ packets arriving in the interval
[A;, Aiy1) could be simply calculated by Y; = D;+1 — D; — 1.
Note that U, cannot pinpoint the location of the sent packets;
that is, if the inter-arrival time is 7, Uy can distinguish between
7 + 1 different sets of bit streams sent during this time.
Therefore, we look at any probe stream sent during n time
slots as a combination of different inter-arrival times.

If the sum of the packet rates of the users used during
sending a message of length n is on average larger than 1,
then the message will be arrived on average during more than
n time slots. Also, this will destabilize the input queue of
the scheduler. For example, for a system with two users Uy
and U,, if UdT sends packets in every time slot, then sending
a packet by UeT in any time slot would cause a delay in the
serving of the next packet of UdT and hence could be detected.
Therefore, in each time slot, UeT could simply idle to signal
a bit ‘0’ or send a packet to signal a bit ‘1’, resulting in the
information rate of 1/1.5 bit per time slot in the case that bits
are equiprobable. But, this scheme is not feasible in practice
as it would destabilize the queue and result in severe packet
drops.

In our model, we do not have any restrictions on the number
of time slots in which the data transmission is happening.
Therefore, the arrival sequence can be arbitrarily long, and
hence, queue stability is required. In order to have queue
stability, it suffices that the total packet arrival rate does not
exceed the service rate, which for a deterministic and work-
conserving scheduler is equal to 1 (see Appendix VI for the
proof of stability which is based on a Lyapunov stability

f the service rate of the scheduler is equal to 1, there should be at least
Aj+1 — A; — 1 packets buffered in the queue at time A;. Therefore, user Uy
needs to know the queue length. This is feasible using the following formula.

q(A)) =D; — A; — 1

where g(A;) denotes the queue length at the time that the i-th packet in the
probe stream arrives at the queue. The extra 1 in the formula is the time
needed for the i-th packet of the probe stream to be served. Therefore, user
U, should always be aware of the queue length and keep it sufficiently large
by sending extra packets when needed.
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argument for the general case that the serving rate is assumed
to be 0 < p < 1 and arbitrary number of users is considered).
Specifically, for the case of two users we need

re+rqg < 1. (1)

On the other hand, if the sum of the packet rates of the users
used during sending a message of length n is on average less
than 1, the length of the input queue may become less than
the value required for accurate estimation of the number of
the packets of other users between any of U;’s consecutive
packets. Consequently, this creates an extra source of error
for U; in estimating X;’s. In other words, for any given
scheme with sum of the packet rates less than 1, increasing
rq increases the resolution available for user U, by removing
the aforementioned extra source of error. Hence, U; can have
a better estimation of the number of other users’ sent packets.
To avoid this extra source of error, we focus on the coding
schemes where the sum of the rates is 1. Therefore, in the
case of two users, in order to achieve the highest information
rate, the operation point should tend to the line r, +ry = 1.

IV. TwWO-USER CASE

In this section, using achievability and converse arguments,
the capacity of the introduced system is calculated for a system
with a deterministic and work-conserving FCFS scheduler
serving packets from two users.

As depicted in Figure 1, user U, is attempting to send a
message to Uy through the covert queueing channel between
them. Note that since we have considered service rate of 1 for
the FCFS scheduler and users can agree on the packet stream
sent by U dT ahead of time, the feedback U, eR is already available
at the encoder. Therefore, the following Markov chain holds

W— X" > Y" - W. )

Note that as mentioned earlier, if there is a sufficient number
of packets buffered in the shared queue, X; could be accurately
estimated as Y;.

The main result of this section is the following theorem,
the proof of which is developed in the rest of the section.

Theorem 1: The capacity of the timing channel in a shared
FCFS scheduler with service rate 1 depicted in Figure I is
equal to 0.8114 bits per time slot, which can be obtained by
solving the following optimization problem.

- - 1
C = max aH(y;, 1)+ (1 —a)H(y2, 5)

0,71,)2
1
st a(yr+D+A—a)(ys+ 5) =1, 3)
where 0 < a < 1 and 0 < y1,y2 < % and the function
H:[0,1] x {1 : k € N} > [0, 1] is defined as

max H(X),

1
k Xe€{0,1,....k}
E[X]=ky

~ 1
H(V,%)= keN,O0<y =1 (4

The function H(y, %) indicates the ratio of highest amount of
information that a random variable with support {0, ..., k}
and mean ky can contain, to the number of bits used for
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transmitting this information. We first investigate some of the
properties of the function H.

Lemma 1: Let Uy ~ Unif({0,1,...,k}). The distribution
which achieves the optimum value in (4) is the tilted version
of Unif({0, 1, ..., k}) with parameter A; that is

eil
Px (i) STt
where A = (y/{]k)’l(ky), where the function yy, () is the
derivative of the log-moment generating function of Uk.
See Appendix VI for the proof of Lemma 1.

