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AVERAGING PRINCIPLE FOR NONAUTONOMOUS SLOW-FAST
SYSTEMS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS:
THE ALMOST PERIODIC CASE*
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Abstract. We study the validity of an averaging principle for a slow-fast system of stochastic
reaction-diffusion equations. We assume here that the coefficients of the fast equation depend on
time, so that the classical formulation of the averaging principle in terms of the invariant measure of
the fast equation is no longer available. As an alternative, we introduce the time-dependent evolution
family of measures associated with the fast equation. Under the assumption that the coefficients in
the fast equation are almost periodic, the evolution family of measures is almost periodic. This allows
us to identify the appropriate averaged equation and prove the validity of the averaging limit.
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1. Introduction. We deal with a class of systems of stochastic partial differen-
tial equations of reaction-diffusion type on a bounded domain D of R? with d > 1:

Q1
%(t,i) = Avue(t, &) + b1 (& ue(t, €), ve(t, €)) + 91(&, ue(t, €)) %(t,@,
O,

ot (tag) = % [(-AQ(t/E) - Oé)ve(t,f) + b2(t/6a€7ue(tag)vve(taf))}

(1.1) w2
(/e g u(t.9) 2o 1)

uc(0,€) =x(§), ve(0,€) =y(), &€ D,
NMue (£,€) = Naw (£,€) =0, t>0, &€ D,

where € is a small positive parameter and « is a fixed positive constant. The operator
As and the functions by and g in the fast equation are allowed to depend on time.
We assume that A is periodic, and by and go are almost periodic in time.

In a series of previous papers ([9], [10], and [11]), the validity of an averaging
principle for some classes of slow-fast stochastic reaction-diffusion systems has been
investigated, in the case where the fast equation coefficients do not depend on time.
It has been proved that the slow motion u,. converges in C([0,T]; L*(D)), as € | 0,
to the solution @ of the so-called averaged equation, obtained by taking the average
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of the coefficients b; and g; (in the case where both depend on the fast motion)
with respect to the invariant measure of the fast motion, with frozen slow component
(see formulas (1.2) and (1.3)). Moreover, in [8] the fluctuations of u. around the
averaged motion u have been studied. More precisely, it has been proven that, under
suitable, more restrictive conditions, the normalized difference z. := (u. — @)/+\/€ is
weakly convergent in C([0,T]; L?(D)), as € } 0, to a process z, which is given in
terms of a Gaussian process whose covariance is explicitly described. Other aspects of
the averaging principle for slow-fast systems of stochastic partial differential equations
have been studied by several other authors; see, e.g., [17], [18], [23], [30], [31], and [41].

Unlike in all the above-mentioned papers, where only the time-independent case
has been considered, in the present paper we deal with nonautonomous systems of
reaction-diffusion equations of Hodgkin-Huxley or Ginzburg-Landau type, perturbed
by a Gaussian noise of multiplicative type. Such systems arise in many areas of biology
and physics and have attracted considerable attention. In particular, in neurophysi-
ology the Hodgkin—Huxley model, and its simplified version given by the FitzHugh—
Nagumo system, are used to describe the activation and deactivation dynamics of a
spiking neuron (see, e.g., [37] for a mathematical introduction to this theory). The
classical Hodgkin—Huxley model has time-independent coefficients, but, as mentioned
by Wainrib in [40], where an analogous problem for finite dimensional systems has
been studied, systems with time-dependent coefficients are particularly important for
studying models of learning in neuronal activity and, for this reason, are worthy of
thorough analysis.

Such analysis does not follow in a straightforward manner from results already
available in the mathematical literature. On the contrary, it requires the introduction
of some new ideas and techniques.

Actually, in the standard setting of time-independent coefficients, the averaged
motion % solves the equation

(1.2) %(tv &) = Ava(t, &) + B(a(t))(€) + g1 (&, alt, €)) ag—fl@, &),

u(0,&) = z(&), e D, Mau(t,€) =0, >0, &€ dD.

In the equation above, the averaged coefficient B is defined by
(13) B = [ Bies)ud). e CD)
c(D)

where By (z,2)(€) = b1 (€, 2(€), 2(€)) for any 2,z € C(D) and { € D, and where p” is
the invariant measure of the fast equation with frozen slow component z € C(D):

P 0,:6) = (s — 00" (1,6) + bal€,2(6), 07 V(1,6))
W@
(1.4 a6, 2(6), 01, ) T5—(1,6),

v (s,8) =y(£), €€ D, Nov™¥(t,€) =0, t>0, &€ aD.
Furthermore, because of the ergodicity of p”, as proven in [10],

1

t+T B
— /t Bi(z,v"Y(s))ds — B(x)

(1L5) E |-

<a(T) (1+ 2l o) + 1915 ) )
c(D)
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for some function « : [0,00) — [0, 00) such that

lim «(T) = 0.
T—o0
In the present paper, as As, bs, and go depend on time, we no longer have an
invariant measure p® for the fast equation with frozen slow component z € C(D).
Nevertheless, we can prove that there exists an evolution system of probability mea-
sures {u¥ ; t € R} on C(D) associated with the following fast equation:

P 0,€) = [(Aslt) — 0™ (1,8) + balt & 2(6), v (1, 6))]
w2
(1'6) + gg(t,f,vm’y(t,f)) %(t’f)’

v"Y(s,8) =y(€&), €€ D, N™(t,§)=0, t>s, € ID.

This means that xf is a probability measure on C(D) for any ¢ € R, and, if P7,
is the transition evolution operator associated with (1.6), it holds that

/ - Ple(y) u?(dy)Z/ ey pi(dy),  s<t,
C(D) C(D)

for every p € C,(C(D)). Moreover, we show that, under suitable dissipativity condi-
tions,

(1.7) olt=s) (

L+ [zlepy + [Ylen))

Psoly) — /C(D) o(2) pi (dz)

< lellcicmye”

for some positive constant § > 0.

Now, in order to prove the validity of an averaging principle, the next fundamental
step consists in identifying an averaged motion @ as the solution of a suitable averaged
equation. Unfortunately, due to the lack of an invariant measure, we do not have
anything like (1.3). Still, due to the assumption that As is periodic and both by and
go are almost periodic in time, and to the fact that for any fixed R > 0 the family of
measures

Ap = {,uf;te R, z € BR(C(D))}

is tight in P(C(D)), by proceeding as in [13] we can prove that the mapping
te R uf € P(C(D))

is almost periodic for every z € C(D). B
This allows us to find an alternative way to define B. Actually, we prove that for
any compact set K C C(D) the family of functions

(1.8) {t € Rr—>/ Bi(x,2) uf(dz) € C(D) : z € K}
E
is uniformly almost periodic. Then, because of almost periodicity, we can define
_ 1 (T _
(1.9) B(z) := lim —/ / Bi(z,y) pi(dy)dt, =z € C(D).
T—oo T 0 Cc(D)
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Of course, in order to prove that (1.2), with B defined as in (1.9), is well posed in
C([0,T); C(D)), we need B to satisfy some nice properties. Since B; is not Lipschitz
continuous, there is no hope that B is Lipschitz continuous. Nonetheless, we show
that, as a consequence of the monotonicity of B and of some nice properties satisfied
by the evolution family of measures {u?}icg, the mapping B : C(D) — C(D) is
locally Lipschitz continuous and has some monotonicity properties that guarantee the
well posedness of (1.2).
Next, in the same spirit as (1.5), by using (1.7) and (1.9) we show that

(1.10)
1 [stT _ ? c
E |+ / Bia,v* (s, y) dt — B@)| < 2 (14 ol ) + Wl ) ) + alT,2)

(D)
for some mapping a : [0,00) x C(D) — [0, +00) such that

(1.11) lim o(T,z) =0.

T—o0
This allows us to adapt to the present situation the classical Khasminskii method,
based on localization in time, and to prove the main result of this paper, namely that,
for any fixed n > 0,

(1.12) lim P sup |uc(t) —at)|cpy >n] =0,
€0 te [0,T]

where 4 is the solution of the averaged equation (1.2) with B defined as in (1.9).

Notice that here, due to the polynomial growth of the coefficients, we have also
to proceed with a localization in space, which requires, among other things, a suitable
approximation for the family of measures {uf }er.

Of course, for this procedure to work, we need several technical assumptions on
the data. However, we are able to treat slow-fast systems of stochastic reaction-
diffusion equations as (1.1), where, for example, the differential operators A4; and
As(t) are given by

Al =A, Ayt) =) A

for some continuous periodic function v with positive infimum, the boundary condi-
tions are of Dirichlet type, the reaction coefficients b; and by are given by

2n
b1(&,u,0) = —a(€) u?™ T + > 0 (Ou’ + ha (€, v)
j=0

and
2m
b2 (tv 57 U, U) = _ﬁ(ta g)v2m+1 + Z BJ (ta g)vj + h2 (t7 E? U),
j=1

where hy and hg are continuous and bounded functions such that ha(-, &) is almost
periodic, uniformly with respect to & € D, all coefficients «, 3, o;, and §; are contin-
uous,

inf >0, inf t,&) >0,
51£Da(€) (t,g)gﬁwxf)ﬂ( &)
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and all mappings 5(-,€) and 5;(-,€) are almost periodic, uniformly with respect to
¢ € D. Moreover, we can take as the diffusion coefficients g; and gy two bounded
continuous functions, with go(-, &, v) almost periodic, uniformly with respect to & € D
and v in bounded intervals of R. We would like to stress that these are just simple
examples, but in fact we can cover more general situations.

Finally, before concluding this introduction, we would like to say a few words
about the almost periodicity assumption for the coefficients of the fast equation.
In order to prove the validity of the averaging principle (1.12), estimate (1.10) and
limit (1.11) are fundamental and unavoidable. When B(z) is defined in terms of
the invariant measure u” as in the autonomous case, due to the ergodicity of u* we
obtain (1.10) and (1.11). But here, as we do not have p*, it is necessary to define B(x)
directly by the limit in (1.9), whose existence is guaranteed by the almost periodicity
of the family of functions (1.8). Actually, as we recall in Theorem 3.4, the almost
periodicity of any mapping f : R — Y implies the existence of the limit

1 T
Tlgréof ; f(s)dse Y.

This is why we believe that, in the case of time-dependent coefficients, the assumption
of almost periodicity is the natural one.

