
Please c
plants. 

G Model
CACE-5880

Mixed
reliab

Yixin  Y
a Center for 

b Business a

a  r  t  i  c

Article histo
Received 11
Received  in
Accepted 25
Available  on

Keywords:
Reliability
Availability
Design
MINLP
Parallel uni
Serial  struc

1. Introd

Plant a
and opera
fraction o
ity of mee
are used 

to simula
maintena
However
alternativ

The  g
quantitat
has led to
whose ai
tion prop
addressed
to detect 

of system
(RBDO), w

� This  art
optimizatio

∗ Corresp
E-mail a

https://doi.
0098-1354/
ARTICLE IN PRESS; No. of Pages 14

Computers and Chemical Engineering xxx (2018) xxx–xxx

Contents lists available at ScienceDirect

Computers  and  Chemical  Engineering

journa l homepage: www.e lsev ier .com/ locate /compchemeng

-integer  nonlinear  programming  models  for  optimal  design  of
le  chemical  plants�

e a,  Ignacio  E.  Grossmann a,∗,  Jose  M.  Pinto b

Advanced Process Decision-Making, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
nd Supply Chain Optimization, Praxair, Inc., Danbury, CT 06810, United States

 l  e  i  n  f  o

ry:
 May  2017

 revised form 24 August 2017
 August 2017
line xxx

a  b  s  t  r  a  c  t

Motivated  by  reliability/availability  concerns  in  chemical  plants,  this  paper  proposes  MINLP  models  to
determine  the  optimal  selection  of  parallel  units  considering  the trade-off  between  availability  and  cost.
Assuming  an  underlying  serial  structure  for availability,  we consider  first a case  where  the  system  tran-
sitions  between  available  and  unavailable  states,  and  second  the  case  with  an  intermediate  state  at  half
capacity.  Two  non-convex  MINLP  models  maximizing  net  profit  are  introduced  for the  two  cases.  In addi-

tion,  a bi-criterion  MINLP  model  is proposed  to  maximize  availability  and  to  minimize  cost  for  the  first
case.  It is  shown  that  the  corresponding  epsilon-constrained  model,  where  the  availability  is  maximized
subject  to parametrically  varying  upper  bound  of  the  cost, can  be reformulated  as a convex  MINLP.  Avail-
ability  is also  incorporated  in  the  superstructure  optimization  of  process  flowsheets.  The  performances  of
the  proposed  models  are  illustrated  with  a  methanol  synthesis  and  a toluene  hydrodealkylation  process.
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vailability has been a critical consideration for the design
tion of chemical processes, for it represents the expected
f normal operating time, which impacts directly the abil-
ting demands. Currently, discrete event simulation tools

to evaluate reliability/availability of selected alternatives
te the behavior of every asset in a plant using historical
nce data and statistical models (Sharda and Bury, 2008).
, this approach does not systematically consider all the
es as it would be the case in an optimization approach.

oal of evaluating and optimizing reliability/availability
ively for various kinds of engineering systems and plants,

 the development of the area of reliability engineering,
m is to rationally consider the ability of a system to func-
erly. According to Zio (2009), major questions that are

 include how to measure and evaluate system reliability,
the causes and consequences of system failures, strategies
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hich is relevant to the work in this paper.
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f the major challenges is the complexity of the system,
he result of multi-state behaviors that occur frequently in
n plants, and topological complexities primarily faced by
d service systems such as communication and transporta-
orks. Lisnianski et al. (2010) provide a comprehensive

ion to the study of multi-state system behaviors. Specifi-
dresses the use of Markov chain theory on both statistical
tical methods. Petri-net based models have been widely
he performance analysis of computer systems (Malhotra
di, 1995). Bayesian network is another accepted tool for
sis of failure propagation in complex networks (Weber
2).

ared with the other major research aspects in reliability
ing, reliability-based design optimization (RBDO) arises at

 stages for determining the topology and parameters of
. Kuo and Prasad (2000) give an comprehensive review
ea. Aside from continuous parameter selections, discrete

 regarding parallel redundancies are an important part
 Various types of methods have been used to obtain the
r suboptimal configurations, such as genetic algorithms

 Smith, 1996), Monte Carlo simulation (Marseguerra et al.,
d heuristics (Hikita et al., 1992).
rch has also been done in chemical engineering to quanti-
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

nalyze the reliability of the chemical plants. Rudd (1962)
 the estimation of system reliability with parallel redun-

Henley and Gandhi (1975) suggest using a minimal path
to evaluate failure propagation and the sensitivity of
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liability to unit reliability. Van Rijn (1987) provides a sys-
verview of reliability, availability and maintenance and
strial applications. (Thomaidis and Pistikopoulos, 1994,

egrate flexibility and reliability in process design, but does
ider the possibility of having standby units in order to
the availability of a system. Pistikopoulos et al. (2001) and
l. (2003b) formulate an MILP model for the selection of
h different reliability and the corresponding production
tenance planning for a fixed system configuration. Aguilar
08) address the reliability issue in utility plant design
ation by considering some pre-specified alternatives for
cy, and for which they formulate and MILP model consid-
ited number of failure scenarios. Terrazas-Moreno et al.

