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ABSTRACT. We prove that any weak space-time L? vanishing viscosity limit of a sequence of strong
solutions of Navier-Stokes equations in a bounded domain of R? satisfies the Euler equation if the
solutions’ local enstrophies are uniformly bounded. We also prove that ¢t — a.e. weak L? inviscid
limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the
Euler equation if they locally satisfy a scaling property of their second order structure function. The
conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a
priori excluded in the limit. August 10, 2017

1. Introduction

Experimentally verified to a large degree, the two-thirds law and the law of finite energy dis-
sipation are cornerstones of turbulence theory ([6]). The law of finite energy dissipation states the
non-vanishing of the rate of dissipation of kinetic energy of turbulent fluctuations per unit mass, in
the limit of zero viscosity. This can be expressed, if Navier-Stokes equations are used, as

lim v(|Vu(z,t)[*) =€ >0 (1.1)
v—0
where v is the kinematic viscosity, w is the turbulent velocity fluctuation, V are spatial gradients,

and (...) is a relevant average.
The two-thirds law states that

(fu(w +y.8) —u(z 1)) ~ (elyl)s (1.2)
for |y| in the inertial range, that is, in a range of scales
n<lyl <L (1.3)
where L is a the integral scale of turbulence and 7 is the Kolmogorov dissipation scale,
n=rvieci, (1.4)

The expressions s,(y) = (Ju(xz + y,t) — u(z,t)|P) are called p-th order structure functions, and
various turbulence theories argue about scaling properties of the type s, ~ |y[PS? in the inertial
range. Turbulence is parameterized by the Reynolds number
UL
v

where U is a relevant velocity (for instance average r.m.s velocity). Often turbulence is generated at
boundaries. Thin boundary layers carry significant changes of momentum or heat. Experimentally,
in strong turbulence, these boundary layers detach and heat and momentum are transported to the
bulk of the fluid. Much of the dissipation of kinetic energy takes place in the boundary layers.

An asymptotic description of the vanishing viscosity limit (the high Reynolds number limit,
with U and L bounded) was proposed by Prandtl [17]. In it, boundary layers of size proportional

(1.5)
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to /v are attached to boundaries. Outside them, the limit is given by the Euler equations. Inside
them, a different equation is valid (the Prandtl equation) and there is matching between the two
behaviors at the edges of the boundary layer. If such a description is valid, then zero viscosity limits
of solutions of the Navier-Stokes equations inside the domain obey the Euler equations.

Much effort has been devoted to validate mathematically turbulence theories and the inviscid
limit to the Euler equations. One of the most interesting connections between the two subjects has
been made by Kato ([8]). He proved the equivalence of four statements, for short time, in a regime
in which the Euler equations are smooth and conserve energy. These are:

1. The strong convergence in L>(0, T'; L*(Q))

lim sup [u¥S(t) — uE(t)HLz(Q) =0.
v=0¢e0,7]

2. The weak convergence in L?(Q) for all fixed times of the velocity of the Navier-Stokes
solution 4N (t) to the velocity of the Euler solution, u* (t).
3. The vanishing of the energy dissipation rate

T
0

v—0

4. The vanishing of the energy dissipation rate in a very thin boundary layer of width propor-
tional to v, I',:

T
: NS 2 _
glg(l)V/o IVu™ ()] 72(p,ydt = 0.

The result is a stability result of the Euler path S (¢)ug, conditioned on assumptions on the viscous
dissipation at the boundary. There is a large literature concerned with related or similar conditional
strong L? convergence results (a few examples are [1, 2,4, 5,9, 10, 19, 20]). Some strong L? uncon-
ditional convergence results for short time do exist. They are based on assumptions of real analytic
data [18], or the vanishing of the Eulerian initial vorticity in a neighborhood of the boundary [15].
Symmetries can also lead to strong inviscid limits [7, 11, 13, 14, 16]. All these unconditional results
are for short time, close to a smooth solution of Euler equation in laminar situations where energy
dissipation rates vanish in the limit. The vast majority of the conditional results are also for short
time, close to a smooth solution of Euler equation in laminar situations where energy dissipation
rates vanish in the limit, and the conditions involve some uniform property of the Navier-Stokes
solutions near the boundary such as bounds on derivatives (like the wall shear stress) or at least
some uniform equicontinuity ([4]).