2. Notations, hypotheses, and a few preliminary results. Let D be a
bounded domain of R? with d > 1, having smooth boundary. Throughout the paper,
we shall denote by H the separable Hilbert space L?(D), endowed with the scalar
product

(2, 5) = /D (€)y(€) de

and with the corresponding norm | - |i. We shall denote by H the product space
H x H, endowed with the scalar product

(2 4)yy = /D ((E), y(©))ge dE = (@1, 11) g + (22,20

and the corresponding norm | - |4. B
Next, we shall denote by F the Banach space C(D), endowed with the sup-norm

|z = sup |2(£)]
£eD

and the duality (-,-) . The product space E x E will be endowed with the norm

1
|z|ExE = (|$1|?3 + |352|2E) :

and the corresponding duality (-,-) 5, - Finally, for any # € (0,1), we shall denote by
C?(D) the subspace of §-Holder continuous functions, endowed with the usual norm

i — X
l2les(py = [l + [els = |2l + sup 12 =]
¢meD |§*77|
EF#n

For any p € [1, 00] with p # 2, the norms in LP(D) and LP(D) x LP(D) will both
be denoted by |-|,. If § > 0 and p < oo, we will denote by |-|s, the norm in W?(D):

(2.1) |zlsp = |z|p + (/D i W d¢ d77> .
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Now, we introduce some notations which we will use in what follows (for all
details we refer to the reader [14, Appendix D] and also, e.g., [5, Appendix A]). For
any ¢ € E, we denote

My={¢€D: |2 =zl }
Moreover, for any z € E \ {0}, we set
My ={dpc€ E*;§€ M, },

where
x(f)y(f)’ yc E,

5:& s =

and for z = 0, we set
Mo={he E*: |hlg-=1}.

Clearly, we have
M, COlz|lg:={he E*; |hlg- =1, (h,x)p = |z|p}

for every z € E, and, due to the characterization 9|z|g, it is possible to show that
if #M, = 1, then M, = O|z|g. In particular, if v : [0,T] — FE is any differentiable
mapping, then

q-

(2.2) =

lu(t)|e < (W' (t),0)

for any t € [0,T] and 0 € M.
Analogously, if x € E x E, we set

M, ={¢=(&,%) € Dx D : |z1(&4)] = |z1|p, |22(8)| = |22|E } -
Moreover, for z € E x E\ {0}, we set
My ={b,c€ (EXE) ;&€ M,},

where
w1 (§1)y1(81) + 72(82)y2(82)

|x|E><E

(02,6, V) ExE = )
and for z = 0, we set

Mo={he (ExE)" : |hlpxp-=1}.
As above, we have

M, COlzlpxp = {he€ (ExE)*; |hl(gxpy =1, (h2) g p = 2|5}

and (2.2) holds true, with E replaced by E x E.
Now, let X be any Banach space. We shall denote by B, (X) the space of bounded
Borel functions ¢ : X — R. B,(X) is a Banach space, endowed with the sup-norm

[#lloe := sup [p(z)].
ze X
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UCy(X) will be the subspace of uniformly continuous mappings. Moreover, we shall
denote by £(X) the space of bounded linear operators on X and, in the case where
X is a Hilbert space, we shall denote by L2(X) the subspace of Hilbert—Schmidt
operators, endowed with the norm

1Qllz,x) = VTr [Q*Q).

The stochastic perturbations in the slow and in the fast motion equations (1.1)
are given, respectively, by the Gaussian noises Jw®! /9t(t,&) and dw®2/0t(t, &) for
t >0 and £ € D, which are assumed to be white in time and colored in space, in the
case of space dimension d > 1. Formally, the cylindrical Wiener processes w® (t, )
are defined by

(2.3) w(t,€) = Qier(§) Bilt), i=1,2,
k=1

where {eg }xe N is a complete orthonormal basis in H, {8 (t) }ren is a sequence of mu-
tually independent standard Brownian motions defined on the same complete stochas-
tic basis (92, F, ¢, P), and Q; is a bounded linear operator on H.

2.1. The operators A; and Az(t). The operators A; and As(t), t € R, are
second order uniformly elliptic operators, having continuous coefficients on D, and
the boundary operators A7 and Ny can be either the identity operator (Dirichlet
boundary condition) or a first order operator with C! coefficients satisfying a uniform
nontangentiality condition.

In what follows, we shall assume that the operator A5 (¢) has the form

(2.4) As(t) =v(H) Ay + L(t),  tER,

where A is a second order uniformly elliptic operator with continuous coefficients on
D, independent of ¢, and L(t) is a first order differential operator of the form

(2.5) L(t, Ou(§) = (I(t,€), Vu())pa, tER, £€ D.

HyPOTHESIS 2.1.
1. The function v : R = R is continuous and there exist vo,v1 > 0 such that

(2.6) Y <y(t) <m, teR

2. The function | : R x D — R? is continuous and bounded.
The realizations A; with i = 1,2 of the differential operators A; in the spaces
L?(D) and C(D), endowed with the domains
D(AP) = {f e W>!(D) : Nif =0atdD}, i=1,2,

and

D(A;) = {f € m W24D) : A;f € C(D), N;if =0 at aD}, 1=1,2,
q>1
generate analytic semigroups in LP(D), 1 < p < oo, and in F, respectively. Since AEP )

is an extension of A; and etAgp) is an extension of e*4¢, we shall drop the indices and
write 4; and e*4¢, even working in X = LP(D).

As in [9] and [10], we assume that the operators Ay, Ay and @1, Q2 satisfy the
following conditions.
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HYPOTHESIS 2.2. Fori = 1,2, there exist a complete orthonormal system {e; i }ren
of H, which is contained in C*(D), and two sequences of nonnegative real numbers

{@irtren and {\; k}ren such that
Ajei = —oyp ek, Qieir = Nigeik, k=>1,

and

ei7k|io < 00

oo
-
k=1
for some constants p; € (2,4+00] and B; € (0,+00) such that

Bi(pi —2)
Pi

oo
Cikl% <00, Gii= Za;;f
k=1

(2.7) <1

For comments and examples concerning these assumptions on the operators A;
and @Q; and the eigenfunction e; j, we refer the reader to [9, Remark 2.1] and [24].

For any t > 0, § € [0,2], and p > 11, the semigroups e*4 map LP(D) into
WoP(D) with

(2.8) leizls, < e (EA1)"2|zl,, we LP(D).

By the Sobolev embedding theorem, this implies that the semigroups e*4* map L (D)
into L4(D) for any 1 < p < ¢, and

d(a—p)

(2.9) letdizl, <ei(EA1)” 2 |z|,, =€ LP(D).
Moreover, e!4i maps C(D) into C?(D) for any 6(0,2) with

(2.10) e o py < i (EA 1) 2 |z,

Now, we define
t
~(t, s) ::/ y(r)ydr, s<t,
and, for any € > 0 and A > 0, we set
(2.11) Use(t,s) = ecr(mp)Aa=2l=s) o ¢

In the case € = 1, we write Uy (¢, s), and in the case ¢ = 1 and A = 0, we write U(t, s).
Next, for any € > 0, A > 0 and for any u € C([s,t]; Wy (D)) and r € [s,], we
define

(2.12) inclus)0) =+ [ On Lo dp. s<r<t

where L(p) is the first order differential operator defined in (2.5). Notice that if u is
a solution to

() = %(Ag(t) “Nult), t>s, uls)=0,

then u satisfies u(r) = ¥y (u;s)(r) for s < r < t. For e = 1, we simply write

Ua(u; s)(r).
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LEMMA 2.3. For any s < t, the operator €¥t*)42 L(s) can be extended as a linear
operator both in LP(D) with 1 < p < oo and in E. Moreover, for any n > 0, its
extension (still denoted by Y542 ) satisfies

(2.13) 7942 £(8)[| oy < e (8 — 5) AT)~EFD.

Proof. Let f € Wol’p(D). For any 0 < s < t and ¢ € LPI(D), since e7(t:5)42 g
self-adjoint we have

NN L(s) ) (x)p(x)de = | L(s)f(x) e’ "D 20p(z) da.
D D

Therefore, if we integrate by parts, due to (2.8) (with § = 1) and (2.6), we get

| (@9 005) @st@rde| = | [ 1) Dy (s )9 00) () do

_1
c((t—s)n1) 2 |f|LP(D) |<P|Lp’(D)

Due to the arbitrariness of ¢ € L¥' (D), this yields

v(t,s)Az _ -3
L g <o (=5 A oo

Due to the density of Wy**(D) in LP(D), the operator e?(%5)42£(s) has a bounded
linear extension to £P(D) (still denoted by e(**)42) that satisfies

(t,s)A -1
(2.14) e 22 L(s)|| ey S e ((E—8)A1)"2

Now, we fix 6 € (0,1) and p > d/§ so that W%P(D) is continuously embedded in
C(D). For any 0 < s < t, we write

ev(t,S)Azﬁ(S) — ev(t,(t—S)/2)Az67((t—8)/27s)A2£(8)_

The operator ¢?(t:(t=5)/2)42 maps LP(D) into WP (D) with

)

|‘6’y(t’(t78)/2)A2||[/(LP(D),W‘SW(D)) S C((t — 5) A\ 1)75-
Using the semigroup law and (2.14), we obtain that e?(“*)42 £(s) maps LP(D) into
WoP(D) with

||6’Y(t’s)A2£(S)”L(LP(D),W‘W(D)) Sce(t—s)n1) =

Now, as C(D) is continuously embedded in any L?(D) and WoP(D) is continuously
embedded in C(D) for p > d/J, we can conclude. |

As a consequence of (2.13), if we proceed as in [5, pages 176-177], we can show
that 9y <(+; ) is a bounded linear operator in C([s, ¢]; E') and there exists a continuous
increasing function ¢y with ¢)(0) = 0 such that, for any s < ¢,

(2.15) [V, (U; )| o((s,:2) < ex((t = s)/€)|ulc(s,;E)-
Moreover, if A > 0, then ¢y € L*°([0,+00)) and

(2.16) lim |ex]oo = 0.
A—00
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LEMMA 2.4. For every n € (0,1) and p > 1, there exists k > 1 such that, for
every k >k, s<t,0<d <A\, andu € C([s,t]; E),

T
(2.17)  F" |y (u; s)(r)m’p < (A= 5)/ e A== ke 1y (p) K dp, s <1 <t
s

for some continuous decreasing function ci such that
lim ¢x(y) =0.
’Y*)OO

Proof. Due to (2.8) and (2.13), for any n € (0,1) and p > 1, we have

o . 1ig
o s) ) < ¢ [ AP (= ) A1) H ulp) 1oy dp
—or " —(A=8)(r—p) —Lre 5
<ce e P(r=p) A1) e [u(p)|e dp.
Therefore, if we take k such that k(14 7)/2(k — 1) < 1, for any k > k, we have
r—s (14n)k k—1
66k7»|w)\(u;s)(r)|§’p < ck (/ 6_()‘_5)/’(p/\ 1)‘2(1%1) dp)
0

t
- / re= O=9)r=p) 382 |y () dp.

