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AVERAGING PRINCIPLE FOR NONAUTONOMOUS SLOW-FAST
SYSTEMS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS:

THE ALMOST PERIODIC CASE∗
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Abstract. We study the validity of an averaging principle for a slow-fast system of stochastic
reaction-diffusion equations. We assume here that the coefficients of the fast equation depend on
time, so that the classical formulation of the averaging principle in terms of the invariant measure of
the fast equation is no longer available. As an alternative, we introduce the time-dependent evolution
family of measures associated with the fast equation. Under the assumption that the coefficients in
the fast equation are almost periodic, the evolution family of measures is almost periodic. This allows
us to identify the appropriate averaged equation and prove the validity of the averaging limit.
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1. Introduction. We deal with a class of systems of stochastic partial differen-
tial equations of reaction-diffusion type on a bounded domain D of Rd with d ≥ 1:

(1.1)



∂uε
∂t

(t, ξ) = A1uε(t, ξ) + b1(ξ, uε(t, ξ), vε(t, ξ)) + g1(ξ, uε(t, ξ))
∂wQ1

∂t
(t, ξ),

∂vε
∂t

(t, ξ) =
1

ε
[(A2(t/ε)− α)vε(t, ξ) + b2(t/ε, ξ, uε(t, ξ), vε(t, ξ))]

+
1√
ε
g2(t/ε, ξ, vε(t, ξ))

∂wQ2

∂t
(t, ξ),

uε(0, ξ) = x(ξ), vε(0, ξ) = y(ξ), ξ ∈ D,

N1uε (t, ξ) = N2vε (t, ξ) = 0, t ≥ 0, ξ ∈ ∂D,

where ε is a small positive parameter and α is a fixed positive constant. The operator
A2 and the functions b2 and g2 in the fast equation are allowed to depend on time.
We assume that A2 is periodic, and b2 and g2 are almost periodic in time.

In a series of previous papers ([9], [10], and [11]), the validity of an averaging
principle for some classes of slow-fast stochastic reaction-diffusion systems has been
investigated, in the case where the fast equation coefficients do not depend on time.
It has been proved that the slow motion uε converges in C([0, T ];L2(D)), as ε ↓ 0,
to the solution ū of the so-called averaged equation, obtained by taking the average
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2844 SANDRA CERRAI AND ALESSANDRA LUNARDI

of the coefficients b1 and g1 (in the case where both depend on the fast motion)
with respect to the invariant measure of the fast motion, with frozen slow component
(see formulas (1.2) and (1.3)). Moreover, in [8] the fluctuations of uε around the
averaged motion ū have been studied. More precisely, it has been proven that, under
suitable, more restrictive conditions, the normalized difference zε := (uε − ū)/

√
ε is

weakly convergent in C([0, T ];L2(D)), as ε ↓ 0, to a process z, which is given in
terms of a Gaussian process whose covariance is explicitly described. Other aspects of
the averaging principle for slow-fast systems of stochastic partial differential equations
have been studied by several other authors; see, e.g., [17], [18], [23], [30], [31], and [41].

Unlike in all the above-mentioned papers, where only the time-independent case
has been considered, in the present paper we deal with nonautonomous systems of
reaction-diffusion equations of Hodgkin–Huxley or Ginzburg–Landau type, perturbed
by a Gaussian noise of multiplicative type. Such systems arise in many areas of biology
and physics and have attracted considerable attention. In particular, in neurophysi-
ology the Hodgkin–Huxley model, and its simplified version given by the FitzHugh–
Nagumo system, are used to describe the activation and deactivation dynamics of a
spiking neuron (see, e.g., [37] for a mathematical introduction to this theory). The
classical Hodgkin–Huxley model has time-independent coefficients, but, as mentioned
by Wainrib in [40], where an analogous problem for finite dimensional systems has
been studied, systems with time-dependent coefficients are particularly important for
studying models of learning in neuronal activity and, for this reason, are worthy of
thorough analysis.

Such analysis does not follow in a straightforward manner from results already
available in the mathematical literature. On the contrary, it requires the introduction
of some new ideas and techniques.

Actually, in the standard setting of time-independent coefficients, the averaged
motion ū solves the equation

(1.2)


∂ū

∂t
(t, ξ) = A1ū(t, ξ) + B̄(ū(t))(ξ) + g1(ξ, ū(t, ξ))

∂wQ1

∂t
(t, ξ),

ū(0, ξ) = x(ξ), ξ ∈ D, N1ū(t, ξ) = 0, t ≥ 0, ξ ∈ ∂D.

In the equation above, the averaged coefficient B̄ is defined by

(1.3) B̄(x) =

∫
C(D̄)

B1(x, z)µx(dz), x ∈ C(D̄),

where B1(x, z)(ξ) = b1(ξ, x(ξ), z(ξ)) for any x, z ∈ C(D̄) and ξ ∈ D̄, and where µx is
the invariant measure of the fast equation with frozen slow component x ∈ C(D̄):

(1.4)



∂vx,y

∂t
(t, ξ) = (A2 − α)vx,y(t, ξ) + b2(ξ, x(ξ), vx,y(t, ξ))

+ g2(ξ, x(ξ), vx,y(t, ξ))
∂wQ2

∂t
(t, ξ),

vx,y(s, ξ) = y(ξ), ξ ∈ D, N2v
x,y(t, ξ) = 0, t ≥ 0, ξ ∈ ∂D.

Furthermore, because of the ergodicity of µx, as proven in [10],

(1.5) E

∣∣∣∣∣ 1

T

∫ t+T

t

B1(x, vx,y(s)) ds− B̄(x)

∣∣∣∣∣
C(D̄)

≤ α(T )
(

1 + |x|κ1

C(D̄)
+ |y|κ2

C(D̄)
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for some function α : [0,∞)→ [0,∞) such that

lim
T→∞

α(T ) = 0.

In the present paper, as A2, b2, and g2 depend on time, we no longer have an
invariant measure µx for the fast equation with frozen slow component x ∈ C(D̄).
Nevertheless, we can prove that there exists an evolution system of probability mea-
sures {µxt ; t ∈ R} on C(D̄) associated with the following fast equation:

(1.6)



∂vx,y

∂t
(t, ξ) = [(A2(t)− α)vx,y(t, ξ) + b2(t, ξ, x(ξ), vx,y(t, ξ))]

+ g2(t, ξ, vx,y(t, ξ))
∂wQ2

∂t
(t, ξ),

vx,y(s, ξ) = y(ξ), ξ ∈ D, N2v
x,y (t, ξ) = 0, t ≥ s, ξ ∈ ∂D.

This means that µxt is a probability measure on C(D̄) for any t ∈ R, and, if P xs,t
is the transition evolution operator associated with (1.6), it holds that∫

C(D̄)

P xs,tϕ(y)µxs (dy) =

∫
C(D̄)

ϕ(y)µxt (dy), s < t,

for every ϕ ∈ Cb(C(D̄)). Moreover, we show that, under suitable dissipativity condi-
tions,

(1.7)

∣∣∣∣∣P xs,tϕ(y)−
∫
C(D̄)

ϕ(z)µxt (dz)

∣∣∣∣∣ ≤ ‖ϕ‖C1
b (C(D̄)) e

−δ(t−s) (1 + |x|C(D̄) + |y|C(D̄)

)
for some positive constant δ > 0.

Now, in order to prove the validity of an averaging principle, the next fundamental
step consists in identifying an averaged motion ū as the solution of a suitable averaged
equation. Unfortunately, due to the lack of an invariant measure, we do not have
anything like (1.3). Still, due to the assumption that A2 is periodic and both b2 and
g2 are almost periodic in time, and to the fact that for any fixed R > 0 the family of
measures

ΛR :=
{
µxt ; t ∈ R, x ∈ BR(C(D̄))

}
is tight in P(C(D̄)), by proceeding as in [13] we can prove that the mapping

t ∈ R 7→ µxt ∈ P(C(D̄))

is almost periodic for every x ∈ C(D̄).
This allows us to find an alternative way to define B̄. Actually, we prove that for

any compact set K ⊂ C(D̄) the family of functions

(1.8)

{
t ∈ R 7→

∫
E

B1(x, z)µxt (dz) ∈ C(D̄) : x ∈ K

}
is uniformly almost periodic. Then, because of almost periodicity, we can define

(1.9) B̄(x) := lim
T→∞

1

T

∫ T

0

∫
C(D̄)

B1(x, y)µxt (dy) dt, x ∈ C(D̄).
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2846 SANDRA CERRAI AND ALESSANDRA LUNARDI

Of course, in order to prove that (1.2), with B̄ defined as in (1.9), is well posed in
C([0, T ];C(D̄)), we need B̄ to satisfy some nice properties. Since B1 is not Lipschitz
continuous, there is no hope that B̄ is Lipschitz continuous. Nonetheless, we show
that, as a consequence of the monotonicity of B1 and of some nice properties satisfied
by the evolution family of measures {µxt }t∈R, the mapping B̄ : C(D̄) → C(D̄) is
locally Lipschitz continuous and has some monotonicity properties that guarantee the
well posedness of (1.2).

Next, in the same spirit as (1.5), by using (1.7) and (1.9) we show that

E

∣∣∣∣∣ 1

T

∫ s+T

s

B1(x, vx(t; s, y)) dt− B̄(x)

∣∣∣∣∣
2

C(D̄)

≤ c

T

(
1 + |x|κ1

C(D̄)
+ |y|κ2

C(D̄)

)
+ α(T, x)

(1.10)

for some mapping α : [0,∞)× C(D̄)→ [0,+∞) such that

(1.11) lim
T→∞

α(T, x) = 0.

This allows us to adapt to the present situation the classical Khasminskii method,
based on localization in time, and to prove the main result of this paper, namely that,
for any fixed η > 0,

(1.12) lim
ε→0

P

(
sup

t∈ [0,T ]

|uε(t)− ū(t)|C(D̄) > η

)
= 0,

where ū is the solution of the averaged equation (1.2) with B̄ defined as in (1.9).
Notice that here, due to the polynomial growth of the coefficients, we have also

to proceed with a localization in space, which requires, among other things, a suitable
approximation for the family of measures {µxt }t∈R.

Of course, for this procedure to work, we need several technical assumptions on
the data. However, we are able to treat slow-fast systems of stochastic reaction-
diffusion equations as (1.1), where, for example, the differential operators A1 and
A2(t) are given by

A1 = ∆, A2(t) = γ(t) ∆

for some continuous periodic function γ with positive infimum, the boundary condi-
tions are of Dirichlet type, the reaction coefficients b1 and b2 are given by

b1(ξ, u, v) = −α(ξ)u2n+1 +
2n∑
j=0

αj(ξ)u
j + h1(ξ, v)

and

b2(t, ξ, u, v) = −β(t, ξ)v2m+1 +
2m∑
j=1

βj(t, ξ)v
j + h2(t, ξ, u),

where h1 and h2 are continuous and bounded functions such that h2(·, ξ) is almost
periodic, uniformly with respect to ξ ∈ D̄, all coefficients α, β, αj , and βj are contin-
uous,

inf
ξ∈ D̄

α(ξ) > 0, inf
(t,ξ)∈R+×D̄

β(t, ξ) > 0,
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and all mappings β(·, ξ) and βj(·, ξ) are almost periodic, uniformly with respect to
ξ ∈ D̄. Moreover, we can take as the diffusion coefficients g1 and g2 two bounded
continuous functions, with g2(·, ξ, v) almost periodic, uniformly with respect to ξ ∈ D̄
and v in bounded intervals of R. We would like to stress that these are just simple
examples, but in fact we can cover more general situations.

Finally, before concluding this introduction, we would like to say a few words
about the almost periodicity assumption for the coefficients of the fast equation.
In order to prove the validity of the averaging principle (1.12), estimate (1.10) and
limit (1.11) are fundamental and unavoidable. When B̄(x) is defined in terms of
the invariant measure µx as in the autonomous case, due to the ergodicity of µx we
obtain (1.10) and (1.11). But here, as we do not have µx, it is necessary to define B̄(x)
directly by the limit in (1.9), whose existence is guaranteed by the almost periodicity
of the family of functions (1.8). Actually, as we recall in Theorem 3.4, the almost
periodicity of any mapping f : R→ Y implies the existence of the limit

lim
T→∞

1

T

∫ T

0

f(s) ds ∈ Y.

This is why we believe that, in the case of time-dependent coefficients, the assumption
of almost periodicity is the natural one.

2. Notations, hypotheses, and a few preliminary results. Let D be a
bounded domain of Rd with d ≥ 1, having smooth boundary. Throughout the paper,
we shall denote by H the separable Hilbert space L2(D), endowed with the scalar
product

〈x, y〉H =

∫
D

x(ξ)y(ξ) dξ

and with the corresponding norm | · |H . We shall denote by H the product space
H ×H, endowed with the scalar product

〈x, y〉H =

∫
D

〈x(ξ), y(ξ)〉R2 dξ = 〈x1, y1〉H + 〈x2, y2〉H

and the corresponding norm | · |H.
Next, we shall denote by E the Banach space C(D̄), endowed with the sup-norm

|x|E = sup
ξ∈ D̄
|x(ξ)|

and the duality 〈·, ·〉E . The product space E × E will be endowed with the norm

|x|E×E =
(
|x1|2E + |x2|2E

) 1
2

and the corresponding duality 〈·, ·〉E×E . Finally, for any θ ∈ (0, 1), we shall denote by

Cθ(D̄) the subspace of θ-Hölder continuous functions, endowed with the usual norm

|x|Cθ(D̄) = |x|E + [x]θ = |x|E + sup
ξ,η∈ D̄
ξ 6=η

|x(ξ)− x(η)|
|ξ − η|θ

.

