Gevrey regularity of the Navier-Stokes equations in a half-space
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ABSTRACT. We consider the Navier-Stokes equations posed on the half space, with Dirichlet boundary con-
ditions. We give a direct energy-based proof for the instantaneous space-time analyticity and Gevrey-class
regularity of the solution, uniformly up to the boundary of the half space.
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1. Introduction

In this paper, we consider the Navier-Stokes system
ou—Au+u-Vu+Vp=f

Vou—0, (1.1)
in the half-space
Q={z=(21,...,70) € R : 24 >0} (1.2)
with the no-slip boundary condition
=0 (1.3)
and the initial condition
u(z,0) = up(z), x € €. (1.4)

For simplicity, we let d € {2, 3}, but note that higher dimensions may be treated similarly. See e.g. [7,30,34]
for the well-posedness and further properties of the solutions to (1.1)—(1.4).

In Theorem 2.3 below we prove that the solution to (1.1)—(1.4) immediately becomes space-time real
analytic, with analyticity radius which is uniform up to the boundary OS2, under the hypothesis that the force
is real analytic in space-time. The result only requires finite Sobolev regularity on the initial datum wuy.

Assuming that f is space-time analytic in © x I, where 2 C R3 and [ is a complex neighborhood of
(0,T"), Masuda [26] proved that the interior analyticity of a solution u to the Navier-Stokes system follows
from that of the external force f (see also [15]), answering a question posed by Serrin [32]. Furthermore, in
the case that (2 is a bounded domain with analytic boundary 02, assuming that f is analytic uniformly up to
the boundary and that the solution (u, p) is C°°, Komatsu [17, 18] showed that (u, Vp) is globally analytic
in z up to the boundary OS2 and locally analytic in ¢. His technique is inspired by the previous work by
Kinderlehrer and Nirenberg [16] for second order parabolic equations, and is based on an induction scheme
on the number of derivatives (see also [23]). A semigroup approach for analyticity up to the boundary in
(1.1)—(1.4) was later given by Giga [11] (see also [29]), and a complex variables-based proof was given by
the second author and Gruji¢ [13,14] (see also [5,6]). Establishing the analyticity of solutions to (1.1)—(1.4)
on domains with boundaries is particularly important in the context of the vanishing viscosity limit [31], or
equivalently, the infinite Grashof number limit in our context.

The proof of the instantaneous space-time analyticity uniformly up to the boundary of the half-space
given in this paper is based solely on L%t energy estimates of the solution and its derivatives (see also [21] for
the non-homogeneous Stokes system). The main obstacle to energy-based proofs on domains with bound-
aries is that the normal derivatives of the solution do not obey good boundary conditions. We believe that our
approach will be useful in establishing real-analytic and Gevrey-class regularization results for semilinear
parabolic PDEs with different types of boundary conditions, by only appealing to energy estimates.
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MSC Classification: 35030, 76D05.
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We recall that in the case of no boundaries, Foias and Temam have developed in [10] a very efficient
method to prove analyticity, or more generally Gevrey-type regularity, which has in turn inspired many
works (cf. [1-4,8,9,12,19,22,25,27,28] and references therein). The technique in [10] is based on Fourier
analysis, which is unavailable in the case of domains with boundaries. One of the main aims of this paper
is to find a similarly direct approach for establishing analyticity, which is based on the summing Taylor co-
efficients, rather than on the Fourier techniques. Such methods were introduced in [20] for the propagation
of analyticity in the Euler equation, and this in turn led to be efficient in estimating the size of the uniform
radius in terms of the size of initial data. However, finding an analog in the case of the Navier-Stokes equa-
tions proved to be more difficult due to the Laplacian term. In [21], the last two authors of the present paper,
inspired by Komatsu’s work [18], have used classical energy inequalities for the heat and Laplace equations,
to achieve normal, tangential and time derivative reductions on terms of the form ¢+ T%=39{3’ 0% u. Here 0
and 0y denote the tangential derivative component and the normal derivative component, respectively. This
derivative reduction method works for the heat equation and extends naturally to the inhomogeneous Stokes
system, yielding the desired regularization result in [21].

In order to address the Navier-Stokes system, we use a Gevrey type norm

or(u) = D ETEN i [[tHTTE0[050 ) 120 110 + ull 2o r)x0)
i+j+k>3
where N; ;. represent certain binomial expressions which account for the possible growth of the Taylor
coefficients. Note that the finiteness of the norm ¢ (u) for some 7' > 0 implies that the function w is real-
analytic in space-time on (0,7) x €2 (see e.g. [28] and references therein). The main goal is to establish an
inequality of the type
N
¢r(u) S Kug + I f]l + Kuy D T (¢7(w)), (15)
j=1
where o; > 0, N € Nis fixed, and 0 < ; < 2. Here || f|| represents a suitable analytic norm of f,
and K, is a constant that depends on the Sobolev norm of the initial datum. From (1.5) and a standard
Gronwall-type barrier argument, we deduce that for short enough time ¢7(u) stays bounded from above by
a constant which depends on a Sobolev norm of uy and a space-time analytic norm of f, establishing the
desired joint space-time analytic regularization. Although establishing (1.5) comes with some computational
difficulty due to the nonlinear term ¢ (u - Vu), the logic behind the analyticity estimate remains as direct as
observed in the case of the nonhomogeneous heat equation. We believe that this method directly generalizes
to nonlinear Stokes systems with nonlinearity given by N (z,t,u, Vu), a space-time analytic function in
each of its variables.

The paper is organized as follows. In Section 2, we introduce some notation, define the Gevrey-class
norm ¢, and state the main result (cf. Theorem 2.3). Also in Section 2 we recall the derivative reduction
estimates from [21]. In Section 3, we give the proof Theorem 2.3, assuming a suitable bound for the
nonlinear term, given by terms on the right side of (1.5) (cf. Lemma 3.1). The proof of this nonlinear
estimate is finally given in Section 4, and is split into three separate lemmas which each deal with one case
of the derivative reduction estimates (cf. Lemmas 4.4, 4.5, and 4.6).