What happens in the bulk for turbulent flows in domains with boundaries is a fundamental open
problem. Is there a connection between the Euler equations and the inviscid limit when the limiting
energy dissipation rate does not vanish?

Infinite time and the zero vsicosity limit do not commute. This is obvious in the case of unforced
Navier-Stokes equations in a smooth regime without boundaries, where the infinite time viscous
limits are all zero, and the finite time inviscid limits are conservative smooth Euler solutions. This
lack of interchangeability of limits is also true in the forced case. Consider, for example a sequence
of solutions of two dimensional, spatially periodic solutions of the Navier-Stokes equations with
Kolmogorov forcing f, i.e., forces which are eigenfunctions of the Stokes operator A:

Af = \f.
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Unique, exact solutions of the Navier-Stokes equations are of the form u(t) = y(¢) f with the real
valued function y(¢) given by

1
t) = —VAt (1 . —V/\t> )
y(t) = yoe + Y 2
Exact solutions of the Euler equations are of the same form, with

y(t) = yo +t.

For any finite time the Navier-Stokes solutions converge to the Euler solution SV (t)ug — S (t)ug
and the solutions are bounded as v — 0, locally in time. By contrast, the infinite time limit at fixed
viscosity is u(t) = uy = % f, and this sequence obviously diverges as ¥ — 0. Also, the initial data
are forgotten in the infinite time limit. If the forcing has odd symmetry, the solutions obey Dirichlet
boundary conditions as well.

Because of the lack of interchangeability of limits it is important to distinguish between the
short time zero viscosity limit, the arbitrary finite time limit, and the infinite time limit.

In this paper we prove two results. They are for arbitrary finite time, and the conditions imposed
are far away from boundaries. The results are of weak convergence on subsequences, allowing for
non-unique, possibly dissipative Euler limit solutions.

For 2D flows at high Reynolds numbers we prove that any L?(0,T; L?(2)) weak limit of a
sequence of strong solutions of Navier-Stokes equations satisfies the Euler equations if interior
local enstrophy bounds are uniform in viscosity. No assumptions need to be placed on the behavior
of the Navier-Stokes solutions near the boundary. This is not a stability result of an Euler path,
but rather a reflection interior good behavior of Navier-Stokes solutions uniform in viscosity. The
limiting Euler solutions inherit interior enstrophy bounds, but the energy dissipation rate might be
non-vanishing in the limit of zero viscosity.

For 3D we prove that if S™V°(¢)ug converge weakly in L?(£2) for almost all time to a function
Uoo(t), and if a second order structure function scaling from above is assumed locally uniformly
(like in the two-thirds law, but with any positive exponent), then 1 satisfies Euler equations. This is
different than Kato’s condition 2 in that no assumptions are placed on 1., and all time convergence
is not required. In fact, the rate of dissipation of energy need not vanish in the limit, no Euler path
is singled out, and the Euler solution may be wild.

We start by establishing the notation and make preliminary comments. Section 2 is devoted to
2D and section 3 to 3D. A brief discussion concludes the paper.

We consider a bounded open domain 2 C R¢ d = 2, 3 with smooth boundary. We denote by
u:Qx [0,T) — R a solution of the Navier-Stokes equation

Ou —vAu+u-Vu+Vp=f (1.6)
in € with
V-u=0, 1.7
boundary conditions
ujpn =0, (1.8)
and initial data
Up—0 = UQ- (1.9)

The velocity u = S™V(t)(ug) obviously depends on v > 0, space variable = € €2, time variable
t € [0,T), with T possibly infinite, body forces f, and initial data u.
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We discuss weak limits in L2(0, T’; L?(£2)). The existence of weak limits of solutions of the
Navier-Stokes equations is guaranteed by bounds

