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Many studies of plant nitrogen relations assess only the total
amount of the element available from the soil and the total
amount of the element within the plant. Nitrogen, however, is a
constituent of diverse compounds that participate in some of
the most energy-intensive reactions in the biosphere. The
following characterizes some of these reactions, especially
those that involve ammonium and nitrate, and highlights the
importance of distinguishing both among the nitrogen sources
available to plants and among the nitrogen forms within plants
when considering plant responses to rising atmospheric CO,
concentrations.
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Introduction

Nitrogen (N) is the element that organisms require in
amounts greater than all others except for carbon, oxy-
gen, and hydrogen. Indeed, N availability from the
environment often limits the productivity of natural
and managed ecosystems [1,2°]. N is a constituent of
many stable compounds, including inorganic ones such
as dinitrogen gas (N;), ammonium (NH4") salts, and
nitrate (NO;3 ) salts and organic ones such as amino acids
and nucleotides, the building blocks of proteins and
nucleic acids, respectively. These compounds differ
profoundly in their chemical properties. For example,
NH," is a cation in which the oxidation state of nitrogen
is =3, whereas NOj3 ™ is an anion in which the oxidation
state of nitrogen is +5.

Most studies of plant N relations, however, do not
compare the performance of plants receiving different
N sources. One indication of this is that less than
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one-quarter of the articles on the topic of plant N cited
in Thomson Reuters’ Web of Science mention a N form
such as ‘ammonium,’ ‘nitrate,” ‘amino acid,’” or ‘purine’
in their title, abstract, or keywords. Here I argue that
treating N as a single entity — so-called total soil N or
total plant N — is inadequate because the specific N
compounds thatare available from the environment and
that subsequently become engaged in plant metabolism
strongly determine plant responses to the atmospheric
CO; concentrations anticipated during the next few
decades.

Nitrogen as an element

Nitrogen is one of the most common elements on Earth.
About 78% of the atmosphere is composed of N, dini-
trogen gas. For the most part, this large reservoir of N is
not directly useable by living organisms because N, has
an exceptionally stable triple bond (N=N) that requires
enormous amounts of energy to break. In particular, the
process of biological N fixation involves the reaction:

N, +8H' +8¢~ — 2NH;+H, 147 kcalmol™!

The ammonia (NH3) produced through this reaction
dissolves into water at physiological pH to form ammoni-
um (NH,").

NH; +H,0 — NH; " +0OH~ pK,= 9.25

An alternative process is atmospheric N fixation, in which
lightning converts water vapor and oxygen into highly
reactive hydroxyl free radicals, free hydrogen atoms, and
free oxygen atoms that attack N, to form nitric acid
(HNO3). This nitric acid subsequently falls to Earth with
rain and disassociates into nitrate (NO3 ). Once fixed into
NH4" or NO3™, N enters a biogeochemical cycle and
passes through several organic or inorganic forms before it
eventually returns to N, (Figure 1).

The chemical reactions, which interconvert these various
N forms within plants and other organisms, are among the
most energy intensive in life. For example [3],

NO;~ + NAD(P)H + H" — NO,” + NAD(P)"

+ H,O 34kcalmol™!
where NAD(P)H indicates either NADH or NADPH.
NO,™ + 6Fdeq +8H" — NH4" + 6Fdoy

+ 2H,0 103.5kcal mol™!

where Fd is ferredoxin and the subscripts 7e4 and ox stand
for reduced and oxidized, respectively.
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Figure 1
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The terrestrial N-cycle.

NH; " + glutamate + ATP — glutamine + ADP
+ P; 43kcalmol™

glutamine + 2-oxoglutarate
+ (NADH + H7" orFdq) — 2glutamine
+ (NAD" orFdy,) 13.4kcal mol ™!

Once assimilated into glutamine and glutamate, N is
incorporated into other amino acids via transamination
reactions. N from amino acids is incorporated into other
organic N compounds such as purines and pyrimidines.

N sources

Most organisms have the capacity to use organic N, NH,*,
and NO; ™ as N sources. Microorganisms, however, prefer
organic N forms first and then prefer the higher energy
inorganic N compound NH," over NO; ™. Phytoplankton
[4], fungi [5], cyanobacteria [6], and bacteria [7] usually
absorb and assimilate NO; ™~ only in the absence of organic
N or NH,".