2. Main result

Before stating the main result of this paper, Theorem 2.3 below, we first introduce some notation. For
r > 1 we define the index sets

B=/{(i,j,k) 4,5,k € No,i+j+k>r} and B°=N}\B.
For m € Ny we define the real-analytic binomial coefficient

m?"

m.
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All the proofs and statements in this paper carry through for the Gevrey-class s binomial coefficients /V,, =
m” /(m!)?, for s > 1. For simplicity of notation we only discuss the stronger (analytic) case s = 1.
For a fixed time horizon T' € (0, 1] and given small parameters ¢ < € < € € (0, 1], we consider the sum

dr(u) =Y Ni+j+kei€jgkHti+j+kirazaééku”Liyt([O,T]><Q) +y \|358§5kU’\L;1([0,T}xQ)
BC

B (2.1)
= ¢r(u) + ¢o,r(u),
where 0 denotes the vector of tangential derivatives 0 = (01,...,04—1). Above and in the sequel we use

the notational agreement that for & € Ny we use 9” to denote:

i 07 Ak _ i 37
oo ul e, = S 10i050%ull 2,
aENZ |o|=k
Moreover, if the domain in the Lebesgue/Sobolev space is not indicated, it is either Q2 or 2 x (0,7"), and

this will be clear from the context. Throughout the paper we use the symbol a < b to mean that there exists
a sufficiently large constant C' = C(2,r,d) > 1 such that a < Cb.

REMARK 2.1. In (2.1) we note that ¢ r(u) is the H"~1([0,T] x Q) norm of the solution u of (1.1)-
(1.4). Under suitable smoothness and compatibility conditions on ug and f, and for sufficiently small 7, it
is known (cf. e.g. [33, Chapter III]) that ¢y () is a priori bounded in terms of Sobolev norms of g and f.

REMARK 2.2. The finiteness of the norm ¢ (u) in (2.1), for some 7" > 0, implies that the function w is
real-analytic in space-time on (0,7") x €2 (see, e.g. [28]). Moreover, for any ¢y € (0,7'), the finiteness of the
sub-sums with ¢ = 0 and ¢ = 1 shows that u(-,?o) is real-analytic in space, uniformly up to the boundary
of the half space (). The radius of analyticity is bounded from below by a constant multiple of ¢y€ and the

analytic norm is bounded from above by (1 + ¢t Y 2)qu(u). Note also that by changing the binomial weight
Ny, tom” /(m!)®, with s > 1, the finiteness of ¢7(u) implies the Gevrey-class s regularity of w.

In [21], the last two authors of this paper have showed that the solution u of the Cauchy problem for the
inhomogeneous Stokes system

ou—Au+Vp=f, in €2,
V-u=0, in 2, (2.2)
u =0, on 0f?

satisfies
ér(u) S ¢or(u) + Mr(f) (2.3)
where
Mr(f) = > Ni+j+kz+26i€j+2€k“ti+j+k+2_ragag5kf||Li,t((D,T)><Q)
i+ jt+k>(r—2)+
+ Y Nipppad @ P2 eth2roiok f 22, (0.1)%) (2.4)
i+k>(r—2)4
+ D0 N el 0myxa),
i>r—1
provided that
0<e<e<e<1 (2.5)

are suitably chosen small constants depending on 7', r, and d. For the sake of completeness, we recall
from [21] that the constants €, €, € can be chosen as follows: There exists a constant C' = C'(r,d) > 1 such
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that in addition to (2.5) we require

1 1 e 1
<—, Te< =, (Te)'?4+=<_=. 2.6
e<g, Te<o, (T9V2+i<z 2.6)
Since in this paper we consider 7" € (0, 1], the above condition is satisfied as soon as we impose
1 1 1 € 1
<=, e<=, érPyi<= 2.7
€ — C’ € — C? € + € — 07 ( )

where as before C' = C(r,d) > 1 is sufficiently large. Throughout this paper fix these values of €, €, €
which obey (2.5) and (2.7), and emphasize that their values depend only on r and d. With this notation, the
following is our main result.

THEOREM 2.3. For d € {2,3} and r = 3 there exist €,¢,€ € (0, 1], such that the following statement
holds: For any divergence-free ug € H(2) N H*(Q) which satisfies suitable compatibility conditions, and
a space-time real-analytic f € L>(0,1; H3(Q)) N W°°(0,1; H(Q)) N W2>(0, 1; L*(Q)), for which
M (f) < oo, there exists Ty € (0, 1] such that the solution u of the Cauchy problem for (1.1)—(1.4) satisfies
the estimate

¢r(u) S 1+ Mr(f) (2.8)
forany T € (0,T.]. The implicit constant only depends on Q, r, and d.

REMARK 2.4. In Theorem 2.3 the time 7T’ depends on the datum through ||ug|| ;74, and on the force
through || fl| zee pys + 100 | ooy + 107 1] e 2 + Mi(f), where My(f) is as defined in (2.4).

REMARK 2.5. On the initial datum we have imposed, for simplicity, the requirement ug € H& Q)N
H*(2), in addition to the usual compatibility conditions at the boundary of 2. However, if we are only
interested in the space-time analyticity of the solution on (tg, 7] x €2, for an arbitrarily small ¢ty > 0, we
may simply take ug € H& (€2). The local existence of the Cauchy problem to (1.1)—(1.4) with such initial
datum is classical, and the H* regularity of u(-,/2) follows from the Sobolev smoothing properties of the
nonlinear Stokes equation [33], which allows us to apply Theorem 2.3 with initial datum g = u(-, tp/2).

