REVIEW

Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen

Arnold J. Bloom

Received: 19 August 2014/Accepted: 27 October 2014/Published online: 4 November 2014 © Springer Science+Business Media Dordrecht 2014

Abstract C_3 carbon fixation has a bad reputation, primarily because it is associated with photorespiration, a biochemical pathway thought to waste a substantial amount of the carbohydrate produced in a plant. This review presents evidence collected over nearly a century that (1) Rubisco when associated with Mn^{2+} generates additional reductant during photorespiration, (2) this reductant participates in the assimilation of nitrate into protein, and (3) this nitrate assimilation facilitates the use of a nitrogen source that other organisms tend to avoid. This phenomenon explains the continued dominance of C_3 plants during the past 23 million years of low CO_2 atmospheres as well as the decline in plant protein concentrations as atmospheric CO_2 rises.

 $\begin{tabular}{ll} \textbf{Keywords} & Photorespiration \cdot C_3 \ carbon \ fixation \cdot Nitrate \\ assimilation \cdot Photosynthesis \cdot Plant \ evolution \cdot Nitrogen \\ sources \end{tabular}$

Premise

Plants, by most accounts, convert less than 6 % of the incoming solar energy into useable chemical energy (Hall et al. 1999; Zhu et al. 2008). Efforts to improve this conversion rate have focused on the light-independent reactions of photosynthesis (e.g., Parry et al. 2013; Studer et al. 2014; Whitney et al. 2011; Zhu et al. 2010). "The light reactions are highly efficient, converting as much as 40–50 % of the captured solar energy into energy carriers. The dark reactions

A. J. Bloom (☒) Department of Plant Sciences, University of California at Davis, Davis, USA

e-mail: ajbloom@ucdavis.edu

are not developed for energy efficiency and it is here the energy is...lost" (Swedish Energy Agency 2003). In particular, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the enzyme which catalyzes the first reaction of the C₃ pathway and constitutes about half of the protein in leaves (Parry et al. 2003), has been identified as a target of opportunity.

Competing reactions

Rubisco exhibits opposing tendencies in that it catalyzes two different chemical reactions: one reaction combines a five-carbon sugar RuBP (ribulose-1,5-bisphosphate) with CO₂ (carboxylation), and the other reaction combines this same sugar with O₂ (oxygenation).

- The carboxylation reaction of RuBP produces a sixcarbon compound that quickly divides into two molecules of a three-carbon compound, PGA (3-phosphoglycerate), hence the name *C*₃ carbon fixation. Six of these PGA molecules pass through an elaborate pathway that expends the energy of 18 ATP and 12 NADPH molecules, forms one molecule of fructose-6-phosphate, a six-carbon sugar, and regenerates six molecules of RuBP.
- The oxygenation reaction splits the RuBP into one molecule of a three-carbon PGA and one molecule of a two-carbon PG (2-phosphoglycolate), hence the name C_2 pathway or, more commonly, photorespiration (Foyer et al. 2009). In total, photorespiration consumes 3.5 ATP and 2 NADPH per RuBP oxygenated and regenerated, but does not result in any net production of sugar (Bauwe et al. 2010; Tolbert 1994). Thus photorespiration seems to be largely a superfluous process, one thought to dissipate 76.3 kcal mol⁻¹ as waste heat (Frank et al. 2000).

The balance between C₃ carbon fixation and photorespiration depends on the relative amounts of CO2 and O2 entering the active site of Rubisco and the specificity of the enzyme for each gas. Atmospheric concentrations of CO₂ and O₂ are currently 0.04 and 20.94 %, respectively, yielding a CO₂:O₂ ratio of 0.0019. Gaseous CO₂, however, is much more soluble in water than O2, and so the CO2:O2 ratio near the chloroplast, the part of a cell where these reactions occur, is about 0.026 at 25 °C. Rubisco has about a 50-fold (cyanobacteria) to 100-fold (higher plants) greater specificity for CO₂ than O₂ (Galmes et al. 2005). Together, because of the relative concentrations of and specificity for CO₂ over O₂, Rubisco catalyzes about two to three cycles of C₃ carbon fixation for every cycle of photorespiration under current atmospheres (Sharkey 1988). Conditions that inhibit photorespiration—namely, high CO₂, or low O₂ atmospheric concentrations—stimulate carbon fixation in the short term by about 35 %.