This implies (2.17), if we set

T s (4w k=t
) =a ([ e pan i g)
0

Due to the Sobolev embedding theorem, if we pick p large enough such that
np > d, we have that, for any k& > k,

|

.
(2.18) €2k |ahy (u; s)(r)|’é@(D) <cp(A— 5)/ e A=0T=P) ke |y (p) K dp, s <r <t

S

where § = 1 — d/p. In particular, for any k > k,
(2.19)  eF7hn (u; 8) ()% < ep(N — 5)/ e A=0T=P) ke 1y (p) K dp, s <1 <L

LEMMA 2.5. For any u € LF(s,t; E) with k > 1, and for any ¢ >0 and A > 0, it
holds that
W)A,e(u; S)|Lk(s,t;E) < C)\7k((t - 8)/6)‘U|Lk(s,t;E)~
Moreover, if A > 0, then cy € L*(0,00) and

lim |C)\,k o — 0.
A—00

Proof. As in the proof of Lemma 2.4, for any n € (0,1) and p > 1, we have

el )0y < £ [ €20 = p)en ) F (o)l o

S
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Therefore, if we pick p large enough so that np > d, for any k£ > 1, we have, by the
Young inequality,

t . ch t T s . k
[otwomlsar< % [ ([ 2020 - ppenn luoleds) ar

t t—s
< C—:/ lu(r)|% dr (/ e_%r(r/e/\ 1~ E dT)
€ s 0

Since
k
1 t—s " k (t—s)/e n
— (/ 6_%T(T/e/\1)_% dr) = (/ e_’\r(r/\l)_% dr |
€ \Jo 0

we conclude by taking

ean(y) = (/Oye*r(wn“z" dr)k. 0

2.2. The coefficients b; and g;. As far as the reaction coefficient b; : D xR? —
R in the slow equation is concerned, we assume the following conditions, which are
the same as those in the paper [10].

k

HyYPOTHESIS 2.6. -
1. The mapping by : D x R? — R is continuous and there exists m; > 1 such
that

(2.20) sup [b1(§,0)] < (1 + |o1|™ +]o2]), o= (01,02) € R2.
Ee D

2. There exists 8 > 0 such that

(2.21)  sup [b1(&0) —bi(&p)| <c (1+ o +1pl°) o —pl, o,p€ R
¢€eD

3. There exists ¢ > 0 such that, for any o,h € R?,

(2.22) sup (b1(€,0 +h) = b1(§,0)) by < cha[ (1 + |of +[h]) .
£eD

Ezample 2.7 (from [10]). Let h : D x R — R be a continuous function such that

h(&,-) : R — R is locally Lipschitz continuous, uniformly with respect to £ € D.
Assume that

(2.23) sup [h(§,s)] <c (1+][s|™), seR,
¢eD
and
(2.24) h(€,51) — h(&,52) = p(&, s1,52) (51 — 82), £ e D, s1,82€ R,

for some p : D x R? — R such that

sup p(&, s1,82) < 00.
e D
51,52€ R
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Moreover, let k : D x R? — R be a continuous function such that k(¢,-) : R? — R has
linear growth and is locally Lipschitz continuous, uniformly with respect to £ € D.

Now, we fix any continuous function f : D x R — R such that f(£,) is of class
C! for any £ € D, and

of

. < =
(2.25) 0<

(& s)<ec, (§s)€ DxR,

for some ¢ > 0. If we define

bl(gv U) = f(fa h(€7 01) + k(ga 01, 02))5

it is not difficult to check that conditions 1 and 3 in Hypothesis 2.6 are satisfied.
Moreover, if we assume that h and k are differentiable and their derivatives have
polynomial growth, then condition 2 is also satisfied.

Next, let 8 and 8; be continuous functions from D into R for i = 1,...,2k, and
assume
inf B(¢) > 0.
£eD

Then, it is possible to check that the function

2k
h(&, ) = =BE)s™ T+ Bi(€)s'
i=1
satisfies conditions (2.23) and (2.24). O

For the reaction term by : R x D x R? — R in the fast equation, we assume the
following conditions.

HYPOTHESIS 2.8. -
1. The mapping by : R x D x R2 — R is continuous and there exists my > 1
such that

(2.26) sup  |ba(t,€,0)| < c(l+]on|+|oa|™), o= (01,02) € R%.
(t,6)eRX D

2. The mapping ba(t,€,-) : R? — R s locally Lipschitz continuous, uniformly
with respect to (t,€) € R x D.
3. There exists ¢ > 0 such that, for any o, h € R?,

(2.27) sup  (ba(t,&, 0+ h) = ba(t,&,0)) ha < clha| (14 |o| +|h]).
(t,§)eRxD

4. For every (t,€) € R x D, we have

(228) b?(t7 57 01, 02) - b2(t7 57 P1, 02) = e(ta 57 01, P1, 02)

for some continuous function 8 : R x D x R3 — R such that
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(2.29)
inf _ 9(t7€70-170-1 +h702) sup 9(t7€70-1u0—1 +h702) Z 07
(t,£)e Rx D (t,£)eRxD
(0'1,0'2)6 RQ, h>0 (0'1,0'2)6 Rz’ h>0

and such that for any R > 0 there exists Lr > 0 with

(230) 01, pP1 S BR(R) - sup B |9(t7£701ap1,02)| S LR |Ul - pll
(t,£)e Rx D
o2€R

5. For any 01,02, p2 € R, we have
(2.31) ba(t,§,01,02) — ba(t, &, 01, p2) = —A(t,§, 01,02, p2)(02 — p2)

for some measurable function A : R x D x R® — [0, +00).

Ezample 2.9. Let h : R x D x R — R be such that h(t,-) satisfies the same
conditions as in Example 2.7, uniformly with respect to ¢ € R. Assume that the
function p in (2.24) depends also on t € R and satisfies

(2.32) sup  p(t, &, s) <0.
(t,£)eRx D
seR
Moreover, assume that the mapping k : R x D x R? — R is continuous, the mapping
k(t,&,-) : R — R has linear growth and is locally Lipschitz continuous, uniformly
with respect to (¢,€) € R x D, and the mapping k(¢,£,-,02) : R = R is monotone and
locally Lipschitz continuous, uniformly with respect to (¢,€) € R x D and 03 € R.
Then all the conditions in Hypothesis 2.8 are fulfilled if we define

ba(t,€,0) = f(t,& h(t, € 02) + k(t,§,0)), (t,§) € RxD, o€ R?
for any f: R — R satisfying (2.25). Notice that (2.32) holds for

2k
h(t, & s) = —B(t, )™ T+ B(t,£)s? — As

j=1
with A large enough.

Concerning the diffusion coefficients g; and g2, we assume that they satisfy the
following conditions.

HypoTHESIS 2.10. B -
1. The mappings g1 : D X R — R and g2 : R x D x R — R are continuous
and the mappings g1(§,-) : R — R and g2(t,§,-) : D x R — R are Lipschitz

continuous, uniformly with respect to € € D and (t,€) € R x D, respectively.
2. It holds that

(2.33) sup |g1(€,0)| < c(l + |a|m%), oeR,
¢eD
and
(2.34) sup  |g2(t,&,0)| Sc(1+|o %)7 o€ R,
(t,6)ERxD

where my and mq are the constants introduced in (2.20) and (2.26).
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Remark 2.11. We are assuming here that the diffusion coefficient go in the fast
equation does not depend on the slow variable because of what is required in the proof
of Proposition 5.4. If the coefficient by in the fast equation had linear growth, then
we could allow g to depend also on the slow variable.

In what follows, for any t € R and x,y € E, we shall set

Bl(mvy)(f) = bl(gax(f)vy(g))v BQ(tvxvy)(f) = b2(t7£7x(£)7y(5))7 g € Dv

and
B(t) := (B1,By(t)), te R

Due to Hypotheses 2.6 and 2.8, the mappings B; and By are well defined and
continuous from F'x E and Rx Ex E, respectively, to F, sothat B: RxEXE — EXFE
is well defined and continuous. As the mappings b; and by have polynomial growth,
B(t) is not well defined in H.

In view of (2.20) and (2.26), for any z,y € F and ¢t € R, we have

(2.35)  [Bi(z,y)le <c (L+|zlg' +yle), [Bat,z,y)le <c(l+ |2z +[ylE*)
so that
(2.36) |B(t,z,y)|exe <c (1+|z|5" + ylg?), =ye E, teR

As a consequence of (2.22) and (2.27), it is immediate to check that, for any z,y, h, k €
E, any t € R, and any § € My,

(2.37) (Bi(z +h,y + k) = Bi(2,9),0) g < ¢ (1 + [h]p + [k|e + |2|5 + |y[e)
and
(Ba(t,x+hyy+k) = Ba(t,,9),0)p < ¢ (14 |hle + [kl + |2|5 + |yle)
so that, for any (z,y), (h,k) € E x E, any t € R, and any § € M, 1),
(2.38)  (B(t,x+hy+k) = B(t,2,9),0) pp < ¢ (L+|(hk)|pxe +|(2,9)|2xE) -
Moreover, from (2.31), we have
(2.39) (Ba(t,x,y + k) — Ba(t,z,y),0) 5 <0
for every § € Mj,. Finally, in view of (2.21), we have

|B1(w1,91) — Bi(z2,92)|E
(2.40)

<e (T4 (@90 hxe + (@2,92) 5w p) (21 — 2205 + Y1 — v2|8) -
Next, for any z,y,z € E and t € R, we define

[G1(2)2](€) = 91§, 2(£))2(8),  [Ga(t,y)2](§) == g2(t, &, y(£))z(E), &€ D.
Due to Hypothesis 2.10, the mappings
G1 F— L(E)

and, for any fixed t € R,
Ga(t,): E — L(E)

are Lipschitz continuous, so the same is true for the mapping G(t) = (G1, Ga(t))
defined on F x FE with values in L(F X E).
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3. Almost periodic functions. We recall here some definitions and results
about almost periodic functions. For all details, we refer to the monographs [2] and
[19] and the paper [3].

In what follows, (X,dx) and (Y, dy) denote two complete metric spaces. For any
bounded function f: R — Y and € > 0, we define

T(f,e)={re R:dy(f(t+7),f(t)) <e foralte R}.

T(f,¢) is called an e-translation set of f.

DEFINITION 3.1.

1. A continuous function f : R — Y is said to be almost periodic if, for all
€ > 0, the set T(f,¢€) is relatively dense in R; that is, there exists a number
le > 0 such that [a,a+ 1] NT(f,€) # 0 for every a € R. The number I, is
called the inclusion length.

2. Let F C X and, for any x € F, let f(-,x) : R = Y be an almost periodic
function. The family of functions {f(-,x)}ze F is said to be uniformly almost
periodic if, for any € > 0,

T(F7 I 6) = ﬂ T(f('vx)76)

z€ F

is relatively dense in R and includes an interval around 0.

In what follows, if f :R =Y or f: Rx X — Y, and if v = {v, }nen is a sequence
in R, we shall use the notation T, f = g to say, respectively, that

lim f(t+7y,) =g(t) inY
n—oo

and
ILm flt+vm,2)=g(t,z) inY

forany t € Rand z € X.
We recall here some characterization of uniformly almost periodic families of
functions.

THEOREM 3.2. Let FF C X and let f(-,x) : R = Y be a continuous function for
any x € F. The following statements are equivalent.
1. The family {f(-,x)}zc F is uniformly almost periodic.
2. For any sequence v = {7y, }nen C R, there exists a subsequence v C ' and a
continuous function g : R x X =Y such that T, f = g, uniformly on R x F.
3. For every two sequences 7' and (' in R, there exist common subsequences
v C and B C ' such that Ty pf = T,T3f, uniformly on R x F.