Lemma 2: The function H could be computed using the

following expression.

ie{0,1,... k),

- 1 1
H(y, E) = E[Ing(k +1) — yy, (ky)log, el, ®)

where Uy ~ Unif({0, 1, ..., k}), and the function t//;}k (+) is the
rate function given by the Legendre-Fenchel transform of the
log-moment generating function yy, (-),

v, () = sup{dy — wu, (4)}. (©)

eR

In order to prove this lemma, first we note that for any random

variable X defined over the set {0, 1, ..., k},
k
H(X) = > Px(i)log—
; Px (i)
k k .
. . Px (i
= D" Px(i)log (k+ 1) — D Px(i)log Xl( )
i=0 i=0 k+T1

= log (k + 1) — D(Px||Ux),

where D(Pyx||Uy) denotes the KL-divergence between Px
and Uy. Therefore, in order to maximize H(X), we need
to minimize D(Px||Ux). Using the following well-known
fact [30], concludes the lemma.

in  D(Px||Uy) = v, (ky)1 : 7
]E[I)l(n]lilky (Px||Uk) = wyj, (ky)logy e (7

Figure 3 shows the function H (y, %) for different values of y
and k € {1,2,3}.

- 1
Lemma 3: The function H(-,-) is concave in pair (y, =)
in the sense that for integers ki, ko, k3, and for values 0 <

1
71,72, 3 < 1, and for a € [0, 1], such that a(y1, k_) + (1 -
1

1 1
a)(y3, k_3) = (y2, k—z), we have

- 1 - 1 ~ 1
aH(y1, E) + (I —a)H (y3, E) < H(ya, E) (8)

See Appendix VI for the proof of Lemma 3.

Substituting (5) in (3) and solving it, the capacity of the
timing channel in the shared FCFS scheduler with service rate
1 depicted in Figure 1 is equal to 0.8114 bits per time slot,
achieved by a = 0.177, y1 = 0.43 and y> = 0.407.

Lemma 4: For all y € [0,1] and k € N, we have

- 1 ~ 1

See Appendix VI for the proof of Lemma 4.
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Fig. 3. H(y, %) for different values of y and k € {1, 2, 3}.

In the following, the proof of Theorem 1 is given. The proof
is based on converse and achievability arguments.

A. Converse

In the converse side, the ultimate goal is to prove that

- - 1
C < max aH(y1, 1)+ (1 —a)H (2, 5)

V1,72

st. a1+ D+ —a)(y2+ %) =1,

where 0 < a <land 0 <y, y2 < % We break the proof into
two lemmas. First in Lemma 5, we find an upper bound on the
information rate, which consists of a weighted summation of
possible maximum information rates for different inter-arrival
times of the packets in the probe stream, which satisfies the
stability constraint. Then in Lemma 6, we upper bound the
summation with one which only corresponds to inter-arrival
times of 1 and 2.

Lemma 5: For the timing channel in a shared FCFS sched-
uler with service rate 1 depicted in Figure 1, any code
consisting of a codebook of M equiprobable binary codewords,
where messages take on average n time slots to be received,
satisfies

1 " - 1
_1 M< ‘[H Ts ns 9
—log <Dl H(u I te ©)

=1

where D% w (ur + %) =1, and for all ©, 0 < p, < %
In this expression, €, = %(H(Pe)—i—Pe log, (M — 1)), n, is the
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portion of time that user Uy sends packets with inter-arrival
time equal to t in the probe stream, and (. is UeT s average
packet rate when the inter-arrival time is equal to t.

Proof: We first we note that

1
Liogm @] —H(W)
n
QL wiem
n
1 . 1 A
= I WIe™) + —H(W|W, <)
n
© 1
S 21w WE) + 6
n
@ 1

< —IX"™;Y"™) + €n,
n

where (a) holds because W is a uniform random variable over
the set of messages {1, ..., M}, (b) follows from the fact that
the chosen message is independent of the inter-arrival time
of decoder’s packets, (c¢) follows from Fano’s inequality with
€ = 2(H(P.) + P.log, (M — 1)), and (d) follows from data
processing inequality in Markov chain in (2). Therefore,

1 1
—logM < —[H(X™|t™) — HX™Y", t™)] + ¢,
n n

IA

1
—H(X™|t™) + €,
n

1 m
;ZH(XHT’")—i-en
j=1
1 m
- Z max H(X;|t") + €.

n = ij‘fm

IA

IA

In the maximization above, the mean of the distribution Px Jlem
is E[X;[t™]. As mentioned in Section III, in order to find
the maximum information rate while having stability, we are
interested in the asymptotic regime in which the operating
point is converging to the line r, + r4 = 1. Therefore,
the information rate is upper bounded by having the set of
means, {E[X|z"], E[X2|t™], ..., E[X,|t"]} satlsfn‘\élng gle
constraint %Zj {E[X 7™ +rd =1 Let & = ZXGI