For any p ∈ [1,∞] with p 6= 2, the norms in Lp(D) and Lp(D)×Lp(D) will both
be denoted by | · |p. If δ > 0 and p <∞, we will denote by | · |δ,p the norm in W δ,p(D):

(2.1) |x|δ,p := |x|p +

(∫
D

∫
D

|x(ξ)− x(η)|p

|ξ − η|δp+d
dξ dη

) 1
p

.
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Now, we introduce some notations which we will use in what follows (for all
details we refer to the reader [14, Appendix D] and also, e.g., [5, Appendix A]). For
any x ∈ E, we denote

Mx =
{
ξ ∈ D̄ : |x(ξ)| = |x|E

}
.

Moreover, for any x ∈ E \ {0}, we set

Mx = { δx,ξ ∈ E? ; ξ ∈ Mx } ,

where

〈δx,ξ, y〉E =
x(ξ)y(ξ)

|x|E
, y ∈ E,

and for x = 0, we set
M0 = {h ∈ E? : |h|E? = 1 } .

Clearly, we have

Mx ⊆ ∂|x|E := {h ∈ E? ; |h|E? = 1, 〈h, x〉E = |x|E }

for every x ∈ E, and, due to the characterization ∂|x|E , it is possible to show that
if #Mx = 1, then Mx = ∂|x|E . In particular, if u : [0, T ] → E is any differentiable
mapping, then

(2.2)
d

dt

−
|u(t)|E ≤ 〈u′(t), δ〉E

for any t ∈ [0, T ] and δ ∈ Mu(t).
Analogously, if x ∈ E × E, we set

Mx =
{
ξ = (ξ1, ξ2) ∈ D̄ × D̄ : |x1(ξ1)| = |x1|E , |x2(ξ2)| = |x2|E

}
.

Moreover, for x ∈ E × E \ {0}, we set

Mx = { δx,ξ ∈ (E × E)? ; ξ ∈ Mx } ,

where

〈δx,ξ, y〉E×E =
x1(ξ1)y1(ξ1) + x2(ξ2)y2(ξ2)

|x|E×E
,

and for x = 0, we set

M0 =
{
h ∈ (E × E)? : |h|(E×E)? = 1

}
.

As above, we have

Mx ⊆ ∂ |x|E×E :=
{
h ∈ (E × E)? ; |h|(E×E)? = 1, 〈h, x〉E×E = |x|E

}
and (2.2) holds true, with E replaced by E × E.

Now, let X be any Banach space. We shall denote by Bb(X) the space of bounded
Borel functions ϕ : X → R. Bb(X) is a Banach space, endowed with the sup-norm

‖ϕ‖∞ := sup
x∈X

|ϕ(x)|.
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UCb(X) will be the subspace of uniformly continuous mappings. Moreover, we shall
denote by L(X) the space of bounded linear operators on X and, in the case where
X is a Hilbert space, we shall denote by L2(X) the subspace of Hilbert–Schmidt
operators, endowed with the norm

‖Q‖L2(X) =
√

Tr [Q?Q].

The stochastic perturbations in the slow and in the fast motion equations (1.1)
are given, respectively, by the Gaussian noises ∂wQ1/∂t(t, ξ) and ∂wQ2/∂t(t, ξ) for
t ≥ 0 and ξ ∈ D, which are assumed to be white in time and colored in space, in the
case of space dimension d > 1. Formally, the cylindrical Wiener processes wQi(t, ξ)
are defined by

(2.3) wQi(t, ξ) =
∞∑
k=1

Qiek(ξ)βk(t), i = 1, 2,

where {ek}k∈N is a complete orthonormal basis in H, {βk(t)}k∈N is a sequence of mu-
tually independent standard Brownian motions defined on the same complete stochas-
tic basis (Ω,F ,Ft,P), and Qi is a bounded linear operator on H.

2.1. The operators A1 and A2(t). The operators A1 and A2(t), t ∈ R, are
second order uniformly elliptic operators, having continuous coefficients on D̄, and
the boundary operators N1 and N2 can be either the identity operator (Dirichlet
boundary condition) or a first order operator with C1 coefficients satisfying a uniform
nontangentiality condition.

In what follows, we shall assume that the operator A2(t) has the form

(2.4) A2(t) = γ(t)A2 + L(t), t ∈ R,

where A2 is a second order uniformly elliptic operator with continuous coefficients on
D̄, independent of t, and L(t) is a first order differential operator of the form

(2.5) L(t, ξ)u(ξ) = 〈l(t, ξ),∇u(ξ)〉Rd , t ∈ R, ξ ∈ D̄.

Hypothesis 2.1.
1. The function γ : R→ R is continuous and there exist γ0, γ1 > 0 such that

(2.6) γ0 ≤ γ(t) ≤ γ1, t ∈ R.

2. The function l : R× D̄ → Rd is continuous and bounded.

The realizations Ai with i = 1, 2 of the differential operators Ai in the spaces
Lp(D) and C(D), endowed with the domains

D(A
(p)
i ) =

{
f ∈ W 2,p(D) : Nif = 0 at ∂D

}
, i = 1, 2,

and

D(Ai) =

{
f ∈

⋂
q>1

W 2,q(D) : Aif ∈ C(D), Nif = 0 at ∂D

}
, i = 1, 2,

generate analytic semigroups in Lp(D), 1 < p <∞, and in E, respectively. Since A
(p)
i

is an extension of Ai and etA
(p)
i is an extension of etAi , we shall drop the indices and

write Ai and etAi , even working in X = Lp(D).
As in [9] and [10], we assume that the operators A1, A2 and Q1, Q2 satisfy the

following conditions.
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Hypothesis 2.2. For i = 1, 2, there exist a complete orthonormal system {ei,k}k∈N
of H, which is contained in C1(D), and two sequences of nonnegative real numbers
{αi,k}k∈N and {λi,k}k∈N such that

Ai ei,k = −αi,k ei,k, Qiei,k = λi,kei,k, k ≥ 1,

and

κi :=
∞∑
k=1

λρii,k |ei,k|
2
∞ <∞, ζi :=

∞∑
k=1

α−βii,k |ei,k|
2
∞ <∞

for some constants ρi ∈ (2,+∞] and βi ∈ (0,+∞) such that

(2.7)
βi(ρi − 2)

ρi
< 1.

For comments and examples concerning these assumptions on the operators Ai
and Qi and the eigenfunction ei,k, we refer the reader to [9, Remark 2.1] and [24].

For any t > 0, δ ∈ [0, 2], and p > 11, the semigroups etAi map Lp(D) into
W δ,p(D) with

(2.8) |etAix|δ,p ≤ ci (t ∧ 1)−
δ
2 |x|p, x ∈ Lp(D).

By the Sobolev embedding theorem, this implies that the semigroups etAi map Lp(D)
into Lq(D) for any 1 < p ≤ q, and

(2.9) |etAix|q ≤ ci (t ∧ 1)−
d(q−p)

2pq |x|p, x ∈ Lp(D).

Moreover, etAi maps C(D) into Cθ(D̄) for any θ(0, 2) with

(2.10) |etAix|Cθ(D̄) ≤ ci (t ∧ 1)−
θ
2 |x|E .

Now, we define

γ(t, s) :=

∫ t

s

γ(r) dr, s < t,

and, for any ε > 0 and λ ≥ 0, we set

(2.11) Uλ,ε(t, s) = e
1
ε γ(r,ρ)A2−λε (t−s), s < t.

In the case ε = 1, we write Uλ(t, s), and in the case ε = 1 and λ = 0, we write U(t, s).
Next, for any ε > 0, λ ≥ 0 and for any u ∈ C([s, t];W 1,p

0 (D)) and r ∈ [s, t], we
define

(2.12) ψλ,ε(u; s)(r) =
1

ε

∫ r

s

Uλ,ε(r, ρ)L(ρ)u(ρ) dρ, s < r < t,

where L(ρ) is the first order differential operator defined in (2.5). Notice that if u is
a solution to

u′(t) =
1

ε
(A2(t)− λ)u(t), t > s, u(s) = 0,

then u satisfies u(r) = ψλ,ε(u; s)(r) for s < r < t. For ε = 1, we simply write
ψλ(u; s)(r).
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Lemma 2.3. For any s < t, the operator eγ(t,s)A2L(s) can be extended as a linear
operator both in Lp(D) with 1 < p < ∞ and in E. Moreover, for any η > 0, its
extension (still denoted by eγ(t,s)A2) satisfies

(2.13) ‖eγ(t,s)A2L(s)‖L(E) ≤ cη ((t− s) ∧ 1)−( 1
2 +η).

Proof. Let f ∈ W 1,p
0 (D). For any 0 < s < t and ϕ ∈ Lp

′
(D), since eγ(t,s)A2 is

self-adjoint we have∫
D

(
eγ(t,s)A2L(s)f

)
(x)ϕ(x) dx =

∫
D

L(s)f(x) eγ(t,s)A2ϕ(x) dx.

Therefore, if we integrate by parts, due to (2.8) (with δ = 1) and (2.6), we get∣∣∣∣∫
D

(
eγ(t,s)A2L(s)f

)
(x)ϕ(x) dx

∣∣∣∣ =

∣∣∣∣∫
D

f(x)Di

(
li(s, ·)eγ(t,s)A2ϕ

)
(x) dx

∣∣∣∣
≤ c ((t− s) ∧ 1)

− 1
2 |f |Lp(D) |ϕ|Lp′ (D).

Due to the arbitrariness of ϕ ∈ Lp
′
(D), this yields∣∣∣eγ(t,s)A2L(s)f

∣∣∣
Lp(D)

≤ c ((t− s) ∧ 1)
− 1

2 |f |Lp(D).

Due to the density of W 1,p
0 (D) in Lp(D), the operator eγ(t,s)A2L(s) has a bounded

linear extension to Lp(D) (still denoted by eγ(t,s)A2) that satisfies

(2.14) ‖eγ(t,s)A2L(s)‖L(Lp(D)) ≤ c ((t− s) ∧ 1)
− 1

2.

Now, we fix δ ∈ (0, 1) and p > d/δ so that W δ,p(D) is continuously embedded in
C(D̄). For any 0 < s < t, we write

eγ(t,s)A2L(s) = eγ(t,(t−s)/2)A2eγ((t−s)/2,s)A2L(s).

The operator eγ(t,(t−s)/2)A2 maps Lp(D) into W δ,p(D) with

‖eγ(t,(t−s)/2)A2‖L(Lp(D),W δ,p(D)) ≤ c((t− s) ∧ 1)−
δ
2 .

Using the semigroup law and (2.14), we obtain that eγ(t,s)A2L(s) maps Lp(D) into
W δ,p(D) with

‖eγ(t,s)A2L(s)‖L(Lp(D),W δ,p(D)) ≤ c ((t− s) ∧ 1)
− 1+δ

2 .

Now, as C(D̄) is continuously embedded in any Lp(D) and W δ,p(D) is continuously
embedded in C(D̄) for p > d/δ, we can conclude.

As a consequence of (2.13), if we proceed as in [5, pages 176–177], we can show
that ψλ,ε(·; s) is a bounded linear operator in C([s, t];E) and there exists a continuous
increasing function cλ with cλ(0) = 0 such that, for any s < t,

(2.15) |ψλ,ε(u; s)|C([s,t];E) ≤ cλ((t− s)/ε)|u|C([s,t];E).

Moreover, if λ > 0, then cλ ∈ L∞([0,+∞)) and

(2.16) lim
λ→∞

|cλ|∞ = 0.
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Lemma 2.4. For every η ∈ (0, 1) and p ≥ 1, there exists k̄ ≥ 1 such that, for
every k ≥ k̄, s < t, 0 < δ < λ, and u ∈ C([s, t];E),

(2.17) eδkr|ψλ(u; s)(r)|kη,p ≤ ck(λ− δ)
∫ r

s

e−(λ−δ)(r−ρ)eδkρ |u(ρ)|kE dρ, s < r < t,

for some continuous decreasing function ck such that

lim
γ→∞

ck(γ) = 0.

Proof. Due to (2.8) and (2.13), for any η ∈ (0, 1) and p ≥ 1, we have

|ψλ(u; s)(r)|η,p ≤ c
∫ r

s

e−λ(r−ρ)((r − ρ) ∧ 1)−
1+η
2 |u(ρ)|Lp(D) dρ

≤ c e−δr
∫ r

s

e−(λ−δ)(r−ρ)((r − ρ) ∧ 1)−
1+ε
2 eδρ |u(ρ)|E dρ.

Therefore, if we take k̄ such that k̄(1 + η)/2(k̄ − 1) < 1, for any k ≥ k̄, we have

eδkr|ψλ(u; s)(r)|kη,p ≤ ck
(∫ r−s

0

e−(λ−δ)ρ(ρ ∧ 1)−
(1+η)k
2(k−1) dρ

)k−1

·
∫ t

s

re−(λ−δ)(r−ρ)eδkρ |u(ρ)|kE dρ.

This implies (2.17), if we set

ck(γ) = ck

(∫ +∞

0

e−(λ−δ)ρ(ρ ∧ 1)−
(1+η)k
2(k−1) dρ

)k−1

.

Due to the Sobolev embedding theorem, if we pick p̄ large enough such that
ηp̄ > d, we have that, for any k ≥ k̄,

(2.18) eδkr|ψλ(u; s)(r)|kCθ(D̄) ≤ ck(λ− δ)
∫ r

s

e−(λ−δ)(r−ρ)eδkρ |u(ρ)|kE dρ, s < r < t,

where θ = η − d/p̄. In particular, for any k ≥ k̄,

(2.19) eδkr|ψλ(u; s)(r)|kE ≤ ck(λ− δ)
∫ r

s

e−(λ−δ)(r−ρ)eδkρ |u(ρ)|kE dρ, s < r < t.

Lemma 2.5. For any u ∈ Lk(s, t;E) with k ≥ 1, and for any ε > 0 and λ ≥ 0, it
holds that

|ψλ,ε(u; s)|Lk(s,t;E) ≤ cλ,k((t− s)/ε)|u|Lk(s,t;E).

