

ScienceDirect

The increasing importance of distinguishing among plant nitrogen sources

Arnold J Bloom

Many studies of plant nitrogen relations assess only the total amount of the element available from the soil and the total amount of the element within the plant. Nitrogen, however, is a constituent of diverse compounds that participate in some of the most energy-intensive reactions in the biosphere. The following characterizes some of these reactions, especially those that involve ammonium and nitrate, and highlights the importance of distinguishing both among the nitrogen sources available to plants and among the nitrogen forms within plants when considering plant responses to rising atmospheric CO_2 concentrations.

Address

Mail Stop 3, Department of Plant Sciences, University of California at Davis, Davis, CA 95616-8780, United States

Corresponding author: Bloom, Arnold J (ajbloom@ucdavis.edu)

Current Opinion in Plant Biology 2015, 25:10-16

This review comes from a themed issue on **Physiology and** metabolism

Edited by Steven Smith and Sam Zeeman

http://dx.doi.org/10.1016/j.pbi.2015.03.002

1369-5266/© 2015 Elsevier Ltd. All rights reserved.

Introduction

Nitrogen (N) is the element that organisms require in amounts greater than all others except for carbon, oxygen, and hydrogen. Indeed, N availability from the environment often limits the productivity of natural and managed ecosystems [1,2°]. N is a constituent of many stable compounds, including inorganic ones such as dinitrogen gas (N₂), ammonium (NH₄⁺) salts, and nitrate (NO₃⁻) salts and organic ones such as amino acids and nucleotides, the building blocks of proteins and nucleic acids, respectively. These compounds differ profoundly in their chemical properties. For example, NH₄⁺ is a cation in which the oxidation state of nitrogen is -3, whereas NO₃⁻ is an anion in which the oxidation state of nitrogen is +5.

Most studies of plant N relations, however, do not compare the performance of plants receiving different N sources. One indication of this is that less than

one-quarter of the articles on the topic of plant N cited in Thomson Reuters' Web of Science mention a N form such as 'ammonium,' 'nitrate,' 'amino acid,' or 'purine' in their title, abstract, or keywords. Here I argue that treating N as a single entity — so-called total soil N or total plant N — is inadequate because the specific N compounds that are available from the environment and that subsequently become engaged in plant metabolism strongly determine plant responses to the atmospheric CO₂ concentrations anticipated during the next few decades.

Nitrogen as an element

Nitrogen is one of the most common elements on Earth. About 78% of the atmosphere is composed of N_2 , dinitrogen gas. For the most part, this large reservoir of N is not directly useable by living organisms because N_2 has an exceptionally stable triple bond ($N\equiv N$) that requires enormous amounts of energy to break. In particular, the process of biological N fixation involves the reaction:

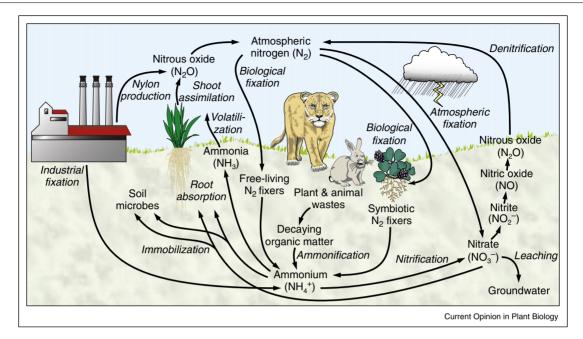
$$N_2 + 8H^+ + 8e^- \rightarrow 2NH_3 + H_2 \quad 147 \text{ kcal mol}^{-1}$$

The ammonia (NH_3) produced through this reaction dissolves into water at physiological pH to form ammonium (NH_4^+) .

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^ pK_a = 9.25$$

An alternative process is atmospheric N fixation, in which lightning converts water vapor and oxygen into highly reactive hydroxyl free radicals, free hydrogen atoms, and free oxygen atoms that attack N_2 to form nitric acid (HNO₃). This nitric acid subsequently falls to Earth with rain and disassociates into nitrate (NO₃⁻). Once fixed into NH₄⁺ or NO₃⁻, N enters a biogeochemical cycle and passes through several organic or inorganic forms before it eventually returns to N_2 (Figure 1).