Notice that if f : R — X is a continuous periodic function with period 7, then for
any sequence y C R there exists r, € [0,7] such that T, f(t) = f(t + ry), uniformly
with respect ¢t € R. In fact, if we denote by H(f) the hull of f, that is, the set
of functions {T,f : ~ = {7} C R}, we have that f is periodic if and only if
H(f) = {f(r+") : 7€ R}.

In the case of a function f : R — Y, we have the following characterization of
almost periodicity.

THEOREM 3.3. A continuous function f : R — Y is almost periodic if and only
if, for every two sequences 7' and ' in R, there exist common subsequences v C 7'
and B C B’ such that Ty p5f = T3 f, pointwise on R.
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Finally, in [2, Theorem 1.3.2], the following important result for almost periodic
functions is shown.

THEOREM 3.4.
1. There exists the mean value in Y of any almost periodic function f : R =Y,
that is,

1 T
Eljlgnoof/o f(s)ds e Y.

Moreover, for every t € R,

1 t+T 1 T
lim — ds = lim — ds,
/t F(s)ds / £(s)ds

T—oo T

uniformly with respect tot € R.
2. If {f (-, ) }ae F is a uniformly almost periodic family of functions with F C X,
then

1 [T 1 /7
3 lim —/ f(s,z)ds = lim —/ f(s,x)ds,
t T Jo

T—oo T T—o0

uniformly with respect tot € R and x € F.

Remark 3.5. The proof of [2, Theorem 1.3.2] is given for a single almost periodic
function f. Nevertheless, it is easy to adapt the arguments used in that proof to the
case of uniformly almost periodic families of functions, as stated in the second part
of Theorem 3.4.

4. The slow-fast system. With the notations introduced in section 2, system
(1.1) can be rewritten in the following abstract form:

duc(t) = [Aruc(t) + By (ue(t), ve(t))] dt + G (ue(t)) dw (t),

(1) due(t) =+ [(Aa(t/6) — @)uelt) + B(t/e,uc(0) v (1) di

+ \% Gt /e, ve () dw® (t)

with initial conditions u.(0) =z € E and v.(0) =y € E.

In [6, Theorem 5.3], a system analogous to (4.1) has been studied for the case of
coefficients independent of time. Thanks to Lemma 2.4, since all estimates satisfied
by the coefficients in Hypotheses 2.2, 2.6, 2.8, and 2.10 are uniform with respect to
t € R, the arguments used in the proof of [6, Theorem 5.3] can be adapted to the
present situation and it is possible to show that, under Hypotheses 2.1, 2.2, 2.6, 2.8,
and 2.10, for any € > 0 and x,y € F, there exists a unique adapted mild solution to
problem (4.1) in LP(Q; Cy((s,T]; E X E)) with s <T and p > 1.

This means that there exist two unique adapted processes w. and v. in
LP($2; Cy((s,T); E)) such that

t t
uc(t) = e+ / =N By (u(r), vo(r)) ds + / eI Gy (e (1)) dw ()
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and

Ve(t) = Uqe(t, )y + %¢a75(v5; s)(t) + %/ Ua,e(t,7)Ba(r, ue(r), ve(r)) dr

1t
L / Un e (t,7)Ga (r, 0o (1)) duo2 (1),
Veds
where, with the same notations as in section 2, for every € > 0,
Ua,(t,s) = e%W(t’s)AT%(t_s), s < t,
and
Uacw5)() = [ Vol p)Llo)ulp)dp, 7 €[5t
Recall that in section 2 we have defined
UOé(ta 8) = Oé,l(tv 8)7 1/@(“5 S)(T) = ¢a,1(u; 8)(T)'

Thanks to Lemma 2.5, we can adapt to the present situation the arguments used
in the proof of [10, Lemma 3.1], and it is possible to show that, for any p > 1 and
s < T, there exists a constant ¢, s 7 > 0 such that, for any z,y € E and € € (0,1],

(4.2) E sup [uc®)ll < cpur (14 |2l + lylh)
te [s,T]
and
T
(4.3) E / e dt < cpar (1+ |2l + [y]%)

for some constants c; , 7 independent of € > 0. B
Moreover, as in [10, Proposition 3.2], we can show that there exists § > 0 such
that, for any 6 € [0,0), z € C’(D),y€ E,and s < T,

(4.4) S‘(lépl] E [te| oo 5,500 (5)) < s, (1+ |2lco(p) + |ylB) -
ec (0,

Finally, by proceeding as in [9, Proposition 4.4] (see also [10, Proposition 3.3]),
we can prove that, for any 6 > 0, there exists v(f) > 0 such that, for any 7" > 0,
p>2,z€ C%D),ye€ E,and ry,7; € [s,1],

(@5)  swp Elucry) = uclra)lh < eo(T) (L4 1o, + vl ) Irs = 7P O
ec (0,1

Due to the Kolmogorov test and the Ascoli-Arzela theorem, (4.4) and (4.5) im-
ply that the family {L(uc)}ee (0,1, given by the laws of the solutions wu, is tight in
C([s,T); E) for any x € C%(D) with § > 0, and for any y € E. That is, for every
n > 0, there exists a compact set K,, C C([s,T]; E) such that P (u. € K,,) > 1—n for
every € € (0,1].
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5. An evolution family of measures for the fast equation. For any frozen
slow component x € FE, any initial condition y € F, and any s € R, we introduce
the problem

(5.1) do(t) = [(A2(t) — @)v(t) + Ba(t, z,v(t))] dt + Ga(t,v(t)) dw?2(t), wv(s) =y,
where As(t) = v(t)As + L(t) and
w2(t)  ift >0,

w9 (t) =
w?(—t) ift<0

for two independent QQ2-Wiener processes, w;** (t) and wy > (t), both defined as in (2.3).

4
An {F, },>s-adapted process v*(-; s,y) € LP(Q; C([s,T]; E)) is a mild solution of (5.1)
if

v (t;5,y) = Ualt, $)y + ¢a (0 (5 5,4); 5)(F)

t t
+ / Ua(t,7) Ba(r,z, o* (15, )) dr + / Ua(t,17) Galr, 0" (r: 5,3)) d®2 (r),

where 1,(+; s) is the linear bounded operator defined in (2.12) with € = 1.

Moreover, if C'(R; E) is the space of continuous paths on R with values in E,
endowed with the topology of uniform convergence on bounded intervals, an {F; }+c r-
adapted process v* € LP(Q; C(R; E)) is a mild solution of the equation

(5.2) dv(t) = [(Az(t) — a)v(t) + Ba(t,z,v(t))] dt + Ga(t,v(t)) dw2(t)
in R if, for every s < t,

v (t) = Ual(t; s)v"(s) + Pa(v”; 5)(t)

—l—/ Ua(t,r)Bg(r,xm””(r))dr—i—/ Ua(t,r)Gg(r,v”’(r))dez(r).

According to (2.15), the mapping ¢, (+; s) : C([s, T|; E) — C([s,T]; E) is Lipschitz
continuous, so we can adapt the proof of [6, Theorem 5.3] to the present situation,
and we have that, for any z,y € E, there exists a unique mild solution v*(+;s,y) €
LP(Q; C((s, T); EYNL>®((s,T); E)) with p > 1 and s < T

All this allows us to introduce, for any fixed x € FE, the transition evolution
operator

Pyio(y) =Ep(™(t;s,y), s<t, yeE,
where ¢ € By(E).

For any A > 0, (5.1) can be rewritten as

dv(t) = [(A2(t) = N(t) + Baa(t, @, 0(t))] dt + Ga(t, v(t)) dw2(t),  v(s) =y,

where
Boa(t,z,y) = Ba(t,z,y) + (A —a)y.

In what follows, for any € E and any process u € LP(Q; Cy((s,T); E)) adapted,
we shall set

(5.3) Da(u;s)(t) = / Ux(t, ) Ga(r,u(s)) do?2(s), t> s.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/28/17 to 129.2.19.102. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

AVERAGING FOR NONAUTONOMOUS SLOW-FAST SRDES 2861

By proceeding as in the proof of [7, Lemma 7.1], where the case s = 0 was considered,
it is possible to show that there exists p > 1 such that, for any p > p and 0 < § < A,
and for any u,v € LP(Q; Cy((s,t]; E)) with s < ¢,

sup P9 ITA(u; 8)(r) — Ta(v; 8)(r)|%
rE [s,t]

(5.4)

p
< cp1~—2— sup PUTIE |u(r) — o(r)|b

P (>‘ - 6)%’2 rE [s,t] B
where Ly, is the Lipschitz constant of go, and cp1,cp2 are two suitable positive
constants independent of A > 0 and s < t.

Moreover, using (2.34), we can show that

(5.5) o
sup ePUTIE Ty (u; 5)(r)]%, < cp,lfgch sup eP(r—s) (1 +E Ju(r) g2> 7
reE [s,t] ( ) P2 e [s,t]
where
Mg2 — sup |92(§>(72|

¢eD, oeR 1+ |o| ™2

(see [7, Remark 3.2]). In fact, in [7] it is shown that there exists some 1 > 0 such
that, for any p > 1 large enough,

MP _p_
sup IP(r—9) T (u; 5)(70)‘211) < Cp,lﬁgzz sup eOp(r—s) (1 + EJu(r) §2> .
rE [s,t] ( ) PZ re (st

This means that if we pick p > 1 such that np > d and define 6 = n — d/p, by the
Sobolev embedding theorem we have that, for any p > p,

(5.6) N
p P
5p(7‘—s)E T . P < 92 dp(r—s) (]_ +E m?>
sup € Alus s)(r = Cp,i p sup € u\r .
re [5.4] | ( )( )|C9(D) P ()\ _ 5) b2 re [s,] | ( ) E

Now, for any fixed adapted process u € LP(; Cy((s,T]; E)), let us introduce the
problem

(5.7) dz(t) = (Aa(t) — N)z(t) dt + Go(t, u(t)) do®*(t), z(s) =0,

and let us denote by Ay(u;s) its unique mild solution in LP($2; Cy((s,T]; E)). This
means that Ay (u;s) solves the equation

Ax(u; s)(t) = Ya(Aa(u;s);s)(t) + Ta(us 9)(t), s<t<T.