Moreover, if λ > 0, then cλ,k ∈ L∞(0,∞) and

lim
λ→∞

|cλ,k|∞ = 0.

Proof. As in the proof of Lemma 2.4, for any η ∈ (0, 1) and p ≥ 1, we have

|ψλ,ε(u; s)(r)|η,p ≤
c

ε

∫ r

s

e−
λ
ε (r−ρ)((r − ρ)/ε ∧ 1)−

1+η
2 |u(ρ)|E dρ.

D
ow

nl
oa

de
d 

07
/2

8/
17

 to
 1

29
.2

.1
9.

10
2.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AVERAGING FOR NONAUTONOMOUS SLOW-FAST SRDES 2853

Therefore, if we pick p̄ large enough so that ηp̄ > d, for any k ≥ 1, we have, by the
Young inequality,∫ t

s

|ψλ,ε(u; s)(r)|kE dr ≤
ck
εk

∫ t

s

(∫ r

s

e−
λ
ε (r−ρ)((r − ρ)/ε ∧ 1)−

1+η
2 |u(ρ)|E dρ

)k
dr

≤ ck
εk

∫ t

s

|u(r)|kE dr
(∫ t−s

0

e−
λ
ε r(r/ε ∧ 1)−

1+η
2 dr

)k
.

Since

1

εk

(∫ t−s

0

e−
λ
ε r(r/ε ∧ 1)−

1+η
2 dr

)k
=

(∫ (t−s)/ε

0

e−λr(r ∧ 1)−
1+η
2 dr

)k
,

we conclude by taking

cλ,k(γ) :=

(∫ γ

0

e−λr(r ∧ 1)−
1+η
2 dr

)k
.

2.2. The coefficients bi and gi. As far as the reaction coefficient b1 : D̄×R2 →
R in the slow equation is concerned, we assume the following conditions, which are
the same as those in the paper [10].

Hypothesis 2.6.
1. The mapping b1 : D̄ × R2 → R is continuous and there exists m1 ≥ 1 such

that

(2.20) sup
ξ∈ D̄
|b1(ξ, σ)| ≤ c (1 + |σ1|m1 + |σ2|) , σ = (σ1, σ2) ∈ R2.

2. There exists θ ≥ 0 such that

(2.21) sup
ξ∈ D̄
|b1(ξ, σ)− b1(ξ, ρ)| ≤ c

(
1 + |σ|θ + |ρ|θ

)
|σ − ρ|, σ, ρ ∈ R2.

3. There exists c > 0 such that, for any σ, h ∈ R2,

(2.22) sup
ξ∈ D̄

(b1(ξ, σ + h)− b1(ξ, σ))h1 ≤ c |h1| (1 + |σ|+ |h|) .

Example 2.7 (from [10]). Let h : D̄ × R→ R be a continuous function such that
h(ξ, ·) : R → R is locally Lipschitz continuous, uniformly with respect to ξ ∈ D̄.
Assume that

(2.23) sup
ξ∈ D̄
|h(ξ, s)| ≤ c (1 + |s|m) , s ∈ R,

and

(2.24) h(ξ, s1)− h(ξ, s2) = ρ(ξ, s1, s2)(s1 − s2), ξ ∈ D̄, s1, s2 ∈ R,

for some ρ : D̄ × R2 → R such that

sup
ξ∈ D̄

s1,s2∈R

ρ(ξ, s1, s2) <∞.D
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Moreover, let k : D̄×R2 → R be a continuous function such that k(ξ, ·) : R2 → R has
linear growth and is locally Lipschitz continuous, uniformly with respect to ξ ∈ D̄.

Now, we fix any continuous function f : D̄ × R → R such that f(ξ, ·) is of class
C1 for any ξ ∈ D̄, and

(2.25) 0 ≤ ∂f

∂s
(ξ, s) ≤ c, (ξ, s) ∈ D̄ × R,

for some c > 0. If we define

b1(ξ, σ) = f(ξ, h(ξ, σ1) + k(ξ, σ1, σ2)),

it is not difficult to check that conditions 1 and 3 in Hypothesis 2.6 are satisfied.
Moreover, if we assume that h and k are differentiable and their derivatives have
polynomial growth, then condition 2 is also satisfied.

Next, let β and βi be continuous functions from D̄ into R for i = 1, . . . , 2k, and
assume

inf
ξ∈ D̄

β(ξ) > 0.

Then, it is possible to check that the function

h(ξ, s) := −β(ξ)s2k+1 +
2k∑
i=1

βi(ξ)s
i

satisfies conditions (2.23) and (2.24). �

For the reaction term b2 : R × D̄ × R2 → R in the fast equation, we assume the
following conditions.

Hypothesis 2.8.
1. The mapping b2 : R × D̄ × R2 → R is continuous and there exists m2 ≥ 1

such that

(2.26) sup
(t,ξ)∈R×D̄

|b2(t, ξ, σ)| ≤ c (1 + |σ1|+ |σ2|m2) , σ = (σ1, σ2) ∈ R2.

2. The mapping b2(t, ξ, ·) : R2 → R is locally Lipschitz continuous, uniformly
with respect to (t, ξ) ∈ R× D̄.

3. There exists c > 0 such that, for any σ, h ∈ R2,

(2.27) sup
(t,ξ)∈R×D̄

(b2(t, ξ, σ + h)− b2(t, ξ, σ))h2 ≤ c |h2| (1 + |σ|+ |h|) .

4. For every (t, ξ) ∈ R× D̄, we have

(2.28) b2(t, ξ, σ1, σ2)− b2(t, ξ, ρ1, σ2) = θ(t, ξ, σ1, ρ1, σ2)

for some continuous function θ : R× D̄ × R3 → R such that
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inf
(t,ξ)∈R×D̄

(σ1,σ2)∈R2, h>0

θ(t, ξ, σ1, σ1 + h, σ2) sup
(t,ξ)∈R×D̄

(σ1,σ2)∈R2, h>0

θ(t, ξ, σ1, σ1 + h, σ2) ≥ 0,
(2.29)

and such that for any R > 0 there exists LR > 0 with

(2.30) σ1, ρ1 ∈ BR(R) =⇒ sup
(t,ξ)∈R×D̄
σ2∈R

|θ(t, ξ, σ1, ρ1, σ2)| ≤ LR |σ1 − ρ1|.

5. For any σ1, σ2, ρ2 ∈ R, we have

(2.31) b2(t, ξ, σ1, σ2)− b2(t, ξ, σ1, ρ2) = −λ(t, ξ, σ1, σ2, ρ2)(σ2 − ρ2)

for some measurable function λ : R× D̄ × R3 → [0,+∞).

Example 2.9. Let h : R × D̄ × R → R be such that h(t, ·) satisfies the same
conditions as in Example 2.7, uniformly with respect to t ∈ R. Assume that the
function ρ in (2.24) depends also on t ∈ R and satisfies

(2.32) sup
(t,ξ)∈R×D̄

s∈R

ρ(t, ξ, s) ≤ 0.

Moreover, assume that the mapping k : R× D̄ ×R2 → R is continuous, the mapping
k(t, ξ, ·) : R2 → R has linear growth and is locally Lipschitz continuous, uniformly
with respect to (t, ξ) ∈ R×D̄, and the mapping k(t, ξ, ·, σ2) : R→ R is monotone and
locally Lipschitz continuous, uniformly with respect to (t, ξ) ∈ R× D̄ and σ2 ∈ R.

Then all the conditions in Hypothesis 2.8 are fulfilled if we define

b2(t, ξ, σ) = f(t, ξ, h(t, ξ, σ2) + k(t, ξ, σ)), (t, ξ) ∈ R× D̄, σ ∈ R2,

for any f : R→ R satisfying (2.25). Notice that (2.32) holds for

h(t, ξ, s) = −β(t, ξ)s2k+1 +
2k∑
j=1

βj(t, ξ)s
j − λs

with λ large enough.

Concerning the diffusion coefficients g1 and g2, we assume that they satisfy the
following conditions.

Hypothesis 2.10.
1. The mappings g1 : D̄ × R → R and g2 : R × D̄ × R → R are continuous

and the mappings g1(ξ, ·) : R → R and g2(t, ξ, ·) : D̄ × R → R are Lipschitz
continuous, uniformly with respect to ξ ∈ D̄ and (t, ξ) ∈ R× D̄, respectively.

2. It holds that

(2.33) sup
ξ∈ D̄
|g1(ξ, σ)| ≤ c

(
1 + |σ|

1
m1

)
, σ ∈ R,

and

(2.34) sup
(t,ξ)∈R×D̄

|g2(t, ξ, σ)| ≤ c
(

1 + |σ|
1
m2

)
, σ ∈ R,

where m1 and m2 are the constants introduced in (2.20) and (2.26).
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Remark 2.11. We are assuming here that the diffusion coefficient g2 in the fast
equation does not depend on the slow variable because of what is required in the proof
of Proposition 5.4. If the coefficient b2 in the fast equation had linear growth, then
we could allow g2 to depend also on the slow variable.

In what follows, for any t ∈ R and x, y ∈ E, we shall set

B1(x, y)(ξ) := b1(ξ, x(ξ), y(ξ)), B2(t, x, y)(ξ) := b2(t, ξ, x(ξ), y(ξ)), ξ ∈ D̄,

and
B(t) := (B1, B2(t)), t ∈ R.

Due to Hypotheses 2.6 and 2.8, the mappings B1 and B2 are well defined and
continuous from E×E and R×E×E, respectively, to E, so that B : R×E×E → E×E
is well defined and continuous. As the mappings b1 and b2 have polynomial growth,
B(t) is not well defined in H.

In view of (2.20) and (2.26), for any x, y ∈ E and t ∈ R, we have

(2.35) |B1(x, y)|E ≤ c (1 + |x|m1

E + |y|E) , |B2(t, x, y)|E ≤ c (1 + |x|E + |y|m2

E )

so that

(2.36) |B(t, x, y)|E×E ≤ c (1 + |x|m1

E + |y|m2

E ) , x, y ∈ E, t ∈ R.

As a consequence of (2.22) and (2.27), it is immediate to check that, for any x, y, h, k ∈
E, any t ∈ R, and any δ ∈ Mh,

(2.37) 〈B1(x+ h, y + k)−B1(x, y), δ〉E ≤ c (1 + |h|E + |k|E + |x|E + |y|E)

and

〈B2(t, x+ h, y + k)−B2(t, x, y), δ〉E ≤ c (1 + |h|E + |k|E + |x|E + |y|E)

so that, for any (x, y), (h, k) ∈ E × E, any t ∈ R, and any δ ∈ M(h,k),

(2.38) 〈B(t, x+ h, y + k)−B(t, x, y), δ〉E×E ≤ c (1 + |(h, k)|E×E + |(x, y)|E×E) .

Moreover, from (2.31), we have

(2.39) 〈B2(t, x, y + k)−B2(t, x, y), δ〉E ≤ 0

for every δ ∈ Mk. Finally, in view of (2.21), we have

(2.40)

|B1(x1, y1)−B1(x2, y2)|E

≤ c
(
1 + |(x1, y1)|θE×E + |(x2, y2)|θE×E

)
(|x1 − x2|E + |y1 − y2|E) .

Next, for any x, y, z ∈ E and t ∈ R, we define

[G1(x)z](ξ) = g1(ξ, x(ξ))z(ξ), [G2(t, y)z](ξ) := g2(t, ξ, y(ξ))z(ξ), ξ ∈ D̄.

Due to Hypothesis 2.10, the mappings

G1 : E → L(E)

and, for any fixed t ∈ R,
G2(t, ·) : E → L(E)

are Lipschitz continuous, so the same is true for the mapping G(t) = (G1, G2(t))
defined on E × E with values in L(E × E).
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3. Almost periodic functions. We recall here some definitions and results
about almost periodic functions. For all details, we refer to the monographs [2] and
[19] and the paper [3].

In what follows, (X, dX) and (Y, dY ) denote two complete metric spaces. For any
bounded function f : R→ Y and ε > 0, we define

T (f, ε) = {τ ∈ R : dY (f(t+ τ), f(t)) < ε, for all t ∈ R} .

T (f, ε) is called an ε-translation set of f .

Definition 3.1.
1. A continuous function f : R → Y is said to be almost periodic if, for all
ε > 0, the set T (f, ε) is relatively dense in R; that is, there exists a number
lε > 0 such that [a, a + lε] ∩ T (f, ε) 6= ∅ for every a ∈ R. The number lε is
called the inclusion length.

2. Let F ⊂ X and, for any x ∈ F , let f(·, x) : R → Y be an almost periodic
function. The family of functions {f(·, x)}x∈F is said to be uniformly almost
periodic if, for any ε > 0,

T (F, f, ε) :=
⋂
x∈F

T (f(·, x), ε)

is relatively dense in R and includes an interval around 0.

In what follows, if f : R→ Y or f : R×X → Y , and if γ = {γn}n∈N is a sequence
in R, we shall use the notation Tγf = g to say, respectively, that

lim
n→∞

f(t+ γn) = g(t) in Y

and
lim
n→∞

f(t+ γn, x) = g(t, x) in Y

for any t ∈ R and x ∈ X.
We recall here some characterization of uniformly almost periodic families of

functions.

Theorem 3.2. Let F ⊂ X and let f(·, x) : R → Y be a continuous function for
any x ∈ F . The following statements are equivalent.

1. The family {f(·, x)}x∈F is uniformly almost periodic.
2. For any sequence γ′ = {γ′n}n∈N ⊂ R, there exists a subsequence γ ⊂ γ′ and a

continuous function g : R×X → Y such that Tγf = g, uniformly on R× F .
3. For every two sequences γ′ and β′ in R, there exist common subsequences
γ ⊂ γ′ and β ⊂ β′ such that Tγ+βf = TγTβf , uniformly on R× F .

