
REVIEW

Photorespiration and nitrate assimilation: a major intersection
between plant carbon and nitrogen

Arnold J. Bloom

Received: 19 August 2014 / Accepted: 27 October 2014 / Published online: 4 November 2014

� Springer Science+Business Media Dordrecht 2014

Abstract C3 carbon fixation has a bad reputation, pri-

marily because it is associated with photorespiration, a

biochemical pathway thought to waste a substantial amount

of the carbohydrate produced in a plant. This review pre-

sents evidence collected over nearly a century that (1)

Rubisco when associated with Mn2? generates additional

reductant during photorespiration, (2) this reductant par-

ticipates in the assimilation of nitrate into protein, and (3)

this nitrate assimilation facilitates the use of a nitrogen

source that other organisms tend to avoid. This phenome-

non explains the continued dominance of C3 plants during

the past 23 million years of low CO2 atmospheres as well

as the decline in plant protein concentrations as atmo-

spheric CO2 rises.
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Premise

Plants, by most accounts, convert less than 6 % of the

incoming solar energy into useable chemical energy (Hall

et al. 1999; Zhu et al. 2008). Efforts to improve this con-

version rate have focused on the light-independent reactions

of photosynthesis (e.g., Parry et al. 2013; Studer et al. 2014;

Whitney et al. 2011; Zhu et al. 2010). ‘‘The light reactions are

highly efficient, converting as much as 40–50 % of the

captured solar energy into energy carriers. The dark reactions

are not developed for energy efficiency and it is here the

energy is…lost’’ (Swedish Energy Agency 2003). In par-

ticular, Rubisco (ribulose-1,5-bisphosphate carboxylase/

oxygenase; EC 4.1.1.39), the enzyme which catalyzes the

first reaction of the C3 pathway and constitutes about half of

the protein in leaves (Parry et al. 2003), has been identified as

a target of opportunity.

Competing reactions

Rubisco exhibits opposing tendencies in that it catalyzes

two different chemical reactions: one reaction combines a

five-carbon sugar RuBP (ribulose-1,5-bisphosphate) with

CO2 (carboxylation), and the other reaction combines this

same sugar with O2 (oxygenation).

• The carboxylation reaction of RuBP produces a six-

carbon compound that quickly divides into twomolecules

of a three-carbon compound, PGA (3-phosphoglycerate),

hence the name C3 carbon fixation. Six of these PGA

molecules pass through an elaborate pathway that

expends the energy of 18ATPand 12NADPHmolecules,

forms onemolecule of fructose-6-phosphate, a six-carbon

sugar, and regenerates six molecules of RuBP.

• The oxygenation reaction splits the RuBP into one

molecule of a three-carbon PGA and one molecule of a

two-carbon PG (2-phosphoglycolate), hence the name

C2 pathway or, more commonly, photorespiration

(Foyer et al. 2009). In total, photorespiration consumes

3.5 ATP and 2 NADPH per RuBP oxygenated and

regenerated, but does not result in any net production of

sugar (Bauwe et al. 2010; Tolbert 1994). Thus photo-

respiration seems to be largely a superfluous process,

one thought to dissipate 76.3 kcal mol-1 as waste heat

(Frank et al. 2000).
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The balance between C3 carbon fixation and photores-

piration depends on the relative amounts of CO2 and O2

entering the active site of Rubisco and the specificity of the

enzyme for each gas. Atmospheric concentrations of CO2

and O2 are currently 0.04 and 20.94 %, respectively,

yielding a CO2:O2 ratio of 0.0019. Gaseous CO2, however,

is much more soluble in water than O2, and so the CO2:O2

ratio near the chloroplast, the part of a cell where these

reactions occur, is about 0.026 at 25 �C. Rubisco has about

a 50-fold (cyanobacteria) to 100-fold (higher plants)

greater specificity for CO2 than O2 (Galmes et al. 2005).

Together, because of the relative concentrations of and

specificity for CO2 over O2, Rubisco catalyzes about two to

three cycles of C3 carbon fixation for every cycle of pho-

torespiration under current atmospheres (Sharkey 1988).

Conditions that inhibit photorespiration—namely, high

CO2, or low O2 atmospheric concentrations—stimulate

carbon fixation in the short term by about 35 %.