The main idea in the proof of Theorem 2.3 is to apply the estimate (2.3) with f replaced by f — u - Vu,
and to perform a nonlinear estimate on ¢7(u - Vu) in terms of ¢ 7(u) and ¢7(u). The goal is to arrive at
an estimate like (1.5), which then concludes the proof of the theorem upon choosing a suitable 7.

The main idea behind the estimate (2.3) in [21] is to split the sum ¢ in (2.1) into several sub-sums, and
on each one perform a derivative reduction estimate. For convenience of the reader we recall from [21] these
derivative reduction estimates, for a solution of the non homogeneous Stokes system (2.2) on the half-space.
In all the below inequalities, we require ¢ + j + k > r. As shown in [21, Section 5.1], we may achieve a
normal derivative reduction for the Stokes operator

|’ti+j+kfra§8(]i'5ku”Li’t + Hti+j+kfrazl8£—15kp”l/2
5 Hti—i—j-‘rk—rafrlaé*?gkuHL%t + ”ti+j+k—raza£*15k+lu‘|L?M
L R s PR Tt e P

00 N e s 22

(2.9)

which allows us to reduce the number of vertical derivatives (J;) in the Gevrey (analytic) norm. On the
other hand, for 5 = 1, we have

HtiJrlJrkfrazadgkuHLg’t + HtiJrlJrkfragékaLi’t

) o . _ (2.10)
5 thJrlJrkfraz—l—lakfluHLZ t + th+1+kfra;ak71f”L2 - k > 1.
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For j = 1 and k£ = 0, we claim

| 0fVul 2, < 16 Ofull 2 640l

, , (2.11)
Gl e + 6O i
In order to reduce the number of tangential derivatives, we apply the estimate
i-+k—7 oi 5k i-+k—7 oi Gk—1
[ 00 ull 2, + (£ 700" pll 2,
’ (2.12)

i+k—r qi+1 5k—2 i+k—r qi Ak—2
SO | T e, k22
given in [21, Section 5.2]. For & = 1, we use a special case (replace V with ) of the inequality (2.11):

th-ﬁ-l TazauHLQ < th—&—l raZqu/? th—&—l raz+1 ||1/2

(2.13)
T Bl e 4 IOz, i
Lastly, for the pure time derivatives, we have
£~ T’8Zu||Lz < (i —r)|tt 7"8’ 1u||L2 + ||t 7"81 1f||L2 i t—1>r (2.14)

as obtained in [21, Section 5.3]. The proofs of these reductions are based on simple H? regularity consider-
ations for the linear parabolic type equations. The estimate (2.3) is obtained by summing over (i, j, k) € B
the estimates (2.9)—(2.14), and to absorb all the u-dependent terms into the left side of the inequality by
choosing ¢, €, € such that (2.5) and (2.6) hold.

3. Proof of Theorem 2.3

We appeal to the results in [21] by rewriting the Navier-Stokes equation (1.1) as a forced Stokes equation
ou—Au+Vp=—u-Vu+ f
V-u=0
on the three-dimensional half-space 2 = {z3 > 0}, with the Dirichlet boundary condition for u on 9.
Choosing to work with d = 3 is nonessential, and is convenient only in fixing the Sobolev-embedding
exponents in L>°(€2) € H?(Q) and L*(Q2) € H'(£2). With this choice of dimension, it is possible to set
r = 3 in the definition of ¢ 7(u) and ¢ (u). We note that replacing H? and H! with higher order Sobolev
spaces, and increasing the value of r accordingly, we may treat (1.1) in any dimension d > 2.

(3.1)

3.1. Local existence. In order to establish the boundedness of ¢ (u) for a finite time horizon, we appeal
to a local existence result for the Navier-Stokes equations [33, Chapter III] (see also [24] for more general
local existence results for semi-linear parabolic problems with Dirichlet boundary conditions): Assume that
ug € H}(2) N H*() is divergence free and obeys suitable compatibility conditions, and that the forcing f
lies in L ([0, 00); H3(£2)). Then there exists a time

loc
T, = T*(HUOHH4(§2)7 HfHL‘X’

loc

([0,00):13(02))) > 0 (3.2)
and a unique solution u to the Cauchy problem associated to (1.1)—(1.4) which obeys

S[UP ()l a0y < 2lluoll gaq)- (3.3)
telo

Without loss of generality, in (3.2) we may take the 7, < 1. Furthermore, if we further assume that
o f € L*([0,1]; HY(2)) and 02 f € L>(]0,1]; L?(£2)) we conclude from (1.1) and (3.3) that there exists a
constant C' = C(d,2) > 1 such that

sup (I[u(t) 20 + 100s(t) 13y + 1F(0) | 0
te[0,1.] (3.4)

< C(L+ lluoll gragy)® + 10ef | oo oy ) + 102 F | oo o1 520y = Co(uos f)-
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The upshot of (3.4) is that for any T" € (0, 7] C (0, 1] we have

do.1(u) < TY2C(up, f). (3.5)
When T is sufficiently small, the above estimate implies the smallness of ¢ 7 (), which is essential in

closing the nonlinear argument.

3.2. The Stokes estimate. From the result in [21], namely the estimates (2.3)—(2.4) for the nonlinear
Stokes equation (3.1), we obtain

or(u) S ¢or(u) + Mr(f) + Mr(u- Vu)
= ¢o,r(u) + Mr(f) + > Nigjihpoe @ 2[R 010008 (u - Vu)l|rz,
i+j+k>(r—2)4
+ Z Ni+k+26igk+2 Hti+k+2fr8;iék (U . VU) ”L2 t
i+k>(r—2)4 7
S N TG Vs
i>(r-1)y ’
= ¢o,r(u) + Mr(f) + My + M + M;
where My (f) is as defined in (2.4), and the parameters ¢, €, € are fixed as in (2.5)—(2.7), so that they depend

only on d = 3 and r = 3. The bulk of the proof of Theorem 2.3 is to bound the sums M, Ms, and M3
appearing on the right side of (3.6), in terms of ¢ 7(u) and ¢ (u).