Notice that if f : R→ X is a continuous periodic function with period τ , then for
any sequence γ ⊂ R there exists rγ ∈ [0, τ ] such that Tγf(t) = f(t + rγ), uniformly
with respect t ∈ R. In fact, if we denote by H(f) the hull of f , that is, the set
of functions {Tγf : γ = {γn} ⊂ R}, we have that f is periodic if and only if
H(f) = {f(τ + ·) : τ ∈ R}.

In the case of a function f : R → Y , we have the following characterization of
almost periodicity.

Theorem 3.3. A continuous function f : R → Y is almost periodic if and only
if, for every two sequences γ′ and β′ in R, there exist common subsequences γ ⊂ γ′

and β ⊂ β′ such that Tγ+βf = TγTβf , pointwise on R.
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Finally, in [2, Theorem I.3.2], the following important result for almost periodic
functions is shown.

Theorem 3.4.
1. There exists the mean value in Y of any almost periodic function f : R→ Y ,

that is,

∃ lim
T→∞

1

T

∫ T

0

f(s) ds ∈ Y.

Moreover, for every t ∈ R,

lim
T→∞

1

T

∫ t+T

t

f(s) ds = lim
T→∞

1

T

∫ T

0

f(s) ds,

uniformly with respect to t ∈ R.
2. If {f(·, x)}x∈F is a uniformly almost periodic family of functions with F ⊂ X,

then

∃ lim
T→∞

1

T

∫ t+T

t

f(s, x) ds = lim
T→∞

1

T

∫ T

0

f(s, x) ds,

uniformly with respect to t ∈ R and x ∈ F .

Remark 3.5. The proof of [2, Theorem I.3.2] is given for a single almost periodic
function f . Nevertheless, it is easy to adapt the arguments used in that proof to the
case of uniformly almost periodic families of functions, as stated in the second part
of Theorem 3.4.

4. The slow-fast system. With the notations introduced in section 2, system
(1.1) can be rewritten in the following abstract form:

(4.1)



duε(t) = [A1uε(t) +B1(uε(t), vε(t))] dt+G1(uε(t)) dw
Q1(t),

dvε(t) =
1

ε
[(A2(t/ε)− α)vε(t) +B2(t/ε, uε(t), vε(t))] dt

+
1√
ε
G2(t/ε, vε(t)) dw

Q2(t)

with initial conditions uε(0) = x ∈ E and vε(0) = y ∈ E.
In [6, Theorem 5.3], a system analogous to (4.1) has been studied for the case of

coefficients independent of time. Thanks to Lemma 2.4, since all estimates satisfied
by the coefficients in Hypotheses 2.2, 2.6, 2.8, and 2.10 are uniform with respect to
t ∈ R, the arguments used in the proof of [6, Theorem 5.3] can be adapted to the
present situation and it is possible to show that, under Hypotheses 2.1, 2.2, 2.6, 2.8,
and 2.10, for any ε > 0 and x, y ∈ E, there exists a unique adapted mild solution to
problem (4.1) in Lp(Ω;Cb((s, T ];E × E)) with s < T and p ≥ 1.

This means that there exist two unique adapted processes uε and vε in
Lp(Ω;Cb((s, T ];E)) such that

uε(t) = etA1x+

∫ t

s

e(t−r)A1B1(uε(r), vε(r)) ds+

∫ t

s

e(t−s)A1G1(uε(r)) dw
Q1(r)
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and

vε(t) = Uα,ε(t, s)y +
1

ε
ψα,ε(vε; s)(t) +

1

ε

∫ t

s

Uα,ε(t, r)B2(r, uε(r), vε(r)) dr

+
1√
ε

∫ t

s

Uα,ε(t, r)G2(r, vε(r)) dw
Q2(r),

where, with the same notations as in section 2, for every ε > 0,

Uα,ε(t, s) = e
1
ε γ(t,s)A2−αε (t−s), s < t,

and

ψα,ε(u; s)(r) =

∫ r

s

Uα,ε(r, ρ)L(ρ)u(ρ) dρ, r ∈ [s, t].

Recall that in section 2 we have defined

Uα(t, s) := Uα,1(t, s), ψα(u; s)(r) := ψα,1(u; s)(r).

Thanks to Lemma 2.5, we can adapt to the present situation the arguments used
in the proof of [10, Lemma 3.1], and it is possible to show that, for any p ≥ 1 and
s < T , there exists a constant cp,s,T > 0 such that, for any x, y ∈ E and ε ∈ (0, 1],

(4.2) E sup
t∈ [s,T ]

|uε(t)|pE ≤ cp,s,T (1 + |x|pE + |y|pE)

and

(4.3) E
∫ T

s

|vε(t)|pE dt ≤ cp,s,T (1 + |x|pE + |y|pE)

for some constants cs,p,T independent of ε > 0.
Moreover, as in [10, Proposition 3.2], we can show that there exists θ̄ > 0 such

that, for any θ ∈ [0, θ̄), x ∈ Cθ(D̄), y ∈ E, and s < T ,

(4.4) sup
ε∈ (0,1]

E |uε|L∞(s,T ;Cθ(θ̄)) ≤ cs,T
(
1 + |x|Cθ(D̄) + |y|E

)
.

Finally, by proceeding as in [9, Proposition 4.4] (see also [10, Proposition 3.3]),
we can prove that, for any θ > 0, there exists γ(θ) > 0 such that, for any T > 0,
p ≥ 2, x ∈ Cθ(D̄), y ∈ E, and r1, r2 ∈ [s, t],

(4.5) sup
ε∈ (0,1)

E |uε(r1)− uε(r2)|pE ≤ cp(T )
(

1 + |x|pm1

Cθ(D̄)
+ |y|pE

)
|r1 − r2|γ(θ)p.

Due to the Kolmogorov test and the Ascoli–Arzelà theorem, (4.4) and (4.5) im-
ply that the family {L(uε)}ε∈ (0,1], given by the laws of the solutions uε, is tight in

C([s, T ];E) for any x ∈ Cθ(D̄) with θ > 0, and for any y ∈ E. That is, for every
η > 0, there exists a compact set Kη ⊂ C([s, T ];E) such that P (uε ∈ Kη) ≥ 1− η for
every ε ∈ (0, 1].
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5. An evolution family of measures for the fast equation. For any frozen
slow component x ∈ E, any initial condition y ∈ E, and any s ∈ R, we introduce
the problem

(5.1) dv(t) = [(A2(t)− α)v(t) +B2(t, x, v(t))] dt+G2(t, v(t)) dw̄Q2(t), v(s) = y,

where A2(t) = γ(t)A2 + L(t) and

w̄Q2(t) =


wQ2

1 (t) if t ≥ 0,

wQ2

2 (−t) if t < 0

for two independent Q2-Wiener processes, wQ2

1 (t) and wQ2

2 (t), both defined as in (2.3).
An {Ft}t≥s-adapted process vx(·; s, y) ∈ Lp(Ω;C([s, T ];E)) is a mild solution of (5.1)
if

vx(t; s, y) = Uα(t, s)y + ψα(vx(·; s, y); s)(t)

+

∫ t

s

Uα(t, r)B2(r, x, vx(r; s, y)) dr +

∫ t

s

Uα(t, r)G2(r, vx(r; s, y)) dw̄Q2(r),

where ψα(·; s) is the linear bounded operator defined in (2.12) with ε = 1.
Moreover, if C(R;E) is the space of continuous paths on R with values in E,

endowed with the topology of uniform convergence on bounded intervals, an {Ft}t∈R-
adapted process vx ∈ Lp(Ω;C(R;E)) is a mild solution of the equation

(5.2) dv(t) = [(A2(t)− α)v(t) +B2(t, x, v(t))] dt+G2(t, v(t)) dw̄Q2(t)

in R if, for every s < t,

vx(t) = Uα(t, s)vx(s) + ψα(vx; s)(t)

+

∫ t

s

Uα(t, r)B2(r, x, vx(r)) dr +

∫ t

s

Uα(t, r)G2(r, vx(r)) dw̄Q2(r).

According to (2.15), the mapping ψα(·; s) : C([s, T ];E)→ C([s, T ];E) is Lipschitz
continuous, so we can adapt the proof of [6, Theorem 5.3] to the present situation,
and we have that, for any x, y ∈ E, there exists a unique mild solution vx(·; s, y) ∈
Lp(Ω;C((s, T ];E) ∩ L∞((s, T );E)) with p ≥ 1 and s < T .

All this allows us to introduce, for any fixed x ∈ E, the transition evolution
operator

P xs,t ϕ(y) = Eϕ(vx(t; s, y)), s < t, y ∈ E,

where ϕ ∈ Bb(E).
For any λ > 0, (5.1) can be rewritten as

dv(t) = [(A2(t)− λ)v(t) +B2,λ(t, x, v(t))] dt+G2(t, v(t)) dw̄Q2(t), v(s) = y,

where
B2,λ(t, x, y) = B2(t, x, y) + (λ− α) y.

In what follows, for any x ∈ E and any process u ∈ Lp(Ω;Cb((s, T ];E)) adapted,
we shall set

(5.3) Γλ(u; s)(t) =

∫ t

s

Uλ(t, r)G2(r, u(s)) dw̄Q2(s), t > s.
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By proceeding as in the proof of [7, Lemma 7.1], where the case s = 0 was considered,
it is possible to show that there exists p̄ > 1 such that, for any p ≥ p̄ and 0 < δ < λ,
and for any u, v ∈ Lp(Ω;Cb((s, t];E)) with s < t,

(5.4)

sup
r∈ [s,t]

eδp(r−s)E |Γλ(u; s)(r)− Γλ(v; s)(r)|pE

≤ cp,1
Lpg2

(λ− δ)cp,2
sup
r∈ [s,t]

eδp(r−s) E |u(r)− v(r)|pE ,

where Lg2 is the Lipschitz constant of g2, and cp,1, cp,2 are two suitable positive
constants independent of λ > 0 and s < t.

Moreover, using (2.34), we can show that

sup
r∈ [s,t]

eδp(r−s)E |Γλ(u; s)(r)|pE ≤ cp,1
Mp
g2

(λ− δ)cp,2
sup
r∈ [s,t]

eδp(r−s)
(

1 + E |u(r)|
p
m2

E

)
,

(5.5)

where

Mg2 = sup
ξ∈ D̄, σ∈R

|g2(ξ, σ)|
1 + |σ|

1
m2

(see [7, Remark 3.2]). In fact, in [7] it is shown that there exists some η > 0 such
that, for any p ≥ 1 large enough,

sup
r∈ [s,t]

eδp(r−s)E |Γλ(u; s)(r)|pη,p ≤ cp,1
Mp
g2

(λ− δ)cp,2
sup
r∈ [s,t]

eδp(r−s)
(

1 + E |u(r)|
p
m2

E

)
.

This means that if we pick p̄ ≥ 1 such that ηp̄ > d and define θ = η − d/p̄, by the
Sobolev embedding theorem we have that, for any p ≥ p̄,

sup
r∈ [s,t]

eδp(r−s)E |Γλ(u; s)(r)|p
Cθ(D̄)

≤ cp,1
Mp
g2

(λ− δ)cp,2
sup
r∈ [s,t]

eδp(r−s)
(

1 + E |u(r)|
p
m2

E

)
.

(5.6)

Now, for any fixed adapted process u ∈ Lp(Ω;Cb((s, T ];E)), let us introduce the
problem

(5.7) dz(t) = (A2(t)− λ)z(t) dt+G2(t, u(t)) dw̄Q2(t), z(s) = 0,

and let us denote by Λλ(u; s) its unique mild solution in Lp(Ω;Cb((s, T ];E)). This
means that Λλ(u; s) solves the equation

Λλ(u; s)(t) = ψλ(Λλ(u; s); s)(t) + Γλ(u; s)(t), s < t < T.

Due to Lemma 2.4, for any 0 < δ < λ and p ≥ 1 large enough, and for any two
adapted processes u1 and u2 in Lp(Ω;Cb((s, T ];E)) with s < t, we have

eδp(t−s) E |Λλ(u1; s)(t)− Λλ(u2; s)(t)|pE ≤ cp e
δp(t−s) E |ψλ(Λλ(u1; s)− Λλ(u2; s); s)(t)|E

+ cp e
δp(t−s) E |Γλ(u1; s)(t)− Γλ(u2; s)(t)|pE

≤ cp(λ− δ)
∫ t−s

0

e−(λ−δ)ρ dρ sup
ρ∈ [s,t]

eδp(ρ−s) E |Λλ(u1; s)(ρ)− Λλ(u2; s)(ρ)|pE

+ cp e
δp(t−s) E |Γλ(u1; s)(t)− Γλ(u2; s)(t)|pE .
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Therefore, thanks to (2.16), we can find λ(δ) > δ large enough such that, for any
λ ≥ λ(δ),

sup
ρ∈ [s,t]

eδp(ρ−s) E |Λλ(u1; s)(ρ)− Λλ(u2; s)(ρ)|pE

≤ cp sup
ρ∈ [s,t]

eδp(ρ−s) E |Γλ(u1; s)(t)− Γλ(u2; s)(ρ)|pE .

Due to (5.4), this yields

(5.8)

sup
r∈ [s,t]

eδp(r−s)E |Λλ(u1; s)(r)− Λλ(u2; s)(r)|pE

≤ cp,1
Lpg2

(λ− δ)cp,2
sup
r∈ [s,t]

eδp(r−s) E |u1(r)− u2(r)|pE .

In the same way, we get that

sup
r∈ [s,t]

eδp(r−s)E |Λλ(u; s)(r)|pE ≤ cp,1
Mp
g2

(λ− δ)cp,2
sup
r∈ [s,t]

eδp(r−s)
(

1 + E |u(r)|
p
m2

E

)
.

(5.9)

Proposition 5.1. Assume Hypotheses 2.1, 2.2, 2.8, and 2.10. Then, there exists
δ > 0 such that, for any x, y ∈ E and p ≥ 1,

(5.10) E |vx(t; s, y)|pE ≤ cp
(

1 + e−δp(t−s) |y|pE + |x|pE
)
, s < t.