Temperature influences the balance between C_3 carbon fixation and photorespiration in two ways. First, as temperature rises, the solubility of CO_2 in water decreases more than the solubility of O_2 , resulting in a lower $CO_2:O_2$ ratio. Second, the enzymatic properties of Rubisco shift with increasing temperature, stimulating the reaction with O_2 to a greater degree than the one with CO_2 . Warmer temperatures, therefore, favor photorespiration over C_3 carbon fixation, and photosynthetic conversion of absorbed light into sugars becomes less efficient (Ehleringer et al. 1997). Based on the temperature response of Rubisco carboxylation and oxygenation, C_4 plants should be more competitive in regions where the mean monthly air temperature exceeds 22 °C (Collatz et al. 1998).

Overall, Rubisco seems a vestige of the high CO_2 and low O_2 atmospheres under which plants first evolved (Wingler et al. 2000). To compensate for the shortcomings of Rubisco, some plants employ CO_2 pumping mechanisms such as C_4 carbon fixation that elevate CO_2 concentrations at the active site of the enzyme. The C_4 pathway is one of the most convergent evolutionary adaptations in life with at least 66 independent origins (Sage et al. 2012). Extensive efforts are underway to emulate Mother Nature and transfer the C_4 pathway into rice and other C_3 crops (von Caemmerer et al. 2012).

Several observations, however, are inconsistent with the presumption that Rubisco is poorly suited to modern times.

Earth's atmosphere has contained relatively low CO₂ concentrations (lower than 0.04 %) for the past 23 million years (Fig. 1). During this period, the plant kingdom experienced major changes including the diversification of modern graminoids, especially grasses and sedges, and the appearance of many new C₄ species, especially

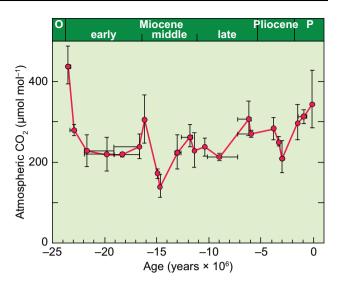
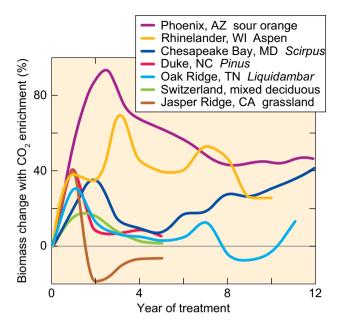



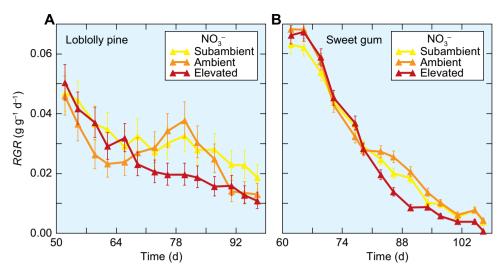
Fig. 1 A reconstruction of atmospheric CO_2 concentrations based on boron isotope ratios of ancient planktonic foraminifer shells. (Data from Pearson and Palmer 2000)

when CO₂ concentrations fell below 0.02 % (Sage et al. 2012). In a relatively short period of time (6 or 7 million years) (Osborne and Beerling 2006), the kinetics of Rubisco diverged between C₃ and C₄ plants (Studer et al. 2014). Rubisco in C₄ plants operates under elevated CO₂ conditions, and so the C4 enzyme has traded a lower specificity for CO₂ relative to O₂ (S_{c/o}) for a higher catalytic efficiency (k_{cat}^c) (Galmes et al. 2005; Sage 2002). Surprisingly, the kinetic properties of Rubisco do not differ greatly among higher C₃ plants (Kane et al. 1994; Tcherkez et al. 2006). Thus, the kinetic properties of Rubisco were able to change when a species adopted the C₄ pathway, but such changes were not warranted in C₃ plants because Rubisco may already be "nearly perfectly optimized" for C₃ carbon fixation (Tcherkez et al. 2006).