Higher plants use organic N, NH;", and NO;™ as N
sources in proportion to their relative availability in the
soil solution [1,8], but plants often cannot successfully
compete with soil microorganisms for organic N
[9,10,11°]. Competition for soil NH4" also can be fierce
because NH," adsorbs onto the cation exchange com-
plex of many soils and because soil microorganisms use

NH4" not only as an N source, but also as an energy
source via nitrification (microbial conversion of NH,*
into NO;3 ). Therefore, NO3 ™ is a major N source for
most higher plants [1,2°].

NO;™ is an important N source even for plants growing in
locations where soil NO3~ concentrations tend to be low.
For instance, plants that have the capability of conduct-
ing symbiotic N-fixation cease N-fixation when NO; ™ is
present in the rhizosphere [12]. Forest soils in which
NH," is the major N source have high rates of gross
nitrification that indicate a small but ecologically im-
portant NO3;~ pool [13]. Many flooding-tolerant plants
growing in wetland soils, which are subject to NO3;™
leaching and denitrification (microbial conversion of
NO;™ to Nj), develop aerenchyma that supply the
rhizosphere with oxygen and thus promote nitrification

on root surfaces; the roots immediately absorb this
NO;™ [14-17].

This dependence on NO;~ as an N source persists
despite the disproportionately large amount of energy
required for assimilating NO;3;~ into organic N com-
pounds. Organic N compounds constitute less than 2%
of plant dry mass, but plants expend about 25% of their
total energy in shoots [18] and roots [19] for NO;~
assimilation, both day [20] and night [21]. To mitigate
this energy expenditure, plants employ a mechanism that
other organisms lack. This mechanism is photorespiration
[20,22-25,26°°].
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Table 1

Changes (%) in harvested protein under elevated CO, (546-—
584 ppm) in FACE experiments (mean = sg) [38°]

%

C3 grasses
Wheat -72+14
Rice -79+1.0
Barley -15.0 £ 4.2
C3 legumes
Peas -2.1+20
Soybeans 0.1 +£0.9
Cj tubers
Potato -9.0+54
C,4 grasses
Maize -4.6 +8.7
Sorghum -56+75

Photorespiration

Photorespiration has been generally viewed as a wasteful
process, a vestige of the high CO, and low O, atmo-
spheres that existed when plants first evolved. Photores-
piration, however, stimulates the export of malate from
chloroplasts [27-29]; this malate in the cytoplasm gen-
erates NADH [28,30] that powers the reduction of NO3 ™
to NO, 7, the first step of NO;~ assimilation [31-33].
Consequently, photorespiration supplies a significant part
of the energy for NO; ™ assimilation in Cj3 plants [26°°].

Although Cy4 plants have a CO, pumping mechanism that
minimizes photorespiration, the first carboxylation reac-
tion in the C4 pathway generates ample amounts of
malate and thereby NADH in the cytoplasm of mesophyll
cells. This explains why NO3 ™ assimilation is relatively
independent of CO, concentration in C4 plants [34,35]
and limited to the mesophyll [36,37].

Because NOj; ™ assimilation in Cj; plants depends on
photorespiration, conditions that inhibit photorespira-
tion — namely, high CO, or low O, atmospheres — im-
pede NO; assimilation [20,22-25,39]. Indeed, rising
atmospheric CO, concentration poses a threat to food
quality, whereby protein concentration in major crops will
decline ('Table 1) depending on their relative reliance on
NH,* and NO; ™ as N sources [34,35,40,41].

N source also determines plant growth under elevated
CO;. One to two months after exposure to differential
CO,; treatments, loblolly pine saplings that received NO; ™
nutrition grew fastest under a subambient CO, atmosphere
approximately equal to that found 50 years ago (Figure 2).
Growth of saplings that received NH4" nutrition showed no
differential response or a slight stimulation of growth under
an elevated CO, atmosphere approximately equal to that
expected in 50 years (Figure 2). The two inorganic nitrogen
forms influenced plant growth and nutrient status so distinct-
ly that they should be treated as separate nutrients [41].

Figure 2
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Relative growth rate in grams per gram per day of loblolly pine Pinus taeda in controlled environment chambers under subambient

(~310 umol mol~"), ambient (~400 p.mol mol~"), or elevated (720 umol mol~") atmospheric CO, concentrations and receiving NO3™~ (left panel) or
NH,* (right panel) nutrition. These CO, concentrations approximate, respectively, those of fifty years ago, today, and fifty years from today. Time
is in days after imposing the different CO, treatments. Shown are the predicted values and standard errors from mixed linear models with

repeated measures on 5-10 individual plants [35].
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Figure 3
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Differences in biomass between elevated (=567 ppm) and ambient
(~365 ppm) atmospheric CO, after years of treatment. Shown are the
data from seven different studies using the designated types of plants.
Data from [46,47-49,50°°,51].