Proof. We set zλ(t) := vx(t; s, y)−Λλ(t), where Λλ(t) = Λλ(vx(·; s, y); s)(t) is the
solution of problem (5.7) with u = vx(·; s, y) and λ > α. Thanks to (2.39), for every
δ ∈ Mzλ(t), we have

d

dt

−
|zλ(t)|E ≤ 〈(A2(t)− λ)zλ(t), δ〉E + 〈B2,λ(t, x, zλ(t) + Λλ(t))

−B2,λ(t, x,Λλ(t)), δ〉E + 〈B2,λ(t, x,Λλ(t)), δ〉E

≤ −α |zλ(t)|E + c (1 + |x|E + |Λλ(t)|m2

E ) + (λ− α) |Λλ(t)|E

≤ −α |zλ(t)|E + c (1 + |x|E + |Λλ(t)|m2

E ) + (λ− α)
m2
m2−1 ,

the last estimate following from the Young inequality. By comparison, we get

|zλ(t)|E ≤ e−α(t−s)|y|E + c
(

1 + |x|E + (λ− α)
m2
m2−1

)
+ c

∫ t

s

e−α(t−r)|Λλ(r)|m2

E dr

so that, for any p ≥ 1,

|vx(t; s, y)|pE ≤ cp|Λλ(t)|pE + cp e
−αp(t−s)|y|pE

+ cp

(
1 + |x|pE + (λ− α)

pm2
m2−1

)
+ cp

(∫ t

s

e−α(t−r)|Λλ(r)|m2

E dr

)p
.

Due to (5.9), this implies that we can proceed as in the proof of [10, Proposition 4.1]
(where (5.5) with s = 0 is used), and (5.10) follows.
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The following proposition gives a generalization to the case of multiplicative noise
of [12, Lemma 2.2]. The fact that the diffusion coefficient is not constant makes the
proof of the result considerably more complicated as compared to [12, Lemma 2.2].

Proposition 5.2. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if α > 0 is large
enough and/or Lg2 is small enough, for any t ∈ R and x ∈ E there exists ηx(t) ∈
Lp(Ω;E) for all p ≥ 1 such that

(5.11) lim
s→−∞

E |vx(t; s, y)− ηx(t)|pE = 0

for any y ∈ E and t ∈ R. Moreover, for every p ≥ 1, there exists some δp > 0 such
that

(5.12) E |vx(t; s, y)− ηx(t)|pE ≤ cp e
−δp(t−s) (1 + |x|pE + |y|pE) .

Finally, ηx is a mild solution in R of equation (5.2).

Proof. If we fix h > 0 and define

ρ(t) = vx(t; s, y)− vx(t; s− h, y), t > s,

we have that ρ(t) is the unique mild solution of the problem


dρ(t) = [(A2(t)− α)ρ(t) +B2(t, x, vx(t; s, y))−B2(t, x, vx(t; s− h, y))] dt

+ [G2(t, vx(t; s, y))−G2(t, vx(t; s− h, y))] dw̄Q2(t),

ρ(s) = y − vx(s; s− h, y).

(5.13)

According to (2.31), we have

B2(t, x, vx(t; s, y))−B2(t, x, vx(t; s− h, y)) = −Jx(t)ρ(t),

where
Jx(t, ξ) = λ(t, ξ, x(ξ), vx(t; s, y)(ξ), vx(t; s− h, y)(ξ)), ξ ∈ D.

Therefore, if we define

Kx(t, ξ) =
g2(t, ξ, vx(t; s, y)(ξ))− g2(t, ξ, vx(t; s− h, y)(ξ))

ρ(t)(ξ)
, ξ ∈ D,

we can rewrite (5.13) as

(5.14)

 dρ(t) = [(A2(t)− α)ρ(t)− Jx(t)ρ(t)] dt+Kx(t)ρ(t) dw̄Q2(t),

ρ(s) = y − vx(s; s− h, y).

Notice that, due to (2.31), we have

(5.15) Jx(t, ξ) ≥ 0, (t, ξ) ∈ R×D.

Moreover, as g2(t, ξ, ·) is assumed to be Lipschitz continuous, uniformly with respect
to (t, ξ) ∈ R× D̄, we have that

(5.16) sup
(t,ξ)∈R×D̄

|Kx(t, ξ)| = sup
(t,ξ)∈R×D̄

[g2(t, ξ, ·)]Lip <∞.

D
ow

nl
oa

de
d 

07
/2

8/
17

 to
 1

29
.2

.1
9.

10
2.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2864 SANDRA CERRAI AND ALESSANDRA LUNARDI

Now, for any Fs-measurable ys ∈ L2(Ω;E), we introduce the auxiliary problem

(5.17)

{
dz(t) = (A2(t)− α)z(t) dt+Kx(t)z(t) dw̄Q2(t),
z(s) = ys,

and we denote by z(t; s, ys) its solution. By proceeding as in the proof of (5.8), we
have that, for any p large enough, there exist two constants cp,1 and cp,2 such that,
for any 0 < δ < α,

sup
r∈ [s,t]

eδp(r−s)E |z(r; s, ys)|pE ≤ cp E |ys|
p
E+cp,1

Lpg2
(α− δ)cp,2

sup
r∈ [s,t]

eδp(r−s) E |z(r; s, ys)|pE .

Therefore, if we pick α > 0 large enough and/or Lg2 small enough so that

cp,1
Lpg2
αcp,2

< 1,

we can find 0 < δ̄p < α such that

cp,1
Lpg2

(α− δ̄p)cp,2
< 1.

This implies that

sup
r∈ [s,t]

epδ̄p(r−s)E |z(r; s, ys)|pE ≤ cp E |ys|
p
E ,

so that

(5.18) E |z(r; s, ys)|pE ≤ cp e
−δp(r−s) E |ys|pE , s < r,

with δp = pδ̄p.
Next, for any Fs-measurable ys ∈ L2(Ω;E), we introduce the problem

(5.19)

 dz(t) = [(A2(t)− α)z(t)− Jx(t)z(t)] dt+Kx(t)z(t) dw̄Q2(t),

z(s) = ys,

and we denote by ẑ(t; s, ys) its solution.
Due to the linearity of (5.19), by a comparison argument (see [16]) we have

ys ≥ 0, P-a.s. =⇒ ẑ(t; s, ys) ≥ 0, s < t, P-a.s.

Moreover, in view of the sign condition (5.15), again by a comparison argument (see
[16]) we have

(5.20) ys ≥ 0, P-a.s. =⇒ 0 ≤ ẑ(t; s, ys) ≤ z(t; s, ys), s < t, P-a.s.

Thanks to (5.18), this allows us to conclude

(5.21) ys ≥ 0, P-a.s. =⇒ E |ẑ(t; s, ys)|pE ≤ cp e
−δp(t−s)|ys|2E , s < t.

Now, as a consequence of the linearity of problem (5.19), we have

vx(t; s, y)− vx(t; s− h, y) = ẑ(t; s, y − vx(s; s− h, y))

= ẑ(t; s, y − vx(s; s− h, y) ∧ y)− ẑ(t; s, vx(s; s− h, y)− vx(s; s− h, y) ∧ y).
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Then, thanks to (5.10) and (5.21), we can conclude that, for some δp > 0,

(5.22)
E |vx(t; s, y)− vx(t; s− h, y)|pE ≤ cp e

−δp(t−s)E |y − vx(s; s− h, y)|pE

≤ cp e−δp(t−s) (|y|pE + e−δph|y|pE + |x|pE + 1
)
.

Therefore, if we take the limit as s→ −∞, due to the completeness of Lp(Ω;E),
this implies that, for any t ∈ R and x, y ∈ E, there exists ηx(t) ∈ Lp(Ω;E) such that
(5.11) holds. Moreover, if we let h→∞, we obtain (5.12).

Next, in order to prove that ηx(t) does not depend on y ∈ E, we take y1, y2 ∈ E
and consider the difference

ρ(t) = vx(t; s, y1)− vx(t; s, y2), t > s.

The same arguments, used above for the difference vx(t; s, y)− vx(t; s− h, y), can be
used here for ρ(t), and we have

E |vx(t; s, y1)− vx(t; s, y2)|pE ≤ cp e
−δp(t−s) |y1 − y2|pE , s < t,

so that, by taking the limit above as s → −∞, we get that the limit ηx(t) does not
depend on the initial condition y ∈ E.

Finally, let us show that ηx is the mild solution in R of equation (5.2). For any
s < t and h > 0, we have

vx(t; s− h, 0) = Uα(t, s)vx(s; s− h, 0) + ψα(vx(·; s− h, 0); s)(t)

+

∫ t

s

Uα(t, r)B2(r, x, vx(r; s− h, 0)) dr +

∫ t

s

Uα(t, r)G2(r, vx(r; s− h, 0)) dw̄Q2(r).

Due to (5.11), we can take the limit as h goes to infinity on both sides, and we get
for any s < t,

(5.23)

ηx(t) = Uα(t, s)ηx(s) + ψα(ηx; s)(t)

+

∫ t

s

Uα(t, r)B2(r, x, ηx(r)) dr +

∫ t

s

Uα(t, r)G2(r, ηx(r)) dw̄Q2 .

This means that ηx(t) is a mild solution in R of equation (5.2).

In what follows, for any t ∈ R and x ∈ E, we shall denote by µxt the law of the
random variable ηx(t). Our purpose here is to show that the family {µxt }t∈R defines
an evolution system of probability measures on E for equation (5.1), indexed by t ∈ R.
This means that µxt is a probability measure on E for any t ∈ R, and it holds that

(5.24)

∫
E

P xs,tϕ(y)µxs (dy) =

∫
E

ϕ(y)µxt (dy), s < t,

for every ϕ ∈ Cb(E).
Notice that, due to (5.11) and (5.10), for any p ≥ 1, we have

(5.25) sup
t∈R

E |ηx(t)|pE ≤ cp (1 + |x|pE) , x ∈ E,

so that

(5.26) sup
t∈R

∫
E

|y|pE µ
x
t (dy) ≤ cp (1 + |x|pE) .
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Proposition 5.3. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if α > 0 is large
enough and/or Lg2 is small enough, for any fixed x ∈ E the family of probability
measures {µxt }t∈R introduced above defines an evolution family of measure for equa-
tion (5.1) such that

(5.27) lim
s→−∞

P xs,tϕ(y) =

∫
E

ϕ(y)µxt (dy)

for any ϕ ∈ Cb(E). Moreover, if ϕ ∈ C1
b (E), we have

(5.28)

∣∣∣∣P xs,tϕ(y)−
∫
E

ϕ(z)µxt (dz)

∣∣∣∣ ≤ ‖ϕ‖C1
b (E) e

−δ1(t−s) (1 + |x|E + |y|E) .

Finally, if {νxt }t∈R is another evolution family of measures for (5.1) such that

(5.29) sup
t∈R

∫
E

|y|E νxt (dy) <∞,

then νxt = µxt for all t ∈ R and x ∈ E.

Proof. According to (5.11), for any ϕ ∈ Cb(E) and y ∈ E, we have

lim
s→−∞

P xs,tϕ(y) = lim
s→−∞

Eϕ(vx(t; s, y)) = Eϕ(ηx(t)) =

∫
E

ϕ(y)µxt (dy).

Therefore, since for any s < r < t we have

P xs,rP
x
r,tϕ(y) = P xs,tϕ(y), y ∈ E,

by taking the limit above in both sides, as s→ −∞, we obtain∫
E

P xr,tϕ(y)µxr (dy) =

∫
E

ϕ(y)µxt (dy),

which means that {µxt }t∈R is an evolution family of measures satisfying (5.27).
In order to prove (5.28), we have∣∣∣∣P xs,tϕ(y)−

∫
E

ϕ(z)µxt (dz)

∣∣∣∣ ≤ E |ϕ(vx(t; s, y))− ϕ(ηx(t))|

≤ ‖ϕ‖C1
b (E)E |vx(t; s, y)− ηx(t)|E ,

so that (5.28) follows from (5.12).
Next, let us prove uniqueness. If we show that, for any ϕ ∈ C1

b (E),

(5.30) lim
s→−∞

∫
E

Ps,tϕ(y) νxs (dy) =

∫
E

ϕ(y)µxt (dt),

then, recalling that {νxt }t∈R is an evolution family, we have that, for any ϕ ∈ C1
b (E),∫

E

ϕ(y) νxt (dy) =

∫
E

ϕ(y)µxt (dy), t ∈ R,

which implies that µxt = νxt for any t ∈ R and x ∈ E.
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In order to prove (5.30), we notice that, due to (5.12),∣∣∣∣∫
E

Ps,tϕ(y) νxs (dy)−
∫
E

ϕ(y)µxt (dt)

∣∣∣∣ ≤ ∫
E

E |ϕ(vx(t; s, y))− ϕ(ηx(t))| νxs (dy)

≤ ‖ϕ‖C1
b (E)

∫
E

E|vx(t; s, y)− ηx(t)|E νss(dy)

≤ ‖ϕ‖C1
b (E)e

−δ(t−s)
(

1 + |x|E +

∫
E

|y|E νxs (dy)

)
.

Then, as a consequence of condition (5.29), we can conclude that (5.30) holds and, as
we have seen, uniqueness follows.

Now, we want to study the dependence of ηx(t), and hence of µxt , on the parameter
x ∈ E.

Proposition 5.4. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if α > 0 is large
enough and/or Lg2 is small enough, we have that, for any R > 0, there exists cR > 0
such that

(5.31) x1, x2 ∈ BE(R) =⇒ sup
t∈R

E |ηx1(t)− ηx2(t)|2E ≤ cR |x1 − x2|2E .

Proof. In view of (5.11), it is sufficient to show that, for any R > 0, there exists
cR > 0 such that

(5.32) x1, x2 ∈ BE(R) =⇒ sup
s<t

E |vx1(t; s, 0)− vx2(t; s, 0)|2E ≤ cR |x1 − x2|2E .