Temperature influences the balance between C3 carbon

fixation and photorespiration in two ways. First, as tem-

perature rises, the solubility of CO2 in water decreases

more than the solubility of O2, resulting in a lower CO2:O2

ratio. Second, the enzymatic properties of Rubisco shift

with increasing temperature, stimulating the reaction with

O2 to a greater degree than the one with CO2. Warmer

temperatures, therefore, favor photorespiration over C3

carbon fixation, and photosynthetic conversion of absorbed

light into sugars becomes less efficient (Ehleringer et al.

1997). Based on the temperature response of Rubisco

carboxylation and oxygenation, C4 plants should be more

competitive in regions where the mean monthly air tem-

perature exceeds 22 �C (Collatz et al. 1998).

Overall, Rubisco seems a vestige of the high CO2 and

low O2 atmospheres under which plants first evolved

(Wingler et al. 2000). To compensate for the shortcomings

of Rubisco, some plants employ CO2 pumping mechanisms

such as C4 carbon fixation that elevate CO2 concentrations

at the active site of the enzyme. The C4 pathway is one of

the most convergent evolutionary adaptations in life with at

least 66 independent origins (Sage et al. 2012). Extensive

efforts are underway to emulate Mother Nature and transfer

the C4 pathway into rice and other C3 crops (von Caem-

merer et al. 2012).

Several observations, however, are inconsistent with the

presumption that Rubisco is poorly suited to modern times.

• Earth’s atmosphere has contained relatively low CO2

concentrations (lower than 0.04 %) for the past 23 mil-

lion years (Fig. 1). During this period, the plant kingdom

experienced major changes including the diversification

of modern graminoids, especially grasses and sedges,

and the appearance of many new C4 species, especially

when CO2 concentrations fell below 0.02 % (Sage et al.

2012). In a relatively short period of time (6 or 7 million

years) (Osborne and Beerling 2006), the kinetics of

Rubisco diverged between C3 and C4 plants (Studer et al.

2014). Rubisco in C4 plants operates under elevated CO2

conditions, and so the C4 enzyme has traded a lower

specificity for CO2 relative to O2 (Sc/o) for a higher

catalytic efficiency (kcat
c ) (Galmes et al. 2005; Sage

2002). Surprisingly, the kinetic properties of Rubisco do

not differ greatly among higher C3 plants (Kane et al.

1994; Tcherkez et al. 2006). Thus, the kinetic properties

of Rubisco were able to change when a species adopted

the C4 pathway, but such changes were not warranted in

C3 plants because Rubisco may already be ‘‘nearly

perfectly optimized’’ for C3 carbon fixation (Tcherkez

et al. 2006).

• Despite 23 million years of low atmospheric CO2 con-

centrations, 96 % of plant species depend solely on the C3

carbon fixation pathway (Sage et al. 1999). C3 species

account for over 94 % of the Earth’s biomass (Still et al.

2003). Species using other carbon fixation pathways are

dominant only in hot and dry environments.

• The response of C3 species to elevated CO2 atmo-

spheres is highly variable and often depends on plant N

status (Cavagnaro et al. 2011; Duval et al. 2012; Finzi

et al. 2007; Norby et al. 2010; Reich et al. 2006).

Initially, elevated CO2 stimulates biomass accumula-

tion by about 35 % (Fig. 2). This stimulation, however,

tends to abate upon longer exposures in conjunction

with a decline in plant protein concentrations (Cotrufo

et al. 1998; Long et al. 2004).
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Fig. 1 A reconstruction of atmospheric CO2 concentrations based on

boron isotope ratios of ancient planktonic foraminifer shells. (Data

from Pearson and Palmer 2000)
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Explanations for the decline in plant protein concen-

trations at elevated CO2 include: (a) plants under elevated

CO2 grow larger, diluting the protein within their tissues

(Ellsworth et al. 2004; Taub and Wang 2008); (b) carbo-

hydrates accumulate within leaves, down-regulating the

amount of the most prevalent protein Rubisco (Long et al.

2004); (c) carbon enrichment of the rhizosphere leads to

progressively greater limitations in the soil N available to

plants (Reich et al. 2006); and (d) elevated CO2 directly

inhibits plant N metabolism, especially the assimilation of

NO3
- into proteins in shoots of C3 plants (Bloom et al.

2012b). Recently, several independent meta-analyses con-

clude that this last explanation is the one most consistent

with observations from hundreds of studies (Cheng et al.