The chemical reactions, which interconvert these various N forms within plants and other organisms, are among the most energy intensive in life. For example [3],


$$NO_3^- + NAD(P)H + H^+ \rightarrow NO_2^- + NAD(P)^+ + H_2O 34 \text{ kcal mol}^{-1}$$

where NAD(P)H indicates either NADH or NADPH.

$$NO_2^- + 6Fd_{red} + 8H^+ \rightarrow NH_4^+ + 6Fd_{ox}$$

+ $2H_2O - 103.5 \text{ kcal mol}^{-1}$

where Fd is ferredoxin and the subscripts *red* and *ox* stand for *reduced* and *oxidized*, respectively.

Figure 1

The terrestrial N-cycle.

$$NH_4^+ + glutamate + ATP \rightarrow glutamine + ADP$$

+ P_i 4.3 kcal mol⁻¹

glutamine + 2-oxoglutarate
+
$$(NADH + H^+ \text{ or } Fd_{red}) \rightarrow 2glutamine$$

+ $(NAD^+ \text{ or } Fd_{ox})$ 13.4 kcal mol⁻¹

Once assimilated into glutamine and glutamate, N is incorporated into other amino acids via transamination reactions. N from amino acids is incorporated into other organic N compounds such as purines and pyrimidines.

N sources

Most organisms have the capacity to use organic N, NH₄⁺, and NO₃⁻ as N sources. Microorganisms, however, prefer organic N forms first and then prefer the higher energy inorganic N compound NH₄⁺ over NO₃⁻. Phytoplankton [4], fungi [5], cyanobacteria [6], and bacteria [7] usually absorb and assimilate NO₃ only in the absence of organic N or NH_4^+ .

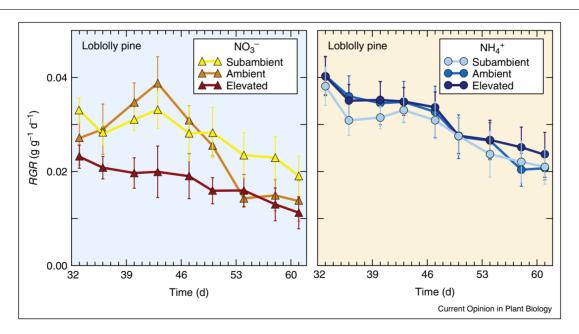
Higher plants use organic N, NH₄⁺, and NO₃⁻ as N sources in proportion to their relative availability in the soil solution [1,8], but plants often cannot successfully compete with soil microorganisms for organic N [9,10,11°]. Competition for soil NH₄ also can be fierce because NH₄⁺ adsorbs onto the cation exchange complex of many soils and because soil microorganisms use NH₄⁺ not only as an N source, but also as an energy source via nitrification (microbial conversion of NH₄ into NO₃⁻). Therefore, NO₃⁻ is a major N source for most higher plants $[1,2^{\circ}]$.

NO₃⁻ is an important N source even for plants growing in locations where soil NO₃⁻ concentrations tend to be low. For instance, plants that have the capability of conducting symbiotic N-fixation cease N-fixation when NO₃⁻ is present in the rhizosphere [12]. Forest soils in which NH₄⁺ is the major N source have high rates of gross nitrification that indicate a small but ecologically important NO₃⁻ pool [13]. Many flooding-tolerant plants growing in wetland soils, which are subject to NO₃ leaching and denitrification (microbial conversion of NO₃⁻ to N₂), develop aerenchyma that supply the rhizosphere with oxygen and thus promote nitrification on root surfaces; the roots immediately absorb this NO_3^- [14–17].

This dependence on NO₃⁻ as an N source persists despite the disproportionately large amount of energy required for assimilating NO₃⁻ into organic N compounds. Organic N compounds constitute less than 2% of plant dry mass, but plants expend about 25% of their total energy in shoots [18] and roots [19] for NO₃ assimilation, both day [20] and night [21]. To mitigate this energy expenditure, plants employ a mechanism that other organisms lack. This mechanism is photorespiration $[20,22-25,26^{\bullet\bullet}].$

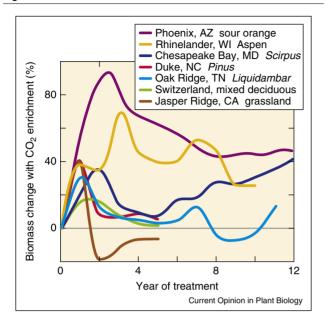
Table 1 Changes (%) in harvested protein under elevated CO $_2$ (546–584 ppm) in FACE experiments (mean \pm se) [38*]	
C ₃ grasses Wheat Rice Barley	-7.2 ± 1.4 -7.9 ± 1.0 -15.0 ± 4.2
C ₃ legumes Peas Soybeans	$\begin{array}{c} -2.1 \pm 2.0 \\ 0.1 \pm 0.9 \end{array}$
C ₃ tubers Potato	-9.0 ± 5.4
C ₄ grasses Maize Sorghum	-4.6 ± 8.7 -5.6 ± 7.5