7j
Using (4), we have !
~ 1
max H(Xj|fm)=TjH(§j,—), (10)
Py . \r"’ Tj
E[X; |r 1=1;¢;

where as mentioned in Lemma 1, the distribution for each X ;
which achieves the maximum value in (10) is the tilted distrib-
ution of U,; with parameter 4, such that 4 = (‘/’U Yy (z i&i)-

Therefore, we will have:

: IOgM = _ZT]H(Qr], _)+6n9
j=1
such that the set {&,&,...,¢&,} satisfies the constraint
> 7i¢j +ra = 1. The inter-arrival times take values
in the set {1,2,...,n}. Therefore, in the summation above
we can fix the value of inter-arrival time on the value 7 and
count the number of times that z; has that value. Defining m
as the number of times that the inter-arrival time is equal to
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7 (note that n = Z';zl 7 -m;), we can break the summation
above as follows.

1 l o < - 1
—logM < — H -
JlogM = nZ[zr (e, D)+ €n

7= 1k1
:—Z[rZH(mk, )N +e
=1 k=1
:;;[rm ;iH(ﬂrk,_)]'i'en’

where u. x is equal to the k—th~§j which has 7; = 7.
By Lemma 3, the function H(-, -) is a concave function of
its first argument. Therefore, by Jensen’s inequality,
< 1 1
z _H(/u’[ ks _) =< H(/"‘[» _)9
My
k=1
= % Dol Urk. Using (11) and the equation
1 T -mg, we have

(1)

where .

n=>_

ms ~ 1
~logM < Z‘[Z’?:l e, D1+
- - 1
= 2w H (e, D)1 + én, (12)
=1
where 7, = (t -m¢)/(Qr_; T -my).

The packet rates of the users could be written as follows.

Fe =

| I

M= 3/~
NS '*

3

N} tj
| <
I

TR

F o=l
“ 3
E

and
o1
rqg = Tr—
e
=1
Therefore, the constraint could be written as follows.

" 1
>+ o) =1.
=1 r

Suppose the set of pairs {(u-, %)}’;zl satisfies (13) and max-
imizes the right hand side of (12). By Lemma 4, there exists
another set of pairs {(/i,, %)}’T’:1 with ft, defined as

~ | ue 1f0<ﬂf_ ;
Pe= 11 it <<,

13)

that gives the same value for the right-hand side of (12), but
: - 1 1

ithas 37 7w (fie + 1) < D7 (e + 7). Therefore, Uy
can increase his packet rate and increase the information rate
using the values fi.. Hence, in the maximizing set, for all
7, we have 0 < u, < % Therefore, the optimal operating
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T<r<L O
Applying Lemma 3, we can replace all pairs of form
(ue, %), 7 > 2, with a single pair of form (u, %).
Lemma 6: For any set of pairs S = {(u:, %), T € [n]},
where for all 7, 0 < pu, < % with weights {x.,t € [n]} with

operating point on the line 0 <r, < % and % <vrqg <1, there

exists 0 <a <1and 0 <y, y2 < % such that

point will be on the line r, +r4 = 1, with 0 < r, < 1 and

#1040 —@)2t 5) =1,

and

= 1 - -1
Z[ﬂ:‘[H(/uT’ ;)] E aH(yla 1) + (1 - a)H(VZ, E)

=1

Proof: For all © € {3,...,n}, there exists f; € [0, 1],
such that

1 1
Pe(ur, D) + (A = Bo)(ue, =) = (43, 5).

Clearly, the set {(u1, 1), (12, %), (13, %), ..., (44, $)} can
also give the same operating point as S does. By Lemma 3,

~ ~ 1 - 1
ﬁTH(ILtl’ 1)+(1_ﬁT)H(ﬂ‘ra;)§H(ﬂ£9 5)9 VTE{?’a ’n}

Therefore,
" - 1
Z Tt H(,ur ) _)
=1 T

. . 1 ! .
=l D) +0oH @, 2) + D Ge(BH (1)
=3

- 1
+ (1 = Bo)H (ux, ;))
- - 1 o 1
= CGHui, 1)+ GH(po, §)+ZCTH(#§,§)
=3
C2ﬂ2+z¢:361ﬂ5 l)
1—(1 P27

<aH@u, D)+ —a)H( (14)

where 71 = {1+ >0 3 Cefes m2 = (o and 7, = (1 — Br)

for 3 < v < n, and we have used Lemma 3 again in the last

inequality. (]
From Lemmas 5 and 6 we have

1 - - 1
;10gM <aH(y, )+ 1 —-a)H(y2, 5) +e
~ - 1
< max aH(y1, 1)+ (1 —a)H(y2, 5) + €.
71,72 2
Letting n — 00, €, goes to zero and we have
- ~ 1
C < max aH(y1, )+ (1 —a)H(y2, 3)
71,72 2
1
st ai+D+0-a)G2+3) =1,

where 0 < a <1 and 0 < y1,y2 < % This completes the
proof of the converse part.
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B. Achievability