2012; Myers et al. 2014; Pleijel and Uddling 2012).

CO2 inhibits NO3
2 assimilation

Many independent methods for estimating NO3
- assimi-

lation confirm that elevated CO2 inhibits shoot NO3
-

assimilation in C3 plants. These methods include:

1 15N-labeling. Plants grown on NO3
- containing N

isotopes at natural abundance levels (&0.366 % 15N)

were exposed to a pulse of NO3
- that was heavily

enriched in 15N. The difference between the 15N

enrichment of total N and that of free NO3
- provided

an estimate of 15N–NO3
- assimilation, which

decreased under CO2 enrichment (Bloom et al. 2010).

2 14N-labeling. Plants grown on 99.9 % enriched 15N–

NO3
- were exposed to a pulse of NO3

- containing N

isotopes at natural abundance levels (&0.366 % 15N);

the difference between the 14N enrichment of total N

and that of free NO3
- provided an estimate of 14N–

NO3
- assimilation, which decreased under CO2

enrichment (Bloom et al. 2010).

3 Organic N accumulation. Accumulation of organic N

was followed in plants receiving NO3
- as a sole N

source, and this accumulation decreased under CO2

enrichment (Aranjuelo et al. 2013; Bloom et al. 2010;

Lekshmy et al. 2013; Pleijel and Uddling 2012;

Rachmilevitch et al. 2004).

4 NO3
- depletion from a medium. The decline of NO3

-

concentrations in a nutrient solution was monitored to

calculate net plant NO3
- absorption. The difference

between this NO3
- absorption and the accumulation

of free NO3
- within plant tissues estimated plant

NO3
- assimilation, which decreased under CO2

enrichment (Bloom et al. 2010; Rachmilevitch et al.

2004).

5 Plant growth. C3 species received either NO3
- or

NH4
? as their sole N source. CO2 enrichment

decreased growth of plants receiving NO3
- (Fig. 3)

but increased growth of those receiving NH4
? (Bloom

et al. 2012b, 2002; Carlisle et al. 2012).

6 Isotopic discrimination by NO3
- reductase. Plants

were grown under NO3
- containing N isotopes at

natural abundance levels (&0.366 % 15N). Under

CO2 enrichment, plant tissues became less enriched in
15N-organic N compounds presumably because

(a) CO2 inhibited shoot NO3
- assimilation,

(b) NO3
- availability became less limiting to assim-

ilation, (c) NO3
- reductase discriminated more

against 15N–NO3
-, and (d) shoots assimilated rela-

tively less 15N–NO3
- (Bloom et al. 2010, 2014).

7 DAQ. Assimilatory quotient (AQ), the ratio of net

CO2 consumption to net O2 evolution from shoots

was measured in a plant receiving NH4
? or NO3

- as

its sole N source (Fig. 4); AQ decreased as NO3
-

assimilation increased because additional electrons

generated from the light-dependent reactions of

photosynthesis were transferred first to NO3
- and

then to NO2
-. This stimulated net O2 evolution, but

had little effect on CO2 consumption; therefore, the

change in AQ when a plant received NH4
? instead of

NO3
- (DAQ) provided an estimate of shoot NO3

-

assimilation (Bloom et al. 1989, 2002; Cen et al.

2001; Cramer and Myers 1948; Rachmilevitch et al.

2004; Van Niel et al. 1953; Warburg and Negelein
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1920). In nine taxonomically diverse C3 species, DAQ
decreased as shoot internal CO2 increased (Fig. 5).

8 O2 consumption. Shoot O2 consumption in the light

was estimated from the difference between gross O2

evolution via chlorophyll fluorescence and net O2

evolution via an O2 analyzer (Fig. 6). At ambient

CO2, O2 consumption was lower when wheat plants

received NO3
- rather than NH4

? because NO3
- and

NO2
- were serving as electron acceptors. At elevated

CO2, O2 consumption was not significantly different

under the two N sources presumably because NO3
-

assimilation was negligible.

