
Learning by Fixing and Designing Problems:

A Reconstruction Kit for Debugging E-Textiles
Full Paper

Debora Lui
University of Pennsylvania

3700 Walnut St.

Philadelphia PA, USA
deblui@upenn.edu

Emma Anderson
University of Pennsylvania

3700 Walnut St.

Philadelphia PA, USA
emmaa@upenn.edu

Yasmin B. Kafai
University of Pennsylvania

3700 Walnut St.

Philadelphia PA, USA
kafai@upenn.edu

 Gayithri Jayathirtha
University of Pennsylvania

3700 Walnut St.

Philadelphia PA, USA
gayithri@gse.upenn.edu

ABSTRACT

In this paper, we present the development of a “reconstruction

kit” for e-textiles, which transforms fixed-state construction

kits—maker tools and technologies that focus on the creation of

semi-permanent projects—into flex-state construction kits that

allow for endless deconstruction and reconstruction. The kit uses

modular pieces that allow students to both solve and create

troubleshooting and debugging challenges, which we call

“DebugIts.” We tested our prototype in an after-school workshop

with ten high school students, and report on how they interacted

with the kit, as well as what they learned through the DebugIt

activities. In the discussion, we delve into the affordances and

challenges of using these kits as both learning and assessment

tools. We also discuss how our pilot and prototype can inform

the design of reconstruction kits in other areas of making.
1

CCS CONCEPTS

• Social and professional topics → Computer Science
education; Computational thinking; K-12 Education

KEYWORDS

Debugging, Computational Thinking, Making, Productive Failure

ACM Reference format:
Debora Lui, Emma Anderson, Yasmin B. Kafai, Gayithri

Jayathirtha. 2017. Learning by Fixing and Designing Problems: A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

FabLearn '17, October 21–22, 2017, Stanford, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-6349-5/17/10…$15.00
https://doi.org/10.1145/3141798.3141805

Reconstruction Kit for Debugging E-Textiles. In Proceedings of
FabLearn17, October 21-22, 2017. 8 pages.
https://doi.org/10.1145/3141798.3141805

 1 INTRODUCTION

Making has become popular within educational sites because of

its ability to promote science, technology, engineering, and math

(STEM) learning and computational thinking (CT) skills [1, 10].

Many efforts to support maker activities have focused on the

design of “construction kits,” which Resnick and Silverman [20]

describe as “systems that engage kids in designing and creating

things” (p. 1). These kits can be situated on-screen (e.g., Scratch,

StarLogo), off-screen (e.g., Lego Bricks, littleBits), or in combined

‘hybrid’ spaces with software and hardware elements (e.g., Lego

Mindstorms, Arduino). Designing high quality construction kits

requires creating easy-to-use interfaces and materials that allow

even novice makers to design and create a wide range of projects

to learn about powerful ideas in STEM disciplines such as

feedback or complex systems [16].

While there is much emphasis on construction in the Maker

Movement, we argue that equal attention should be paid to the

intermediate processes of making, such as dealing with

unexpected problems that inevitably arise along the way. Of

particular relevance here are the practices of troubleshooting,

debugging and problem solving at large. As Papert [16] observed

early on “when you learn to program a computer, you almost

never get it right the first time (p. 23). Thus, troubleshooting

always involves taking something apart to some extent—whether

a program or a seam—and putting it together again once one has

figured out the issue. In other words, making is just as much

about construction as it is about deconstruction and therefore,

reconstruction.

Some construction kits, which can be called flex-state

construction kits, are specially designed to allow makers to

continually explore within this space of deconstruction and

reconstruction, and consequently troubleshooting and

FABLEARN’17, Oct 2017, Palo Alto, CA USA Lui, Anderson, Kafai and Jayathirtha

2

debugging. For instance, children using Legos are encouraged not

only to build creations, but also break and remake them. Other

construction kits, which can be labeled fixed-state including

Adafruit FLORA and MakerBot, focus more on the creation of

seemingly permanent artifacts, whether light-up hoodies or

architectural models. Due to this attention on final rather than

ephemeral products, fixed-state kits limit the opportunities for

endless reconstruction as seen with flex-state kits. Furthermore,

the process of debugging within fixed-state construction kits is

often arduous; fixing a 3-D print, for example, involves going

back to a program file, figuring out if the error is in the file or the

printer, addressing, the issue, and then printing the object all

over again. While the creation of personal artifacts is a hallmark

of the Maker Movement, we argue that this lack of emphasis on

deconstruction and reconstruction misses a rich opportunity for

learning and assessment.