- Despite 23 million years of low atmospheric CO₂ concentrations, 96 % of plant species depend solely on the C₃ carbon fixation pathway (Sage et al. 1999). C₃ species account for over 94 % of the Earth's biomass (Still et al. 2003). Species using other carbon fixation pathways are dominant only in hot and dry environments.
- The response of C₃ species to elevated CO₂ atmospheres is highly variable and often depends on plant N status (Cavagnaro et al. 2011; Duval et al. 2012; Finzi et al. 2007; Norby et al. 2010; Reich et al. 2006). Initially, elevated CO₂ stimulates biomass accumulation by about 35 % (Fig. 2). This stimulation, however, tends to abate upon longer exposures in conjunction with a decline in plant protein concentrations (Cotrufo et al. 1998; Long et al. 2004).

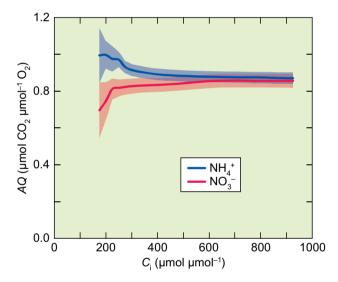
Fig. 2 Differences in biomass between elevated (\approx 567 ppm) and ambient (\approx 365 ppm) atmospheric CO₂ after years of treatment. Shown are the data from seven different studies using the designated types of plants. (Data from Dukes et al. 2005; Kimball et al. 2007; Korner 2006; Norby et al. 2010; Rasse et al. 2005; Talhelm et al. 2014)

Explanations for the decline in plant protein concentrations at elevated CO₂ include: (a) plants under elevated CO₂ grow larger, diluting the protein within their tissues (Ellsworth et al. 2004; Taub and Wang 2008); (b) carbohydrates accumulate within leaves, down-regulating the amount of the most prevalent protein Rubisco (Long et al. 2004); (c) carbon enrichment of the rhizosphere leads to progressively greater limitations in the soil N available to plants (Reich et al. 2006); and (d) elevated CO₂ directly inhibits plant N metabolism, especially the assimilation of NO₃⁻ into proteins in shoots of C₃ plants (Bloom et al. 2012b). Recently, several independent meta-analyses conclude that this last explanation is the one most consistent with observations from hundreds of studies (Cheng et al. 2012; Myers et al. 2014; Pleijel and Uddling 2012).


CO₂ inhibits NO₃⁻ assimilation

Many independent methods for estimating NO_3^- assimilation confirm that elevated CO_2 inhibits shoot NO_3^- assimilation in C_3 plants. These methods include:

 15 N-labeling. Plants grown on NO_3^- containing N isotopes at natural abundance levels ($\approx 0.366~\%^{15}$ N) were exposed to a pulse of NO_3^- that was heavily enriched in 15 N. The difference between the 15 N


- enrichment of total N and that of free NO₃⁻ provided an estimate of ¹⁵N-NO₃⁻ assimilation, which decreased under CO₂ enrichment (Bloom et al. 2010).
- ^{14}N -labeling. Plants grown on 99.9 % enriched ^{15}N NO_3^- were exposed to a pulse of NO_3^- containing N isotopes at natural abundance levels ($\approx 0.366 \, \%^{15}N$); the difference between the ^{14}N enrichment of total N and that of free NO_3^- provided an estimate of ^{14}N NO_3^- assimilation, which decreased under CO_2 enrichment (Bloom et al. 2010).
- 3 Organic N accumulation. Accumulation of organic N was followed in plants receiving NO₃⁻ as a sole N source, and this accumulation decreased under CO₂ enrichment (Aranjuelo et al. 2013; Bloom et al. 2010; Lekshmy et al. 2013; Pleijel and Uddling 2012; Rachmilevitch et al. 2004).
- 4 NO₃ depletion from a medium. The decline of NO₃ concentrations in a nutrient solution was monitored to calculate net plant NO₃ absorption. The difference between this NO₃ absorption and the accumulation of free NO₃ within plant tissues estimated plant NO₃ assimilation, which decreased under CO₂ enrichment (Bloom et al. 2010; Rachmilevitch et al. 2004).
- 5 Plant growth. C₃ species received either NO₃⁻ or NH₄⁺ as their sole N source. CO₂ enrichment decreased growth of plants receiving NO₃⁻ (Fig. 3) but increased growth of those receiving NH₄⁺ (Bloom et al. 2012b, 2002; Carlisle et al. 2012).
- 6 Isotopic discrimination by NO_3^- reductase. Plants were grown under NO_3^- containing N isotopes at natural abundance levels ($\approx 0.366~\%^{-15}N$). Under CO_2 enrichment, plant tissues became less enriched in ^{15}N -organic N compounds presumably because (a) CO_2 inhibited shoot NO_3^- assimilation, (b) NO_3^- availability became less limiting to assimilation, (c) NO_3^- reductase discriminated more against ^{15}N - NO_3^- , and (d) shoots assimilated relatively less ^{15}N - NO_3^- (Bloom et al. 2010, 2014).
- ΔAQ . Assimilatory quotient (AQ), the ratio of net CO_2 consumption to net O_2 evolution from shoots was measured in a plant receiving NH_4^+ or NO_3^- as its sole N source (Fig. 4); AQ decreased as NO_3^- assimilation increased because additional electrons generated from the light-dependent reactions of photosynthesis were transferred first to NO_3^- and then to NO_2^- . This stimulated net O_2 evolution, but had little effect on CO_2 consumption; therefore, the change in AQ when a plant received NH_4^+ instead of NO_3^- (ΔAQ) provided an estimate of shoot NO_3^- assimilation (Bloom et al. 1989, 2002; Cen et al. 2001; Cramer and Myers 1948; Rachmilevitch et al. 2004; Van Niel et al. 1953; Warburg and Negelein