rmulate an MILP model using Markov chains to optimize
ted stochastic flexibility of an integrated production site
ection of pre-specified alternative plants and the design of
iate storage. Lin et al. (2012) model a simple utility system
rkov chains and carry out RAM (reliability, availability and
ability) analysis iteratively to decide the optimal reliability

ver, it is fair to state that, while a number of mixed-
timization models have been proposed to address various
f reliability, there are virtually no general rigorous

teger programming models are specifically aimed at sys-
ly selecting the type and number of parallel units for the
esign of reliable chemical processes. In response to this
ork proposes a general optimization model to select par-

 in order to maximize availability and to minimize cost in
tems, providing basic model properties.
tion 2, a motivating example is introduced, followed by
statement in Section 3 and nomenclature in Section 4. In
, two non-convex MINLP models maximizing net profit
nted with/without intermediate states, respectively. In

 considering maximizing availability and minimizing cost
y, a non-convex �-constraint MINLP model is formulated
e convexified for the basic case. Illustrative examples for

dels are presented in Section 6, along with applications to
ynthesis problem.

ating example

ter focus on the parallel unit selection problem, we con-
ir separation unit (ASU) shown in Fig. 1 as a motivating

 Air is fed to a compressor followed by the after-cooler,
 the pre-purifier to remove impurities. After that, air is

 the gas product of nitrogen and liquid product of oxygen.
efrigeration is provided by expansion through a turbine

Fig. 2
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tering the cold box.
ilure of any one of the operations can result in the failure of

 system, which will prevent it from producing liquid and

Fig. 1. Typical flowsheet of air separation units.

Based  on
the availa
lished. Th
 diagram of ASU reliability design alternatives. Each block represents a
t with certain rate of capacity shown in the block.

cts, and hence satisfying customer demands. To increase
m availability, design alternatives are proposed for some

 stages. The availability superstructure is formulated as
stem of sequential stages shown in the block diagram of

ample, we  can choose to install one full-capacity unit for
ompression, whose failure will lead to system failure. Or it

 two half-capacity units instead, in which case the system
s 50 percent of designed capacity when one of the two
s. However, the second option might be more expensive.

em statement

he motivating example in mind, we  define a general mod-
ework for production systems with underlying serial

s for availability evaluation (Fig. 3). Our goal is to deter-
ign decisions regarding which potential parallel units to

 order to maximize the system availability (i.e. proba-
t the system performs without failures), and hence sales
while minimizing the total cost of the system.

 presenting detailed mathematical formulations, we will
in this section the basic logic followed by the two cases
estigated.
f them is the basic case where all the stages need only one
ork properly. A set of potential units j ∈ Jk for each stage k

 with:

ilities,  i.e. the probability of each unit being available.
ing priorities (indicated by j), which means that a unit
y become active when all installed units that have higher
es  have failed.
ta, including installation and repair.
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

 the parameters provided above, the relationship between
bility of stage k and the selection of parallel units is estab-
e processing stages are divided into two  kinds:

Fig. 3. A serial system.

https://doi.org/10.1016/j.compchemeng.2017.08.013
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here potential parallel units are identical (k ∈ Kiden).
where potential parallel units have the same capacities,

 distinct in terms of availability or cost (k ∈ Knon).

ition to the basic case, another type of design alternatives
. For example, the second design alternatives of the main

ression in the motivating example (see Fig. 2) is to have
apacity compressors, such that when one of them is failed,
till half of the original output left. System availability is
fined to capture the new behavior when having partial

nclature

Stage
Parallel unit, smaller j has priority over larger j
Dummy  variable for j

Set of processing stage (e.g. absorption)
Set of stages with identical parallel units
Set of stages with non-identical parallel units (Kiden and
Knon is a partition of K)
Set of parallel units for each state

Number of potential parallel units in stage k
Availability of single units in stage k with identical parallel
units
Availability of single unit j in stage k with non-identical
parallel units
Investment for single units in stage k with identical
parallel units
Repair cost for single units in stage k with identical parallel
units
Investment for single unit j in stage k with non-identical
parallel units
Repair cost for single unit j in stage k with non-identical
parallel units
Upper bound of total cost
Revenue rate of final product
Penalty rate for not meeting lower bound of availability
Bonus rate for exceeding upper bound of availability
The lower bound of system availability arranged in the
contract
The upper bound of system availability arranged in the
contract

Binary variable that indicates whether unit j of stage k is
selected
Availability of stage k
Expectancy of units being repaired of stage k
Total repair cost for single units in stage k
Total cost for stage k
Total cost of system
Expected revenue
Expected penalty
Expected bonus
Net profit
Binary variable that indicate which one of the ranges A
falls  in
Components of A for corresponding range

3 Components of PN for corresponding components of A
3 Components of BN for corresponding components of A

l formulation

ry state model

C
shou

nk∑
j=1

y

C
Kiden
high

yk,j+

T
para
fact 
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ntioned in Section 3, we will first consider the basic case
e system has only two states and introduce the corre-

 MINLP model (SO).

P1 = 1 − 

Notice th
which w
Fig. 4. Sample diagrams for single stages.

raint (1) requires that for each stage k at least one unit j
 installed.