9 Altered NO3
- reductase capacity. Shoot CO2 and O2

fluxes at ambient and elevated CO2 were contrasted

between stages of plant development or genotypes

that have greatly different NO3
- reductase activities
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Fig. 3 Relative growth rate in g g-1 d-1 of (A) loblolly pine Pinus

taeda and (B) sweet gum Liquidambar styraciflua receiving NO3
-

nutrition in controlled environment chambers at subambient CO2

(310 lmol mol-1, the level of about 50 years ago), ambient CO2

(400 lmol mol-1, current level), or elevated CO2 (720 lmol mol-1,

the level anticipated in about 50 years). CO2 concentration had no

significant effect on the growth of plants receiving NH4
? nutrition

(data not shown). Time is in days after transplanting to a hydroponic

solution. Shown are the predicted values and standard errors from

mixed linear models with repeated measures on 6–10 individual

plants. (Bloom et al. 2012b)
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in situ. In particular, we contrasted 36- versus 48-d-

old wild-type Arabidopsis, Arabidopsis NO3
- reduc-

tase knockout mutants versus transgenic Arabidopsis

overexpressing NO3
- reductase (Fig. 7), and NO3

-

reductase-deficient barley mutants versus wild-type

barley. DAQ (change in the ratio of net CO2

consumption to net O2 evolution when a plant

received NH4
? instead of NO3

-) differed between

these stages of development and genotypes under

ambient CO2, but not under elevated CO2 (Fig. 8).

This indicates that none of the stages of development

or genotypes were assimilating NO3
- under elevated

CO2 (Bloom et al. 1989; Rachmilevitch et al. 2004).

10 NO3
- reductase activity. Maximum in vitro NO3

-

reductase activity generally declined under CO2

enrichment (Lekshmy et al. 2013; Matt et al. 2001).

Presumably, this reflected slower NO3
- assimilation

under CO2 enrichment.

Physiological mechanisms

Three physiological mechanisms may be responsible for

CO2 inhibition of shoot NO3
- assimilation (Bloom et al.

2010).

• One mechanism is that elevated CO2 inhibits nitrite

(NO2
-) transport into chloroplasts (Fig. 9). A chloro-

plast NO2
- transporter from higher plants has only

recently been identified (Maeda et al. 2014), and so the

nature of this inhibition has yet to be determined.

Nevertheless, this mechanism can be independent of

photosynthesis and, thus, is probably responsible for

CO2 inhibition of shoot NO3
- assimilation in Arabi-

dopsis and wheat during the nighttime (Rubio-Asensio,

Rachmilevitch, and Bloom, unpublished data).

• Another mechanism is that processes in the chloroplast

stroma compete for reduced ferredoxin (Fdr). FNR

(ferredoxin-NADP reductase) has a higher affinity for

Fdr than NiR (nitrite reductase) (Knaff 1996), and so

NO3
- assimilation proceeds only if the availability of

Fdr exceeds that needed for NADPH formation (Back-

hausen et al. 2000; Robinson 1987). For most plants,

this occurs when CO2 availability limits C3 carbon

fixation (Bloom et al. 2010).

• A third mechanism involves photorespiration. Multiple

lines of evidence link photorespiration with shoot NO3
-

assimilation in C3 plants. (a) Photorespiration stimulates

the export of malate from chloroplasts (Backhausen et al.

1998; Taniguchi andMiyake 2012; Voss et al. 2013); this

malate in the cytoplasm generates NADH (Igamberdiev

et al. 2001; Taniguchi and Miyake 2012) that powers the

first step of NO3
- assimilation, the reduction of NO3

- to

NO2
- (Quesada et al. 2000; Rathnam 1978; Robinson

1987). (b) Conditions that decrease photorespiration—

namely, elevated CO2 and low O2—decrease shoot

NO3
- reduction (Bloom et al. 2010; Rachmilevitch et al.
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2004). (c) Mutants that alter malate transport or metab-

olism also alter both photorespiration and NO3
- assim-

ilation (Dutilleul et al. 2005; Schneidereit et al. 2006).

The first carboxylation reaction in the C4 carbon fixation

pathway, by contrast, generates ample amounts of malate

and NADH in the cytoplasm of mesophyll cells. This

explains the CO2 independence of shoot NO3
- assimilation

in C4 plants (Bloom et al. 2010, 2012b).

The Rubisco complex

Information about the biochemistry of RuBP oxygenation

is limited. The stroma of the chloroplast contains similar

amounts of Mg2? (2 mM, Ishijima et al. 2003) and Mn2?