In this paper, we aim to include deconstruction,

reconstruction, troubleshooting and debugging within the whole

cycle of making by proposing what we call a reconstruction kit.

By adding modular moveable elements, a reconstruction kit can

transform as fixed-state kit into a flex-state one. Here, we

describe the design and testing of a first prototype of an

electronic textiles (e-textiles) reconstruction kit, based on LilyPad

Arduino [3]. An extension of the Arduino microcontroller, the

LilyPad allows makers to create fabric-based electronics projects

using sewable components such as LEDs, buzzers, and switches.

Through creation of e-textiles projects, students learn to

integrate multiple domains of knowledge and skill including

design, circuitry, coding, and crafting [12]. We define the LilyPad

Arduino as a fixed-state construction kit because it requires

sewing things together in order to create semi-permanent

connections. Debugging within this space is often tedious and

time-consuming since it involves taking out and re-doing stitches

from a sewn circuit. Our kit bypasses this problem by turning e-

textiles components into modular pieces, thus allowing for

flexible de/reconstruction. We report here on a workshop in

which seven teams of high school students used this e-textiles

reconstruction kit for the purposes of learning through

debugging. Using the kit, we developed a series of challenges (or

“DebugIts”
 2

) each focused on a particular issue in circuitry or

coding. After students solved these, we then asked them to

construct their own DebugIt challenges for others to tackle. We

build on a previous study exploring e-textiles debugging

activities [8] to ascertain how our reconstruction kit works as a

viable tool to both teach and assess student knowledge of

problem solving.

2 BACKGROUND

Debugging has long been considered an important skill to

support within computer science learning (e.g., [4, 17]).

Researchers have developed a range of tools and methods to

2
 The name DebugIt makes reference to the Debug-It Studio of buggy

Scratch projects that Brennan released on the Scratch Ed website
beginning in 2010 so that other Scratch members could solve them [6].

support this on-screen skill, for example, development logs,

reflective memos, tracing tools, and visualizations (e.g., [2, 5, 9]).

However, as McCauley and colleagues noted, it is unclear how

the findings and strategies developed from these studies apply to

different computational contexts, such as ones that encompass

both on and off-screen elements [15]. In focusing on these

‘hybrid’ designs, we posit there is potential to promote deeper

problem-solving skills through the process of debugging.

Of particular note here is students abilities to develop their

computational thinking (CT) skills, a problem-solving approach

that has recently gained traction within educational contexts

[11]. As defined by Wing, CT moves beyond knowing the

specifics of code or programming to an entirely different way of

approaching problems [24]. This can include, for instance,

thinking about the component parts of a system and how they fit

together to form a complete solution. These aspects become

particularly relevant in the context of e-textiles, where one must

consider the interface between the on-screen world of code, and

the off-screen world of circuitry and crafting in order to create a

functioning computational artifact [7, 12].

Moreover, the process of debugging also encompasses a

mode of problem solving that Kapur calls “productive failure”

[13]. This concept describes the counterintuitive notion that

students can potentially learn more by moving through a series

of struggles and failures rather than being carefully scaffolded

through incremental, correct steps. While Kapur focused on this

idea within the context of ill-defined problems, others have

spoken about how productive failure has just as much potential

within the arena of open-ended design activities [14]. For

instance, this becomes particularly apparent in maker contexts

where creators often have to deal with a range of different, often

finicky materials that require individuals to tinker, troubleshoot,

and fail before creating a working project [18, 19].

These considerations of debugging as a form of

computational thinking and productive failure thus inspired the

development of a reconstruction tool for e-textiles learning. We

build off prior work where we implemented a debugging

challenge using pre-sewn, pre-programmed e-textile projects that

contained a curated collection of circuit and code problems [8].