The sequence of steps in our achievability scheme is as
follows:
Generating the Codebook: The codebook C is generated by
combining two codebooks C; and Cp, which are designed for
the cases that the inter-arrival times in the probe stream are
1 and 2, respectively.

e Set o = 0.177 — 9, for a small and positive value of J.

o To generate Ci, fix a binary distribution P; such that
Pi(1) = 0.43 and P;(0) = 0.57. Generate a binary
codebook C; containing 2**R1 sequences of length an
of i.i.d. entries according to P;.

o To generate C,, fix a ternary distribution P> over set of
symbols {ag, ai, az} such that P>(ag) = 0.43, P>(a;) =
0.325 and P»(az) = 0.245. Generate a ternary codebook
C, containing 2(1=®"R2 sequences of length %(1 —a)n of
i.i.d. entries according to P,. Substituting ag with 00, a;
with 10, and ap, with 11, we will have 2(1-a)nRy binary
sequences of length (1 — a)n.

e Combine C; and C; to get C, such that C has
2naRi+(1-0)R2) pinary sequences of length n where we
concatenate i-th row of C; with j-th row of C» to make the
((i —1)(2U=0nR2y 4 iy th row of C (note that 2(1=®)"R2 jg
the number of rows in C;). Rows of C are our codewords.

In above, n should be chosen such that anRy, an, (1—oa)nR;
and %(1 — a)n are all integers.
Encoding: To send message m, Ul sends the corresponding
row of C, that is, he sends the corresponding part of m from
Cy in the first an time slots and the corresponding part of m
from C; in the rest of (1 — a)n time slots.
Decoding: Recall that UdT sends a binary length n stream to
the scheduler during the same length n time period. Here, U dT
sends the stream of all ones (one packet in each time slot) in
the first an time slots and sends bit stream of concatenated
10’s for the rest of (1 —a)n time slots. Assuming the queue is
not empty,? since there is no noise in the system, the decoder
can always learn the exact sequence sent by U,.
Consequently, we will have:

c . 10g2 211(0(R1+(1 —a)Ry)

n
=aRi+ (1 —a)Rs.

In infinite block-length regime, where n — oo, we can choose
Ry = H(P), Ry, = %H(Pz) and find codebooks C; and C;
such that this scheme satisfies the rate constraint. Therefore,

C>aH(P)+ (- a)%H(Pz).

Substituting the values in the expression above, and letting &
go to zero, we see that the rate 0.8114 bits per time slot is
achievable.

V. THREE-USER CASE

As an extension to the basic problem, in this section we
consider the case that a third user is also using the shared

2Since in our achievable scheme U!s packets are spaced by either
one or two time slots, it is enough to have one packet buffered in the queue,
where since we are working in the heavy traffic regime, it will not be a
problem.
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Node U
FCFS
_— >
Scheduler
Node Uy Node U§
L .
L —
Node U} Node U}

Fig. 4. Covert queueing channel in a system with three users.

1— 2
0 < 0
@) Z’(I\r)
1 (1—r,,)2Z 1
(1~
%) )
X (1—rp)22r Y
%)> (1\’)
3
4

Fig. 5. Channel between the encoder and the decoder of the system for the
case that the inter-arrival time of two packets of the probe stream is 2.

scheduler. We add user U, to our basic system model. This
user has nodes U ; and Ullf as his transmitter and receiver
nodes, respectively (Figure 4). We assume that node U pT sends
packets according to a Bernoulli process with rate r, to the
shared scheduler. The shared scheduler is again assumed to
be FCFS with service rate 1 and we analyze the capacity for
coding schemes satisfying queueing stability condition in the
asymptotic regime where the operating point is converging to
the line ro + 1, +rqg = 1. Also, in this section we consider
the extra assumption that the inter-arrival time of the packets
in the probe stream is upper bounded by the value 7,,4y.
Assuming that a sufficient number of packets are buffered
in the shared queue, user Uy can still count the number of
packets sent by the other two users between any of his own
consecutive packets, yet he cannot distinguish between packets
sent by user U, and the packets sent by user U,. Hence, user
U, has uncertainty in estimating the values of X. We model
this uncertainty as a noise in receiving X. Suppose UdT sends
two packets with 7; = 2. Each of the other users can possibly
send at most 2 packets in the interval [A;, A;11) and hence,
Y € {0,1,2,3,4}. Therefore, we have the channel shown
in Figure 5 for this example. In the general case, for the inter-

arrival time 7, given X = x, we have Y € {x +0,...,x + 7}
such that
Pr(Y =i+x|X=x)= (T,)(rp)i(l —rp)
l
ie{0,...,7}, (15)

which is a binomial distribution Bin(z, rp). Therefore, the sup-
port of the random variable Y is {0,1,...,27}. For the
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/////’ Xr—>h \\\\\\

»
/'XZ—,/’YZ\W

A’/,
\\\\\ = ////f
X, —— ¥,

Fig. 6. The graphical model representing the statistical relation between W,
XM Y™ and W.

w

mean of Y, we have

E[Y|z] = E[E[Y|X, t]lt] = E[X + trplt] = t(re +1p).
(16)

Because of user U)p’s stream, the encoder is not aware of
the stream received at node UR beforehand and this output
can provide information to the encoder about U ; ’s stream.
The more packets node U! sends to the scheduler, the more
information this stream contains about U ; ’s stream. Using this
information, the encoder can have an estimation of the output
of the channel at the decoder’s side and hence, it could be
considered as a noisy feedback to the encoder. Figure 6 shows
the graphical model for random variables in our system.