 1, k ∈ K (1)

raint  (2) is a symmetry breaking constraint for stages k ∈
ch requires that a unit can only be selected if the one with
iority is selected.

k,j, k ∈ Kiden, j ∈ Jk (2)

ailability of a stage depends on the number of installed
nits and the corresponding availabilities. Considering the

the redundancies for one stage are usually no more than a
numerate all possible cases for each stage to evaluate the
ty.
er the diagram in Fig. 4(a) as an example, where all the

 identical. If we introduce symmetry breaking constraints
 in stage k being selected means that all the potential units
er priorities are selected. Considering all design alterna-

installing unit 1, installing unit 1 and 2 or installing unit 1,
here are 3 possible cases that the stage is functioning: Unit
e; Unit 2 is active while unit 1 has failed; Unit 3 is active
t 1 and 2 have failed. It is obvious that whether a case hap-
ends only on the existence of the unit that is active in it,
robability for a possible case to take place depends on the
ties of that particular unit and all the potential units with
iorities. Thus, we  have the following linear constraints:

,1 + (1 − p1)p1y1,2 + (1 − p1)2p1y1,3

n be easily generalized to Eq. (3).

k

1

yk,j(1 − pk)
j−1, k ∈ Kiden (3)

iagram in Fig. 4(b) represents a stage k ∈ Knon with non-
parallel units, which are not restricted by symmetry

 constraints. Hence, we  cannot avoid nonlinearity by enu-
 all the cases where the system is available as it was done
ical standby stages, which contributes to increasing the
ty of the analysis. The availability is represented by sub-

 the probabilities of unavailable cases (Goel et al., 2003a).∏
j ∈ Jk

(1 − pk,jyk,j), k ∈ Knon (4)

ample, for the stage shown in Fig. 4(b), we have
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

(1 − p1,1y1,1)(1 − p1,2y1,2)(1 − p1,3y1,3)

at multi-linear terms of 0-1 variables are introduced,
ill be linearized as shown in the next section. Based on

https://doi.org/10.1016/j.compchemeng.2017.08.013
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nd (4), the availability of the system consisting of stages
iven by Eq. (5)

k (5)

 cost of each stage is the summation of investment and
sts.

nstk + ci repak)

nk∑
j=1

yk,j, k ∈ Kiden (6)

yk,j(c
n instk,j + cn repak,j), k ∈ Knon (7)

 cost of the entire system is then given by Eq. (8)

K

Ck (8)

fit maximization
cal way  availability impacts the net profit is considered
here system availability is reflected in revenue, penalty
s, and net profit is the summation of the three terms minus
ation of total costs.

 = RV − PN + BN − Ctot (9)

tal revenue is proportional to the availability of the sys-

 (10)

RV is positive and maximized in the objective function (9),
an be relaxed as follows.

 (11)

n be combined with (5) and converted to (12):

 K

ln Pk ≤ lnrv (12)

ln RV is concave separable, and −
∑

k ∈ Kln Pk is convex,
 (10) with (12) improves the quality of the convex under-
ns for the spatial branch and bound search for global
tion.
ally, in the contract between the plant and the customer,

othe
cust
to th

T
(14)

W1 �⎡
⎢⎢⎢⎣
W

A ≤

PN

BN

T
yield
for b

w1 +
A = 

PN =
BN =
A1 ≤
w2A

A3 ≤
PN1

PN2

PN3

BN1

BN2

BN3

C
(28)

PN =
BN =

T
(27)
ite this article in press as: Ye, Y., et al., Mixed-integer nonlinear progr
Computers and Chemical Engineering (2018), https://doi.org/10.1016/j

ence bounds are set for the availability of the plant. As
 Fig. 5, if the actual availability of the plant does not meet

 bound, the plant that provides products for the customer
harged a penalty proportional to the difference. On the

Fig. 5. Definition of penalty and bonus functions.

In sum
profit (9)
This is a n
is involve

5.1.2. Bi-
Instea

(P1) that
cost (30)
property

max  A 

min  Ctot

The 

(29)–(30
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parametr

Ctot ≤ cos
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d, if the actual availability exceeds the upper bound, the
 will reward the plant with bonus that is also proportional
ference.
nalty and bonus are described by Eq. (13) and disjunction

� W3 (13)

lo − A)pn

⎤
⎥⎥⎥⎦ ∨

⎡
⎢⎢⎣
W2

A lo ≤ A ≤ A up

PN  = 0

BN = 0

⎤
⎥⎥⎦ ∨

⎡
⎢⎢⎢⎣
W3

A ≥ A up

PN = 0

BN = (A − A up)bn

⎤
⎥⎥⎥⎦ (14)

onvex-hull reformulation (Balas, 1985) of (13) and (14)
’) and (15)–(26), where w1, w2 and w3 are binary variables

an variables W1, W2 and W3.

 w3 = 1 (13’)

A2 + A3 (15)

+ PN2 + PN3 (16)

+ BN2 + BN3 (17)

 lo (18)

 A2 ≤ w2A up (19)

 up (20)

1A lo − A1)pn (21)

(22)

(23)

(24)

(25)

3 − A upw3)bn (26)

raints (16), (17) and (21)–(26) can be reduced to (27) and

ow1 − A1)pn (27)

− A upw3)bn (28)

the linear equations (inequalities) (13), (15), (18)–(20) and
) define the convex hull of (13) and (14).

mary, the single objective MINLP (SO) maximizes net
 subject to (1)–(8), (12), (13), (15), (18)–(20) and (27)–(28).

on-convex MINLP due to the nonconvexity of (5), which
d in the objective (9).

criterion optimization and convexified formulation
d of maximizing net profit, we  now consider problem

 maximizes system availability (29) and minimizes total
 subject to constraints (1)–(8), which has the interesting

 that it can be reformulated as a convex MINLP problem.