(3.6)

3.3. Bounds for the nonlinear term. These estimates for M7, Mo, and M3 are performed in detail in
Section 4 below (cf. Lemmas 4.4, 4.5, and 4.6), and may be summarized as follows:

LEMMA 3.1. FixT € (0,1], d € {2,3} and r = 3. Then we have
My + My + Ms < dor(u) 267 (w)*/? + T 2pr(u)?, (3.7)
where the implicit constant depends only on r, d, and (), and is in particular independent of T.
From (3.6) and (3.7) we conclude that there exists C' = C(r, d, ) > 1 such that
dr(u) < Coor(u)(@or(u)'/? + dr(u)*?) + CMr(f) + CT'?pr(u)? (3:8)
forany 7' € (0, T%].
3.4. Conclusion of the proof of Theorem 2.3. In order to complete the proof of Theorem 2.3, it only

remains to combine (3.5) with (3.8). This is a standard barrier argument, which we sketch briefly. The goal
is to prove that for 71" sufficiently small, we have

¢r(u) < 4C + 4CMy(f) = M (3.9)

where the constant C' is the one given in (3.8). Note that M7 (f) < M;(f). In order to prove (3.9) for T
sufficiently small, first use (3.5) and take T}, < 1/C.(uog, f)?, which ensures that

¢or(u) <1
for 0 < T" < T,. Therefore, letting T, < 1, from (3.5) and (3.8) we obtain
or(u) < C+ C(Culug, /)PTV Gr(w)*? + CMi(f) + CTV2ér(u)?. (3.10)
If our assertion (3.9) does not hold, there exists 7" < T, such that ¢(7') < M for T" < T and ¢(T') = M.
Then, using (3.10) with T' =T, we get
M < O+ C(Culuo, )PTV ¢7(u)*? + CM(f) + OT 2y (u)®

M 3.11)
4

< = 4 O (Culug, NPT M2 4 CTH? M2,
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Restricting T, so that the last two terms are both less than or equal to M /4 gives M = 0, which leads to a
contradiction and thus proves Theorem 2.3.

4. Space-time analytic estimates for the nonlinear term

For the remainder of the proof, we omit the T-subindex in the quantities ¢7(u), ¢r(u), and ¢o 7 (u),
and simply denote them as ¢(u), ¢(u), and ¢ (u).

It is convenient to use the notation |(7, j, k)| = i + j + k, which indicates the length of the multi-index,
and to denote

- Nitjtre igigk | gitith— razaﬂakuHLz o i+j+k>m, @1

Lk 1050wl 2., 0<i+j+k<r—1, b
where we recall that N; 1 = |(4, 4, k)|"/|(¢, 7, k)|!. Here the parameters ¢, €, € are fixed as in (2.5)—(2.7).
With this notation we have

Su)= Y Uyr and o(u)= Y Ui 4.2)
t+j+k>r 0<i+j+k<r—1
It shall be convenient to denote V = (9, 93) and u = (1, ug), so that u - Vu = @ - du + ug Ogu.
REMARK 4.1. We emphasize that throughout this last section the implicit constants in the < symbols
are allowed to depend on €™, €, and €, where m € Z is such that |m| < 100. Indeed, since the €, €, € have

been fixed solely in terms of {2, d, and r, cf. (2.5)—(2.7), they are independent of time and thus any a-priori
finite power of these parameters may be hidden in the < symbol.

4.1. Gagliardo-Nirenberg inequalities. We use a number of well-known space-time Gagliardo-Nirenberg
inequalities that we summarize next. For u € H?(2), we shall frequently use the following estimates:

leall ey < Tual g g el oy + el oy ue HA(Q), 43)
lull ooy S Nl a1l 2y ue HY(Q), withul,, =0, (44)
lull gy S lull g g Il 2 d/4+ lull 20 ue H'(Q), (4.5)
el oy < Tl el 2y we H'(Q), withul,o =0 (46)
For v € H'(0,T) such that v|;—o = 0, we use Agmon’s inequality
ol zeo.ry S Mol a00,m 19001 0,7 @)

while in the case v|;—g # 0, a lower order term is needed in the above estimate, namely,

1/2 1/2
19l o0y S M0l 550,y 190011 g 2y + 100 20,1 48)
Together, the estimates (4.3)—(4.8) imply that for u € H*(0,T; H?(€2)), we have

1/2 1/2
lallze, < 10ruly s lul s + lll s iz + 10kl 2, + Il 2, 4.9)

Similarly, for u € H(0,T; H(Q)), we may bound

Zers el

P o o

gy + 10rll 2, + llull g2 - 4.10)

The estimates (4.9)—(4.10) are used repeatedly throughout the next sections. We note that in view of the
three derivative loss in the first term on right side of (4.9), one in time and two in space, the smallest value
we may take for r in the definition of ¢(u) is 3, which justifies our choice » = 3. In order to simplify
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the computations, we rewrite (4.9) and (4.10) for a function of the form t£+”+m8f835mu. The former
inequality becomes

[ oo e

4  an 5 1/2 4  an 5 1/2 4  an 5
S 0t OO )| [ OOl A 8L OO

N e 2 L [ s oL 1

2 4 2y 1/2 1/2 144 Y4 A 1/2
< (Iemmaptogamul 12 + 16 m, m) 2 tofogamal 12, ) @11)

3 AR o
t
(O ul gy + O[O w2,

(W a apamal o+ (6, m) [ 0o )

when ¢ 4+ n + m > 1. Note that since T" < 1, the second and third term in (4.11) is dominated by the first
and the last term, respectively.
In the following lemma, we express (4.11) using the notation Uy ,, ,,,. Also, we denote