Photorespiration


Photorespiration has been generally viewed as a wasteful process, a vestige of the high CO₂ and low O₂ atmospheres that existed when plants first evolved. Photorespiration, however, stimulates the export of malate from chloroplasts [27–29]; this malate in the cytoplasm generates NADH [28,30] that powers the reduction of NO₃⁻ to NO₂⁻, the first step of NO₃⁻ assimilation [31–33]. Consequently, photorespiration supplies a significant part of the energy for NO₃⁻ assimilation in C₃ plants [26**].

Although C_4 plants have a CO_2 pumping mechanism that minimizes photorespiration, the first carboxylation reaction in the C_4 pathway generates ample amounts of malate and thereby NADH in the cytoplasm of mesophyll cells. This explains why NO_3^- assimilation is relatively independent of CO_2 concentration in C_4 plants [34,35] and limited to the mesophyll [36,37].

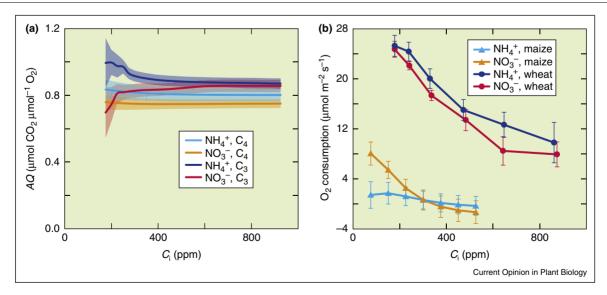
Because NO_3^- assimilation in C_3 plants depends on photorespiration, conditions that inhibit photorespiration — namely, high CO_2 or low O_2 atmospheres — impede NO_3^- assimilation [20,22–25,39]. Indeed, rising atmospheric CO_2 concentration poses a threat to food quality, whereby protein concentration in major crops will decline (Table 1) depending on their relative reliance on NH_4^+ and NO_3^- as N sources [34,35,40,41].


N source also determines plant growth under elevated CO₂. One to two months after exposure to differential CO₂ treatments, loblolly pine saplings that received NO₃⁻ nutrition grew fastest under a subambient CO₂ atmosphere approximately equal to that found 50 years ago (Figure 2). Growth of saplings that received NH₄⁺ nutrition showed no differential response or a slight stimulation of growth under an elevated CO₂ atmosphere approximately equal to that expected in 50 years (Figure 2). The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated as separate nutrients [41].

Relative growth rate in grams per gram per day of loblolly pine Pinus taeda in controlled environment chambers under subambient (\approx 310 μ mol mol $^{-1}$), ambient (\approx 400 μ mol mol $^{-1}$), or elevated (720 μ mol mol $^{-1}$) atmospheric CO_2 concentrations and receiving NO_3^- (left panel) or NH_4^+ (right panel) nutrition. These CO_2 concentrations approximate, respectively, those of fifty years ago, today, and fifty years from today. Time is in days after imposing the different CO_2 treatments. Shown are the predicted values and standard errors from mixed linear models with repeated measures on 5–10 individual plants [35].

Figure 3

Differences in biomass between elevated (≈567 ppm) and ambient (≈365 ppm) atmospheric CO₂ after years of treatment. Shown are the data from seven different studies using the designated types of plants. Data from [46,47-49,50°,51].


Variation in the reliance of plants on NH₄⁺ and NO₃⁻ as N sources also explains ecosystem responses to elevated CO_2 [35,42]. For instance, *Scirpus olneyi*, the dominant C_3 plant in the Chesapeake Bay marsh, an NH₄⁺-dominated ecosystem, showed a steady enhancement in photosynthesis and growth under CO2 enrichment even after a decade of treatment (Figure 3). In an annual California grassland for which NO₃⁻ was the major N source, elevated CO₂ decreased net primary productivity (Figure 3) presumably because elevated CO₂ inhibited photorespiration, which in turn slowed NO₃⁻ assimilation until plants experienced protein deficiency. Clearly, predicting plant responses to the atmospheric CO₂ conditions anticipated in the near future will require information about the degree to which plants use each N source.