For circuitry, this included short circuits, electric topology, and

polarity. For coding, this included constant versus variable pins,

control flow, and end-state definition. Students developed

particular methods of solving these challenges, including

strategically isolating and prioritizing issues, and running

through cycles of hypothesis making and testing. While students

managed to solve many of these problems, the static nature of

the original tool did not allow students to tinker or experiment

with their solutions, a key practice of making and debugging.

Additionally, the process was not particularly creative; while

flex-state construction kits are often focused on “design for

designers” [20], or avenues for creative expression, in these

debugging challenges, students were mostly expected to provide

the single correct answer rather than developing alternate

solutions or even challenges of their own.

Learning by Fixing and Designing Problems FABLEARN’17, Oct 2017, Palo Alto, CA USA

 5

qualitatively (type of moves). In the worksheet, we also asked

students to write what they thought was the most difficult aspect

of each DebugIt. Based on their answers, we looked for emerging

themes to help understand the affordances and challenges of the

kit.

For the DebugIts that groups designed themselves, the

worksheets asked for their buggy code or buggy circuit along

with the corrected version. We counted how many groups

created buggy circuits versus buggy code, and examined the bugs

themselves, looking at what kinds of issues groups decided to

highlight (e.g., end state definition within the function,

polarization), in order to compare them with the instructor-

created DebugIt challenges. We counted how many of these were

solved, and recorded the number of self-reported moves. We also

looked through their answers regarding the “most difficult” part

about the challenge in order to highlight emerging themes.

Figure 5: Student worksheet showing a solution for Challenge
B1, with drawing of the corrected circuit, number of moves
made, and discussion of the most difficult part of the challenge.

Figure 6: Students working together to fix a circuit on the
complex reconstruction mat.

To capture student perceptions of the activities, we administered

an exit survey that asked which activity was most and least

helpful to their learning and why. This included: creating a

codeable circuit, solving a buggy code, solving a buggy circuit, or

creating a DebugIt. All ten students answered these questions.

We tallied up responses received for each activity, and identified

emerging themes across their explanations. We also asked them

what they felt they learned about coding and circuitry within the

workshop. Only eight of ten students answered these questions

due to time constraints.

5 FINDINGS

5.1. Fixing Instructor-Designed DebugIts

Student groups were allotted up to 60 minutes to work on the

instructor DebugIts (A1, A2, B1 and B2). Within this given

timeframe, all groups were able to solve A1, A2 and B1, while

only one group attempted, but did not solve B2 (see Table 2).

Looking at the number of moves, we expected students to

use two to three moves per challenge. However, groups’ self-

reported number of moves ranged from one to ten, with the most

number of moves reported for Challenge B1 (see Table 2). This

finding makes sense given that B1 was the most complex

challenge the groups encountered, and was the site where they

tinkered and experimented the most with the moves they took

(as opposed to earlier challenges, where they felt more

confident).

Table 2: Groups who attempted/solved DebugIts

DebugIt
Groups
Attempted

Groups
Solved

Alternate
Solutions

Moves Made

A1 –
Buggy circuit

7 7 2
Range: 1-4
Average: 2.57
Expected: 3

A2 –
Buggy code

7 7 1
Range: 1-4
Average: 2
Expected: 2

B1 –
Buggy circuit

6 6 2
Range: 1-10
Average: 4.33
Expected: 3

B2 –
Buggy code

1 0 N/A N/A

Looking at their solutions themselves, we also calculated the

number of “alternate” solutions provided per DebugIt, meaning

ones that deviated from what we had originally intended. For

Challenge A1, the intended final solution included two parallel

circuits; however, two groups provided only one parallel circuit,

which still fulfilled the intended final state (all LEDs blinking

together). For Challenge A2, only one group provided an

alternate solution; while they added seemingly redundant lines of

code, it still led to the correct final state. For Challenge B1, two

alternate solutions were provided. One involved creating an

‘always-on’ rather than codeable connection, and the other

involved an entirely different circuit diagram. Again, the

existence of these alternate solutions seem to highlight students’

freedom to experiment and tinker while solving these DebugIts,

often providing creative solutions beyond what was expected.