Due to Lemma 2.4, for any 0 < § < X and p > 1 large enough, and for any two
adapted processes vy and uz in LP(Q; Cy((s, T]; E)) with s < ¢, we have

P Ay (us 8) () — Ax(ua; ) ()| < cp PO E [1ha(Ax(urs s) — Ax(ua; 5); ) ()|

+ e P BTy (us; ) (E) — D (uss ) (1)[%

< (A= 5)/ e" M 2dp sup PV E Ay (us;5)(p) — Ax(uz; 5)(p) [
0 PE [5:1]

+ ¢ POV BT (us; ) (8) — Ta(ugs 8)(2)[%-
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Therefore, thanks to (2.16), we can find A(§) > ¢ large enough such that, for any
A= A(6),

sup, PP Ay (u1; 5)(p) — Ax(uz; ) (p) [
pE [s,t

<¢p w PP B D (us 8)(t) — Taluz; s)(p) |5
pE |s,t

Due to (5.4), this yields

sup P IE [Ay (u; 8)(r) — Ax(uz; ) (r) [
rE [s,t]

(5.8)
< ey P E fuy (1) — ()
= Cp, (/\_5)017,2 € [5,8] B

In the same way, we get that

(5.9)
Sp(r—s) p Mg, Sp(r—s) g
sup e®PUVTVE Ay (u;s)(r)|E < e, - sup PV 1+ E|u(r mg).
re [St] s o)l PN 8)ere e [ft] ( i

PROPOSITION 5.1. Assume Hypotheses 2.1, 2.2, 2.8, and 2.10. Then, there exists
0 > 0 such that, for any z,y € E and p > 1,

(5.10) E|v*(t; s, y)|% < ¢p (1 + e %P0=9) |y|P |m|%) ,  s<t.

Proof. We set z)(t) := v*(t; s,y) — Ax(t), where Ax(t) = Ax(v™ (5 s,y);5)(t) is the
solution of problem (5.7) with v = v®(+;s,y) and A > a. Thanks to (2.39), for every
d € M., ), we have

q-
7 [AOlE < ((A2(t) = A)2a(t),0) g + (Baa(t, 2, 2a(2) + Ax(2))

—Bg’,\(L.T,A)\(t))?&E + <Bz’)\(t73;‘,A)\(t)), 6>E

< —ala@®e +e (L + 2z + [A@O]E) + (A — ) [Ax(#)]e

IN

—alea®)lp + e (Lt lals + M (O]F) + (A = )77,

the last estimate following from the Young inequality. By comparison, we get
m t
Ol < Iyl e (14 fole + (- )T e [ eI @) dr
S

so that, for any p > 1,

07 (85 5,9 < oA + cp e Pyl

t p
+ ¢ (1 + |z + (A - a)WEl> +¢p (/ e AL (r) 32 dr) .

Due to (5.9), this implies that we can proceed as in the proof of [10, Proposition 4.1]
(where (5.5) with s = 0 is used), and (5.10) follows. d
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The following proposition gives a generalization to the case of multiplicative noise
of [12, Lemma 2.2]. The fact that the diffusion coefficient is not constant makes the
proof of the result considerably more complicated as compared to [12, Lemma 2.2].

PROPOSITION 5.2. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if o > 0 is large
enough and/or Ly, is small enough, for any t € R and v € E there exists n"(t) €
LP(Q; E) for all p > 1 such that

(5.11) lim E[v”(t;s,y) —n"(t)|5 =0

S§——00

foranyy € E andt € R. Moreover, for every p > 1, there exists some 6, > 0 such
that

(5.12) E|v”(t:5,9) = 0" (1) < cpe™ 7 (1+ |l + lylp) -

X

Finally, n* is a mild solution in R of equation (5.2).

Proof. If we fix h > 0 and define
p(t) = v*(t;s,y) —=v*(t;s —hyy), t>s,
we have that p(t) is the unique mild solution of the problem

(5.13)
dp(t) = [(A2(t) — a)p(t) + Ba(t, @, v"(t; 5,y)) — Ba(t,x,v"(t;s — h,y))] dt
+[Ga(t, v"(t5,y)) — Ga(t, v"(t; s — hyy))] do®2(t),

p(s) =y —v*(s;s —h,y).
According to (2.31), we have
B2(t7xa vz(t; S, y)) - BZ(tvﬁvvw(t; s = hvy)) = _Jw(t)p(t)a

where
Jz(tvg) = )\(t,g,x(f),vm(t; S, )(5)avm(t;5 - h,y)(&)), §eD.

Therefore, if we define

Kw(t,f) _ gz(t@,v‘”(t; Say)(g)) _QQ(tvgvvz(t;s B hay)(f)), f c D,

p(t)(€)

we can rewrite (5.13) as

dp(t) = [(A2(t) — a)p(t) — J*(£)p(1)] dt + K (t)p(t) dw?2(t),
(5.14)
p(s) =y —v*(s;s — h,y).

Notice that, due to (2.31), we have
(5.15) JE(,6) >0, (t,§) € RxD.

Moreover, as 92@, &,-) is assumed to be Lipschitz continuous, uniformly with respect
to (t,€) € R x D, we have that

(5.16) sup K", €)= sup [ga(t, & )]ui < 00
(t,£)eRxD (t,£)e Rx D
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Now, for any F,-measurable y, € L?(Q; E), we introduce the auxiliary problem

d(z()t) = (Aa(t) — a)z(t) dt + K" (t)2(t) dw?2 (t),
Z\8) = Ys,

(5.17) {

and we denote by z(¢;s,ys) its solution. By proceeding as in the proof of (5.8), we
have that, for any p large enough, there exist two constants c, 1 and ¢, 2 such that,
for any 0 < 6 < «,
p
sup ePUIE |2(r5 s, y5) [ < ¢ E |yshtcpn — sup PV E |z(rs s, ys) |5
re[s,f] (0 =0)%2 sy

Therefore, if we pick a > 0 large enough and/or L,, small enough so that

p

c <1
D,1 Cr.2 )

we can find 0 < 5_p < « such that

LP
gz < 1.

RCETAEE
This implies that

sup e?r IR |2(r; 5, y5)[% < ¢p Elys %,

€ [s,t]
so that
(5.18) E|2(r;8,ys) % < cpe I By b s <,
with 6, = pgp.

Next, for any Fs-measurable ys € L?(£2; E), we introduce the problem

dz(t) = [(Aa(t) — a)z(t) — J=(t)2(t)] dt + K=(t)z(t) dw2(t),
(5.19)
2(s) = ys,

and we denote by £(¢; s,ys) its solution.
Due to the linearity of (5.19), by a comparison argument (see [16]) we have

ys >0, P-as. = 2(t;s,y5) >0, s<t, P-as.

Moreover, in view of the sign condition (5.15), again by a comparison argument (see
[16]) we have

(5.20) ys >0, P-as. = 0<2(t;s,ys) < 2(t;58,ys), s<t, P-as.
Thanks to (5.18), this allows us to conclude

(5.21) ys >0, P-as. = E|2(t;s,y.)|% < cpe Iy |2, s <t
Now, as a consequence of the linearity of problem (5.19), we have

v (t;s,y) — v (ts — hyy) = 2(t; s,y —v"(s;8 — h,y))

= Z(t;s,y —v7(s;5 — hyy) Ny) — 2(t; 5,07 (535 — hyy) —v"(s;5 — h,y) A y).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/28/17 to 129.2.19.102. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

AVERAGING FOR NONAUTONOMOUS SLOW-FAST SRDES 2865

Then, thanks to (5.10) and (5.21), we can conclude that, for some d, > 0,

Elo*(t;s,9) — v (s — hy)[fy < cpe IR |y — 0% (535 — h,y)[}
(5.22)

< e U7 (jylb + ey [l + |zl + 1)

Therefore, if we take the limit as s — —oo, due to the completeness of LP(§2; E),
this implies that, for any t € R and z,y € E, there exists n*(t) € LP(; E) such that
(5.11) holds. Moreover, if we let h — oo, we obtain (5.12).

Next, in order to prove that n®(¢) does not depend on y € E, we take y1,y2 € E
and consider the difference

p(t) :Ux(t;svyl)_vx(t;svy2)7 t>s.
The same arguments, used above for the difference v*(¢; s,y) — v*(¢t; s — h,y), can be
used here for p(t), and we have

E [0 (t;5,91) — v°(t; 8, 42) % < cpe %) |y —qulh s <t,

so that, by taking the limit above as s — —o0, we get that the limit 7*(¢) does not
depend on the initial condition y € F.

Finally, let us show that n* is the mild solution in R of equation (5.2). For any
s <tand h > 0, we have

v7(t; s — h,0) = Uy (t, s)v" (858 — h,0) + o (v7(+; 8 — h,0); 8)(t)

t t
—|—/ Uy (t,r)Ba(r,z,v"(r;s — h,0)) dr + / Un(t,7)Ga(r,v"(r; s — h,0)) di®?? (r).

Due to (5.11), we can take the limit as h goes to infinity on both sides, and we get
for any s < t,

n*(t) = Ua(t, s)n”(s) + ta(n®; s)(t)
(5.23) t t
+/ Ua(tﬂ")Bg(T’SL’,nx(’r))dT + / Ua(tar)GQ(Tv 7736(7“)) de2'

This means that n*(¢) is a mild solution in R of equation (5.2). ad

In what follows, for any t € R and x € E, we shall denote by uf the law of the
random variable ”(t). Our purpose here is to show that the family {uf}:cr defines
an evolution system of probability measures on E for equation (5.1), indexed by t € R.
This means that pf is a probability measure on E for any ¢ € R, and it holds that

(5.24) /E P o) pt (dy) = /E o) i (dy), s <t,

for every p € Cy(E).
Notice that, due to (5.11) and (5.10), for any p > 1, we have

(5.25) supE (1) <cp (14 |2[p), =€ E,
teR

so that

(5.26) sup/ lyl% pf (dy) < cp (1+ |2|%) .
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PROPOSITION 5.3. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if a > 0 s large
enough and/or Ly, is small enough, for any fized x € E the family of probability
measures {uf her introduced above defines an evolution family of measure for equa-
tion (5.1) such that

(5.27) lim Pe(y) = / e (y) i (dy)
S — 00 E
for any p € Cy(E). Moreover, if ¢ € C}(E), we have

(5.28)

P oly) /E o (2) i (d2)

<llelepm e (1 + |ale + yle) -
Finally, if {v}ier is another evolution family of measures for (5.1) such that

(5.29) sup / Iyl v (dy) < oo,
teRJE

then vy = puf for allt € R and x € E.
Proof. According to (5.11), for any ¢ € Cy(E) and y € E, we have

lin_ Prip(y) = lim B (7 (t5.5)) = Belr(1) = | ol (dy).

5——00
Therefore, since for any s < r < ¢t we have

P Pply) = Péply),  y € E,
by taking the limit above in both sides, as s — —o0, we obtain

/ Pro(y) py (dy) = / e(y) pi (dy),
E E

which means that {u7 }+cr is an evolution family of measures satisfying (5.27).
In order to prove (5.28), we have

< E [p(v(t;8,y) — 00" (1))]

P2 o(y) - [E (=) i (d2)

< llellcrmE[v*(ts,y) —n" ()|,

so that (5.28) follows from (5.12).
Next, let us prove uniqueness. If we show that, for any ¢ € C}(E),

(5.30) lim_ [ Peplo) () = /E () i (db),

§——00

then, recalling that {1 };c R is an evolution family, we have that, for any ¢ € C}(E),

/ () v (dy) = / o) id(dy), te R,
E E

which implies that uf = v} for any t € R and z € E.
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In order to prove (5.30), we notice that, due to (5.12),

/P&ﬁp(y) V?(dy)—/ w(y)uf(dt)’ S/Elw(v”(t;s,y))—w(n’”(t))l vy (dy)
E E E
<lelleyey [ BV t55.9) = (0l vi(a)

< elos e (1 +lale+ [ |y|Ev§<dy>) .