(29)

(30)

bi-criterion optimization problem (P1)((1)–(8) and
)) is solved through reformulation to the �-constraint
tion problem (P1’)((1)–(8), (29) and (31)), which maxi-
tem availability (29) subject to the upper bound of total
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

own in Eq. (31). The upper bound of total cost is varied
ically to generate a Pareto-optimal curve.

t (31)

https://doi.org/10.1016/j.compchemeng.2017.08.013
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Table  1
An  example of ˛j,k,m in stage k.

˛j,k,m

m j

1 2 3

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
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candidate unit in full capacity group of stage k
Binary variable representing the existence of the jth
candidate unit in half capacity group of stage k
0 1 1
1 1 1

ntioned before, Eq. (4) for nonidentical units in (P1)
multi-linear terms, and so does the objective function of
ch causes the problem to be nonlinear and non-convex. In
(P1’L), which is to be described in this section, we propose
ze constraint (4) and convexify the objective function. In
o so, the products over linear terms in (4) are expanded

ations over multi-linear terms, which are then linearized.
(4), the multiplication is done over the set Jk, we  first
he following new sets and parameters to enumerate the
f Jk.

Subset m of Jk

The power set of Jk: Sk = {S|S ⊆ Jk}
ample, if there are 3 potential units in stage 1 (J1 = {1,
en the number of subsets in the power set S1 is 23 = 8,
1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
nary parameter ˛j,S is defined to indicate whether unit j
o subset Sk,m: ˛j,k,m = 1 means that unit j belongs to subset
n, consider J1 = {1, 2, 3} as an example, then for S1,4 = {1, 2},
˛2,1,4 = 1, ˛3,1,4 = 0. Table 1 gives a comprehensive example
ow ˛j,k,m is defined for each alternative.
rantee that all and only subsets of Jk are included in Sk,
ny repetition or omission, we use the following equation
te the subsets.

mod  (m − 1, 2j)
2j−1


, k ∈ Knon

n consider ˛j,k,m as the digit on the jth place of the binary
 − 1. The following binary variables are then defined based
ove definition of S:

k,m

yk,j, k ∈ Knon, Sk,m ∈ Sk

llowing logic conditions hold for zk,m (Glover and Woolsey,

∧
j ∈ Sk,m

yk,j

)
, k ∈ Knon, Sk,m ∈ Sk, S /=  ∅

 k ∈ Knon, Sk,m = ∅

n be reformulated as the following linear inequalities
nd Grossmann, 1991),

j, k ∈ Knon, j ∈ Sk,m, Sk,m ∈ Sk, Sk,m /=  ∅ (32)
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yk,j − |Sk,m| + 1, k ∈ Knon, Sk,m ∈ Sk (33)
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 on the above definitions of the subsets Sk,m, the power set
e variable zk,m, Eq. (4) is then reformulated as the following
uations:∏
j ∈ Jk

(1 − pk,jyk,j), k ∈ Knon

∑
Sk,m ∈ Sk

(
∏
j ∈ Sk,m

(−pk,jyk,j))(
∏

j ∈ Jk\Sk,m

1), k ∈ Knon

∑
Sk,m ∈ Sk

(
∏
j ∈ Sk,m

(yk,j))(
∏
j ∈ Sk,m

− pk,j), k ∈ Knon

∑
Sk,m ∈ Sk

zk,m
∏
j ∈ Sk,m

(−pk,j), k ∈ Knon

(34)

mple, the diagram shown in Fig. 4(b) that has 3 distinct
nits yields

 (z1,1 + z1,2(−p1,1) + z1,3(−p1,2) + z1,4(−p1,1)(−p1,2)

(−p1,3) + z1,6(−p1,1)(−p1,3) + z1,7(−p1,2)(−p1,3)

(−p1,1)(−p1,2)(−p1,3))

 equations Pk, k ∈ K are linear in model (P1L). On the other

 ln(
∏
k ∈ K

Pk) =
∑
k ∈ K

ln Pk (35)

logarithmic functions are monotone, maximizing A′ is
aximizing A. The original objective function (29) can thus

ed by (36).∑
k ∈ K

ln Pk (36)

each term in the above summation is concave, A′ is con-
imizing the concave function is equivalent to minimizing

 function. Thus, the reformulated problem (P1’L) ((1)–(3),
nd (31)–(36)) is a convex MINLP (i.e. the relaxed NLP of
onvex).