Looking at reports of their difficulties with DebugIts,

students mentioned a few issues, including not understanding

polarity within circuits, and being “worried about making too

many moves.” Several groups mentioned dealing with the

physical challenges of the kit itself, specifically the thickness of

the felt conductive strips, and the tenuous nature of the hooked

Learning by Fixing and Designing Problems FABLEARN’17, Oct 2017, Palo Alto, CA USA

 7

it.” On the other hand, four choose creating DebugIts as the most

helpful to their learning. About solving and creating challenges,

Servino stated: “Both of these were very interactive and helped

us develop new techniques.” Maria added that “It was cool being

able to create my own challenge.” Thus, even though students

learned the most from the practice of debugging itself (i.e., fixing

code), the creation of DebugIts potentially highlights an area

where students felt the greatest opportunity to express

themselves creatively within the context of debugging.

6 DISCUSSION

Our results illustrate the feasibility of our reconstruction kit in

creating opportunities for rapid construction, deconstruction, and

reconstruction with e-textiles. In designing activities for fixing

and designing DebugIts, we allowed students to engage with

troubleshooting both on and off-screen. In the discussion, we

highlight both the affordances and limitations of our design, as

well as suggestions gleaned from our prototype and testing for

creating reconstruction kits for making at large.

6.1 Personalized Pathways of Productive Failure

One major affordance of the reconstruction kit is that its

modularity creates opportunities for students to enter into

personalized pathways of productive failure [13]. In other words,

each reconstruction kit can yield multiple debugging challenges,

all which can be customized to students’ own abilities and

desires. This differs from our earlier effort where we created the

pre-sewn debugging challenge that had a set level of difficulty,

and which could only be fixed once [8].

This customization afforded by the kit was evidenced by the

different pathways that groups took through the activities. For

instance, some groups took longer to grapple with basic concepts

of circuitry and code and needed more time with the instructor

DebugIts. When it became clear that groups were unable to finish

on their own, we sometimes asked them to work on an even

simpler task (e.g., get one LED to turn on) before moving back to

their original challenge. Other groups, however, were able to

finish challenges relatively independently. They tinkered and

experimented with multiple solutions along the way, something

evidenced by the high number of moves and alternate solutions

they reported. In this way, the DebugIts provided a continuously

personalizable ill-structured problem space for students to

engage; that is, based on their own knowledge and assumptions,

they could keep on ‘failing’ at debugging—tinkering and testing

out their ideas—until they arrived at the desired solution.

6.2 Engaging Interfaces between On and Off
Screen

Another main affordance of the reconstruction kit is how it

enables students to work at the interface between the on and off-

screen elements of e-textiles: the digital world of code and the

physical world of the circuits. Debugging within hybrid

computational spaces such as e-textiles and robotics is often

difficult and complex since it involves not only knowing different

domains (hardware design, computer programming) but also

understanding the interrelationship or interface between these

areas [12, 23]. This activity can become particularly

overwhelming in practice; for instance, a non-functioning e-

textiles or robotics project is more likely due to overlapping,

multi-domain issues rather than one isolated problem or topic.

Our kit addresses this issue by creating opportunities to

explicitly engage with this interface between digital and physical

elements. Specifically, this was accomplished through the careful

design of the DebugIts, which all purposefully addressed the

interrelationship between code and circuitry in e-textiles. This

was accomplished by setting up a system of only providing a

buggy circuit or buggy code, along with a functioning

complement (working code or working circuit) as a jumping off

point for students. Thus, rather than encountering a complex,

multi-domain problem all at once, groups were scaffolded into

the practice, knowing that they had to refer to either the working

circuit or code in order to understand what was broken in the

other part. This structure therefore reinforced their

understanding of the interrelationship between these elements,

something that was highlighted by the numerous comments that

students provided about this connection. In creating these pre-

compartmentalized issues then, we scaffolded students into the

practice of isolating parts of the system in order to understand

the whole, something that we earlier highlighted as key

component of computational thinking [24].