NH₄⁺ versus NO₃⁻

Efforts to assess the balance between plant NH₄⁺ and NO₃⁻ use in situ encounter several difficulties. The rhizosphere from which plants extract these N forms is highly heterogeneous, both spatially and temporally [1]. For example, NO₃⁻ concentrations in a soil may range a 1000-fold over a distance of centimeters or over the course of hours [43]. Plant roots themselves modify their surroundings: they deplete nutrients, alter rhizosphere pH through ion exchange [44,45], and support soil microbes through exudates or cell death.

Once a plant root absorbs NH₄⁺ or NO₃⁻ from the rhizosphere, these forms can undergo several fates. Some NH₄⁺ or NO₃ is stored in the root, some is assimilated into amino acids in the root, and some is translocated to the shoot where again some is stored and some is assimilated [52]. Measuring N pool sizes, employing ¹⁵N-stable isotope tracers to follow fluxes from the soil and through a plant,

Figure 4

(a) Shoot AQ (net CO2 consumed/net O2 evolved) as a function of internal CO2 concentrations (Ci) for 9 taxonomically diverse C3 species and 3 taxonomically diverse C_4 species when they received NH_4^+ or NO_3^- as a sole N source (mean \pm sE; solid \pm shaded area). (b) Shoot O_2 consumption in the light (gross O_2 – net O_2) as a function of C_i for maize and wheat receiving NH_4^+ or NO_3^- as a sole N source. Data from [20,24,35].

and then estimating relative NH₄⁺ or NO₃⁻ assimilation rates is not straightforward [53].

A different approach

Assimilatory Quotient (AQ), the ratio of net CO_2 consumption to net O_2 evolution during photosynthesis, has provided real-time, non-destructive estimates of NO_3^- assimilation for nearly a century [18,23,25,34,35,54–60]. C_3 plants under NH_4^+ nutrition down-regulate photosynthetic electron transport via the xanthophyll cycle to avoid photoinhibition at low C_i (internal CO_2 concentration). Thus, in C_3 plants reliant on NH_4^+ , AQ increases as C_i decreases (Figure 4a, dark blue line). NO_3^- assimilation in C_3 plants accelerates the light-dependent splitting of H_2O and generates additional electrons, which are transferred first to NO_3^- and then to NO_2^- . This has little effect on net CO_2 consumption, but results in faster net O_2 evolution and thereby in lower AQ, especially when low C_i limits carbon fixation (Figure 4a, red line).

In C_4 plants, responses of AQ to C_i under both N sources have similar shapes (Figure 4a, light blue and orange lines). Shoot O_2 consumption in the light (difference between gross O_2 fluxes estimated from chlorophyll fluorescence and net O_2 fluxes monitored with an O_2 analyzer), however, increases dramatically at low C_i in C_4 plants that rely on NO_3^- (Figure 4b, orange line). This derives from the additional mitochondrial respiration required for NO_3^- assimilation when low C_i limits C_4 fixation [20].

Therefore, the responses of shoot CO₂ and O₂ fluxes to C_i can provide *in situ* estimates of the balance between plant $\mathrm{NH_4}^+$ and $\mathrm{NO_3}^-$ use. These estimates, together with measurements of N partitioning among various compounds, offer insights about plant productivity and food security under the broad range of conditions that plants encounter today and will encounter by the end of the century. Measurements of total soil N or total plant N alone fail to account for the distinct natures of N compounds and thus cannot begin to address these crucial issues. More detailed comparisons of plant responses to different N sources will be time-consuming and expensive, but necessary.

Conflicts of interest

The author has no conflicts of interest with regards to this research.

Acknowledgement

This work was funded in part by NSF IOS-13-58675.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest
- Epstein E, Bloom AJ: Mineral Nutrition of Plants: Principles and Perspectives. edn 2. Sunderland, MA: Sinauer Associates; 2005.

- 2. Marschner H, Marschner P: Marschner's Mineral Nutrition of
- Higher Plants. edn 3. London; Waltham, MA: Elsevier/Academic Press; 2012.

An encyclopedic treatment of the subject of plant mineral nutrition.