i-state model

odels presented in the previous sections are based on the
on that all of the stages as well as the entire system transi-

een binary states, on and off, which means that for each
ge to be available, the fewest number of available units
ever, in practice, there is another strategy for increas-
bility that is equally used as the simple back-up strategy
d previously. It is to let a few units (usually 2) share the
. For example, in the typical case we consider in model

ddition to the full capacity back-up pattern, some stages
 two units that both work at half of the designed capacity,
e of them fails, the system can still operate at half capac-
bjective of model (TS) is to maximize the net profit based

ntracts production described in section 5.1.1.
e augmented case, we define the following new indices,

 and parameters.
Aliases of j
Capacity level of unit j in stage k
Binary variable representing the existence of the jth
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

Probability of stage k ∈ K working in full capacity
Probability of stage k ∈ K working in half capacity
Probability of the whole system working in full capacity
Probability of the whole system working in half capacity

https://doi.org/10.1016/j.compchemeng.2017.08.013
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Fig. 6. Potential units of stage k.

wn in Fig. 6, stage k may  have two groups of potential units
capacities and half capacities, respectively. Like what was
the basic case in Section 5.1, these units are numbered by

 the order of operation priorities. It is also obvious that
ity units, if they exist, will always have higher priorities

 capacity units.
e stage to have enough capacity in normal conditions, we
straint (37).

F
k,j +

∑
j ∈ JH

k

cpk,jy
H
k,j ≥ 1, k ∈ K (37)

robability of stage k having half capacity is calculated in

 ∈ JF
k

(1 − pF
k,j
yF
k,j

) is the probability that all full capacity units

, which is the premise of having half capacity. It reduces
n full capacity units are not installed and yF

k,j
= 0. Then

late the conditional probability that only one unit j from
apacity group is left available, by enumerating all possible
ed on the available unit j. The expression means that, in

here j is the only available unit, all potential units with
erational priorities are failed (if selected), and all potential
h lower operational priorities are not selected.

(1 − pF
k,j
yF
k,j

)

{pH
k,j
yH
k,j

[
∏
l ∈ JH

k
,l<j

(1 − pH
k,l
yH
k,l

)][
∏

m ∈ JH
k
,m>j

(1 − yH
k,m

)]}, k ∈ K (38)

obability of stage k to work at full capacity is calculated
), which is based on similar idea with that of Eq. (4) in

.1. However, in addition to the probability of total failure,
ty of having half capacity also has to be deducted from 1.∏
j ∈ JF

k

(1 − pFk,jy
F
k,j)

∏
j ∈ JH

k

(1 − pHk,jy
F
k,j) − PHk , k ∈ K (39)

obability of working with full capacity is the product of
ch stage.

F
k (40)

robability for the entire system to work under half
ut is represented as the probability for the system not to

T
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s the probability of working with full capacity.

(PFk + PHk ) − AF (41)

Fig.  8 d
3 units at
unit. The
while tho
Fig. 7. Sketch of an availability curve.

ount for partial capacity states, the availability of the sys-
defined through the integration:∫ T

0
CP(u, t)dt)

CPf T

tual graph is shown in Fig. 7, where the availability equals
e area over the rectangle area under the dashed line of full

 [0, T] is the time horizon that is being considered. CPf is the
ity of the system, and CP(t) is the system capacity at time t.
, only one scenario of the availability curve is shown in the
ereas in the defining equation, a probabilistic expectation

ted, where u stands for each scenario and U stands for their

we can use Eq. (42) to estimate the system availability.

AH/2 (42)

mary, the proposed non-convex MINLP model (TS) max-
e net profit (9) subject to constraints (6)–(8), (13), (15),

), (27)–(28) and (37)–(42).

ative examples

 section, several examples are presented and discussed in
llustrate the applications of the models.
tion 6.1, we examine a system where all the stages have

 states, which was  utilized to formulate a problem that
es the net profit, and a problem that maximizes reliability
nimizing cost. The single objective model (SO) was solved
s a non-convex MINLP, and the multi-objective problem
d by reformulating into its �- constrained model (P1’), a
ex MINLP, and then reformulated it as the convex MINLP

 Section 6.2, we  formulate model (TS) to maximize the
t for an ASU process where some of the stages may  have
tes, giving rise also to a non-convex MINLP. In Section 6.3,
ty evaluation is incorporated into the flowsheet super-

 optimization problem of methanol synthesis process and
rodealkylation of toluene) process.

odels were implemented in GAMS 24.4.1 on an Intel(R)
 i7, 2.93GHz. Commercial solvers BARON (Tawarmalani
inidis, 2005) 14.4.0 and DICOPT (Viswanathan and
nn, 1990) (based on CONOPT 3.16D and CPLEX 12.6.1.0)
d.

ry state system
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

isplays a simple serial system that has 4 stages with up to
 each stage. Each rectangle represents a single processing

 parallel units in stage 1 and 2 are identical, respectively,
se in stages 3 and 4 are distinct. All of the stages are with

https://doi.org/10.1016/j.compchemeng.2017.08.013
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Table  2
Parameters for example 1.