6.3 Designing Reconstruction Kits for Making

Many lessons about the design of reconstruction kits in general

can be gleaned by looking at experiences of students who

engaged with our prototype. One prominent issue that came up

was the finicky nature of the pieces themselves. While we

created connections that were easy to take apart (hooks and

strips), this sometimes thwarted students in their efforts to

creating working circuits; because they were so loose, they

would accidentally just fall apart. This points to the need to

strike a balance between easy deconstruction and secure

connections in the design of these kits. Another issue we

encountered was how the physical configuration of the pieces

themselves sometimes constrained students’ designs and

understanding. As described earlier, the felt strips we used

actually insulated the metallic thread such that crossed wires

were not an issue. As a result, students did not come to

understand the importance of how this can lead to short

circuits—a common problem within regular e-textiles

construction. Furthermore, the strips themselves tended to lead

more easily to the creation of parallel circuits than independent

circuits, something that might have caused students to

understand the former better the latter. From this perspective,

designers of any reconstruction kit should consider how the

particular configuration of pieces might shape student

understanding in unexpected ways.

 Beyond these material concerns however, one of the most

prominent lessons that can be learned from the development and

the implementation of our prototype is how the kit can create

opportunities for creative expression within the context of

FABLEARN’17, Oct 2017, Palo Alto, CA USA Lui, Anderson, Kafai and Jayathirtha

8

debugging. Research has already pointed to the affordances of e-

textiles production in creating spaces for aesthetic and narrative

expression, often supporting personal identity, social connection

and cultural relevance [3, 21, 22]. In this study, students lacked

this opportunity since they were not asked to produce artifacts of

their own. This is certainly a limitation of this study, and

something we aim to address in future research. However, we

argue that there was still room for creativity within context of

the activities that we provided, namely within the process of

problem solving. This can be seen within the alternate solutions

students provided for the instructor DebugIts, as well as their

own DebugIt designs, where they often presented unique and

unusual solutions.

 This is not to say that our workshop allowed for complete

creative freedom though. For the purposes of making things

accessible to students, we carefully outlined the steps that

students needed to take in designing DebugIt challenges. In some

respects, these constraints seemingly limited their creativity: one

student, for instance, specifically asked whether he could add

bugs to both the circuit and the code, something we did not allow

since it did not conform to our structure (we only asked students

to add bugs to either the circuit or the code). Future work looking

at students’ design of DebugIts might consider expanding upon

this aspect of creative expression, perhaps drawing from research

on youth designing games. Just as games ask others to solve a

puzzle, DebugIts also have an audience that is supposed to

provide a solution. The early designs of the Scratch DebugIt

studio have already illustrated the potential of engaging learners

not only in making projects but also in fixing them. Our findings

further add to this area by considering students’ design of

debugging challenges within making as something that can

become part of their learning, something that the development of

reconstruction kits may afford.

ACKNOWLEDGEMENTS

This work was supported by a grant (#1742140) from the

National Science Foundation to Yasmin Kafai and Mike

Eisenberg. Any opinions, findings, and conclusions or

recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the National

Science Foundation, University of Pennsylvania, or the

University of Colorado, Boulder.

REFERENCES
[1] Paulo Blikstein and Dennis Krannich. 2013. The Makers' Movement and

FabLabs in Education: Experiences, Technologies, and Research. In
Proceedings of the 12th International Conference on Interaction Design and
Children (IDC ’13). ACM, New York, NY, 613-616.

[2] Peter Brusilovsky. 1993. Program visualization as a debugging tool for
novices. In Proceedings of INTERACT’93 and CHI’93 conference. ACM, New
York, NY, 29-30.

[3] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The
LilyPad Arduino: Using Computational Textiles to Investigate Engagement,
Aesthetics, and Diversity in Computer Science Education. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08).
ACM, New York, NY, 423-432.

[4] Sharon McCoy Carver and Sally Clarke Risinger. 1987. Improving children's
debugging skills. In Empirical studies of programmers: Second Workshop, Gary

Olson and Sylvia Sheppard, and Elliot Soloway (Eds.). Ablex Publishing Corp.,
Norwood, NJ, 147-171

[5] Ryan Chmiel and Michael C. Loui. 2004. Debugging: from novice to expert.
ACM SIGCSE Bulletin 36, 1 (March 2004), 17-21.

[6] Debug It!: 2010. http://scratched.gse.harvard.edu/resources/debug-itAccessed:
2017- 07- 27.