- Guerrero MG, Vega JM, Losada M: The assimilatory nitratereducing system and its regulation. Annu Rev Plant Physiol 1981. 32:169-204.
- Dortch Q: The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 1990, 61:183-201.
- Hodge A, Helgason T, Fitter AH: Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 2010, 3:267-273.
- Ohashi Y, Shi W, Takatani N, Aichi M, Maeda S.-I., Watanabe S, Yoshikawa H, Omata T: Regulation of nitrate assimilation in cyanobacteria. J Exp Bot 2011, 62:1411-1424.
- Luque-Almagro VM, Gates AJ, Moreno-Vivián C, Ferguson SJ, Richardson DJ, Roldán M: Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans 2011, 39:1838-1843
- Britto DT, Kronzucker HJ: Ecological significance and complexity of N-source preference in plants. Ann Bot 2013, 112:957-963.
- Näsholm T, Kielland K, Ganeteg U: Uptake of organic nitrogen by plants. New Phytol 2009, 182:31-48.
- Kuzyakov Y, Xu X: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 2013, 198:656-669.
- Jones DL, Clode PL, Kilburn MR, Stockdale EA, Murphy DV:
 Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (*Triticum aestivum*). New Phytol 2013, 200:796-807.

This study used high-resolution mass spectrometry to trace the fate of N over both space and time within the rhizosphere and demonstrated that wheat capture of organic N is low in comparison to inorganic N.

- Cabeza R, Koester B, Liese R, Lingner A, Baumgarten V, Dirks J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J: An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula. Plant Physiol 2014, 164:400-411.
- Stark JM, Hart SC: High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 1997, 385:61-64.
- Rubinigg M, Stulen I, Elzenga JTM, Colmer TD: Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct Plant Biol 2002, 29:1475-1481.
- Li YL, Fan XR, Shen QR: The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 2008, 31:73-85.
- Kronzucker HJ, Glass ADM, Siddiqi MY, Kirk GJD: Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 2000, 145:471-476.
- Koch GW, Bloom AJ, Chapin FS III: Ammonium and nitrate as nitrogen sources in two *Eriophorum* species. *Oecologia* 1991, 88:570-573.
- Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J: Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 1989, 91:352-356.
- Bloom AJ, Sukrapanna SS, Warner RL: Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 1992, 99:1294-1301.
- Cousins AB, Bloom AJ: Oxygen consumption during leaf nitrate assimilation in a C₃ and C₄ plant: the role of mitochondrial respiration. Plant Cell Environ 2004, 27:1537-1545.
- Rubio-Asensio JS, Rachmilevitch S, Bloom AJ: Plant responses to rising CO₂ depend on nitrogen source and nighttime CO₂ levels. Plant Physiol 2015 http://dx.doi.org/10.1104/pp. 15.00110.

- 22. Smart DR, Bloom AJ: Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci U S A 2001,
- 23. Bloom AJ, Smart DR, Nguyen DT, Searles PS: Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA 2002, 99:1730-1735.
- Searles PS, Bloom AJ: Nitrate photoassimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. Plant Cell Environ 2003, 26:1247-1255
- 25. Rachmilevitch S. Cousins AB. Bloom AJ: Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 2004. 101:11506-11510.
- Bloom AJ: Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth Res 2015, 123:117-128.

This review presents many lines of evidence that photorespiration and shoot nitrate assimilation are interdependent and that this interdependence explains many of the responses of C3 plants to changes in atmospheric CO₂ concentation.

- Backhausen JE, Emmerlich A, Holtgrefe S, Horton P, Nast G, Rogers JJM, Muller-Rober B, Scheibe R: **Transgenic potato** plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. Planta 1998, 207:105-114.
- 28. Taniguchi M, Miyake H: Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 2012, **15**:252-260.
- 29. Voss I, Sunil B, Scheibe R, Raghavendra AS: Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 2013, 15:713-722.
- 30. Igamberdiev AU, Bykova NV, Lea PJ, Gardestrom P: The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 2001, 111:427-438
- 31. Rathnam CKM: Malate and dihydroxyacetone phosphatedependent nitrate reduction in spinach leaf protoplasts. Plant Physiol 1978, 62:220-223.
- Robinson JM: Interactions of carbon and nitrogen metabolism in photosynthetic and non-photosynthetic tissues of higher plants: metabolic pathways and controls. In Models in Plant Physiology and Biochemistry, vol 1. Edited by Newman DW, Stuart KG. CRC Press; 1987:25-35.
- 33. Quesada A, Gomez-Garcia I, Fernandez E: Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. Trends Plant Sci 2000, 5:463-464
- 34. Bloom AJ, Burger M, Asensio JSR, Cousins AB: Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 2010, 328:899-903.
- 35. Bloom AJ, Rubio-Asensio JS, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA: CO₂ enrichment inhibits shoot nitrate assimilation in \mathbf{C}_3 but not \mathbf{C}_4 plants and slows growth under nitrate in \mathbf{C}_3 plants. Ecology 2012, 93:355-367
- 36. Rathnam CKM, Edwards GE: Distribution of nitrate-assimilating enzymes between mesophyll protoplasts and bundle sheathcells in leaves of 3 groups of C4 plants. Plant Physiol 1976,
- 37. Becker TW. Carravol E. Hirel B: Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta 2000, **211**:800-806.
- Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T et al.: Increasing CO2 threatens human nutrition. Nature 2014, **510**:139-142.