Variation in the reliance of plants on NH4" and NO; ™ as
N sources also explains ecosystem responses to elevated
CO; [35,42]. For instance, Scirpus olneyi, the dominant Cy
plant in the Chesapeake Bay marsh, an NH,*-dominated
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ecosystem, showed a steady enhancement in photosynthesis
and growth under CO; enrichment even after a decade of
treatment (Figure 3). In an annual California grassland for
which NO;3;~ was the major N source, elevated CO, de-
creased net primary productivity (Figure 3) presumably
because elevated CO, inhibited photorespiration, which
in turn slowed NO;™ assimilation until plants experienced
protein deficiency. Clearly, predicting plant responses to the
atmospheric CO; conditions anticipated in the near future
will require information about the degree to which plants use
each N source.

NH,;" versus NO3~

Efforts to assess the balance between plant NH," and
NO;~ use in situ encounter several difficulties. The
rhizosphere from which plants extract these N forms is
highly heterogeneous, both spatially and temporally [1].
For example, NO; ™ concentrations in a soil may range a
1000-fold over a distance of centimeters or over the course
of hours [43]. Plant roots themselves modify their sur-
roundings: they deplete nutrients, alter rhizosphere pH
through ion exchange [44,45], and support soil microbes
through exudates or cell death.

Once a plant root absorbs NH4" or NO3™ from the rhizo-
sphere, these forms can undergo several fates. Some NH,*
or NO; ™ isstored in the root, some is assimilated into amino
acids in the root, and some is translocated to the shoot
where again some is stored and some is assimilated [52].
Measuring N pool sizes, employing *N-stable isotope
tracers to follow fluxes from the soil and through a plant,

Figure 4
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(a) Shoot AQ (net CO, consumed/net O, evolved) as a function of internal CO, concentrations (C;) for 9 taxonomically diverse C3 species and
3 taxonomically diverse C4 species when they received NH,* or NO3;™ as a sole N source (mean = sk; solid + shaded area). (b) Shoot O,
consumption in the light (gross O, — net O,) as a function of C; for maize and wheat receiving NH;* or NO3; ™~ as a sole N source.Data from

[20,24,35].
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and then estimating relative NH4" or NO;™ assimilation
rates is not straightforward [53].

A different approach

Assimilatory Quotient (AQ), the ratio of net CO, con-
sumption to net O, evolution during photosynthesis, has
provided real-time, non-destructive estimates of NOjz™
assimilation for nearly a century [18,23,25,34,35,54-60].
C; plants under NH," nutrition down-regulate photosyn-
thetic electron transport via the xanthophyll cycle to
avoid photoinhibition at low (; (internal CO; concentra-
tion). Thus, in C; plants reliant on NH4", AQ increases as
C; decreases (Figure 4a, dark blue line). NO3 ™ assimila-
tion in Cj plants accelerates the light-dependent splitting
of H,O and generates additional electrons, which are
transferred first to NO3~ and then to NO, . This has
little effect on net CO, consumption, but results in faster
net O, evolution and thereby in lower AQ, especially
when low ¢} limits carbon fixation (Figure 4a, red line).

In C4 plants, responses of AQ to C; under both N sources
have similar shapes (Figure 4a, light blue and orange
lines). Shoot O, consumption in the light (difference
between gross O, fluxes estimated from chlorophyll fluo-
rescence and net O, fluxes monitored with an O, analyz-
er), however, increases dramatically at low ; in C4 plants
that rely on NO3 ™ (Figure 4b, orange line). This derives
from the additional mitochondrial respiration required for
NOj; ™ assimilation when low C; limits Cy fixation [20].

"Therefore, the responses of shoot CO, and O, fluxes to C; can
provide /n situ estimates of the balance between plant NH4"
and NO;  use. These estimates, together with measure-
ments of N partitioning among various compounds, offer
insights about plant productivity and food security under the
broad range of conditions that plants encounter today and
will encounter by the end of the century. Measurements of
total soil N or total plant N alone fail to account for the
distinct natures of N compounds and thus cannot begin to
address these crucial issues. More detailed comparisons of
plant responses to different N sources will be time-consum-
ing and expensive, but necessary.
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