Availability Installation cost (K$ per year) Repair cost (K$ per year)

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

j = 1 0.97 0.97 0.97 j = 1 65 65 65 j = 1 5 5 5
j = 2 0.97 0.97 0.97 j = 2 40 40 40 j = 2 4 4 4
j = 3 0.95  0.92 0.9 j = 3 100  90 85 j = 3 10 8 6
j = 4 0.98  0.94 0.9 j = 4 196 156 124 j = 4 14 12 10

Fig. 8. Example 1.

Table 3
Additional parameters for single objective model.

rv (k$/yr) pn (k$/yr) bn (k$/yr) A l o A u p
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Table 4
Pareto results.

¯cost(K$/yr) 460 520 580 640 700 760 820
Ctot (K$/yr) 436 480 571 622 692 692 819
A 0.849 0.900 0.947 0.951 0.975 0.975 0.993
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 prob
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ates, giving rise to a total of 441 possible designs. Major
rs, including the availability, installation cost, and repair
ch potential unit are given in Table 2.

t profit optimization
 (SO) introduced in Section 5.1.1 is applied to the above
and generates 29 equations, 26 variables with 13 discrete
. It was solved by BARON in 0.405 s. The parameters for rev-
alty and bonus to formulate the problem that maximizes

rofit are given in Table 3.
sign decisions for maximizing the net profit are shown

 colored box indicates that the unit is selected to install,
acant space means that the unit is not selected.
timal design has an availability of 0.944, which is below

r limit and incurs a $52.3k/yr penalty. The system is
 to earn $944.4k/yr of revenue with 0 bonus and $52.3k/yr

6.1.2
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tion
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Sect
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can 
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ite this article in press as: Ye, Y., et al., Mixed-integer nonlinear progr
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nd to spend $557k/yr on investment (including installa-
epair), which results in the net profit of $335.1k/yr.

Fig. 9. Optimization result of example 1.

budgets h
it is not m
the total 

carded. A
changes i
crete nat
computa
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potential
computa

Table 5
Computatio

P1’ 

P1’  

P1’L  

P1’L  
Fig. 10. Pareto curve.

onstrained model and its linearized formulation
4 shows the Pareto results for the bi-criterion optimiza-
lem. Two groups of MINLP’s, the non-convex MINLP’s (P1’)

 linearized version, the convex MINLP’s (P1’L)(described in
.1.2), were solved to identical results with the upper bound
tal cost varying by $60K/yr from $460K/yr to $820K/yr
ely. Since the design decisions are discrete, the calculated

 Ctot might be less than the limit value.
oint in Fig. 10 corresponds to one of the six subproblems

 maximum system availability under certain upper bound
ost. The small chart next to each data point indicates the
design decisions.

own that as the upper bound of the cost increases, the
 system availability increases as well. From Fig. 10, we

ee the impact of the budget on the selection of the units
stage. Generally speaking, the optimal designs for larger
ave more units than those for smaller budgets. However,
erely a process of adding on units. As the upper bound of

cost increases, some units are added, while some are dis-
lso note that the kinks in the Pareto curve are due to the
n system configuration, and more fundamentally, the dis-
ure of the problem. Table 5 compares the sizes and mean
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

tional times of the models (P1’) and (P1’L).
 expanded system (example 1’) with 12 stages and 3

 units for each stage giving rise to possible designs, the
tional results are shown in Table 6.

nal statistics of (P1’) and (P1’L)for example 1.

No. Eq. No. Var No. Dis. Vars Solver Mean time

21 22 12 BARON 0.27 s
21 22 12 SCIP 0.11 s
97 50 40 DICOPT 0.61 s
97 50 40 SBB 0.88 s

https://doi.org/10.1016/j.compchemeng.2017.08.013
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Table  6
Computational statistics of (P1’) and (P1’L) for example 1’.

No. Eq. No. Var No. Dis. Vars Solver Mean time

P1’ 51 72 42 BARON 1.57 s
P1’  51 72 42 SCIP 1.08 s
P1’L  317 170 140 DICOPT 0.77 s
P1’L  317 170 140 SBB 3.28 s
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Table 7
Parameters

Availabili

MAC  

PPF 

HEX 

PUMP  

rv = $120M/
Fig. 11. The diagram of ASU reliability design alternatives.

P1) and (P1’L) and their expanded system are solved using
solvers. As shown in the above tables, the size of (P1’L) is
rger than that of (P1’). From Table 6, the mean solution
1’L) on example 1 is longer than that of (P1’), regardless of
owever, the mean solution time of (P1’L) by DICOPT on the

 example 1’ is shorter than that of (P1’) by either BARON
hich proves that the convexity of (P1’L) brings time effi-

r larger problems. The convexity of (P1’L) also guarantees
PT can provide the global optimal solution. The solver
e other hand is not able take advantage of convexity, for
tational time increases more rapidly with the number of

riables as the NLP subproblems have to be solved at each
he branch and bound tree. This example shows that the
g of simplicity in exchange for convexity is not effective
vers.

i-state system (ASU)

an be seen, the motivating example of ASU units described
 2 features multi-state behaviors (see Fig. 11). Therefore,

ction, we will use it to illustrate the non-convex MINLP
S) (Section 5.2).

timal design
odel is first solved with the parameters shown in Table 7.

 shows the optimal configuration, which has a net profit
98,000/yr and an availability of 0.970. The model has 29
s, 38 variables with 16 discrete variables and was  solved
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 in 0.07 s

sitivity analysis

When
exchange
net profit

 for example 1.

ty Installation cost (M$/yr) 

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j

0.977 0.975 0.973 MAC  2 1.2 1
0.995 0.993 0.991 PPF 1.6 1.5 1

0.998 0.996 0.994 0.992 HEX 1.4 1.3 0
0.968 0.966 0.965 PUMP 0.4 0.22 0

yr, pn = $130M/yr, bn = $130M/yr, A l o = 0.988, A u p = 0.996.
Fig. 12. Optimum reliability design for multi-state ASU.

nit availabilities. First, the values of unit availabilities
d parametrically to evaluate their impact on the optimal
d the profitability of the system.