‘/@,n,m = Uf,n,m + Ué,n—l,m—l—l + Ué,n—2,m+2- (412)
LEMMA 4.2. Foru € HY(0,T; H*(Y)) and all multi-indices |(¢,n,m)| > 1, we have
Nesnsm€ @ [t 000wl
1/2 1/2
5 ‘/vZJZl,n+2,m‘/YZ,1é+2,mT1/2|(£v n, m) |5/2 + W,n+2,mT1/2|(€v n, m) ’5/2
=+ UE—I—l,n,m (T]ll—l—n-l—m:l + T2 ]l€+n+m22) ’(67 n, m)|

+ Uf,n,m (Tﬁ—i—n—i—m—l IlZ—Q—n—‘,—mﬁ? + T2 ]lé+n+m23> |(€a n, m)’

Similarly, we write the inequality (4.10) for the function t**"+m=19f9n9™y with £ +n +m > 2,

[ O | e

S ] e L A e N A
+ Ot oo™ ) | 2 | + [ 0f oo™l 2

V4 —1qf 3 1/2 1/2 .4 —2af 3 1/2
< (Nersmtm Ao gl )2, 4+ 16 n,m) [ e 2of gl ) .13)
t x t T
l —1 a0 3 1/2
% ||t +n+m latagamuHL/%H%

I |y + 1 OO0
(et opamal s 416 m)|[£4 7 20[00 ] )
Using the notation Uy, ,,, we rewrite (4.13) as follows.
LEMMA 4.3. Foru € HY(0,T; H'(2)) and all multi-indices |(¢,n,m)| > 2, we have

Ng+n+m6€gn€m Ht€+n+mflat€ag

5m“”Lg@L;§
1/2
< (UZ+1,n+1,m + Ug+1,n7m+1> (Ug}nJrl’m + U@,n,m+1)1/2 T1/2|(€7 n, m)’3/2 14

+ (Uf,nJrl,m + U@,n,m+1) T1/2‘(€7 n, m)’3/2 + UEJrl,n,mT’(e’ n, m)‘
+ Ué,n,m (]l€+n+m:2 + T]lé+n+m23> ’(67 n, m)‘
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We have used once again 7' < 1 to have the second and third term in (4.13) dominated by the first and
the last term, respectively.

4.2. Terms with only time derivatives. In this section we estimate M3 in (3.6). From the Leibniz rule
we obtain that

M3 S Z i: <Z> Ni+1€i (!]ti_zﬁqu . GZ_ZéuHLi’t + Hti_Qﬁfud 8’?_(&’“”%,) .
i>2 (=0
Recalling the notation (4.2) we assert that:
LEMMA 4.4. For solution u of the Cauchy problem (1.1)—(1.3), we have
My S ¢o(u)p(u)*? + T2 (u)? (4.15)
forO<T <1

PROOF OF LEMMA 4.4. We split M3 into sums M3, and M3o corresponding to ¢ = 2 or ¢ > 3, respec-
tively. Then

My S lull e, (10200l 2 , + 1107000l 2 ) + 195l e s (1990l s + 100aul 214 )
107l s (100] e s + 190l o)

where the three terms correspond to £ = 0, 1, 2. Using the notation |z | = [z] and [z] = [z] 4 1, we have

Li/2]

i 140 Al i—0—2 ni—l A 02 it
Ma < 5 () Nl ofulg, (1620 uly, + 16720 0l )

i>3 (=1
+ > Necre'lul e, (1672000l 2, + 16 20}00ull,2 )

>3

« (i i|140—2 At i—0ni—f 5 i—0 oyi—t (4.16)

YT <€>Ni+1elut— Ofullzrs (1610 Bul oy + 16101 Dl e

i>3 0=[i/2]
+ ZNz’Hﬁthi_Qafu”Lng <||5U||L;>°Lg + HaduHLgOLg)

>3

= M321 + Ma3as + M3z + M3oy,

where we separated away ¢ = 0 and ¢ = ¢ from the main sums. We start by bounding M3;. Since

8fu‘ 5o = 0for £ > 1, we may apply (4.9) and (4.10) to conclude
1/2 1/2 3
M1 S (l00all o Il 55z + Wl 2z + 100ilz, + Nl 2, ) (1920ullyz, + 1670aull s, )

1/2 1/2
+ (107ull 5, N0l + 100l gy + 19l 2, + 1002, )

X (|]8t5u||d/4 18:0ul 5 + 1|0:0qul| ™S, ||atadu||1L;/4+ ||atadu||L§,t)

L2} L2, L2}

2 qd/4 2 1-d/4
+ (92l Py NoPul 15

5 11/2 113,1/2 A A 5
x <||atau||LgH%||auuL;H; + 10ull 21 + 10:Dull 2, + 192,

1/2 1/2
- 19edaull 5y 1 9aull 55y + 100wl 2y + 10:0aull 2, + ||adu||L;,t)-



10 . CAMLIYURT, 1 KUKAVICA, AND V. VICOL
Therefore,
Mg S (¢0(U)1/2<5(u)1/2 + ¢o(u)> ¢(u)
+ (G0 20() /2 + go(w) ) (G o)~ + go(u))
+ B(u) g0 () = (H(w)2g0(w)? + G0 (u) )
S do(w)® + do(u)' o (w)*/2.