Then, as a consequence of condition (5.29), we can conclude that (5.30) holds and, as
we have seen, uniqueness follows. ]

Now, we want to study the dependence of 7*(t), and hence of 17, on the parameter
re E.

PROPOSITION 5.4. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if a > 0 s large
enough and/or Lg, is small enough, we have that, for any R > 0, there exists cg > 0
such that

(5.31) x1,29 € Brp(R) = SUEE [n*t(t) — n™ (t)|QE <cplx; — xgﬁg
te

Proof. In view of (5.11), it is sufficient to show that, for any R > 0, there exists
cr > 0 such that

(5.32) x1,73 € Bp(R) = supE [v™ (t;5,0) — v™2(t;5,0)|% < cr |v1 — 22|%.
s<t

If we define
p(t) =v" (t;5,0) —v™(t;5,0), s<t,

we have that p(t) is the unique mild solution of the problem

(5.33)
dp(t) = [(A2(t) — a)p(t) + Ba(t, x1,v" (t;8,0)) — Ba(t, za,v™(t; 5,0))] dt

+ [ Galt, v (1:5,0)) = Ga(t, 072 (:5,0))| du2(v),

p(s) =0.
According to (2.28) and (2.31), we have
BQ(t7 X1, ¥ (ta S, 0)) - BQ(ta x2, v*? (t7 S, 0)) = _J(t)p(t) + I(t)v

where
J(t,8) = At & 21(8), 0™ (85,0)(€),v™ (¢ 5,0)(§)), €€ D,
and

I(tv f) = a(tv 57 xl(f), $2(£), v (t; S, 0) (g))v 5 € D.

Therefore, if we define

gQ(tv 57 vt (ta S, 0)(5)) — QQ(t, 57 v"2 (ta S5, 0)(5))
p(t) ’

K(t, &) = §e D,
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we can rewrite (5.33) as

dp(t) = [(A2(t) — a)p(t) — J()p(t) + I(t)] dt + K(t)p(t) dw(t),
(5.34)
p(s) =0.

Notice that, due to (2.31), we have
(5.35) J(t,&) >0, (t,&) € [s,+) x D.
Due to (2.30), we have

(5.36) T1,Tg € BE(R):>suE)\I(t)|E < Lp|z1 —x2|E.
s<

Moreover, due to (2.29), we can assume, without any loss of generality, that
(5.37) 21(€) > 22(§) = 1(t,€) 20,  (t,€) € [s,+00) x D.

Finally, as g2(t, &, -) is assumed to be Lipschitz continuous, uniformly with respect to

(t,€) € R x D, we have that K(t) satisfies (5.16).
Thanks to (5.37), by a comparison argument we have

X1 > w9 => p(t) 20, P-as., s<t.
Therefore, again by comparison, due to (5.35) we have
(5.38) x1 > 22 = 0<p(t) <p(t), P-as, s<t,
where p(t) is the solution of the problem
dp(t) = [(As(t) — )p(t) + 1(8)] dt + K (£)p(t) dw (2),
) =0,

This means that
PE) = alpis)(t) + / Ua(t, 1) I(r) dr + / Ua(t, ) K (1) p(r) dn® ().

As a consequence of (5.36), by using the same arguments as in the proof of Proposition
5.1, we get that if o is large enough and/or L, is small enough,

1 > x9, 21,22 € Bg(R) = sg}t)E|ﬁ(t)|2E < crlry — 203,
S

so that, thanks to (5.38), we have

1 > x9, 1,2 € Bp(R) = si[t)E|vzl(t;s,O) — vxz(t;s,O)FE <cgp|r1 — x2|2E
S

As in the proof of Proposition 5.2, the general estimate (5.32) follows by noticing that
[v™1 (t; 5,0) — v™2(t; 5,0)|%

< 2w (t;8,0) — 0" 2 (¢ 5,0)|%E + 2 [0" N2 (t: 5, 0) — 072 (¢ S,O)ﬁ;. ]
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6. Almost periodicity of the evolution family of measures. In what fol-
lows, we shall assume the following conditions on the operator As(t) and the coeffi-
cients by(t,£,0) and go(t,&,0).

HyPOTHESIS 6.1.
1. The functions vy : R — (0,00) and [ : R x D — R are both periodic, with the
same period.
2. The families of functions

Br —{bg ) e D (S BR2(R)},
QR—{gz &€ D, UEB]RR)}

are both uniformly almost periodic for any R > 0.

LEMMA 6.2. Under Hypothesis 6.1, for any R > 0, the family of functions
{B2(,2,y) : (z,y) € Bexp(R)}, {Ga2(.y) : y€ Be(R)}

are both uniformly almost periodic.

Proof. Due to the uniform almost periodicity of the family Bg, for any ¢ > 0
there exists [ g > 0 such that in any interval of R of length I r we can find 7 > 0
such that

|b2(t + T,f,O’) - b2(t>€v0)| <, (t,f,a’) € RX D X BR2(R)
This implies that

|B2(t + T?‘Tvy) - Bg(t,l', y)'E

= ESIDE |b2(t + Tvx<£)ay(€)) - bQ(tax(f)’y(g)” <§¢, (tvxvy) € Rx BEXE(R)

In a completely analogous way, we can show that the family {G>(-,y) : y € Br(R)}
is uniformly almost periodic. O

Now, for any u,v € P(FE), we define

d(/J'v Sup{ H—v dy) ) |lep— },
where
P = 15 + o = [l + sup LE =T,
e2n €=l

It is known that the space (P(F),d) is a complete metric space and the distance d
generates the weak topology on P(E).
In [13] it is proven that if Ao(+) is periodic, the family of functions

{BQ('vxay) : (iE,y) € BE'XE(R)}a {G2(7y) NS BE(R)}

are both uniformly almost periodic for any R > 0 and the family of measures {u7 }+cr
is tight in P(F), then the mapping t € R — uf € P(E) is almost periodic. The proof
in [13] is based on Theorem 3.3. Actually, it is proved that, for every two sequences
~" and ' in R, there exist common subsequences ¥ C 7' and 8 C ' such that
Ty pp? =T, Tgu®, pointwise on R.
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Unlike in this paper, in [13] it is assumed that the coefficients are Lipschitz con-
tinuous and the covariance Q3 of the noise is trace class. But all the arguments used
in [13] can be adapted to the present situation without major difficulties. Therefore,
in view of Lemma 6.2, if we prove that the family of measures {uf};cr is tight in
P(E), we obtain the following result.

THEOREM 6.3. Under Hypotheses 2.1, 2.2, 2.8, 2.10, and 6.1, if a > 0 is large
enough and/or Ly, is small enough, we have that the mapping

te R—uf € P(E)
is almost periodic for any fized x € E.

Thus, it only remains to prove tightness.

LEMMA 6.4. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if « s sufficiently large
and/or Ly, is sufficiently small, there exists 8 > 0 such that, for any p > 1 and any
re kb,

(6.1) ?ggE [n*(t) 1(719(15) < (1+|z|h).
In particular, the family of measures
Ap:={ui;te R, x € Bg(R)}
is tight in P(E) for any R > 0.
Proof. Due to (5.10) and (5.12), with y = 0, we have that, for any p > 1,
(6.2) SUplE [1* ()l < cp (1 + [allp).

Moreover, thanks to (2.10) and (5.23), for every t € R and 6 > 0,
7" (@)]cepy < c|n®(t = D|e + [ba(n™t = 1)()]co(p)

t
+/t 1 Ua (t,7)Ba(r; 210" (r))|co by dr + [T (1"t = 1) (D)l 0o () -

According to (2.18), (5.6), and (2.10), this implies that, for some # > 0 and any
0<d<aandp>1,

e |n" ()" |oo(py < e Bl (t = Dl + cp P PR [ (75t = 1)(r)
re|t—1,

oo

Cco(D)
t

tp [ Waltr)Batraa ()l

+c¢, sup Pt ITa(n™;t— 1)(T)|I()J9(D)
re [t—1,t]

< Eln*(t - 1)‘% +¢p sup ) |77x(7")|11)3
re [t—1,t]

+e (/ttl(t — 1) (14 |z]m +E " (r)[22) dr)p

_P_
b s 0= (gl )
re [t—1,t]
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so that

VB (0L ) < € B (=Dl + 1+ [al) + ¢ sup P HIE (),

re [t—1,t]
t op P
+cp (/ (t—r) 2D dr>
t—1

t
| B
t—1
If p > 2, then for any 6§ < 1 we have that p/(p — 1) < 2. Then, thanks to (6.2), we
can conclude that (6.1) holds true for any p > 2. Due to the Holder inequality, (6.1)
holds for any p > 1. ]

—1

7. The averaged equation. For any fixed € E, the mapping Bi(z,-) : E —
E' is continuous and

(7.1) [Bi(z,y)|p < c(1+|=lE" + [yle) .-
B, is unbounded and only locally Lipschitz continuous, but, as a consequence of

Proposition 6.3, it is still possible to prove the following result.

LEMMA 7.1. Under the same hypotheses as Proposition 6.3, for every compact set
K C E, the family of functions

(7.2) {te R»—)/EBl(x,z) ui(dz) € B we K}

is uniformly almost periodic.

Proof. For every n € N, we define

bl(é-?Ula 0—2) if |02| S n,
bl,n(f,Ul,Uz) =

bi(§,01,09n/|oa|) if |o2| > n,

and we set

Bl’n(xvy)(g) = b1,n(§75€(§),y(§)), 5 e D.

Clearly, we have that By ,,(z,-) : E — E is Lipschitz continuous and bounded for any
fixed x € E, and By »(z,y) = Bi(z,y) if |y|g < n. Moreover, for any R > 0,

(7.3) sup |Bin(z,-)

lz|<R

Lipy (E) = Cn,R < O0.

Now, for any n € N, we have

/ By (x, 2) uf (dz) = / By n(, 2) i (d2) + / (Bi(x.2) — Byn(z, 2)) pi (d2).
E E {lz|le>n}
According to (5.26) and (7.1), we have

sup
teR

/ (B (2 2) — By n(z, 2)) 4 (d2)
{lz|le>n}

(1 + a1y

Slo

<eswp [ (el 4 Jole) (@) <
teR J{|z|p>n}
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This implies that, for any € > 0 and R > 0, we can find 7 = fi(e, R) € N such that

sup

€
€ B (R) 4’
teR

| B - Buale) ki) <
{lzle>n}

so that, for any t,7 € R and 2 € Bg(R),

/Bl(r 2) pyy . (dz) /B1 x, z) uf (dz)
E E

<[ Buste. o)t (@)~ [ Buate, o) ()| + 5
E E

Now, let us define

F(t,2) :/EBl,ﬁ(x,z) ui(dz),  (t@) € R x E.