[7] Deborah A. Fields, Debora Lui, and Yasmin B. Kafai. 2017. Teaching
Computational Thinking with Electronic Textiles: High school Teachers’
Contextualizing Strategies in Exploring Computer Science. In Conference
Proceedings of 2017 International Conference on Computational Thinking
Education (CTE ’17). The Education University of Hong Kong, Hong Kong,
China, 67-72.

[8] Deborah Fields, Kristin Searle, and Yasmin B. Kafai. 2016. Deconstruction Kits
for Learning: Students' Collaborative Debugging of Electronic textile designs.
In Proceedings of the 6th Annual Conference on Creativity and Fabrication in
Education (FabLearn ’16). ACM, New York, NY, 83-85.

[9] Jean M. Griffin, 2016. Learning by taking apart: Deconstructing code by
reading, tracing, and debugging. In Proceedings of the 17th Annual Conference
on Information Technology Education (SIGITE ’16). ACM, New York, NY, 148-
154.

[10] Erica R. Halverson and Kimberly Sheridan. 2014. The maker movement in
education. Harvard Educational Review 84, 4 (2014), 495-504.

[11] Yasmin B. Kafai, and Quinn Burke. 2014. Connected code: Why children need to
learn programming. MIT Press, Cambride, MA.

[12] Yasmin B. Kafai, Deborah A. Fields, and Kristin Searle. 2012. Making the
connections visible: Crafting, circuitry, and coding in high school e-textile. In
Textile Messages: Dispatches from the World of E-Textiles and Education, Leah
Buechley, Kylie Peppler, Michael Eisenberg, and Yasmin Kafai (Eds.). New
Literacies and Digital Epistemologies. Volume 62. Peter Lang Publishing
Group, New York, 85-94.

[13] Manu Kapur. 2008. Productive Failure. Cognition and Instruction 26, 3 (2008),
379-424.

[14] Breanne K. Litts, Yasmin B. Kafai, Kristin A. Searle, and Emily Dieckmeyer.
2016. Perceptions of Productive Failure in Design Projects: High School
Students’ Challenges in Making Electronic Textiles. In Proceedings of
International Conference of the Learning Sciences, Volume 2 (ICLS ’16).
International Society of the Learning Sciences, Singapore, 1041-1047.

[15] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth
Simon, Lynda Thomas, and Carol Zander. Debugging: a review of the
literature from an educational perspective. Computer Science Education 18, 2
(2008), 67-92.

[16] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas.
Basic Books, Inc., New York.

[17] Roy D. Pea. 1986. Language-independent conceptual “bugs” in novice
programming. Journal of Educational Computing Research 2, 1 (1986), 25-36.

[18] Kylie Peppler and Diane Glosson. 2013. Stitching circuits: Learning about
circuitry through e-textile materials. Journal of Science Education and
Technology 22, 5 (2013), 751-763.

[19] Mike Petrich, Karen Wilkinson, and Bronwyn Bevan. 2013. It looks like fun,
but are they learning. In Design, make, play: Growing the next generation of
STEM innovators, Margaret Honey and David E. Kanter (Eds.). Routledge, New
York, 50-70.

[20] Mitch Resnick, and Brian Silverman. 2005. Some Reflections on Designing
Construction Kits for Kids. In Proceedings of the 4

th
 International Conference on

Interaction Design and Children (IDC ’05). ACM, New York, NY, 117-122.
[21] Kristin A. Searle and Yasmin B. Kafai. 2015. Culturally responsive making

with American Indian girls: Bridging the identity gap in crafting and
computing with electronic textiles. In Proceedings of the Third Conference on
GenderIT. ACM, New York, NY, 9-16.

[22] Kristin A. Searle, Deborah A. Fields, Debora A. Lui, and Yasmin B. Kafai.
Diversifying high school students' views about computing with electronic
textiles. In Proceedings of the tenth annual conference on International
computing education research (ICER ’14). ACM, New York, NY, 75-82. ACM.

[23] Florence R. Sullivan. 2008. Robotics and science literacy: Thinking skills,
science process skills and systems understanding. Journal of Research in
Science Teaching 45, 3 (2008), 373-394.

[24] Jeannette M. Wing. 2006. Computational thinking. Communications of the
ACM 49, 3 (March 2006), 33-35.