For M35, we note that ¢ > 3 for each of the sums. We start with the boundary sums Msz9o and Msza4,
and treat M3o; and M3o3 further below. Using (4.9), we have

4.17)

; 1/2 1/2
Mizz S Nowae® (10l h5allull o + lulla gz + 190ull 2, + iz, )
>3

x (IE=2050ull 2, + E20;0uull2 )

(4.18)
< (90(w) + 90(w)25() %) 3" Nisael (1#20i0ull 2, + 1#20}0aull 2 )
i>3
< (Go(w) + do(u)'26(w) *)d(u) S do(w)é(u) + do(u)'/*¢(u)*’?.
For M3z94 we proceed with the Gagliardo-Nirenberg inequalities (4.5)—(4.10) and write
i (112i—2ai (d/4 (=2 ai 1—d/4
Mios S 3 Niae (167200l g, 6200l 1)
i>3
5 n1/2 a.1/2 A a 5
% (10Dl 10Ul + 100l 2 gy + 10Dl + vl 2, )
i (11i—2ai /4 | i—2ai 1—d/4
+ 3 Nenae (6200l g, 6205l 2"
>3
% (10eDuull 5y, 10wl + 19l 1y + 194Dl + 9]
tOdM 2 a1 9d %l 2 i d@l LAl tYdBILE d*iLs, |-
Expressing the estimates in terms of U; ; . we get
Msos S Nisae (Usno + Uso)"* U}
i>3
. df4 sy 1-d/4
< 60 2on() 2 + o) (500 ) (G o)
STAGW) P o0(w) " + do(w) Y Uino + Vo)™ Ul
i>3

STV V(@) 2o (u) 2 + po(u))p(u) S T V4o (w)p(u) + TV 4o(u) 2 p(u)3/?

where we have used 1/C < é<e<e< 1.
For M3s;, we express Ht““zdﬁ_eauﬂm , and Ht“éﬁdﬁ_e@duHL; _in terms of Uj_¢1,0 and U1
and write, using (4.11),

li/2]

Mygn S>> ||t£8fu|\Lgot (Ui—,1,0 + Uimr01)
>3 (=1

(i +1)%"
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Then, we utilize Lemma 4.2 (which we have derived from (4.9)) and ¢ < [i/2] to obtain

Li/2]

Mzoy < T2 Z Z Vgl_|_/122 ovglg/z() (Ui—e01 +Ui—g10)
i>3 (=1

Li/2]

+ T1/2 Z Z W,Q,O (Ui—E,O,l + Ui—Z,l,O)
>3 (=1
Li/2]
+ Z Z Ue+100 (Ui—e0.1 + Uig1,0) (TLe=1 + T?1e>2)
i>3 (=1
12/2]

+) 0 Unoo (Ui €01+Uz€10)( lﬂz§2+T2]lez3>-
>3 (=1

By appealing to the discrete Young’s inequality and the definition of ¢g(u), we get
Mzay S TY2¢(u)* + Td(u)? + To(w)d(u) + T2 do(uw)p(u) + T3p(u)? + do(u)d(u) + T2 p(u)?.
Once again using 7" < 1 and keeping the dominant terms , we obtain:
Maa1 < ¢o(u)p(u) + T2 p(u)?. (4.21)

Lastly, we treat M3o3 in a similar manner. We split the sum into two parts, as done above for Ms3s1, by
appealing to (4.6):

) (-2 a0 d/4 0—2 0 1 1—d/4 il yi—l &
<Y S () e (18200l 2, 120l 157 110 Dull e

123 (= [2/2

; d/4 1—d/4\ || yi—l ni—
+ Z () e (120l Py, 1200wl ) 160}~ Ol e

i3 (=13/2]
= M3231 + M3230.

For M3931 we use Lemma 4.3 for the triple (i — ¢,0, 1) and obtain

i—1
Myt STV S~ (Uni0+ Uno)” Upog*
>3 0=[i/2]

X (Ui—gs111 + Ui—é+1,0,2)1/2 (Ui—enq + Ui—€,0,2)1/2

i—1
+ T1/2 Z Z (UE,LO =+ UE,O,l)d/4 Uelo 3/4 (Ui_g71,1 + UZ‘_&QQ)
i>3 (=[i/2] (4.22)

+ TZ Z (Ue10 + Ue,o,l)d/4 Uéo_fé/ZlUi,”LO,l
i>3 (=[i/2]

+3° Y Ui+ Uro)™* Uglog/4U¢—e,o,1(lli_e:1 + T1i—g>2).
i>3 0=[i/2]
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Applying the discrete Young’s inequality and using the definition of ¢ (u), we get
Msost S TV 260 (u)' =6 (w) 4+ T26(w)? + Tpo (u)*~ G () + To(u)d(w)
+ T%po(u)' =G (u) M+ T2p(u)? + To(w)' = (u) T/ + T (u)? (4.23)
+ do(u)?~ VG (u) + o (w) () + Tepo(w) '~ p(w) U 4 Tp(u)”.
In estimating M3032, we follow the same steps as in (4.22), as the only difference is due to having the

differential 0; in Ms939 instead of 0. We obtain that Msoso obeys the same exact estimate as Ms3a3; in
(4.23), from which we obtain the desired bound for M323, namely

M3z S do(w)(u) + T 2¢(u)?. (4.24)
Combining all the terms in (4.17), (4.18), (4.19), (4.21), (4.24), and selecting the maximal prefactors in T’
we obtain the estimate (4.15). (]

4.3. Terms with no normal derivatives. In this section we estimate M.
LEMMA 4.5. For solutions u of the Cauchy problem (1.1)—(1.3), we get
My S po(w)*?G(u)/? + Tpo(u) G (u)*? + T3 p(u)? (4.25)
forO<T <1