If we show that, for any compact set K C E, the family {f(-,z) : © € K} is uniformly
almost periodic we have concluded our proof.
Since, for any t,7 € R, we have

|f(t + 7, l‘) - f(t7x)|E < |Blﬁ(x7 ')|Lipb(E) d(:u’tz-‘rThu‘:tE)v

in view of Theorem 6.3 and (7.3), the function f(-, z) is almost periodic for any « € E.
Moreover, f is continuous in z € K, uniformly with respect tot € R. Actually, thanks
0 (2.40), we have

[f(t,2) = f(ty)le <E[Bia(z,n"(t) — Bialy,n”())|e

< B (L+ el + lylE + In" ()% + In? 0)%) (= yle + 17 () — ' (t)] ).

Now, as K is compact it is bounded, so that there exists R > 0 such that K C Bg(R).
Therefore, due to Proposition 5.4 and (5.25), we can conclude that, for any =,y € K,

Nl=

sup |f(t.2) — F(t.p)lm < cn (|x sl +sup (E () — 1 (0)3) ) <enlr—yls,

teR

and this implies that the family of functions {f(¢,-) : ¢ € R} is equicontinuous. In
[19, Theorem 2.10], it is proven that this implies the uniform almost periodicity of
the family {f(-,z) : z € K}. O

Due to the almost periodicity of the family of mappings (7.2), according to The-
orem 3.4 we can define

B(zx) :TIEI;CT/ /Blzyut (dy)dt, =ze€ E.

Thanks to (5.26) and (7.1), we have that
(7.4) |B(2)|e < c(1+]z|5").

Actually, in view of (7.1), we have

//ley,utdydt

<cf/ [t lal +lule) i a)
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and then, thanks to (5.26), we have
|B(z)|p < e (1+|2g") + e (1+]2lp),

which implies (7.4).
As a consequence of (5.12), we have the following crucial result.

LEMMA 7.2. Under Hypotheses 2.1 to 6.1, if a is sufficiently large and/or L, is
sufficiently small, there exist some constants k1,ke > 0 such that, for any T > 0,
se€ R, and z,y € F,

2
1 s+T - B
7 [ B @se)d-Ba)| <0l o)+ alfo)

(75) E |
E

for some mapping « : [0,00) x E — [0, +00) such that

sup a(T,z) <c(1+z|p), z€ E,
>0

and, for any compact set K C F,

lim sup (T, x) = 0.
T—oo zc K

Proof. For any fixed A € E* and z € E, we denote by II§ B; the mapping

(t,y) € R x B TEXB1(t,y) == (Bi(, ), A) g — /E (Bi(z,2),A)p pi(dz) € R

By proceeding as in the proof of Lemma 2.3 in [9] and the proof of Lemma 5.1 in [10],
we have

(7.6)

1 s+T 2
( { (Bi(z,v"(t;8,9)), A) g */E<Bl($az)7/\>E #f(dz)} dt)
4T
= %/ / E [II{ By (r,v"(r; s,y)) P2 IR By (r,v®(r; s, y))] dt dr

2 s+T 1 1
< T2/ / E|HABl(r v®(r; s,y))] )2 (E\Pf;tﬂf\Bl(r, vw(r;s,y))|2)2 dt dr.
Due to (2.35), (5.10), and (5.26), we have

E 5By (0" (s s, 9)? < ¢ (L4 o3 +E o (s, y)[E) A
(7.7)
< (L4 faf + e 20 yE) AT

Moreover, due to (2.40), we have
[(Bi(z,9), M) g — (Bu(z, 2), A) | < ey — 2| (1+|alp + [ylE + [2|%) [Ale-

so that, thanks to (5.12), we have

[P IT5 B " (7)) < e (L a5 4 Jul5) ) 1A e,
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Therefore, if we plug the estimate above and estimate (7.7) into (7.6), we get

2
1

E T/st {Bl(x,vz(t;s,y))/EBl(x,z) uf(dz)] dt

E
(7.8) s
€

1 s+T
e (ol +lole) L+ ol8 + WiE ) 5 [ [ et e

1
< (1+ ol +lyls) (1+ ol + 95" 7.

Next, thanks to Lemma 7.1 and Theorem 3.4, we have that the limit

s+T
lim —/ /B1(x,z) pi(dz)dt € E
s E

converges to Bj (), uniformly with respect to s € R and z in any compact set K C E.
Therefore, if we define

s+T 2
ota) =27 [ [ Bieo - B

E

we can conclude. |

LEMMA 7.3. Under Hypotheses 2.1 to 6.1, if o is sufficiently large and/or L, is
sufficiently small, we have that the mapping B : E — E is locally Lipschitz continuous.
Moreover, for any x,h € E and § € My,

(7.9) (B(x+h) — B(x),6), < (+ [hls + [2]x).
Proof. For any x1,z2 € E, we have

B(x1) — B(x) = lim %/0 E (Bi(z1,7" (t)) — Bi(x2,n™2(t))) dt in E.

T 00
By using (2.40), we have

[By(x1,7" (1)) = Bu(w2,n™* ()| g

< e (L |zl + lz2l + [ (1% + 072 (0)]%) (o1 — 22lp + ™ () =92 (t)|p),
and then, due to (5.25), we get

sup |E (By (w1, 7" (t)) — Bi(z2,7"*(t)))|g
te R

N|=

).

<c(l+ z1]% + |~T2|%) (|$1 — x2|E + Suﬁ (Eln™ (t) — 0™ (t)|%)
te

Thanks to (5.31), this implies that, for any R > 0,

x1,To € BE(R) = |B1($1) — Bl(I2)|E S CR |IZ’1 — T2|E-
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Concerning (7.9), if 6 € My,, we have

_ _ 1 (T
(B(xz 4+ h) — B(x),6), = lim 7/0 E (Bi(z + h,n"™"(s)) — Bi(z,n"(s)),0) , ds.

T—o0

Now, due to (2.37), we have
(Bi(z +h,n"(s)) = Bi(z,1°(5)),8)

< c(L+lalp + [hle + ™" (s)e + 10" (5) ),

and then, thanks again to (5.25), we conclude

(B(xz+h) — B(z),6)

: L
<timsup . [ (14 foli + e + Bl (s)|s + Bl (s)|e) ds
0

T—o0
c(l+|z|g + |hE). O
Now, we can introduce the averaged equation
(7.10) du(t) = [Aru(t) + B(u(t))] dt + G(u(t)) dw? (t), wu(0)=z¢€ E.

In view of Lemma 7.3 and [6, Theorem 5.3], for any z € E, T > 0, and p > 1, (7.10)
admits a unique mild solution @ € LP(Q; Cy((0,T]; E)). In the next section, we will
show that the slow motion u. converges in probability to the averaged motion .

8. The averaging limit. In this last section we prove that the slow motion u,
converges to the averaged motion «, as € — 0. The proof of this averaging result is in
many respects similar to the proof of [10, Theorem 61].

THEOREM 8.1. Assume that Hypotheses 2.1 to 6.1 hold and fix x € C%(D) for
some 8 >0 andy € E. Then, if a is large enough and/or Ly, is small enough, for
any T >0 and n > 0, we have

(8.1) lim P ( sup |uc(t) —u(t)|g > 77> =0,

=0 te [0,T]

where U is the solution of the averaged equation (7.10).

For any h € D(A;), the slow motion . satisfies the identity

/ue(t &h(§) dE = / d£+/ / ue(s, €)Arh(€) dE ds
+/Ot/DB(ue(8,-))(€)h(£) d€d5+/Ot/D[Gl(ue(s)h](f)dw@"(s,f)—|—R6(t)7

where
0= / /D (B (ue(s), ve())(€) — Blue(s))(€)) h(€) dé ds.

Therefore, as in [9] and [10], due to the tightness of the family {L(uc)}ee 0,1] in
P(C([0,T]; E)), in order to prove Theorem 8.1 it is sufficient to prove the following.
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LEMMA 8.2. Under the same hypotheses as in Theorem 8.1, for any T > 0, we
have

(8.2) lim E sup |R.(t)|g =0.
=0 40,1

8.1. Proof of Lemma 8.2. For any n € N, we define
b1(§70'1’ 0-2) if |Ul| < n,
bin(§,01,02) =
bi(§, o1n/lo1],02) if |o1| > n,

and
b2(t55701702) if |O.1‘ < n,

b2,n(t7 ga 01, 02) .

bg(t,ﬁ,oln/|01|702) if |O’1‘ >n,
Concerning the corresponding composition operator, we have
(8.3) x € Bg(n) = B1,(z,y) = Bi(z,y), Ban(t,z,y) = Ba(t,z,y)

for every t € R and y € E. Notice that the mappings b, and bs, satisfy all
conditions in Hypotheses 2.6 and 2.8, respectively. For any fixed t € R, £ € D, and
o2 € R, the mappings b1, (&, -, 02), and bs ,,(¢,§, -, 02) are Lipschitz continuous and,
in view of (2.30),

(8.4) sup  |ban(t,€,01,02) = b2n(t, &, p1,02)| < enlor —pil, 01,01 € R
(t,)e RxD
o2€R

Moreover, for any n € N, we define

g1(&,01) if |oy| < m,
gl,n(fagl) =
g1(& o1n/|o1]) if |o1] > n.

The corresponding composition/multiplication operator is denoted by Gy .
Now, for any n € N, we introduce the system

(8.5)
du(t) = [Ayu(t) + Bin(u(t),v(t))] dt + Gy (u(t)) dw® (),

du(t) = % [(As(t/€) — a)v(t) + Ban(t/e, u(t), v(t))] dt + % Ga(t/e, v(t)) dw?2 (1)

with initial conditions u(s) = z and v(s) = y. We denote by ze,, = (Uen, Ve,n) its
solution.
Next, for any n € N, we introduce the problem

(8.6) du(t) = [(Aa(t) — )o(t) + Ban(t,x,0(t))] dt+Ga(t, v(t)) dw?(t), w(s) =y,
whose solution will be denoted by vZ(¢; s,y). Thanks to (8.3), for any ¢ > 0, we have

0¥ (t;s,y)  if |z|g < n,
(8.7) vn(t;s,y) =
v (tys,y) if |x|gp > n,
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where
z(§) if [z(§)] <n
ry(§) =
nsignz(§) if |z(§)| > n.
This implies that, for each n € N and = € FE, there exists an evolution of measures
family {u;"" }er for equation (8.6), and u;™" is given by

pi if |zle <n,

z,n _
wimif |zlg > n.
Moreover, due to (5.10), for any p > 1 we have
(8.8) E|v2(t;s,9)[% < cpn (1 40Pl €)|y\p) t> s

As all coefficients in equation (8.6) satisfy the same conditions as are fulfilled by
the coeflicients of equation (5.2), we have that a result analogous to Lemma 7.2 holds.
More precisely, if we define

B, (z) = lim —/ /Bln (z,y) puy " (dy) dt,

we have that

2
1

s+T B
69 E|7 [ Bualoitsp)ds - Buo)| <5 (L+al +lE) +a(la)

ﬂ\Q

E

for some mapping a : (0,+00) x E — [0,4+00) such that

(8.10) sup a(T,z) < c(l+|z|5'), =z€ E,
T>0
and
(8.11) lim sup «(T,z) =0
T—o0 e K

for every compact set K C E. Notice that
|z|g < n = B,(x) = B(z).