T
/ /Q]u(a:,t)\Qda:dt <E (1.10)
0

which are uniform for the ensemble of solutions. Conversely, if a weak limit exists for a sequence of
functions, (1.10) is necessary. If a sequence u,, converges weakly in L?(0, T; L?(€2)) to a function
u, it does not follow that wu,,(t) converges weakly to u(t) in L?(Q) for almost all ¢, not even on a
subsequence. A subsequence of a weakly convergent sequence converges weakly to the same limit,
and the subsequence might have some additional properties. In this paper we use this fact to deduce
additional information about the weak limits in two dimensions.

We say that function u € L2(0,T;L?(f2)) is a weak solution of the Euler equations if it is
divergence-free and satisfies the Euler equations in the sense of distributions:

(u, @) + (u@u): V®)+ (f,®) =0 (1.11)
forany ® € C§°((0,T") x ) which is divergence-free. The notation M : N refers to the trace of the
product of the two matrices. This is the distributional form of the incompressible Euler equations

ou+u-Vu+Vp=f V-u=0

forced by f. No boundary conditions nor initial data are part of the distributional formulation.

In order to verify that the limit u of a weakly convergent sequence w,, € L?(0,T;L?(§2)) of
solutions of Navier-Stokes equations satisfies the Euler equations, it is enough to prove the conver-
gence

No(un) = No(u) (1.12)

for any fixed, divergence-free test function ® € C§°((0,7") x ) where

T
No(u) :/0 /Q(u®u) : VO dxdt. (1.13)

This is true of course only if we assume that the forces driving the Navier-Stokes equations converge
weakly in L? to f. Then the linear terms (viscous term, time derivative term) and the forcing terms
obviously converge.

In two dimensions, we use a vorticity formulation of the equations.

2. 2D

We consider the vorticity w = Jius — Jouy = V- - w. For solutions of the 2D Navier-Stokes
equations the vorticity obeys

Ow+u-Vw—vAw=g=V"-f (2.1)
We recall that the velocity is obtained from a stream function
=Vt (2.2)
and that
w = A (2.3)
and therefore
Au=V'tw 2.4)

holds. Note that —Aw is not the Stokes operator applied to u. The identity

/\w(x,t)]de:/ \Vu(z, t)|>dx (2.5)
Q Q
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is true in view of the boundary conditions (1.8). Indeed:

Jo Ojui(z, 1)) 05us(x, t)de = — [ u(x,t) - Au(z,t)dx
= — Jqu(z,t) - Viw(z, t)de = [, |w(z,t)[*dz.

In the integrations by parts we used only (1.8). For (2.4), the fact that u(t) € H?(£2) for almost
all time is true because u is a strong solution of NSE but in fact the equality (2.5) is true for all
divergence-free u € H} (), by approximation.

THEOREM 2.1. Let 2 C R? be a bounded open set with smooth boundary. Let u,, be a sequence
of solutions of Navier-Stokes equations with viscosities v, — 0. We assume that the solutions are
driven by forces f, € H'(Q) that are uniformly bounded in H*(S)) and converge weakly in H*(£2)
to f. We assume that the initial data u,(0) are divergence-free and are uniformly bounded in
HE(Q). Let K be a compact, K CC ). We assume that there exists a constant € which might
depend on H'(Q)) norms of initial data and f, on K and T, but is independent of viscosity, such
that

sup / |wn (2, 1))?dr < E (2.6)
0<t<T JK
where w, = V* - w, are the vorticities.

Then any weak limit in L*(0,T; L*(2)) of the sequence uy, U, is a weak solution of the Euler

equations

OtWoo + Uoo * Voo = g = AV f 2.7
With wee = VT - use. The solution has bounded energy,
Uso € L®(0,T; L*(Q)). (2.8)
Moreover, for any compact K CC §Q there exists a constant Ex such that
sup / |weo (z, 1) 2dx < Ek (2.9)
tef0, 7] /K

holds.