This article analyzed food crops grown under ambient and elevated CO₂ atmospheres in FACE (free-air CO₂ enrichment experiments) worldwide and found that several measures of nutritional value declined under elevated CO₂.

- 39. Bloom AJ, Burger M, Kimball BA, Pinter PJ: Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat Clim Change 2014, 4:477-480.
- 40. Bloom A.I: As carbon dioxide rises, food quality will decline without careful nitrogen management. Calif Agric 2009, 63:67-72
- 41. Carlisle E, Myers SS, Raboy V, Bloom AJ: The effects of inorganic nitrogen form and CO₂ concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci
- 42. Leuzinger S, Luo YQ, Beier C, Dieleman W, Vicca S, Korner C: Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 2011, 26: 236-241.
- 43. Jackson LE, Bloom AJ: Root distribution in relation to soil nitrogen availability in field-grown tomatoes. Plant Soil 1990, **128**:115-126.
- 44. Smart DR, Bloom AJ: Investigations of ion absorption during NH₄⁺ exposure I. Relationship between H⁺ efflux and NO₃⁻ absorption. J Exp Bot 1998, 49:95-100.
- 45. Taylor AR, Bloom AJ: Ammonium, nitrate, and proton fluxes along the maize root. Plant Cell Environ 1998, 21: 1255-1263.
- 46. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB: Responses of grassland production to single and multiple global environmental changes. PLoS Biol 2005, 3:1829-1837.
- 47. Rasse DP, Peresta G, Drake BG: Seventeen years of elevated CO₂ exposure in a Chesapeake Bay Wetland: sustained but contrasting responses of plant growth and CO2 uptake. Glob Change Biol 2005, 11:369-377.
- Korner C: Plant CO₂ responses: an issue of definition, time and resource supply. New Phytol 2006, 172:393-411.
- 49. Kimball BA, Idso SB, Johnson S, Rillig MC: Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Glob Change Biol 2007, 13:2171-2183.
- 50. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE: CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 2010, 107:19368-19373.

A 11 y free-air CO₂ enrichment (FACE) experiment in a deciduous forest stand in Tennessee demonstrated that N limitations to tree growth were exacerbated by exposure to elevated CO2 atmo-

- Talhelm AF, Pregitzer KS, Kubiske ME, Zak DR, Campany CE, Burton AJ, Dickson RE, Hendrey GR, Isebrands JG, Lewin KF et al.: Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob Change Biol 2014, 20:2492-2504.
- 52. Bloom AJ, Randall L, Taylor AR, Silk WK: Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J Exp Bot 2012, **63**:1997-2006.
- Carlisle E, Yarnes C, Toney MD, Bloom AJ: Nitrate reductase ¹⁵N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli. Front Plant Sci
- 54. Warburg O, Negelein E: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem Zeitschr 1920, 110:66-115.
- Warburg O: Assimilatory quotient and photochemical yield. Am J Bot 1948, 35:194-204.
- Cramer M, Myers J: Nitrate reduction and assimilation in Chlorella. J Gen Physiol 1948, 32:93-102.

- 57. Van Niel CB, Allen MB, Wright BE: On the photochemical reduction of nitrate by algae. *Biochim Biophys Acta* 1953, 12:67-74.
- Cen Y-P, Turpin DH, Layzell DB: Whole-plant gas exchange and reductive biosynthesis in white lupin. Plant Physiol 2001, 126:1555-1565.
- Cen YP, Layzell DB: In vivo gas exchange measurement of the site and dynamics of nitrate reduction in soybean. Plant Physiol 2003, 131:1147-1156.
- Eichelmann H, Oja V, Peterson RB, Laisk A: The rate of nitrite reduction in leaves as indicated by O₂ and CO₂ exchange during photosynthesis. J Exp Bot 2011, 62:2205-2215.