If we define
ρ(t) = vx1(t; s, 0)− vx2(t; s, 0), s < t,

we have that ρ(t) is the unique mild solution of the problem



dρ(t) = [(A2(t)− α)ρ(t) +B2(t, x1, v
x1(t; s, 0))−B2(t, x2, v

x2(t; s, 0))] dt

+
[
G2(t, vx

1

(t; s, 0))−G2(t, vx2(t; s, 0))
]
dw̄Q2(t),

ρ(s) = 0.

(5.33)

According to (2.28) and (2.31), we have

B2(t, x1, v
x1(t; s, 0))−B2(t, x2, v

x2(t; s, 0)) = −J(t)ρ(t) + I(t),

where
J(t, ξ) = λ(t, ξ, x1(ξ), vx1(t; s, 0)(ξ), vx2(t; s, 0)(ξ)), ξ ∈ D,

and
I(t, ξ) = θ(t, ξ, x1(ξ), x2(ξ), vx2(t; s, 0)(ξ)), ξ ∈ D.

Therefore, if we define

K(t, ξ) =
g2(t, ξ, vx1(t; s, 0)(ξ))− g2(t, ξ, vx2(t; s, 0)(ξ))

ρ(t)
, ξ ∈ D,
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we can rewrite (5.33) as

(5.34)

 dρ(t) = [(A2(t)− α)ρ(t)− J(t)ρ(t) + I(t)] dt+K(t)ρ(t) dw̄Q2(t),

ρ(s) = 0.

Notice that, due to (2.31), we have

(5.35) J(t, ξ) ≥ 0, (t, ξ) ∈ [s,+∞)×D.

Due to (2.30), we have

(5.36) x1, x2 ∈ BE(R) =⇒ sup
s<t
|I(t)|E ≤ LR |x1 − x2|E .

Moreover, due to (2.29), we can assume, without any loss of generality, that

(5.37) x1(ξ) ≥ x2(ξ) =⇒ I(t, ξ) ≥ 0, (t, ξ) ∈ [s,+∞)× D̄.

Finally, as g2(t, ξ, ·) is assumed to be Lipschitz continuous, uniformly with respect to
(t, ξ) ∈ R× D̄, we have that K(t) satisfies (5.16).

Thanks to (5.37), by a comparison argument we have

x1 ≥ x2 =⇒ ρ(t) ≥ 0, P-a.s., s < t.

Therefore, again by comparison, due to (5.35) we have

(5.38) x1 ≥ x2 =⇒ 0 ≤ ρ(t) ≤ ρ̂(t), P-a.s., s < t,

where ρ̂(t) is the solution of the problem dρ̂(t) = [(A2(t)− α)ρ̂(t) + I(t)] dt+K(t)ρ̂(t) dw̄Q2(t),

ρ̂(s) = 0.

This means that

ρ̂(t) = ψα(ρ̂; s)(t) +

∫ t

s

Uα(t, r)I(r) dr +

∫ t

s

Uα(t, r)K(r)ρ̂(r) dw̄Q2(r).

As a consequence of (5.36), by using the same arguments as in the proof of Proposition
5.1, we get that if α is large enough and/or Lg2 is small enough,

x1 ≥ x2, x1, x2 ∈ BE(R) =⇒ sup
s<t

E |ρ̂(t)|2E ≤ cR |x1 − x2|2E ,

so that, thanks to (5.38), we have

x1 ≥ x2, x1, x2 ∈ BE(R) =⇒ sup
s<t

E |vx1(t; s, 0)− vx2(t; s, 0)|2E ≤ cR |x1 − x2|2E .

As in the proof of Proposition 5.2, the general estimate (5.32) follows by noticing that

|vx1(t; s, 0)− vx2(t; s, 0)|2E

≤ 2 |vx1(t; s, 0)− vx1∧x2(t; s, 0)|2E + 2 |vx1∧x2(t; s, 0)− vx2(t; s, 0)|2E .
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6. Almost periodicity of the evolution family of measures. In what fol-
lows, we shall assume the following conditions on the operator A2(t) and the coeffi-
cients b2(t, ξ, σ) and g2(t, ξ, σ).

Hypothesis 6.1.
1. The functions γ : R→ (0,∞) and l : R× D̄ → Rd are both periodic, with the

same period.
2. The families of functions

BR :=
{
b2(·, ξ, σ) : ξ ∈ D̄, σ ∈ BR2(R)

}
,

GR :=
{
g2(·, ξ, σ) : ξ ∈ D̄, σ ∈ BR(R)

}
are both uniformly almost periodic for any R > 0.

Lemma 6.2. Under Hypothesis 6.1, for any R > 0, the family of functions

{B2(·, x, y) : (x, y) ∈ BE×E(R)} , {G2(·, y) : y ∈ BE(R)}

are both uniformly almost periodic.

Proof. Due to the uniform almost periodicity of the family BR, for any ε > 0
there exists lε,R > 0 such that in any interval of R of length lε,R we can find τ > 0
such that

|b2(t+ τ, ξ, σ)− b2(t, ξ, σ)| < ε, (t, ξ, σ) ∈ R× D̄ ×BR2(R).

This implies that

|B2(t+ τ, x, y)−B2(t, x, y)|E

= sup
ξ∈ D̄
|b2(t+ τ, x(ξ), y(ξ))− b2(t, x(ξ), y(ξ))| < ε, (t, x, y) ∈ R×BE×E(R).

In a completely analogous way, we can show that the family {G2(·, y) : y ∈ BE(R)}
is uniformly almost periodic.

Now, for any µ, ν ∈ P(E), we define

d(µ, ν) = sup

{∣∣∣∣∫
E

f(y) (µ− ν)(dy)

∣∣∣∣ , |f |Lip ≤ 1

}
,

where

|f |Lip = |f |E + [f ]Lip = |f |E + sup
ξ 6=η

|f(ξ)− f(η)|
|ξ − η|

.

It is known that the space (P(E), d) is a complete metric space and the distance d
generates the weak topology on P(E).

In [13] it is proven that if A2(·) is periodic, the family of functions

{B2(·, x, y) : (x, y) ∈ BE×E(R)} , {G2(·, y) : y ∈ BE(R)}

are both uniformly almost periodic for any R > 0 and the family of measures {µxt }t∈R
is tight in P(E), then the mapping t ∈ R 7→ µxt ∈ P(E) is almost periodic. The proof
in [13] is based on Theorem 3.3. Actually, it is proved that, for every two sequences
γ′ and β′ in R, there exist common subsequences γ ⊂ γ′ and β ⊂ β′ such that
Tγ+βµ

x
· = TγTβµ

x
· , pointwise on R.
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Unlike in this paper, in [13] it is assumed that the coefficients are Lipschitz con-
tinuous and the covariance Q2

2 of the noise is trace class. But all the arguments used
in [13] can be adapted to the present situation without major difficulties. Therefore,
in view of Lemma 6.2, if we prove that the family of measures {µxt }t∈R is tight in
P(E), we obtain the following result.

Theorem 6.3. Under Hypotheses 2.1, 2.2, 2.8, 2.10, and 6.1, if α > 0 is large
enough and/or Lg2 is small enough, we have that the mapping

t ∈ R 7→ µxt ∈ P(E)

is almost periodic for any fixed x ∈ E.

Thus, it only remains to prove tightness.

Lemma 6.4. Under Hypotheses 2.1, 2.2, 2.8, and 2.10, if α is sufficiently large
and/or Lg2 is sufficiently small, there exists θ > 0 such that, for any p ≥ 1 and any
x ∈ E,

(6.1) sup
t∈R

E |ηx(t)|p
Cθ(D̄)

≤ cp (1 + |x|pE) .

In particular, the family of measures

ΛR := {µxt ; t ∈ R, x ∈ BE(R)}

is tight in P(E) for any R > 0.

Proof. Due to (5.10) and (5.12), with y = 0, we have that, for any p ≥ 1,

(6.2) sup
t∈R

E |ηx(t)|pE ≤ cp (1 + |x|pE).

Moreover, thanks to (2.10) and (5.23), for every t ∈ R and θ > 0,

|ηx(t)|Cθ(D̄) ≤ c |ηx(t− 1)|E + |ψα(ηx; t− 1)(t)|Cθ(D̄)

+

∫ t

t−1

|Uα(t, r)B2(r, x, ηx(r))|Cθ(D̄) dr + |Γxα(ηx, t− 1)(t)|Cθ(D̄) .

According to (2.18), (5.6), and (2.10), this implies that, for some θ > 0 and any
0 < δ < α and p ≥ 1,

eδpE |ηx(t)p|Cθ(D̄) ≤ cp E|ηx(t− 1)|pE + cp sup
r∈ [t−1,t]

eδp(r−t+1)E |ψα(ηx; t− 1)(r)|p
Cθ(D̄)

+ cp

∫ t

t−1

|Uα(t, r)B2(r, x, ηx(r))|p
Cθ(D̄)

dr

+ cp sup
r∈ [t−1,t]

eδp(r−t+1)E |Γxα(ηx; t− 1)(r)|p
Cθ(D̄)

≤ cp E|ηx(t− 1)|pE + cp sup
r∈ [t−1,t]

eδp(r−t+1)E |ηx(r)|pE

+ cp

(∫ t

t−1

(t− r)− θ2 (1 + |x|E + E |ηx(r)|m2

E ) dr

)p

+ cp sup
r∈ [t−1,t]

eδp(r−t+1)

(
1 + E |ηx(r)|

p
m2

E
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so that

eδpE |ηx(t)|p
Cθ(D̄)

≤ cp (E|ηx(t− 1)|pE + 1 + |x|pE) + cp sup
r∈ [t−1,t]

eδp(r−t+1)E |ηx(r)|pE

+cp

(∫ t

t−1

(t− r)−
θp

2(p−1) dr

)p−1 ∫ t

t−1

E |ηx(r)|m2p
E dr.

If p ≥ 2, then for any θ < 1 we have that θp/(p − 1) < 2. Then, thanks to (6.2), we
can conclude that (6.1) holds true for any p ≥ 2. Due to the Hölder inequality, (6.1)
holds for any p ≥ 1.

7. The averaged equation. For any fixed x ∈ E, the mapping B1(x, ·) : E →
E is continuous and

(7.1) |B1(x, y)|E ≤ c (1 + |x|m1

E + |y|E) .

B1 is unbounded and only locally Lipschitz continuous, but, as a consequence of
Proposition 6.3, it is still possible to prove the following result.

Lemma 7.1. Under the same hypotheses as Proposition 6.3, for every compact set
K ⊂ E, the family of functions

(7.2)

{
t ∈ R 7→

∫
E

B1(x, z)µxt (dz) ∈ E : x ∈ K

}
is uniformly almost periodic.

Proof. For every n ∈ N, we define

b1,n(ξ, σ1, σ2) :=


b1(ξ, σ1, σ2) if |σ2| ≤ n,

b1(ξ, σ1, σ2n/|σ2|) if |σ2| > n,

and we set
B1,n(x, y)(ξ) = b1,n(ξ, x(ξ), y(ξ)), ξ ∈ D̄.

Clearly, we have that B1,n(x, ·) : E → E is Lipschitz continuous and bounded for any
fixed x ∈ E, and B1,n(x, y) = B1(x, y) if |y|E ≤ n. Moreover, for any R > 0,

(7.3) sup
|x|E≤R

|B1,n(x, ·)|Lipb(E) := cn,R <∞.

Now, for any n ∈ N, we have∫
E

B1(x, z)µxt (dz) =

∫
E

B1,n(x, z)µxt (dz) +

∫
{|z|E>n}

(B1(x, z)−B1,n(x, z)) µxt (dz).

According to (5.26) and (7.1), we have

sup
t∈R

∣∣∣∣∣
∫
{|z|E>n}

(B1(x, z)−B1,n(x, z)) µxt (dz)

∣∣∣∣∣
≤ c sup

t∈R

∫
{|z|E>n}

(1 + |x|m1

E + |z|E) µxt (dz) ≤ c

n

(
1 + |x|m1+1

E

)
.
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This implies that, for any ε > 0 and R > 0, we can find n̄ = n̄(ε, R) ∈ N such that

sup
x∈BE(R)
t∈R

∣∣∣∣∣
∫
{|z|E>n̄}

(B1(x, z)−B1,n̄(x, z)) µxt (dz)

∣∣∣∣∣ ≤ ε

4
,

so that, for any t, τ ∈ R and x ∈ BE(R),∣∣∣∣∫
E

B1(x, z)µxt+τ (dz)−
∫
E

B1(x, z)µxt (dz)

∣∣∣∣
≤
∣∣∣∣∫
E

B1,n̄(x, z)µxt+τ (dz)−
∫
E

B1,n̄(x, z)µxt (dz)

∣∣∣∣+
ε

2
.

Now, let us define

f(t, x) =

∫
E

B1,n̄(x, z)µxt (dz), (t, x) ∈ R× E.

If we show that, for any compact set K ⊂ E, the family {f(·, x) : x ∈ K} is uniformly
almost periodic we have concluded our proof.

Since, for any t, τ ∈ R, we have

|f(t+ τ, x)− f(t, x)|E ≤ |B1,n̄(x, ·)|Lipb(E) d(µxt+τ , µ
x
t ),

in view of Theorem 6.3 and (7.3), the function f(·, x) is almost periodic for any x ∈ E.
Moreover, f is continuous in x ∈ K, uniformly with respect to t ∈ R. Actually, thanks
to (2.40), we have

|f(t, x)− f(t, y)|E ≤ E |B1,n̄(x, ηx(t))−B1,n̄(y, ηy(t))|E

≤ cE
(
1 + |x|θE + |y|θE + |ηx(t)|θE + |ηy(t)|θE

)
(|x− y|E + |ηx(t)− ηy(t)|E) .