Proof. The fact that u., has bounded energy is a simple consequence of the fact that under our
conditions the sequence u,, is bounded in time in L?(12). Indeed, for time intervals I, x7(t)uy,
converge weakly in L2(0, T'; L?(Q)) to x1(t)us Where X7 is the indicator function of I. Thus

[ T ®lfayde < tim in [ (01t < O

and (2.8) follows. In order to prove that u., solves (2.7), we consider the nonlinear term, which
is the only term whose behavior is in question. We take a compactly supported test function ¢ €
C§°((0,T) x ) whose support is a compact L C [t1,T1] x K; with K1 CC €2 compact, and
0 < t; < Ty < T. We consider a larger compact K CC €2 such that K is included in the interior
of K and a slightly larger time interval [to, Tp] with 0 < t9 < t; and T} < Ty < T'. Let us also
take a function xo € C§°((to,To) x K) which is identically 1 on a neighborhood of [¢;, T1] x K.
We consider the sequence xou,. Because u,, are uniformly bounded in L? () it is clear in view of
(2.6) that V*(xou,) is a bounded sequence in L>°(0, T; L?(Q)). Because V - (xou,) is bounded
in L°°(0,T, L?()) as well, it follows that xou,, is bounded in L>(0,T; H}(€2)). In order to use a
Aubin-Lions lemma, and obtain some uniform control on time derivatives it is best to take the curl
of the equation, because the vorticity equation is local. The equations obeyed by the vorticities are

Oswn, + Uy - Vwy — VAW, = gn. (2.10)
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We consider now another cutoff function x which is still equal identically to 1 on a neighbor-
hood of [t1,T1] x K but whose compact support is included in the region where  is identically
1. We multiply by x and consider the sequence w,, = xw,. In view of (2.6) w,, is bounded in
L>(0,T; L%(92)). We use the equation (2.10) to examine J;w,,.

The sequence xvAwy, is bounded in L°°(0, T; H~2(£2)), where H2(12) is the dual of H3 ()
because of (2.6). The terms 0 xw, and xg, are bounded in a better space, L>(0,T; L%(R)). It is
well known that the term w,, - Vw, is a second derivative. Indeed, dropping the subscript n for a
moment in order to avoid confusion,

u-Vw = 010 (us — ul) + (07 — 03) (uyuz) (2.11)
where now u1, ug are components of the vector u,,. Therefore, because on the support of y we have
that u,, = Xoun, it follows that the term Yu,, - Vw, is bounded in L>°(0,T; H2(92)). Indeed,
using the continuous embedding H{ () C L*(Q) we have that xou, are uniformly bounded in
L4(9), and thus, after peeling off the two derivatives of u,, - Vw,, we are left with functions that
are bounded uniformly in L>°(0,T; L?(€2)). By the Aubin-Lions lemma with spaces L%(Q) CC
H=1(Q) ¢ H 2(Q) ([12]) we have that the sequence w,, has a strongly convergent subsequence
(relabelled w,,) in L2(0,T; H~'(Q)). More precisely, we have that A ;'w,, converges strongly in
L%(0,T; L?(2)) to a function v, where Ap = (—A)% with —A the Laplacian with homogeneous
Dirichlet boundary conditions in €. It is well known that Ap : H} () — L?(Q) is an isometry.
Taking a test function ¥ (z, t) we have that

/ /A wy (z, 1)V (z, ) / /un z,t) - V(AL ) (z, t)dadt.