. 13 above, nominal value refers to the set of unit avail-
lues used in Section 6.2.1, Table 7. It is shown that as the
ty values of single units are scaled down, the optimal net
d system availability also decrease. The optimal designs
hanging in that more parallel units tend to be installed
ailabilities decrease. A few representative structures are

 the range considered for scaled availabilities.
 availabilities of single units in Table 7 increase by 0.02%,
al flowsheet does not differ from that with nominal val-

ever, since the units are more reliable, the optimal system
ty and net profit do increase from $105,898,000/yr to
,000/yr, and from 0.970 to 0.974, respectively.

 unit availabilities decrease by 1%, a standby heat
r is added on the flowsheet showed in Fig. 14, with a

vailability of 0.961 and net profit of $102,438,000/yr.
 unit availabilities decrease by 2–7%, the optimal flow-
wn in Fig. 15 has one more pump with half capacity than
n in Fig. 14. The optimal system availabilities for 2%, 5%,
e 0.952, 0.918, and 0.894, with corresponding net profits
0,000/yr, $91,384,000/yr, and $85,335,000/yr.

 unit availabilities decrease by 8%, a standby heat
r is added on the flowsheet showed in Fig. 14, with a sys-
ability of 0.884 and net profit of $82,240,000/yr (Fig. 16).

ontract-based penalty and bonus. Second, we analyze
nsitivity with respect to the contract-based penalty rate pn
s rate bn (first used in Section 5.1.1). The trade-off between
ilability and investment is affected in the way that the
ese parameters are, the more important it becomes to

plant availability, and thus, the more parallel units are to
ed.

 pn and bn are increased by 4 times, a pump with half
is added to the flowsheet, leading to a net profit of
,000/yr with an availability of 0.971.
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

 pn and bn are increased by 8 times, a standby heat
r is added on the flowsheet showed in Fig. 17, leading to a

 of $116,696,000/yr with an availability of 0.972 (Fig. 18).

Repair cost (k$/yr)

 = 3 j = 4 j = 1 j = 2 j = 3 j = 4

.1 MAC  40 24 22

.4 PPF 32 30 28

.8 0.7 HEX 28 26 16 14

.20 PUMP 8 4 4

https://doi.org/10.1016/j.compchemeng.2017.08.013
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Fig. 13. Net profit and system availability change with unit availabilities.

Fig. 14. Optimal flowsheet of ASU when availabilities decrease by 1% of nominal
values.

Fig. 15. Optimal flowsheet of ASU when availabilities decrease by 2–7% of nominal
values.

Fig. 16. Optimal flowsheet of ASU when availabilities decrease by 8% of nominal
values.
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Fig. 1
 17. Optimal flowsheet of ASU for pn = $520M/yr, bn = $520M/yr.

 pn and bn are increased by 16 times, one more air
or of full capacity is added, leading to a net profit of
,000/yr with an availability of 0.973 (Fig. 19).
ove results show that higher penalty and bonus factors

e flowsheets with higher availability more preferable.

ication to process synthesis problems

ted in Section 3, the previous models are based on a fixed
gram, and the availability of the system is simply the
f the availabilities of each stage (5) or the linear combi-
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

 the products (42). However, in this section, the reliability
integrated in the superstructure optimization of process

 problems. In other words, the existence of some of the
ations depends on the selection of a particular process

8. Optimal flowsheet of ASU for pn = $1040M/yr, bn = $1040M/yr.

https://doi.org/10.1016/j.compchemeng.2017.08.013
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Fig. 19. Optimal flowsheet of ASU for pn = $2080M/yr, bn = $2080M/yr.
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iderations, such as compressors, heat exchangers and valves.
e 8 shows the equipment and parallel units, their capacities,
parameters of availabilities and costs. The equivalent reliabil-
uperstructure has 14 potential stages, with each of them having
t. A general disjunctive programming representation of a
ynthesis problem (PS) is given as follows (Grossmann and
ios, 2013):
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ci + f (x)
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∨

[ ¬Yi
Bix = 0
ci = 0

]
i ∈ D (PS)

rue
 ≥ 0, Y ∈ {True, False}m

), Yi are boolean variables associated with the selection
 equipment, x stand for continuous variables such as

, temperatures and pressures, ci represent fixed costs and
sts related to x. g(x) and hi(x) represent the equations and

ies of the process.
egrate reliability evaluations, each equipment in (PS) is
d as a stage, and parallel units are assigned for certain