Now, as K is compact it is bounded, so that there exists R > 0 such that K ⊂ BE(R).
Therefore, due to Proposition 5.4 and (5.25), we can conclude that, for any x, y ∈ K,

sup
t∈R
|f(t, x)− f(t, y)|E ≤ cR

(
|x− y|H + sup

t∈R

(
E |ηx(t)− ηy(t)|2E

) 1
2

)
≤ cR |x− y|E ,

and this implies that the family of functions {f(t, ·) : t ∈ R} is equicontinuous. In
[19, Theorem 2.10], it is proven that this implies the uniform almost periodicity of
the family {f(·, x) : x ∈ K}.

Due to the almost periodicity of the family of mappings (7.2), according to The-
orem 3.4 we can define

B̄(x) := lim
T→∞

1

T

∫ T

0

∫
E

B1(x, y)µxt (dy) dt, x ∈ E.

Thanks to (5.26) and (7.1), we have that

(7.4) |B̄(x)|E ≤ c (1 + |x|m1

E ) .

Actually, in view of (7.1), we have∣∣∣∣∣ 1

T

∫ T

0

∫
E

B1(x, y)µxt (dy) dt

∣∣∣∣∣
E

≤ c 1

T

∫ T

0

∫
E

(1 + |x|m1

E + |y|E) µxt (dy) dt
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and then, thanks to (5.26), we have

|B̄(x)|E ≤ c (1 + |x|m1

E ) + c1 (1 + |x|E) ,

which implies (7.4).
As a consequence of (5.12), we have the following crucial result.

Lemma 7.2. Under Hypotheses 2.1 to 6.1, if α is sufficiently large and/or Lg2 is
sufficiently small, there exist some constants κ1, κ2 ≥ 0 such that, for any T > 0,
s ∈ R, and x, y ∈ E,

(7.5) E

∣∣∣∣∣ 1

T

∫ s+T

s

B1(x, vx(t; s, y)) dt− B̄(x)

∣∣∣∣∣
2

E

≤ c

T
(1 + |x|κ1

E + |y|κ2

E ) + α(T, x)

for some mapping α : [0,∞)× E → [0,+∞) such that

sup
T>0

α(T, x) ≤ c (1 + |x|m1

E ) , x ∈ E,

and, for any compact set K ⊂ E,

lim
T→∞

sup
x∈K

α(T, x) = 0.

Proof. For any fixed Λ ∈ E? and x ∈ E, we denote by Πx
ΛB1 the mapping

(t, y) ∈ R× E 7→ Πx
ΛB1(t, y) := 〈B1(x, y),Λ〉E −

∫
E

〈B1(x, z),Λ〉E µxt (dz) ∈ R.

By proceeding as in the proof of Lemma 2.3 in [9] and the proof of Lemma 5.1 in [10],
we have

E

(
1

T

∫ s+T

s

[
〈B1(x, vx(t; s, y)),Λ〉E −

∫
E

〈B1(x, z),Λ〉E µxt (dz)

]
dt

)2

=
2

T 2

∫ s+T

s

∫ s+T

r

E
[
Πx

ΛB1(r, vx(r; s, y))P xr,tΠ
x
ΛB1(r, vx(r; s, y))

]
dt dr

≤ 2

T 2

∫ s+T

s

∫ s+T

r

(
E |Πx

ΛB1(r, vx(r; s, y))|2
) 1

2
(
E |P xr,tΠx

ΛB1(r, vx(r; s, y))|2
) 1

2 dt dr.

(7.6)

Due to (2.35), (5.10), and (5.26), we have

(7.7)

E |Πx
ΛB1(r, vx(r; s, y))|2 ≤ c

(
1 + |x|2m1

E + E |vx(r; s, y)|2E
)
|Λ|2E?

≤ c
(

1 + |x|2m1

E + e−2δ(r−s)|y|2E
)
|Λ|2E? .

Moreover, due to (2.40), we have

|〈B1(x, y),Λ〉E − 〈B1(x, z),Λ〉E | ≤ c |y − z|E
(
1 + |x|θE + |y|θE + |z|θE

)
|Λ|E?

so that, thanks to (5.12), we have

E |P xr,tΠx
ΛB1(r, vx(r; s, y))|2 ≤ c

(
1 + |x|2(θ∨1)

E + |y|2(θ∨1)
E

)
|Λ|2E?e−2δ(t−r).

D
ow

nl
oa

de
d 

07
/2

8/
17

 to
 1

29
.2

.1
9.

10
2.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2874 SANDRA CERRAI AND ALESSANDRA LUNARDI

Therefore, if we plug the estimate above and estimate (7.7) into (7.6), we get

(7.8)

E

∣∣∣∣∣ 1

T

∫ s+T

s

[
B1(x, vx(t; s, y))−

∫
E

B1(x, z)µxt (dz)

]
dt

∣∣∣∣∣
2

E

≤ c (1 + |x|m1

E + |y|E)
(
1 + |x|θ∨1

E + |y|θ∨1
E

) 1

T 2

∫ s+T

s

∫ s+T

r

e−δ(t−r) dt dr

≤ c (1 + |x|m1

E + |y|E)
(
1 + |x|θ∨1

E + |y|θ∨1
E

) 1

T
.

Next, thanks to Lemma 7.1 and Theorem 3.4, we have that the limit

lim
T→∞

1

T

∫ s+T

s

∫
E

B1(x, z)µxt (dz) dt ∈ E

converges to B̄1(x), uniformly with respect to s ∈ R and x in any compact set K ⊂ E.
Therefore, if we define

α(T, x) = 2

∣∣∣∣∣ 1

T

∫ s+T

s

∫
E

B1(x, z)µxt (dz) dt− B̄(x)

∣∣∣∣∣
2

E

,

we can conclude.

Lemma 7.3. Under Hypotheses 2.1 to 6.1, if α is sufficiently large and/or Lg2 is
sufficiently small, we have that the mapping B̄ : E → E is locally Lipschitz continuous.
Moreover, for any x, h ∈ E and δ ∈ Mh,

(7.9)
〈
B̄(x+ h)− B̄(x), δ

〉
E
≤ c (1 + |h|E + |x|E) .

Proof. For any x1, x2 ∈ E, we have

B̄(x1)− B̄(x2) = lim
T→∞

1

T

∫ T

0

E (B1(x1, η
x1(t))−B1(x2, η

x2(t))) dt in E.

By using (2.40), we have

|B1(x1, η
x1(t))−B1(x2, η

x2(t))|E

≤ c
(
1 + |x1|θE + |x2|θE + |ηx1(t)|θE + |ηx2(t)|θE

)
(|x1 − x2|E + |ηx1(t)− ηx2(t)|E),

and then, due to (5.25), we get

sup
t∈R
|E (B1(x1, η

x1(t))−B1(x2, η
x2(t)))|E

≤ c
(
1 + |x1|θE + |x2|θE

)(
|x1 − x2|E + sup

t∈R

(
E|ηx1(t)− ηx2(t)|2E

) 1
2

)
.

Thanks to (5.31), this implies that, for any R > 0,

x1, x2 ∈ BE(R) =⇒ |B1(x1)−B1(x2)|E ≤ cR |x1 − x2|E .
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Concerning (7.9), if δ ∈ Mh, we have

〈
B̄(x+ h)− B̄(x), δ

〉
E

= lim
T→∞

1

T

∫ T

0

E
〈
B1(x+ h, ηx+h(s))−B1(x, ηx(s)), δ

〉
E
ds.

Now, due to (2.37), we have〈
B1(x+ h, ηx+h(s))−B1(x, ηx(s)), δ

〉
E

≤ c
(
1 + |x|E + |h|E + |ηx+h(s)|E + |ηx(s)|E

)
,

and then, thanks again to (5.25), we conclude〈
B̄(x+ h)− B̄(x), δ

〉
E

≤ lim sup
T→∞

1

T

∫ T

0

c
(
1 + |x|E + |h|E + E|ηx+h(s)|E + E|ηx(s)|E

)
ds

≤ c (1 + |x|E + |h|E) .

Now, we can introduce the averaged equation

(7.10) du(t) =
[
A1u(t) + B̄(u(t))

]
dt+G(u(t)) dwQ1(t), u(0) = x ∈ E.

In view of Lemma 7.3 and [6, Theorem 5.3], for any x ∈ E, T > 0, and p ≥ 1, (7.10)
admits a unique mild solution ū ∈ Lp(Ω;Cb((0, T ];E)). In the next section, we will
show that the slow motion uε converges in probability to the averaged motion ū.

8. The averaging limit. In this last section we prove that the slow motion uε
converges to the averaged motion ū, as ε→ 0. The proof of this averaging result is in
many respects similar to the proof of [10, Theorem 61].

Theorem 8.1. Assume that Hypotheses 2.1 to 6.1 hold and fix x ∈ Cθ(D̄) for
some θ > 0 and y ∈ E. Then, if α is large enough and/or Lg2 is small enough, for
any T > 0 and η > 0, we have

(8.1) lim
ε→0

P

(
sup

t∈ [0,T ]

|uε(t)− ū(t)|E > η

)
= 0,

where ū is the solution of the averaged equation (7.10).

For any h ∈ D(A1), the slow motion uε satisfies the identity∫
D

uε(t, ξ)h(ξ) dξ =

∫
D

x(ξ)h(ξ) dξ +

∫ t

0

∫
D

uε(s, ξ)A1h(ξ) dξ ds

+

∫ t

0

∫
D

B̄(uε(s, ·))(ξ)h(ξ) dξ ds+

∫ t

0

∫
D

[G1(uε(s)h](ξ)dwQ2(s, ξ) +Rε(t),

where

Rε(t) =

∫ t

0

∫
D

(
B1(uε(s), vε(s))(ξ)− B̄(uε(s))(ξ)

)
h(ξ) dξ ds.

Therefore, as in [9] and [10], due to the tightness of the family {L(uε)}ε∈ (0,1] in
P(C([0, T ];E)), in order to prove Theorem 8.1 it is sufficient to prove the following.
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Lemma 8.2. Under the same hypotheses as in Theorem 8.1, for any T > 0, we
have

(8.2) lim
ε→0

E sup
t∈ [0,T ]

|Rε(t)|E = 0.

8.1. Proof of Lemma 8.2. For any n ∈ N, we define

b1,n(ξ, σ1, σ2) :=


b1(ξ, σ1, σ2) if |σ1| ≤ n,

b1(ξ, σ1n/|σ1|, σ2) if |σ1| > n,

and

b2,n(t, ξ, σ1, σ2) :=


b2(t, ξ, σ1, σ2) if |σ1| ≤ n,

b2(t, ξ, σ1n/|σ1|, σ2) if |σ1| > n,

Concerning the corresponding composition operator, we have

(8.3) x ∈ BE(n) =⇒ B1,n(x, y) = B1(x, y), B2,n(t, x, y) = B2(t, x, y)

for every t ∈ R and y ∈ E. Notice that the mappings b1,n and b2,n satisfy all
conditions in Hypotheses 2.6 and 2.8, respectively. For any fixed t ∈ R, ξ ∈ D̄, and
σ2 ∈ R, the mappings b1,n(ξ, ·, σ2), and b2,n(t, ξ, ·, σ2) are Lipschitz continuous and,
in view of (2.30),

(8.4) sup
(t,ξ)∈R×D̄
σ2∈R

|b2,n(t, ξ, σ1, σ2)− b2,n(t, ξ, ρ1, σ2)| ≤ cn |σ1 − ρ1|, σ1, ρ1 ∈ R.

Moreover, for any n ∈ N, we define

g1,n(ξ, σ1) :=


g1(ξ, σ1) if |σ1| ≤ n,

g1(ξ, σ1n/|σ1|) if |σ1| > n.

The corresponding composition/multiplication operator is denoted by G1,n.
Now, for any n ∈ N, we introduce the system


du(t) = [A1u(t) +B1,n(u(t), v(t))] dt+G1,n(u(t)) dwQ1(t),

dv(t) =
1

ε
[(A2(t/ε)− α)v(t) +B2,n(t/ε, u(t), v(t))] dt+

1√
ε
G2(t/ε, v(t)) dwQ2(t)

(8.5)

with initial conditions u(s) = x and v(s) = y. We denote by zε,n = (uε,n, vε,n) its
solution.

Next, for any n ∈ N, we introduce the problem

(8.6) dv(t) = [(A2(t)− α)v(t) +B2,n(t, x, v(t))] dt+G2(t, v(t)) dwQ2(t), v(s) = y,

whose solution will be denoted by vxn(t; s, y). Thanks to (8.3), for any t ≥ 0, we have

(8.7) vxn(t; s, y) =


vx(t; s, y) if |x|E ≤ n,

vxn(t; s, y) if |x|E > n,
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where

xn(ξ) :=


x(ξ) if |x(ξ)| < n

n signx(ξ) if |x(ξ)| ≥ n.

This implies that, for each n ∈ N and x ∈ E, there exists an evolution of measures
family {µx,nt }t∈R for equation (8.6), and µx,nt is given by

µx,nt =


µxt if |x|E ≤ n,

µxnt if |x|E > n.

Moreover, due to (5.10), for any p ≥ 1 we have

(8.8) E |vxn(t; s, y)|pE ≤ cp,n
(

1 + e−δp(t−s)|y|pE
)
, t > s.

As all coefficients in equation (8.6) satisfy the same conditions as are fulfilled by
the coefficients of equation (5.2), we have that a result analogous to Lemma 7.2 holds.
More precisely, if we define

B̄n(x) = lim
T→∞

1

T

∫ T

0

∫
E

B1,n(x, y)µx,nt (dy) dt,

we have that

(8.9) E

∣∣∣∣∣ 1

T

∫ s+T

s

B1,n(x, vxn(t; s, y)) ds− B̄n(x)

∣∣∣∣∣
2

E

≤ c

T
(1 + |x|κ1

E + |y|κ2

E ) + α(T, x)

for some mapping α : (0,+∞)× E → [0,+∞) such that

(8.10) sup
T>0

α(T, x) ≤ c(1 + |x|m1

E ), x ∈ E,

and

(8.11) lim
T→∞

sup
x∈K

α(T, x) = 0

for every compact set K ⊂ E. Notice that

|x|E ≤ n =⇒ B̄n(x) = B̄(x).