We pass to the limit in both sides, noting that VL(XA;\I/) (x,t) is an allowed test function because
and it belongs to L2(0, T; L?(92)), in view of the boundedness of the Riesz transforms Rp = VA !
in L2(€2). It follows that

v=A(XVT  us) = A xwe
Moreover, because HABlwn(t)H%Q(Q) converge strongly in L*(0, T)) there is a subsequence, rela-

belled by n such that A, w,(t) converges strongly in L?(Q2) for almost all ¢ € [0,77] to v(t).
Testing with a test function ¢ we have that, on one hand

/Q dwn (t)dz

/Q (Apdyu(t)dz = Tim [ Apd(Astwa(t))d

n—oo 9]

1
Eg ol

Xwn (t)pdr| <
Q

and on the other

holds for almost all £. Thus
2
|3 untan] e < e
Q
holds a.e. in time, that is

1

[Xwooll Lo (0,7522(0)) < - (2.12)
We now pass to another subsequence, relabelled again by n such that ygu, converges weakly in
L%(0,T; HE(Q)). It is obvious that the limit is Xouoo. We consider the nonlinear term

/0 ' /Q (U - VB)wdadt = No(n)
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Because on the support of ® we have u,, = xou, and w, = w,, this integral is the duality pairing
between a weakly convergent sequence in L2(0,T; H}((2)), namely xou, - V® and a strongly
convergent sequence in L2(0, T; H—1(Q)), namely w;,:

T
Ng(n) 2/0 /QAD(XUU% . V@)A]glwnd:pdt.

Therefore Ng(n) convergences as the scalar product between weakly convergent and strongly con-
vergent L? functions, and

T T
lim Ng(n) = / /(Xouoo - V) xwoodrdt = / /(uoo - VO)woodxdt (2.13)
0 Jo o Ja

n—o0

REMARK 2.2. We note that from the proof it follows that yw, (t) converge weakly in L? to
XwWoo(t) on a subsequence, for almost all £. No convergence is implied for u, (t) in L?(£2): the
global behavior may depend on viscosity.

3. 3D
We consider families of solutions of Navier Stokes equations in a bounded domain 2 C R3.

THEOREM 3.1. Let u,, be a sequence of weak solutions of the Navier-Stokes equations
Otin + Uy - Vup — VpAuy + Vp, = fr (3.1)

with V - u, = 0, f, bounded in L?(0,T; L?(S2)), converging weakly to f, u,(0) divergence-free
and bounded in L*(Q) and v,, — 0. We assume that for any K CC () there exists a constant Ef,
a constant € > 0 and a constant (5 > 0 such that

T
SUP/ / lun(x +y,t) — un(x,t)|2dxdt < EK\y|2<2 (3.2)
n Jo JK

holds for |y| < dist(K,0Q) in the inertial range

[

lyl > € vt = n(n) (3.3)

Assume that u, (t) converge weakly in L*(§2) to un(t) for almost all t € (0,T). Then u is a weak
solution of the Euler equations.

REMARK 3.2. The domain need not be bounded. Local uniform energy bounds are enough.
In exterior domains local uniform (in viscosity) energy bounds can be obtained for suitable weak
solutions.

REMARK 3.3. Obviously, the scaling assumption (3.2) does not imply regularity, because it is
limited to y bounded away from zero. Also, the exact Kolmogorov form of 7(n) is not needed. All
that is used is that n(n) converges to zero as n — oo. Finally, the power law behavior is not needed
either, any uniform modulus of continuity can be used instead.

Proof. We consider a nonnegative smooth function j(z) supported in the annulus 1 < |z| < 2 and
with integral equal to 1, [zs j(2)dz = 1. We assume also that j(—z) = j(z). We fix a compact
K ccC Q and denote, for a function u, for x € K, and 2r < dist(K,0Q),

ur(z) = /1<|z<2 u(z —rz)j(z)dz. (3.4)

We note the identity (see [3])
(wv)r (@) — ur(@)vr(2) = pr(u, v)(x) (3.5)
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pr(u,v)(x) = /<| ‘<2J'(Z)(u(x—m)—U(x))(v(w—m)—v(w))dz—(U(x)—ur(x))(v(w)—vr(w))-

(3.6)
Let us take a divergence-free test function ®(z,t) € (C§°((0, T') x2))?3 and investigate the behavior
of the nonlinear term

T
n) = / /(un ® up) : VO dxdt. (3.7
0 Q

We take a compact K such that the support of @ is included in [to, Tp] X K, where 0 < to < Ty < T.
Let us start by noting that