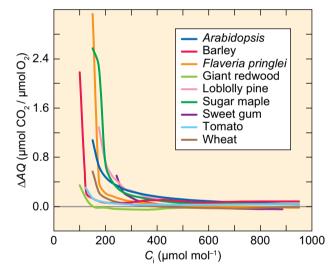
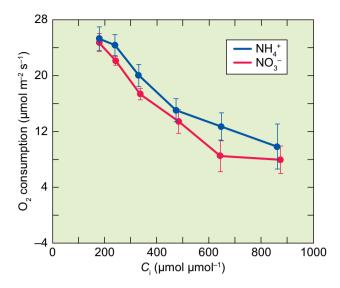
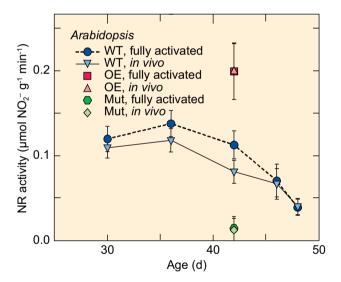


Fig. 3 Relative growth rate in g g⁻¹ d⁻¹ of (**A**) loblolly pine *Pinus taeda* and (**B**) sweet gum *Liquidambar styraciftua* receiving NO_3^- nutrition in controlled environment chambers at subambient CO_2 (310 μ mol mol⁻¹, the level of about 50 years ago), ambient CO_2 (400 μ mol mol⁻¹, current level), or elevated CO_2 (720 μ mol mol⁻¹, the level anticipated in about 50 years). CO_2 concentration had no

significant effect on the growth of plants receiving $\mathrm{NH_4}^+$ nutrition (data not shown). Time is in days after transplanting to a hydroponic solution. Shown are the predicted values and standard errors from mixed linear models with repeated measures on 6–10 individual plants. (Bloom et al. 2012b)

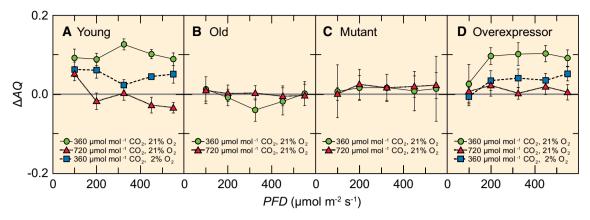

Fig. 4 Shoot AQ (net CO_2 consumed/net O_2 evolved) as a function of internal CO_2 concentrations (C_i) for the 9 C_3 species in Fig. 5 when they received NH_4^+ or NO_3^- as a sole N source (mean \pm SE; solid \pm shaded area). (Bloom, unpublished data)


Fig. 5 Shoot NO_3^- assimilation as a function of shoot internal CO_2 concentration (C_i) for 9 C_3 species. Shoot NO_3^- assimilation is assessed by ΔAQ (change in the ratio of shoot CO_2 consumption to O_2 evolution with a shift from NO_3^- to NH_4^+ nutrition). (Bloom et al. 2012b; Searles and Bloom 2003)