(2 mM, Burnell 1988; Robinson and Gibbs 1982). Rubisco

may form a complex with either Mg2? or Mn2? (Pierce and

Reddy 1986), but the affinity of Rubisco for Mn2? is five

times greater than that for Mg2? (Christeller 1981). The

stoichiometry of CO2 trapping (Miziorko and Sealy 1980)

and 31P and 13C NMR measurements (Pierce and Reddy

1986) indicate that Mn2? and Mg2? share a common

binding site in the large subunit of Rubisco. Nearly all of

the biochemistry of Rubisco has been conducted in the

presence of Mg2? and in the absence of Mn2? because

Rubisco when associated with Mn2? strongly favors RuBP

oxygenation, whereas Rubisco when associated with Mg2?

favors RuBP carboxylation (Chen and Spreitzer 1992;

Christeller and Laing 1979; Houtz et al. 1988; Jordan and

Ogren 1981; Raghavendra et al. 1981; Wildner and Henkel

1979).

Mg2? has a pair of electrons in its outer shell, whereas

Mn2? has up to five unpaired electrons and thus participates

more readily in redox reactions. In specific, Mn2? partici-

pates in the catalytic process of RuBP oxygenation (Mizi-

orko and Sealy 1984) during which it becomes excited and

transfers an electron with every turnover (Lilley et al. 2003).

One possibility is that Mn2? transfers electrons to NADP?

(Fig. 11). The resultant NADPH activates Rubisco (Laing

and Christeller 1976) and then converts OAA to malate for

export to the cytoplasm. This malate in the cytoplasm gen-

erates NADH to convert NO3
- to NO2

-.
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Several additional observations are consistent with this

hypothesis. RuBP oxygenation releases 76.3 kcal mol-1

(Frank et al. 2000), substantially more than the

52 kcal mol-1 required to reduce NADP? to NADPH

(Taiz and Zeiger 2010). NADPH complexes strongly with

Rubisco and activates the enzyme, but only when CO2 and

Mg2? are present in suboptimal concentrations (Chollet

and Anderson 1976; Chu and Bassham 1974; Matsumura

et al. 2012; McCurry et al. 1981). NADPH binds to the

catalytic site of Rubisco through metal-coordinated water

molecules (Matsumura et al. 2012).

If Rubisco generates NADPH during RuBP oxygena-

tion, C3 carbon fixation is more efficient than previously

thought, and both C3 and C4 carbon fixation at moderate

temperatures will expend the equivalent of about 11 ATPs

per CO2 fixed. Indeed, the quantum yield of photosynthesis

in an ambient CO2 and O2 atmosphere does not differ

significantly between C3 and C4 species at temperatures

between 25� and 30 �C (Skillman 2008). Only under hotter

and drier conditions does C4 carbon fixation become more

efficient than C3 fixation. Therefore, C3 species continue to

dominate in most locations.

Why is photorespiration still prevalent?

Several phenomena are responsible for the persistence of

photorespiration through 23 million years of low atmo-

spheric CO2 concentrations.

• Rubisco oxygenation is inseparable from Rubisco carbox-

ylation (Moroney et al. 2013; Tcherkez et al. 2006).

Rubisco catalyzes the carboxylation reaction through

stabilizing the formation of the enediol conformation of

RuBP (Fig. 10). This conformation, however, can react

with either CO2 or O2. The specificity of Rubisco for CO2

overO2derives fromstabilizing the six-carbon intermediate

before it is cleaved to form two molecules of PGA.

Consequently, anymutation that increases the specificity of

Rubisco for CO2 over O2 slows the carboxylation reaction.

• Photorespiration maintains redox homeostasis within

plant cells (Scheibe and Dietz 2012). Photosynthesis

generates highly reactive compounds as it captures

solar energy and converts it into energy-rich, but stable

compounds such as carbohydrates. Metabolic path-

ways, especially under stressful conditions, may

become unbalanced, and dangerous compounds such

as reactive oxygen species (ROS) may accumulate

(Voss et al. 2013). Photorespiration can dissipate many

of these potentially dangerous compounds.

• Photorespiration produces H2O2 in the peroxisome and

thus serves as a mechanism for rapidly transferring a

signal of photosynthesis to the entire plant cell (Foyer et al.

2009). This signal is involved in photoperiod detection

and pathogendefense aswell as responses to abiotic stress.