PROOF OF LEMMA 4.5. Writing u - Vu = @ - Qu + ug - O4u and separating the terms with i + k = 1,
we obtain

i+k .
M, < Z Z <>< ) Ni ko€
i+k>2 |(£,m)|=0
X (Ht”k_l@fama : a;—fak“—muu% + [|tHE Lot oy 8§_£(§k_m8duHLi!t>
+ [|0 (ug - Ogu) + O (@ - 5u)HL%t + [|0(ug - Ogu) + O(1 - éu)HLi,t
= Moy + Moy + Mag.
We start with the lower order terms. Using Holder’s inequality, we get
Moy + Mas S [0yl e s (190l 2ps + 10aull s ) + Il e, (1000ullyz, + |190Daull2 )
- 10ul oo (190l 2ps + 10aullz e ) + Il e, (1%l 2, + 10000l 2 )
and recalling the definition of ¢(u) and ¢q(u), we obtain
Mas + Moz < ¢(u) 2 do(u)®/? + ¢o(u)>. (4.26)

Now, we split M5 into two parts as
[ (i+k)/2]

k
My S Z Z ()( > i+k+2€ €k||t£+mazamU”L;<jt

i+k>2|(¢,m)|=0
> (Ht (i+k) —(E-i—m)—laz—fak—f—l—munL;t 4 ||t(i—l—k)_(Z—l—m)—laz—fgk—maduHLi’t)

i+k

i\ [k — m
+ ) > <€> <m>Nz+k+2€ X[t | oo

i+k>2 |(€,m)|>[(i+k)/2]

(4.27)

x (R Gy |y o [ G ) )

= Mbs11 + Maia.
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We start with the first sum in (4.27), namely Mo11. We apply Lemma 4.2 on ||t“*™0f 0™ u| Los, €xcept when
|(¢,0,m)| = 0. Singling out |(¢,0,m)| = 0, we have Y

: T
_
M1 S E €€ Niyryo (Uiop+1 + Ui k) <N~ e
ith>2 i+k+1

1/2 1/2
(10wl el + Ml + W0l + i,

[(i+k) /2J

k
+ Z Z ( ) ( >Ni+k+2 (Ui—t,0,k+1-m + Ui—t1 k—m)

i+k>2 l(+m=1
" T (£ +m)!
Nz‘—l—k—(—m—i—leiiegkim elem

T'/? 1/2 1/2 T2 -
(CF m)i2 tH2m z,2,m+m 1.2.m

1

+ m (Ué+1,o,m(T]le+m:1 + T214+m22)

+ U o.m(T ™ ppmen + T21£+m23)>> :

Note that when |(¢,m)| < | (i + k)/2], we may bound

Nijpy2(f +m)! (Z> <k) < (2) () <1 428
Niskh—t—miny(l+m)/2\) \m/) ~ (elifm) T o

Then we get
Ma1y S To(u)d(u) + Teo(w) /26 (u)*? + T2 (u)?. (4.29)

Next, we split Ms12 into two parts as

i+k

i k l+m—1 9l am
Ma1o = Z Z <€> <m> Nitproe @[t 18(0 ull poopa

i+k>2|(,m)|=[(i+k)/2]
% Ht H—k (é-i-m)az ng-i—l—mu”Lng
itk i k
E Y () ) el ot e
i+h=2 |(€;m) [=[(1-+5),/2]
% ‘|t(i-i—k)—(é-i-m)a;—la_k—maduuLng

= Ms121 + M3122.
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Both terms are treated analogously, and thus we only bound the first one.

i+k

AWEL k[ 0tm—1 o
Mai91 S Z Z <£> <m> Nigppoe' @[t 1 amUHLgOLg

k=2 |(6m)|=[ (i4+k) /2]
/4 1—d/4
X (Ui—0m+2-m + Uitakr1-m) Y Ui g0 kr1-m) =Y
d/4
v <T1€+m<z+k 1+ 12+m—i+k> /
z+k+2 /— mGz tek—m

1—-d/4
<T ]l€+m<z+k 2+T1+k = mﬂ€+m>z+k 1) /
)
€<e

(4.30)

z—i—k—l—l — mel —teh—m

where we used 1/C < € <

T2_d/41g+m§i+k_2 + Ti+k_€_m]lg+m27;+k_1 (Z +k—F0— m)'
gi—tgh—m (i+k— € —m)2d/4°

< 1. Note that the last two factors in (4.30) are bounded from above by

4.31)

Denote
ik
Ay (W) = (Uimp0 fr2-m + Us—takt1-m)” (Ui_t0p41-m)

y T4 g mcivho + T i1\ (E+ & — £ —m)!
ei—egk—m (Z.+k’—£—m)2_d/4‘

1—d/4

Applying Lemma 4.3 on the term ||¢t/T™ =19 0™ | Loor4» We obtain

i+k .
(K ik g0k
Maio1 S Z Z <£> (m) Niykt2€ GkAé:m(U)

i+k>2|(L,m)|=[(i+k)/2]

T2 (0+m)! 2 1/2
<€€€m T )3/2(Uz+1,1,m + Uri1.0ms0) 2 (U1 + Uromsr)Y 432)

TY2 (0 +m)! (€ +m)! T
e (0 1 m)2 (Ue1m + Usome1) + WUK—H 0m T Tzm

+ (f + ’I’)’L)' ]lé-‘,-m 2+ T]l€+m>3
(0 +m)z Bom

Fori+ k — ¢ —m > 2, we have

<i><k>Nz‘+k+2(i+k_€_m)! (£+m)! < (2)(:;) <1.

ENm) (i k= €m0 (Em)¥E ()

eﬂ—m

Then, using Young’s inequality in (4.32), we deduce
Marar S T260(u)d(u) + do(u)? + Too(w)! =6 (T24(u) + go(u))
+ T2 () (T2 G (w) + Too(w) = 4g(u)¥* + go(u))

< do(u)? + T2 g0 (u)p(u) + T2 (w)' =4 (u) /4
+ Tepo(w)*~ Vo (u)® + T2 ().