The main result of this section is evaluation of the capacity
of the introduced channel, presented in Theorem 2. In the
following, the subscript 7, denotes that the calculation is done
when the rate of U, is rp.

Theorem 2: If the rate of U, is rp, the capacity of the
timing channel in a shared FCFS scheduler with service rate
1 depicted in Figure 4 is given by

~ 1 ~ 1
alrp (1, ;) +(1 - a)lrp (72, ‘L'—)

Clrp) =, max 1
1 1
sitooa(yr + ;) + (0 —a)(y2 + r——i-l) =1-rp,

A7)

whereO§a§ land 0 < yr,y2 <land 1 <7 < Tjpgx — 1.
The function L, : [0, 1] x {% :k € N} — [0, 1] is defined as

- 1

I ,—)=— ma I, (X;Y), keNO=y=<1L

(s ) kxemex}”( ) V
E[X]=ky

(18)

The proof is based on converse and achievability arguments.
Before giving the proof, we first investigate some of the
properties of the function 1.

Lemma 7: The function frp could be computed using the
following expression.

1.

- 1 1 1
L, (y, E) = %Hrp(% %) - %H(Bin(k,rp)), (19)

v 1
where H , =) = max
w73 Xe{0,1.....k}
E[X]=ky
is the entropy of the binomial distribution with parameters k

and rp.

H,,(Y) and the second term
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09
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k=2

04
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o2

o1

Fig. 7. i,p (y, %) for different values of y and k € {1,2,3} and r) € {0,0.1,0.2}.

See Appendix VI for the proof of Lemma 7.
In order to calculate H;,(y, %), the following optimization
problem should be solved.

2k
1
max log, e Py(i)In
max log, go V(O In(57)
k . N _
St { =0 Px() = BIX] =17, (20)
Zi:() Px(l) = 19
where Py = Py % PBin(k,r,,)» that is,
k
Py(i) = D" Px(j)Pointry) (i — ). i €{0,1,...,2k}. (21)
j=0

Figure 7 shows the functions fo(y, %), fo,l(y, %) and
Ip> (v, %) for different values of y and k € {1, 2, 3}.

Lemma 8: For all 0 < r, < 1, integers 1 < ki, ko, k3 <
Tmax, values 0 < y1, 2,73 < 1, and a € [0, 1], such that

a(y1, E) + (1 —a)(y3, E) = (72, E)’ we have

- 1 ~ 1 ~ 1
aly, (y1, k_l) + (1 =a)lr, (73, E) <1I,(y2, k—2)~ (22)

See Appendix VI for the proof of Lemma 8.

Using the mentioned properties, the capacity of the timing
channel in the shared FCFS scheduler of Figure 4 for different
values of r, can be calculated. Figure 8 shows the value of
the capacity with respect to r.

The following proof of Theorem 2 is based on converse and
achievability arguments.

A. Converse

For the converse part, similar to the approach in Section IV,
first we find an upper bound on the information rate, which
consists of a weighted summation of possible maximum
information rates for different inter-arrival times of the packets
in the probe stream, which satisfies the stability constraint;
and then we further bound it with a summation which only
corresponds to two inter-arrival times.

Suppose the rate of U, is r,. Similar to the proof of
Lemma 5, for the timing channel in a shared FCFS scheduler
with service rate 1 depicted in Figure 4, any code consisting

I I
0.2 0.25
T

L
0.15

Fig. 8.  Capacity of the timing channel in the shared FCFS scheduler of
Figure 4 for different values of rp.

of a codebook of M equiprobable binary codewords, where
messages take on average n time slots to be received, satisfies

1 1 n
—logM < —1I,,(W; W™ + ¢,
n n

@ 1 e
< ;Irp(W;Y [t™) + €n,

where €, = %(H(Pe)—i—Pe log, (M — 1)) and (a) follows from
data processing inequality in the model in Figure 6. Therefore,

1 1

m
. j—1
;logM < ;lerp(W, YY" ") + €,
iz

IA

1 m o
=2 L, (WYL vj1e) + e
j=1

—
S

)