LEMMA 8.3. The mapping B, : E — E is Lipschitz continuous.
Proof. Due to (2.21), for every t € R and z1,29 € E, we have

[Bin (21, m5t (8)) = B2, m3° (1)
< cnfrr = 22lp 4 [Bin(@e, 13" (1) = Bin(@2, 177 (D)6

< celar —@alp + o (L4 gt (% + 2 () %) i (6) — ni2 (1) -
Due to (8.8), we have

(8.12) sup I {7 (1) B =t cpn < 00,
€
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and this implies

/Bm(:vl,y)u?’“(dy)—/ By (22, y) e (dy)
E E E

1

< E |Bu (o1, (6) = Bun(wz, 2 (0)| < ealor — ol + 6o (Eln () = 2 ()]3)

Now, if we adapt the proof of Proposition 5.4 to the present situation, we can easily
see that

supE [n* (t) — 22 (t)| 5 < cn |1 — 22|3,
teR

and this allows us to conclude that

sup
teR

/&M%MWWM*/&M%MMW@)S%M*@E
E E E

which implies the Lipschitz continuity of B,,. ]

As in [9] and [10], we prove the validity of Lemma 8.2 by using Khasminskii’s
approach based on time discretization, as introduced in [25].

To this purpose, for any € > 0, we divide the interval [0, T] in subintervals of size
0 > 0 for some constant §. > 0 to be determined, and we introduce the auxiliary fast
motion 0., defined in each time interval [kd., (k + 1)d ] for k = 0,1,...,[T/é.] as the
solution of the problem

do(t) = = [(A2(t/€) — @)v(t) + B2 n(t/€, ue n(kde), v(t))] dt

(8.13) + % Ga(t/e,v(t)) dw? (t),

a | =

V(kde) = ven(kde).

Notice that, due to the way in which 9., has been defined, we have that an estimate
analogous to (4.3) holds, that is, for any p > 1,

T
(8.14) K;MmAm%ﬁS%mﬂ+W@+w%)

As in [25] and [9], we want to prove the following approximation result.

LEMMA 8.4. Assume Hypotheses 2.1 to 2.10 and fir x € C%(D) and y € E.
Then, there exists a constant k > 0 such that if

K

b =€loge™ ",
then, for any fited n € N,

(8.15) lim sup E|de,(t) — ven(t)|% = 0.
e—0 te [O,T]

Proof. Let e > 0and n € Nbe fixed. For k =0,...,[T/d] and t € [kd, (k+1)d],
let Ac ,(t) be the solution of the problem

1

7Knt @2 Aen e) =Y,
NG en(t) dw™?, n(kde) =0

1
dAen(t) = — (A2 — @) A, (8) dEt +
€
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where
Ken(t) = Gon(t/e,0en(t)) — Gan(t/e,ven(t)).

Notice that, with the notations of section 2, we can write
(8.16) Aen(t) = VYo, e(Aen; k) (t) + T n(2), t € [kde, (k+1)d],

where .
1
Ve kb

If we define pe (t) := Oen(t) — Ve n(t) and ze n(t) := pen(t) — Aen(t), we have

L., (t) Ua,e(t,7)Ken(T) dw®? (r).

Bzen(t) =+ [(As(t/6) — 0)zen(t) + Honlt)] dt,  2en(k5) =0,

where, in view of (2.31),
Hon(t) = Bt/ e (8.),00m(8) — Bon(t/6, (1), ven (1)
= Ban(t/6,ten (55 0 (8) — B (16t (8), 00 (1)

— At/ s tuen(t), De,n(t), Ven(t))(2e,n(t) + Aen(t)).

By proceeding as in the proof of [10, Lemma 6.2], we have
o [t
|zen(t)|E < l/ 8_?(t_s)‘u67n(k66) — Uen(s)|p ds
€ Jks.

1 [t 1 [t
+ f/ exp (—/ Aen(r) dr) Aen(S) [Aen(8)|E ds
€ ké. € Js

where

)\e,n (t) = )\(t/€7 ge,n (t)a ue,n(ta ge,n(t))a @s,n(tv Es,n(t))a ve,n(ta fe,n(t)))

and & ,(t) is a point in D such that

|Zen(ts Een ()] = |2en(t)] -

Now, it is not difficult to check that an estimate analogous to (4.5) is also valid
for . Therefore, we get

(8.17)

E [en(t) = ven(DlE < cp B |Aen(OlF + o (1+ 2525 + lylE ) 670

+ cE sup \A€7n(s)|2E
SE [kbe,t]

(Lo (L s

< en (14 lalZ2p) + k) 020 4 cE wp Ren(s)lf
EIS €

2
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Since, for any o > 0 and € > 0, we have
Ua,e(t,s) =Uq,e(t,1)Uqe(r,s), s<r<t,
the usual factorization argument used in the autonomous case can also be used here,
so that, for s € [kd, (k + 1)d.] and n € (0,1), we have
S

sinTn 1

™ \/Ekée

Ten(s) = (s — T)"*lUmE(s, )Yy en(r)dr,

where

Yy en(r) = /k 5 (r = p) Wae (1, p) Ken(p) dur (p).

Therefore, by proceeding as in the proof of [10, Lemma 6.2], we have
2 1 . 2
(8.18) E sup |Fen(s)lp < cp— E[ben(s) = ven(s)|5 ds.
SE [kde,t] € Jks,
Thanks to (8.16) and (8.18), this implies
2 1 . 2
E sup [Aen(s)lp <o- E [0e,n(8) — ven ()5 ds
SE [kde,t] € Jks.
so that, thanks to (8.17), for ¢ € [kde, (k + 1)d],
t
~ me c N
E[9en(t) = ven(®)|E < ¢ (1 + |$|ée&3) + |y|2E> 5102 4 ° /kas B |0e.n(8) — ven(s)|% ds.

From the Gronwall lemma, this gives

. m cde
El00n(t) — ven (1} < e (14 10l + o) 82 exp (2.
Now, since
665 —K —CK
exp| — | =exp (c log e ) =€ "
€

we have
53(0)2 exp <C§E) _ 53(9)26—014 — ¢ K+2v(0) (IOg G—N)Q’Y(@) )
€

Hence, if we take k < 2v(0)/c, we have (8.15). |

Finally, we can prove (8.2). As in [10], we can show that, for any n € N,

C m
E sup |R.(t)] < E( sup |R€,n<t>|> + (L4 2™+ ) b s
te [0,T] te [0,T] n

Therefore, due to the arbitrariness of n € N, (8.2) follows once we prove that, for any
fixed n € N,

=0 te [0,T)

(8.19) limE< sup |R€’n(t)> =
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We have

(8.20)

/0 (Byn(tten(3), ven(s)) — Bl n(s)), h),, ds

limsup E sup
e—0 te (0,7

T
< lim sup IE/O |(B1n(ten (), Ven(s)) = Bin(uen([s/0]6e), Den(s)), h) | ds

e—0

+limsup E sup
e—0 te [0,T]

/ (Bun(tten ([5/810.), ten(5)) — Bu(tten(s)), ), ds|.

0

As in the proofs of [9, Lemma 6.3] and [10, Lemma 6.2], we have

E/ ’<B1,n(u6,n(3)7vem(5)) - Bl,n(ue’n([s/ée](x)a@6,n(3))7h>H‘ ds
0

N|=

0)m ~
< e bl (1+ 200 + wf3) <6z<0> + 5 (B [ven(®) = 6un(t)) ) -
€10,

Therefore, in view of Lemma 8.4, from (8.20),

/0 <Bl,n(ueﬂn(3)ave,n(s)) - Bn(UE;N(S))’h>H ds

limsup E sup
e—0 te [0,T7]

=limsup E sup
€0 te [0,T]

/O <Bl,n(ue,n([s/5e]5e)v Ven(s)) — Bn(ue’n(S)), h>H ds| .

Again, as in the proofs of [9, Lemma 6.3] and [10, Lemma 6.2], we have

t
E sup / <Bl,n(u67n([s/6€]6€),ﬁem(s)) — Bn(u@n(s))7 h>H ds
te[0,7]1J0
[T'/de] (k+1)6. ~
E / <Bl7n(u€7n([s/5e]6ﬁ), Oen(8)) — By (e n(kde)), h>H ds
k=0 ke

+ orn Wl (14 12128 ) + lyle ) [T/5] 67O+

so that we have to show that

(8.21)
[T/5] (k+1)6. ~
lim E / (B1,n(tien([3/0c0c), Den(s)) = Bn(te,n(kbe)), h),, ds| = 0.
e—0 P k6.
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If we set (. := /€, we have

(k+1)5. ~
E /k (Bun (e ([5/66.), 0en()) = Br(tten (k6.)), 1), ds

de

de
—E /0 (Bun(ten([5/58.), en (k6e5)) — Bu(uen(kS.), B, ds

e
=E / <Bl,n(ue,n([s/5e}5e)a 526771(]656)70‘)"(166‘)(8/6) - Bn(us,n(kée))’ h>H ds
0

1 CF —
=0.E | — / <Bl7n(ue,n([3/5e]5e)7@ﬁe’"(kée)me’n(wg)(5) - Bn(ue,n(kée))v h> ds
Ce 0 H

)

where g (F9e):ven (k9e) (s) is the solution of the fast motion equation (5.1) with frozen

slow component wu, ,,(kd¢) and initial datum v, (kd), and noise W% independent of
both of them. According to (8.9), (4.2), and (4.3), this yields

(k+1)dc B
E /k (Bi,n(ten([8/0e)0e), De,n(5)) — Br(ten(kde)), h>H ds

de

< 5% (14 E e n (k|5 + E [ven (k60)|52) [y + E G, ten (kSe)).

Now, the family
{tten(kde) : €e>0, ne N, k=0,...,[T/é]}
is tight. Then, for any 7 > 0, there exists a compact set K, C E such that
P (uen(kde) € K,‘;) <.
Therefore, due to (8.10), we have
Ea(Ce, te.n(kde))

=E (a(geaue,n(kés))§ ue,n(k(se) S Kn) +E (C(l + Iue,n(k(sﬁ) g‘ll) ) ufﬂl(k(sf) € Kfl)
< sup a(Ce, )+ /e (1 + (Euen(kde) 2Em1>§) :
aS Kn

Thanks to (8.11), we can conclude that

HmSUpEa(Ce,uE’n(k(se)) <c(l+ ‘xl% + |y|KE) \/ﬁ,

e—0

for some x > 0, and, due to the arbitrariness of 7, this implies (8.21).
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