(4.33)

Since M>192 is nearly identical to Ms191, the right side of (4.33) gives us an estimate for Ms12. Finally,
using that d € {2, 3}, we add the estimates (4.26), (4.29), and (4.33) to get (4.25) in Lemma 4.5. O



GEVREY REGULARITY FOR THE NAVIER-STOKES IN A HALF-SPACE 15

4.4. Terms with all mixed derivatives. In this section we estimate M.
LEMMA 4.6. For solutions u of the Cauchy problem (1.1)—(1.3), we have
My S do(u)*2¢(u)'/? + T2 g0 (w)p(u) + T2 (u)? (4.34)
forall0 <T < 1.
PROOF OF LEMMA 4.6. Using the Leibniz rule we obtain
i g k . .
3 222 ()0 (s
i+j+k>1 £=0 n=0 m=0

% (Hti-‘rj-i-k—lafggama . azfzag;ngk—m+1u”L2 t + Hti—‘rj-i—k—latﬁaggmud aszaéfn+15k—mu”L2 t> ]
We separate the case | (4, j, k)| = 1 from the sum and then split the rest into two parts, leading to

MiS S (lulls IV0[050 ul 2, + 110050 ull e |Vl 1)
i+j+k=1

[(i+5+k)/2] N\ [\ [k
+ D > (£> (n) (m> Nijjyhioc @€ k\’t£+n+maéanamu”L;ft
i+j+k>2 |(6,n,m)|=0

« (||t(i+j+k)_(£+n+m)_18Z_€6£_n(§k_m+lu||L2
x,t

+ ||t(i+j+k)—(f-‘rn-ﬁ-m)—lazféaé*nJrlgk—muHL2 )
x,t

i+j+k . .
t\ [J k e _ _
Py > () () Msmadad it goganal .y,

i+j+k2>2 [(Ln,m)|=[(i+j+k)/2]

« <||t(i+j+k)(€+n+m)a§—éai—nakm+1u||L2L4
t—x

+ ”t(i-&-j-l-k’)—(f-&-n-i-m) 3f_€3£_n+15k_mu|!Lng>
= M1 + Mg + Mis.
The contribution from |(4, 7, k)| = 1 is bounded as
M1 < do(u)® + do(u)*/*p(u) /2. (435)
For Mo and M3, we follow the same strategy as in the last section. Starting with M;o, we apply

Lemma 4.2 to estimate [[tT"™9f9n 0™ u|| 1<, in terms of the analyticity norm (4.2). Denote

By () = [0 b gitgmnghmt
U= Entm) = it gimn Gy 12,

Next, using the notation (4.1)
By () S (TLegnsm<itjth—2 + Litntm=itj+h—1) (+jth—l—n—mt1)P

" Ui—tj—nk—m+1 Uit j—n+1k—m
ei—Llgj—nghk—m ei—Llgj—nghk—m :
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Estimating [|¢“T 0707 0™ u|| Les,» the factorial terms obey
<i><j>(k>(€+n+m)!(’H—j—i—k—ﬁ—n—m)! 1 -
¢)\n)\m/) (i+j+k)! (i+j+k—C—n—m)>2{L+n+m)l/2 =

Mz < To(u)d(u) + Tepo ()2 d(w)3/2 + T2 (u)p(u) + o (u)?
+ T3¢ (u)? + Tgy *$(u)*'? + T () b(w) (4.36)
< go(w)? + T2 ¢o(u)p(u) + T3 2p(u)?.

Lastly, we deal with M;3. Similarly to Mo;2, we split M3 into two parts

i+j+k . .
AYFAYE: i = k|| f+n+m—1 5L An 5
MisS ) 2 (g) <n) (m)mﬁmeleﬂe [t 0f O e

i+j+k=>2[(¢n,m)|=[(i+j+k)/2]

« <||t(i+j+k)(€+n+m) aé—fa(]i'—nakm+1u|’L?L4>

i+j+k . .
1S U SN 1 G4 [ (o) B v

i+j+k>2|(¢n,m)|=[(i+j+k)/2]

Therefore,

% <|’t(i+j+k)_(€+n+m) a’ti—ﬂag—n+1gk—mu”L?L4>

= Mi31 + M3z,
4.37)

and consider Mj31. Denote

AP () = (Ht““““"”"*m)aé‘ﬁai‘”a’“m““HL%Lz)‘

ln,m

Using (4.5)~(4.6), and (4.2) we bound A" (4) from above by

” ;
Apnn W) S (Uictj-nt k-mt1 + Uit j—n k—m+2) Ui tjnpmi2)

><< (it+j+k—C—n—m) >

(i+j+k—L0—n—m+1)2-d/A4
1

XEifégjfngk

1—d/4

(Tzfd/‘l Lotntm<itj+hk—2 + THj%Jinim14+"+m2i+j+k_1)
(i+j+k—0—n—m) 1
itjthk—C(—n—m+1)2clagnek

+Ui—tj—nk-—m+1 (
x (T21é+n+m§z‘+g‘+k—2 + TitIthmtnem 1e+n+mzz‘+j+k—1> '
Applying Lemma 4.3 to ||t ™ =19 om0 || Lo s and using Young’s inequality, we obtain
Mz S (do(u) + TG (u)) <¢0(U) + Tczso(u)l*d/%(u)d“)
+TY25(u) (do(u) + o)~ d(u) " + T-G(w)). o

Note that in the above line we use 7" < 1. Comparing the two sums M3, and Mi39 in (4.37), we observe
that they have the same prefactor ¢*+7+*=¢="=™ and the same total number of derivatives. As a result, M3,
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too is dominated by the right hand side of (4.38). Selecting the maximal coefficients in 7", we write
Mg < do(u)® + To(w)* ¥ p(u)* + T2 o (u)p(u)
+ T3/2¢O(u)1fd/4¢(u)1+d/4 4 T5/27d/4¢(u)2.
Adding (4.35), (4.36), and (4.39), we arrive at the conclusion in Lemma 4.6. ]

(4.39)
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