=

1 m
- DL, (X Y ") + e
j=1

1 m
3

j=1

IA

max I, (X;; Yj|t™) + €,

Py .\em
X_/|r

where (a) again follows from data processing inequality
in the model in Figure 6. In the maximization above,
the mean of the distribution Py;» is E[X;[t™] and in
order to find the maximum information rate, the set of
means, {E[X1|t"], E[X2|t™], ..., E[X,;|7™]}, should satisfy
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the constraint re—i—rp—i—rd_l that is, ‘Z, L EIX 2™ +

rp+rg=1 Let{; = LX)l . Using (18), we have

- 1
max I, (X;: Y™ = ;1 (&5 —). (23)
ijhm Tj
E[X;[t"]=1;¢;

This implies that

1 m
1
;10gM522 5j’1—)+6n
Next, using Lemma 8 and similar to the proof of Lemma 5,
by breaking the summation, using Jensen’s inequality and the
equation n = """ 7 - m,, we will have

Tmax
_10gM< Zﬂrlrp(ﬂ1,1)+5n, (24)
=1
where u. is the average of ¢;’s which have 7z; = 7 and

T, = (- m,)/(zz’”“f 7 -m;). In this expression, 7, could be
interpreted as the portion of time that user U, sends packets
with inter-arrival time equal to 7.

Also, using the same approach as the one used in the proof
of Lemma 5, the constraint of the problem could be written
as follows.

Timax

Zﬂz(ﬂr-FT)—l—rp (25)

Suppose the set of pairs S = {(u;, T) T € [Tmax]} with
weights {m;, 7 € [Tmax]} gives > " n,Irp(,u,, %) and has
its operating point on the line r, +74 =1 —r,, and we have

1_* = Z?”_m 77:71— = 1—*1-1-1’ for some 1 < 7% < e — 1.
We have
1
Be (=41, _T*I_H) + (I = Bo) (e, %) = (g ;)9
T <t*—1,
1
1 1
Beluer, 22) + (1= po)tes ) = iy ),
> 42,
for some f; € [0, 1]. Clearly, set {(,u,*, ,i*), (i 1),
(/.17; > F)a (,ur *+1, T*+1)’ (ﬂ;*i%’ * +1) ’( 1’;111:19 T*+1)}

can give the same operating point as S does. Therefore, using
the technique presented in (14) and twice use of Lemma 8
we have

-0l 00 ——) e

1 - 1
;longaIrp(yl, ——

< max alrp(yl, )+(l

1
1 , ——
. 71.72, (Z) rp(y2 T+ 1

Letting n — 00, €, goes to zero and we get the desired result.

B. Achievability

For a given value of ), we first use the expression obtained
in the converse to obtain optimal choice for parameters a, y1,
y2 and 7. Because of Lemma 8§, in order to find the optimal
7, we can start with ¢ = 1 and optimize other parameters
and then calculate ai,p (1, %) + (1 - a)frp (2, 11?) and in
each step, increase the value of 7 by 1, stopping whenever the

)+ €n.
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obtained value is decreased compared to the previous step.
For instance, for r, < 0.1, the optimal 7 is 1, and hence the
procedure stops after checking two steps. After calculating
optimal parameters a*, y*, y;° and ¢*, the optimal input
distributions P and P} could be obtained using optimization
problem (20).

Achieving the proposed upper bound could be done by a
method exactly similar to the one used in Subsection IV-B. The
sequence of steps in our achievability scheme is as follows.
Generating the Codebook: The codebook C is generated by
combining two codebooks C; and C», which are designed for
the cases that the inter-arrival times in the probe stream are
* and 7™ 4 1, respectively.

o Set o = o™ — ¢, for a small and positive value of .

o To generate Cy, consider the (7™ + 1)-ary distribution P}
over set of symbols {ag, ..., a,+}. Generate a (t* + 1)-
ary codebook C; containing 2*"R1 sequences of length
T—l*an of i.i.d. entries according to P}*. Substitute ¢; with a
binary sequence of i 1’s followed by 7*—i 0’s. Therefore,
we will have 2R binary sequences of length an.

o To generate Cy, consider the (7™ + 2)-ary distribution P
over set of symbols {ag, ..., a;x11}. Generate a (t*42)-
ary codebook C, containing 2! =*)"R2 sequences of length
r*—1+1(1 —a)n of i.i.d. entries according to PJ'. Substitute
a; with a binary sequence of i 1’s followed by 741 —i
0’s. Therefore, we will have 2(=*)"R2 binary sequences
of length (1 — a)n.

o Similar to the approach in Subsection IV-B, combine
Ci and Cy to get C, such that C has 2"(@Ri+(1=0)R)
binary sequences of length n. Rows of C are our
codewords.

The encoding and decoding parts are exactly similar to the
approach in Subsection IV-B, and we avoid repeating them,
except that here UdT sends a sequence with inter-arrival times
of 7* in the first an time slots and 7* + 1 for the rest of
(1 — a)n time slots. Note that unlike the case with two users,
here due to the presence of user U,, we have noise in the
channel. A standard random coding approach [28, Ch. 7]
shows that in infinite block-length regime, where n — oo,
we can choose Ry = %1, (X; Y), with X having distribution
P, with channel described in (15), ie., R = i,p(yl*, ri*),
and Ry = ﬁ]rp (X; Y), with X having distribution P, with
channel described in (15), i.e., Ry = frp (r5 ﬁ). Therefore,
we have

. 1
)+ A=)y, (v, )

tF 41

Letting 0 go to zero, completes the achievability proof.