• Photorespiration serves as a mechanism for plants to

use NO3
- as a nitrogen source without diverting energy

from CO2 fixation. The following provides details

about this phenomenon.

Nitrate as a nitrogen source

The element nitrogen is a constituent of many organic

compounds including all amino acids and nucleic acids. As
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such, plants require a greater amount of nitrogen than any

other mineral element, and its availability generally limits

the productivity of natural and agricultural ecosystems

(Epstein and Bloom 2005). Conversions among various

nitrogen compounds are among the most energy-intensive

reactions in life. Consider that plants are generally between

1 and 2 % organic nitrogen on a percentage dry weight

basis, but that the conversion of NO3
- into organic nitro-

gen expends about 25 % of the total energy in shoots

(Bloom et al. 1989) and roots (Bloom et al. 1992). These

processes expend the energy equivalent of 12 ATP per

NO3
-assimilated, whereas most biochemical reactions

expend the energy equivalent of one or perhaps two ATP.

Most organisms prefer higher energy forms of nitrogen

such as NH4
? or amino acids. Phytoplankton (Dortch

1990), fungi (Hodge et al. 2010), cyanobacteria (Ohashi

et al. 2011), and bacteria (Luque-Almagro et al. 2011)

absorb and assimilate NO3
- only in the absence of NH4

?.

In many soils, microorganisms quickly absorb NH4
? and

either assimilate it into amino acids or nitrify it to NO3
-.

NH4
? also becomes adsorbed on the soil cation exchange

matrix. Because soil microorganisms often ignore NO3
-

and because NO3
- as an anion moves relatively freely

through the soil, NO3
- is often the predominant form of

nitrogen available to plants (Epstein and Bloom 2005).

Nitrogen nutrition, NH4
? versus NO3

-, neither influ-

ences net CO2 consumption (Fig. 11) nor cyclic electron

flow around photosystem I at low light levels (Walker et al.

2014). This is consistent with the lack of competition for

reductant between CO2 fixation and NO3
- assimilation

(Robinson 1988) because, as discussed previously, FNR

has a higher affinity for Fdr than NiR. At high light levels

and ambient CO2 and O2 concentrations, net O2 evolution

is faster (Figs. 11 and 12) and cyclic electron flow around

photosystem I is higher (Walker et al. 2014) when plants

receive NO3
- rather than NH4

? as a nitrogen source.

Presumably, plants use reductant generated from the light-

dependent reactions rather than mitochondrial respiration

to assimilate NO3
- when CO2 concentration limits CO2

fixation.

When factors other than CO2 limit CO2 fixation, plants

may delay assimilating the NO3
- that they have absorbed.

Free NO3
- may comprise as much as 60 % of the total

nitrogen in a plant (Maynard et al. 1976). This NO3
- serves

as a metabolically benign osmoticant that balances other

ions such as potassium in plant tissues and helps to
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Fig. 11 Response of net CO2

consumption (left panels) and

net O2 evolution (right panels)

to photosynthetic photon flux

density (PPFD) in wheat (upper

panels) and tomato (lower

panels) leaves when the plants

received NH4
? (blue) or NO3

-

(red) nutrition and were

exposed to an atmosphere

containing 720 (dark colors) or

360 (light colors) lmol mol-1

CO2. Shown are the mean ± SE

for six wheat plants and 6–9

tomato plants per treatment.

Notice that in both species, CO2

fluxes do not differ with N

source, and that O2 fluxes are

faster under NO3
- nutrition than

NH4
? nutrition, but only at

higher light levels and

360 lmol mol-1 CO2. (Cousins

and Bloom 2004; Searles and

Bloom 2003)
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maintain a favorable cellular water status (Bloom et al.

2012a; Burns et al. 2010; Hanson and Hitz 1983; McIntyre

1997; Veen and Kleinendorst 1986).

In summary, the linkage between photorespiration and

NO3
- assimilation provides higher plants with a relatively

abundant nitrogen source that other organisms cannot

afford to use, but that C3 plants can use with little addi-

tional cost. Yes, photorespiration may sacrifice 20–35 % of

CO2 fixation, but plants that are dependent on NO3
- as a

nitrogen source are spared the expense of either devoting

25 % of their photosynthate to NO3
- assimilation or suf-

fering protein deprivation. Apparently, over the last

23 million years, 96 % of higher plant species have adap-

ted to this tradeoff.
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