 DR. Let the Boolean variables W and their correspond-
y variables w represent the existence of the parallel units.
e becomes �(Y, W) = True, where logical constraints relat-
lection of stages and their parallel units are added; i.e., if
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. Below is the general formulation of a process synthesis
considering reliability (PSR).∑

i

ci + A · f (x)

 0

]
∨

[ ¬Yi
Bix = 0
ci = 0

]
i ∈ D\DR (PSR)

 0
(w)
Pi(w)

⎤
⎥⎦ ∨

⎡
⎢⎣

¬Yi
Bix = 0
ci = 0
AVi = 1

⎤
⎥⎦ i ∈ DR

 = True

Vi

 ≥ 0, Y ∈ {True, False}m, W ∈ {True, False}l

thanol synthesis
 section an example is presented to show the implemen-
the availability modeling in the process design based on
t superstructure optimization.
rocess synthesis problem of methanol synthesis process
ulated and solved as an MINLP by Türkay and Grossmann
ithout reliability considerations based on the superstruc-
n in Fig. 20. Single choices have to be made regarding two

 two  reactors. Feed 2 is more expensive but has less inert
an Feed 1. Reactor 2 is more expensive but has higher con-
an reactor 1. In addition, it has to be determined whether

ingle-stage compressors, or a two-stage compressor with
ing for pressurization of the feed and the recycling stream
ely. The corresponding MINLP problem has 269 equations,
bles and 6 discrete variables and was  solved with DICOPT

 CONOPT 3.16D and CPLEX 12.6.1.0) in 0.343s for an opti-
t of $3,684,468/yr. The corresponding optimal flowsheet

 guarantee of global optimality) is shown in Fig. 21. Accord-
 solution, Feed 1 is selected over Feed 2, and Reactor 1 is

ather than Reactor 2. In addition, one-stage compressor
elected for the feed, and two-stage compressor train is
for the recycling stream.
er to incorporate the availability evaluation, several can-
rallel units are assigned to each equipment with reliability
amming models for optimal design of reliable chemical
.compchemeng.2017.08.013

esis process.
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Fig. 21. Optimal flowsheet of original methanol synthesis problem.

Table 8
Availability evaluation module for methanol process.

Equipment Installation costs (k$/yr) Repair costs (k$/yr) Availability Capacity (%)

COMP1 to COMP6 1  0.132*power (kW) + 13.5 4 0.977 100
2  0.145*power (kW) + 10.9 2.4 0.975 50
3  0.145*power (kW) + 10.9 2.4 0.973 50

HEC1  to HEC4 1  0.027*heat (kW) + 39.2 2.8 0.998 100
2  0.027*heat (kW) + 39.2 2.8 0.996 100
3  0.030*heat (kW) + 21.2 1.6 0.994 50
4  0.030*heat (kW) + 21.2 1.6 0.992 50

HEH1  to HEH3 1  0.027*heat (kW) + 39.2 2.8 0.998 100
2  0.027*heat (kW) + 39.2 2.8 0.996 100
3  0.030*heat (kW) + 21.2 1.6 0.994 50
4  0.030*heat (kW) + 21.2 1.6 0.992 50
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for the feed compressor. Also, all three parallel units for
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drodealkylation of toluene (HDA)
s section another example is presented to show the
tion of the availability modeling in the flowsheet super-

 optimization.
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ocess was addressed by Kocis and Grossmann (1989) with-
ility considerations based on the superstructure shown

. An optimal flowsheet was obtained as shown in Fig. 24.
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yielding a profit of $4,317,054/yr.
er to apply availability evaluation, several candidate

units are assigned to each equipment with reliability

ess considering reliability.
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Table  9
Additive availability evaluation module.

Equipment Installation costs (k$/yr) Repair costs (k$/yr) Availability Capacity (%)

COMP1
to
COMP4

1  0.132*power (kW) + 13.5 4 0.977 100
2  0.145*power (kW) + 10.9 2.4 0.975 50
3  0.145*power (kW) + 10.9 2.4 0.973 50

HEC1
to
HEC2

1  0.027*heat (W)  + 39.2 2.8 0.998 100
2  0.027*heat (kW) + 39.2 2.8 0.996 100
3  0.030*heat (kW) + 21.2 1.6 0.994 50
4  0.030*heat (kW) + 21.2 1.6 0.992 50

HEH1
to
HEH4

1  0.027*heat (kW) + 39.2 2.8 0.998 100
2  0.027*heat (kW) + 39.2 2.8 0.996 100
3  0.030*heat (kW) + 21.2 1.6 0.994 50
4  0.030*heat (kW) + 21.2 1.6 0.992 50

HEX 1  0.027*heat (kW) + 39.2 2.8 0.988 100
2  0..027*heat (kW) + 39.2 2.8 0.988 100

PUMP1
to
PUMP2

1  1*flowrate(kg-mol/min) + 1 0.2 0.968 100
2  1.1*flowrate (kg-mol) + 0.5 0.2 0.966 50
3  1.1*flowrate (kg-mol) + 0.5 0.2 0.964 50

V1
to
V6

1  1 0.2 0.999 100
2  1 0.2 0.999 100
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