T
/0 /Q (@ 1) : (VD — (VD)) d:vdt‘ < CorllunlZa07.12x)

and thus
(Up @ up) : (VO — (VP),) da:dt‘ <rCeE (3.3)
with F a uniform bound on thfe2 local time average of energy,
lunlZ20 .22y < E- 3.9)
Then, we note, using j(z) = j(—z) that

/ /un®un. (V®), dedt = / /un®unr V& dxdt. (3.10)

Now we use the 1dent1ty 3.5

fQ Up)r @ (Up)yr : VO dadt + f(;f fQ Pr(Un, up) = (V) dadt. .

We take n large enough so that n(n) < r. We estimate the second term using the assumption (3.2):

T
/ / Pr(Up, up) = (V) d:cdt’ < CpEpr?e?
0 Q

Therefore we have proved so far that

/ / Up)r Vo dxdt‘ < Cp(Egr®2 + Er) (3.12)

holds for n large enough, depending on r.
We note that if u,,(t) converges weakly in L?(Q) to ux(t), then (u,(t)),(x) converges point-
wise in K to (uso(t)),(x) at fixed r, just because it is the scalar product

() = [ oty (T2 ) Sy

where we denoted by A the annulus 1 < |z| < 2. For x € K we observe that x — rA CC Q. We
also have s

[(n(£)2(2)] < Cr2||un ()| p2(0) < 72
which allows us to use the dominated convergence theorem and pass to the limit. By the triangle
inequality we obtain

‘Nq; / / Uoo )r : Vd da;dt‘ < Co(Egr*? + Er) (3.13)
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for n sufficiently large, depending on 7, and r small enough. Now we use the identity (3.5) in
reverse, and the fact that translation is strongly continuous in L? to deduce that (u ), converges to
Uoo strongly in L2(0, T'; L?(K)). Thus, given § > 0 we can choose r = r(§) small enough so that

r 5
/ / oo — (too)r|?dzdt < ~
0o JK 2

and, using (3.13) and making sure that r is small enough that

C@(EKT‘QCZ + Er) < g
holds as well, we obtain
T
’N@(n) —/ /(uoo) ® (Uuoo) : VO dzdt| < 6 (3.14)
0o Jo
for n large enough. We have thus
T
lim Na(n) = / / (o) ® (1100) : VD dat, (3.15)

and this concludes the proof.

REMARK 3.4. It is possible to remove the assumption of almost all time L?(Q) convergence,
and replace it with the weak convergence in L?(0,T; L?((2)), at the price of demanding space-time
second order structure function scaling.

T
/ / lun (2 4+ 1y, t 4 5) — up (2, t)|2dzdt < Ex(Jy|*? + |s]°) (3.16)
0 K

for n(n) < |y| < dist(K;090),t+ s € [0,T], |s| > 7(n), 7(n) — 0, and B > 0. The proof is
the same, we translate in space-time. If 7(n) = 0 the requirement is strong, it implies the sequence
bounded in C#(0, T; L?(f2)), and in particular the L2(£2) convergence on each time slice.

REMARK 3.5. By Fatou’s lemma in time and our assumptions, it follows that the limit solution
of Euler equations satisfies the local bounds

T
/ / oo (@ + Y, 1) — oo (2, )| dxdt < Egc|y|*? (3.17)
0 K

for |y| < dist(K,0N) and any compact K CC €.

4. Discussion

The vanishing of the dissipation rate follows from weak convergence in L?(2) for all times only
if the Euler equation is conservative. We proved results of emergence of weak, possibly dissipative
solutions of Euler equations in 3D if the ensemble of Navier-Stokes solutions obeys a local-in-space
but uniform in the ensemble second order structure function scaling from above. In two dimen-
sions, we proved the emergence of weak solutions form arbitrary families of strong solutions of
Navier-Stokes equations with uniform interior (local) enstrophy bounds. There might be dissipative
solutions among them, although an example is not available at this time.
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