~ 1
C > al}’p (y1*9 F

VI. CONCLUSION

We studied convert queueing channels (CQCs) that can
occur through delays experienced by users who are sharing
a scheduler. As the scheduling policy plays a crucial role
in the possible information transmission rate in this type of
channel, we focused on deterministic and work-conserving
FCFS scheduling policy. An information-theoretic framework
was proposed to derive the capacity of the CQC under this
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scheduling policy. First, we studied a system comprising
a transmitter and a receiver that share a deterministic and
work-conserving FCFS scheduler. We obtained the maximum
information transmission rate in this CQC and showed that
an information leakage rate as high as 0.8114 bits per time
slot is possible. We also considered the effect of the presence
of other users on the information transmission rate of this
channel. We extended the model to include a third user who
also uses the shared resource and studied the effect of the
presence of this user on the information transmission rate. The
solution approach presented in this extension can be applied to
calculate the capacity of the covert queueing channel among
any number of users. The achievable information transmission
rates obtained from this study demonstrate the possibility
of significant information leakage and great privacy threats
brought by CQCs in FCFS schedulers. Based on this result,
special attention must be paid to CQCs in high security
systems. Finding the capacity of CQCs under other scheduling
policies, especially non-deterministic policies, remains to be
done in the research area of covert communications and is
considered as the main direction for future work. Furthermore,
a comprehensive study is required to design suitable schedul-
ing policies that can simultaneously guarantee adequate levels
of both security and throughput.

APPENDIX A
PROOF OF STABILITY

Consider the system model with M users and service rate
p,and let u = Zf‘i 1 7i. We denote arrival, service and queue
length at time k, with a(k), s(k) and g(k), respectively, and
we have

qk+1) = (q(k) +alk) — s(k)™".

Using Foster-Lyapunov theorem with Lyapunov function
V(q(k)) = (q(k))* and calculating the drift, we have

Elg*(k+1) — ¢*(k)lg (k) = q] < El(g +a —5)* — ¢
= El2q(a—9)]+El(a — 5)*],
where E[(a — s)2] is a constant and we denote it by K.

Therefore, for some € > 0, if 4 < p, for large enough value
of g, we have

Elg*(k + 1) — ¢*(k)lq(k) = g1 < 2q(u — p) + K < —e,

which implies the stability.

APPENDIX B
PROOF OF LEMMA 1

In order to find the optimum distribution, Py, the optimiza-
tion problem could be written as follows.

k

. 1
Irpr)l(az)%)logz e g(; Px (i) ln(PX (i))
>0 iPx(i) =E[X] =k,
S.t. [ Zi.{:() PX(l) _ l, (26)
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which could be solved using the Lagrange multipliers method.
The Lagrangian function would be as follows.

Lo 1 Lo
gpx(znn(})x(i)wA(l;mx(z)—ky)

k
+p(O ] Px(i)—1).

i=0
Setting the derivative with respect to Px(i) equal to zero,
we get ln(#(i)) —14i4+ p =0, which implies that

Px(i) = el 1. ¢, (27)
Also, from the second constraint we have
k
Zepfl'eii—liepfl—¥ (28)
= =—
i—0 g€t
Combining (27) and (28), we have
ol
Yt
which is the tilted distribution of Uy with parameter A.
In order to calculate A, from the first constraint,
k
. il
k k i Z(; Le
. . . 1=
kV—Z’PX(’) = lzl_c oh K
i=0 i=0 £=i=0 i
2.
i=0
E[UreYs*]  d Ui
= TRy~ 4 EeTD =vu .
APPENDIX C
PROOF OF LEMMA 3
First we note that
~ 1
H(y, -
(y k)
1
= g[logz(k +1) — yyp, (ky)log, el
1 1 et
= [z logy (k + 1) — Eszp{kyi - 10g(kl_7+1)}10g2 e]
| k
_ L il
= —suply ilogs e~ ¢ logz(ZO:e )}
1=

Therefore, if we can show that for any given A the function
h(y, %) =yllog, e— % logz(Zf:O ¢'*) is convex, then since
the supremum of convex functions is convex, we can conclude
the desired concavity of the function H (-, -).

. 1 k i 1 1—e®+D2
Noting that 7 log,(2 ;_ge'") = glogy( 1e—ei ), to prove

the convexity of A(-,-), it suffices to prove that the function
(L4nyi
e x

g(x) = xlog(:==—
from the concavity of the function g(x) = log(

), 0 < x <1, is concave. This is true

l_e(X-H)A
T ), and

the fact that for any function f, xf (%) is concave if f(x) is
concave. The concavity of the function g(-) can be easily seen
by taking its second derivative.