Lemma 8.3. The mapping B̄n : E → E is Lipschitz continuous.

Proof. Due to (2.21), for every t ∈ R and x1, x2 ∈ E, we have

|B1,n(x1, η
x1
n (t))−B1,n(x2, η

x2
n (t))|E

≤ cn |x1 − x2|E + |B1,n(x2, η
x1
n (t))−B1,n(x2, η

x2
n (t))|E

≤ cc |x1 − x2|E + cn
(
1 + |ηx1

n (t)|θE + |ηx2
n (t)|θE

)
|ηx1
n (t)− ηx2

n (t)|E .

Due to (8.8), we have

(8.12) sup
t∈R

E |ηxn(t)|pE =: cp,n <∞,
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and this implies∣∣∣∣∫
E

B1,n(x1, y)µn,x1

t (dy)−
∫
E

B1,n(x2, y)µn,x2

t (dy)

∣∣∣∣
E

≤ E |B1,n(x1, η
x1
n (t))−B1,n(x2, η

x2
n (t))|E ≤ cn |x1 − x2|E + cn

(
E |ηx1

n (t)− ηx2
n (t)|2E

) 1
2

.

Now, if we adapt the proof of Proposition 5.4 to the present situation, we can easily
see that

sup
t∈R

E |ηx1
n (t)− ηx2

n (t)|2E ≤ cn |x1 − x2|2E ,

and this allows us to conclude that

sup
t∈R

∣∣∣∣∫
E

B1,n(x1, y)µn,x1

t (dy)−
∫
E

B1,n(x2, y)µn,x2

t (dy)

∣∣∣∣
E

≤ cn |x1 − x2|E ,

which implies the Lipschitz continuity of B̄n.

As in [9] and [10], we prove the validity of Lemma 8.2 by using Khasminskii’s
approach based on time discretization, as introduced in [25].

To this purpose, for any ε > 0, we divide the interval [0, T ] in subintervals of size
δε > 0 for some constant δε > 0 to be determined, and we introduce the auxiliary fast
motion v̂ε,n defined in each time interval [kδε, (k+ 1)δε] for k = 0, 1, . . . , [T/δε] as the
solution of the problem

(8.13)


dv(t) =

1

ε
[(A2(t/ε)− α)v(t) +B2,n(t/ε, uε,n(kδε), v(t))] dt

+
1√
ε
G2(t/ε, v(t)) dwQ2(t),

v(kδε) = vε,n(kδε).

Notice that, due to the way in which v̂ε,n has been defined, we have that an estimate
analogous to (4.3) holds, that is, for any p ≥ 1,

(8.14)

∫ T

0

E |v̂ε,n(t)|pE dt ≤ cp,T (1 + |x|pE + |y|pE) .

As in [25] and [9], we want to prove the following approximation result.

Lemma 8.4. Assume Hypotheses 2.1 to 2.10 and fix x ∈ Cθ(D̄) and y ∈ E.
Then, there exists a constant κ > 0 such that if

δε = ε log ε−κ,

then, for any fixed n ∈ N,

(8.15) lim
ε→0

sup
t∈ [0,T ]

E|v̂ε,n(t)− vε,n(t)|2H = 0.

Proof. Let ε > 0 and n ∈ N be fixed. For k = 0, . . . , [T/δε] and t ∈ [kδε, (k+1)δε],
let Λε,n(t) be the solution of the problem

dΛε,n(t) =
1

ε
(A2 − α)Λε,n(t) dt+

1√
ε
Kε,n(t) dwQ2 , Λε,n(kδε) = 0,
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where
Kε,n(t) := G2,n(t/ε, v̂ε,n(t))−G2,n(t/ε, vε,n(t)).

Notice that, with the notations of section 2, we can write

(8.16) Λε,n(t) = ψα,ε(Λε,n; kδε)(t) + Γε,n(t), t ∈ [kδε, (k + 1)δε],

where

Γε,n(t) =
1√
ε

∫ t

kδε

Uα,ε(t, r)Kε,n(r) dwQ2(r).

If we define ρε,n(t) := v̂ε,n(t)− vε,n(t) and zε,n(t) := ρε,n(t)− Λε,n(t), we have

dzε,n(t) =
1

ε
[(A2(t/ε)− α)zε,n(t) +Hε,n(t)] dt, zε,n(kδε) = 0,

where, in view of (2.31),

Hε,n(t) := B2,n(t/ε, uε,n(kδε), v̂ε,n(t))−B2,n(t/ε, uε,n(t), vε,n(t))

= B2,n(t/ε, uε,n(kδε), v̂ε,n(t))−B2,n(t/ε, uε,n(t), v̂ε,n(t))

− λ(t/ε, ·, uε,n(t), v̂ε,n(t), vε,n(t))(zε,n(t) + Λε,n(t)).

By proceeding as in the proof of [10, Lemma 6.2], we have

|zε,n(t)|E ≤
cn
ε

∫ t

kδε

e−
α
ε (t−s)|uε,n(kδε)− uε,n(s)|E ds

+
1

ε

∫ t

kδε

exp

(
−1

ε

∫ t

s

λε,n(r) dr

)
λε,n(s) |Λε,n(s)|E ds

where

λε,n(t) := λ(t/ε, ξε,n(t), uε,n(t, ξε,n(t)), v̂ε,n(t, ξε,n(t)), vε,n(t, ξε,n(t)))

and ξε,n(t) is a point in D̄ such that

|zε,n(t, ξε,n(t))| = |zε,n(t)|E .

Now, it is not difficult to check that an estimate analogous to (4.5) is also valid
for uε,n. Therefore, we get

E |v̂ε,n(t)− vε,n(t)|2E ≤ cp E |Λε,n(t)|2E + cn

(
1 + |x|2m2

Cθ(D̄)
+ |y|2E

)
δγ(θ)2
ε

+ cE sup
s∈ [kδε,t]

|Λε,n(s)|2E(
1

ε

∫ t

kδε

exp

(
−1

ε

∫ t

s

λε,n(r) dr

)
λε,n(s) ds

)2

≤ cn
(

1 + |x|2m2

Cθ(D̄)
+ |y|2E

)
δγ(θ)2
ε + cE sup

s∈ [kδε,t]

|Λε,n(s)|2E .

(8.17)
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Since, for any α ≥ 0 and ε > 0, we have

Uα,ε(t, s) = Uα,ε(t, r)Uα,ε(r, s), s < r < t,

the usual factorization argument used in the autonomous case can also be used here,
so that, for s ∈ [kδε, (k + 1)δε] and η ∈ (0, 1), we have

Γε,n(s) =
sinπη

π

1√
ε

∫ s

kδε

(s− r)η−1Uα,ε(s, r)Yη,ε,n(r) dr,

where

Yη,ε,n(r) =

∫ r

kδε

(r − ρ)−ηUα,ε(r, ρ)Kε,n(ρ) dwQ2(ρ).

Therefore, by proceeding as in the proof of [10, Lemma 6.2], we have

(8.18) E sup
s∈ [kδε,t]

|Γε,n(s)|2E ≤ cη
1

ε

∫ t

kδε

E |v̂ε,n(s)− vε,n(s)|2E ds.

Thanks to (8.16) and (8.18), this implies

E sup
s∈ [kδε,t]

|Λε,n(s)|2E ≤ cη
1

ε

∫ t

kδε

E |v̂ε,n(s)− vε,n(s)|2E ds

so that, thanks to (8.17), for t ∈ [kδε, (k + 1)δε],

E |v̂ε,n(t)− vε,n(t)|2E ≤ cη
(

1 + |x|2m2

Cθ(D̄)
+ |y|2E

)
δγ(θ)2
ε +

c

ε

∫ t

kδε

E |v̂ε,n(s)− vε,n(s)|2E ds.

From the Gronwall lemma, this gives

E |v̂ε,n(t)− vε,n(t)|2E ≤ cη
(

1 + |x|2m2

Cθ(D̄)
+ |y|2E

)
δγ(θ)2
ε exp

(
c δε
ε

)
.

Now, since

exp

(
c δε
ε

)
= exp

(
c log ε−κ

)
= ε−c κ,

we have

δγ(θ)2
ε exp

(
c δε
ε

)
= δγ(θ)2

ε ε−c κ = ε−c κ+2γ(θ)
(
log ε−κ

)2γ(θ)
.

Hence, if we take κ < 2 γ(θ)/c, we have (8.15).

Finally, we can prove (8.2). As in [10], we can show that, for any n ∈ N,

E sup
t∈ [0,T ]

|Rε(t)| ≤ E

(
sup

t∈ [0,T ]

|Rε,n(t)|

)
+
cT
n

(
1 + |x|2m1

E + |y|2E
)
|h|E .

Therefore, due to the arbitrariness of n ∈ N, (8.2) follows once we prove that, for any
fixed n ∈ N,

(8.19) lim
ε→0

E

(
sup

t∈ [0,T ]

|Rε,n(t)|

)
= 0.
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We have

lim sup
ε→0

E sup
t∈ [0,T ]

∣∣∣∣∫ t

0

〈
B1,n(uε,n(s), vε,n(s))− B̄n(uε,n(s)), h

〉
H
ds

∣∣∣∣
≤ lim sup

ε→0
E
∫ T

0

∣∣〈B1,n(uε,n(s), vε,n(s))−B1,n(uε,n([s/δε]δε), v̂ε,n(s)), h〉H
∣∣ ds

+ lim sup
ε→0

E sup
t∈ [0,T ]

∣∣∣∣∫ t

0

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(s)), h

〉
H
ds

∣∣∣∣ .

(8.20)

As in the proofs of [9, Lemma 6.3] and [10, Lemma 6.2], we have

E
∫ T

0

∣∣〈B1,n(uε,n(s), vε,n(s))−B1,n(uε,n([s/δε]δε), v̂ε,n(s)), h〉H
∣∣ ds

≤ cT,n |h|H
(

1 + |x|(2∨θ)m1

Cθ(D̄)
+ |y|2∨θE

)(
δγ(θ)
ε + sup

t∈ [0,T ]

(
E |vε,n(t)− v̂ε,n(t)|2E

) 1
2

)
.

Therefore, in view of Lemma 8.4, from (8.20),

lim sup
ε→0

E sup
t∈ [0,T ]

∣∣∣∣∫ t

0

〈
B1,n(uε,n(s), vε,n(s))− B̄n(uε,n(s)), h

〉
H
ds

∣∣∣∣
= lim sup

ε→0
E sup
t∈ [0,T ]

∣∣∣∣∫ t

0

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(s)), h

〉
H
ds

∣∣∣∣ .
Again, as in the proofs of [9, Lemma 6.3] and [10, Lemma 6.2], we have

E sup
t∈ [0,T ]

∣∣∣∣∫ t

0

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(s)), h

〉
H
ds

∣∣∣∣
≤

[T/δε]∑
k=0

E

∣∣∣∣∣
∫ (k+1)δε

kδε

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣
+ cT,n |h|H

(
1 + |x|m1

Cθ(D̄)
+ |y|E

)
[T/δε] δ

γ(θ)+1
ε

so that we have to show that

lim
ε→0

[T/δε]∑
k=0

E

∣∣∣∣∣
∫ (k+1)δε

kδε

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣ = 0.

(8.21)
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If we set ζε := δε/ε, we have

E

∣∣∣∣∣
∫ (k+1)δε

kδε

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣
= E

∣∣∣∣∣
∫ δε

0

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(kδεs))− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣
= E

∣∣∣∣∣
∫ δε

0

〈
B1,n(uε,n([s/δε]δε), ṽ

uε,n(kδε),vε,n(kδε)
n (s/ε)− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣
= δεE

∣∣∣∣∣ 1

ζε

∫ ζε

0

〈
B1,n(uε,n([s/δε]δε), ṽ

uε,n(kδε),vε,n(kδε)
n (s)− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣ ,
where ṽ

uε,n(kδε),vε,n(kδε)
n (s) is the solution of the fast motion equation (5.1) with frozen

slow component uε,n(kδε) and initial datum vε,n(kδε), and noise w̃Q2 independent of
both of them. According to (8.9), (4.2), and (4.3), this yields

E

∣∣∣∣∣
∫ (k+1)δε

kδε

〈
B1,n(uε,n([s/δε]δε), v̂ε,n(s))− B̄n(uε,n(kδε)), h

〉
H
ds

∣∣∣∣∣
≤ δε

c

ζε
(1 + E |uε,n(kδε)|κ1

E + E |vε,n(kδε)|κ2

E ) |h|1 + Eα(ζε, uε,n(kδε)).

Now, the family

{uε,n(kδε) : ε > 0, n ∈ N, k = 0, . . . , [T/δε]}

is tight. Then, for any η > 0, there exists a compact set Kη ⊂ E such that

P
(
uε,n(kδε) ∈ Kc

η

)
≤ η.

Therefore, due to (8.10), we have

Eα(ζε, uε,n(kδε))

= E (α(ζε, uε,n(kδε)) ; uε,n(kδε) ∈ Kη) + E
(
c (1 + |uε,n(kδε)|m1

E ) ; uε,n(kδε) ∈ Kc
η

)
≤ sup
x∈Kη

α(ζε, x) +
√
η c
(

1 +
(
E |uε,n(kδε)|2m1

E

) 1
2

)
.

Thanks to (8.11), we can conclude that

lim sup
ε→0

Eα(ζε, uε,n(kδε)) ≤ c (1 + |x|κE + |y|κE)
√
η,

for some κ > 0, and, due to the arbitrariness of η, this implies (8.21).
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