1562

APPENDIX D
PROOF OF LEMMA 4

For a given y and support set {0, 1, ..., k}, suppose the
distribution Py is defined over {0, 1,...,k} and has mean
Ep«[X] =ky and

1 1
—H(X)=-H(Py).
Xelon k) k (X) = ¢ H(P)
E[X]=ky
Define distribution Qx as Qx (i) = Py(k —i), 0 <i < k.
Therefore the entropy of Qx will be the same as the entropy
of Py and we have

k k

Eo[X] =Y iQx(i)= > iP}(k—i)

i=0 =0

k
= =D (k4 k—i)Pik—i)
=0
k
=k=D (k—D)Pik—i)=k—ky =k(1—7y).
i=0

Hence, we have

-1 1 1 1
H -) = -H(X)=-H P* =—-H
(y,k) xemax (X) Z (Py) . (0x)
E[X]=ky
< 1H(X) H(l l) (29)
max - = -y, ).
~ Xe{0,1,...k} k Y k
E[X]=k(1—y)

Similarly, suppose for the distribution Q%, defined over

{0,1,..., k} and with mean Eg«[X] = k(1 —y),
L) = LH(03)
m - =— .
PR k X
E[X]=k(1-y)

Define distribution Py as Px(i) = Q%(k —i), 0 <i < k.
Therefore the entropy of Py will be the same as the entropy
of 0% and we have

k k
D iPx(i) =D i0x(k—i)
i=0 i=0

k
= > (—k+ (k=) Qx (k — i)

i=0

Ep[X]

k
=k—D (k—)Qxk—i)=k—k(1—y)=ky.

i=0

Hence, we have

- 1 1 1 1
H(1—7y,-) = —H(X)=-H(Q%) = -H(P
( y,k) e 7 (X) Z (Q%) Z (Px)
E[X]=k(1—y)
< 1H(X) H( 1) (30)
max - = —).
= Xel0,1...,k) k y’k
E[X]=ky

Comparing (29) and (30) gives the desired result.
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APPENDIX E
PROOF OF LEMMA 7
~ 1
Irp(y» E)
Ly (X:;Y)
= max -— ;
Xe0, 1k kP
E[X]=ky
1
= -[H, (Y)—H, (Y|X
Xe{%}?,x...,k}k[ v, (Y) r, (Y1X)]
E[X]=ky
1 k
= —[H, (Y) — P H, (Y|X =
gofiax 2 lHy, (V) = D Px(0)Hy, (YIX = )]
E[X]=ky x=0

. 1 ‘ .
@ max 2 UHy, (1) = Z:(:) Px(x)H (Bin(k, rp))]

1
= —[H, (Y)— H(Bin(k
xeto o kL () = H(Bin(k.rp))]
E[X]=ky
L, ) - LHBin. )
- m ! !
Xelon ik k Ty
E[X]=ky
1 1

= EHrp(V, E)

where (a) follows from (15).

- %H(Bin(k, p))s

APPENDIX F
PROOF OF LEMMA 8
We first prove that the function 7(-,-) is concave in its
first argument. Let Py and Py be the optimum distributions
resulted from optimization problem (20) for parameters (y1, %)
and (y3, %), respectively. Therefore for any 0 < o <1,

alyy 1, P+ (= @), 63, )
@ %aH(P;E] « Bin(k, rp)) + %(1 — a)H (P}, * Bin(k, rp))
— %H(Bin(k, rp))
(? lH(oz(P;? « Bin(k,rp)) + (1 — a)(Py, * Bin(k,rp)))
k 1 3
— %H(Bin(k, rp))

1
< - H(Px = Bin(k
e (Px * Bin(k,rp))

E[X]=k(ay1+(1—a)y3)

— %H(Bin(k, rp))

- 1
= Irp(a)’l + (1 - a)%, z)a

where (a) follows from Lemma 7 and (b) follows from the
concavity of the entropy function.

Because of the complexity and lack of symmetry or structure
in the function 7, there is no straightforward analytic method
for proving its concavity. But we notice that it is suffices to
show that for all 2 <k < 7,;4x — 1, and a such that
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we have

. 1 - 1
aly, (71, k_—l) + (=), (y3, —)

k+1
- 1
< Iy,(ay1 + (1 —a)ys, o (32)
k—1 .
From (31) we have « = ———, hence using Lemma 7, (32)
reduces to
. 1 v 1
2Hr,,()’2; z) - Hr,,()’l; k — 1)

v

1
— Hy, (73, m) + fk,rp) 20, (33)

where f(k,rp) = H(Bin(k—1,rp)) + H(Bin(k+1,r,)) —
2H (Bin(k,rp)). Noting that the left-hand side is a Lipschitz
continuous function of yy, y3 (away from zero), and r, and
the fact that k takes finitely many values, the validation of
inequality (33) can be done numerically.
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