- 1920). In nine taxonomically diverse C_3 species, ΔAQ decreased as shoot internal CO_2 increased (Fig. 5).
- 8 *O*₂ *consumption.* Shoot O₂ consumption in the light was estimated from the difference between gross O₂ evolution via chlorophyll fluorescence and net O₂ evolution via an O₂ analyzer (Fig. 6). At ambient CO₂, O₂ consumption was lower when wheat plants received NO₃⁻ rather than NH₄⁺ because NO₃⁻ and
- NO₂⁻ were serving as electron acceptors. At elevated CO₂, O₂ consumption was not significantly different under the two N sources presumably because NO₃⁻ assimilation was negligible.
- 9 Altered NO₃⁻ reductase capacity. Shoot CO₂ and O₂ fluxes at ambient and elevated CO₂ were contrasted between stages of plant development or genotypes that have greatly different NO₃⁻ reductase activities

Fig. 6 Shoot O_2 consumption in the light (gross O_2 -net O_2) as a function of C_i for wheat receiving NH_4^+ or NO_3^- as a sole N source. Shown are the mean \pm SE for 5–7 replicates per treatment.(Cousins and Bloom 2004)

Fig. 7 NO₃⁻ reductase activity (µmol of NO₂⁻ generated per g fresh mass per min) as a function of plant age (d) in leaves of a wild-type *A. thaliana* cv. Columbia (WT), a transgenic line harboring the chimeric gene *Lhch1*3::Nia1*2* (OE), and a genotype (*nia1 nia2*) with mutations in both structural genes for NO₃⁻ reductase (Mut). Because NO₃⁻ reductase is regulated through phosphorylation, leaf tissue was assayed under conditions that either dephosphorylated the enzyme (fully activated) or did not change its phosphorylation (in vivo). Shown are the mean \pm SE (n = 5–8 plants). (Rachmilevitch et al. 2004)


in situ. In particular, we contrasted 36- versus 48-dold wild-type Arabidopsis, Arabidopsis NO₃⁻ reductase knockout mutants versus transgenic Arabidopsis overexpressing NO₃⁻ reductase (Fig. 7), and NO₃⁻ reductase-deficient barley mutants versus wild-type barley. ΔAQ (change in the ratio of net CO₂ consumption to net O₂ evolution when a plant received NH₄⁺ instead of NO₃⁻) differed between these stages of development and genotypes under ambient CO₂, but not under elevated CO₂ (Fig. 8). This indicates that none of the stages of development or genotypes were assimilating NO₃⁻ under elevated CO₂ (Bloom et al. 1989; Rachmilevitch et al. 2004). NO₃⁻ reductase activity. Maximum in vitro NO₃⁻ reductase activity generally declined under CO₂ enrichment (Lekshmy et al. 2013; Matt et al. 2001). Presumably, this reflected slower NO₃⁻ assimilation under CO₂ enrichment.

Physiological mechanisms

Three physiological mechanisms may be responsible for CO_2 inhibition of shoot NO_3^- assimilation (Bloom et al. 2010).

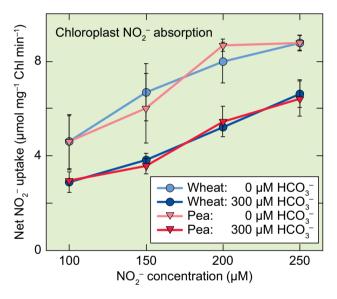

- One mechanism is that elevated CO₂ inhibits nitrite (NO₂⁻) transport into chloroplasts (Fig. 9). A chloroplast NO₂⁻ transporter from higher plants has only recently been identified (Maeda et al. 2014), and so the nature of this inhibition has yet to be determined. Nevertheless, this mechanism can be independent of photosynthesis and, thus, is probably responsible for CO₂ inhibition of shoot NO₃⁻ assimilation in Arabidopsis and wheat during the nighttime (Rubio-Asensio, Rachmilevitch, and Bloom, unpublished data).
- Another mechanism is that processes in the chloroplast stroma compete for reduced ferredoxin (Fd_r). FNR (ferredoxin-NADP reductase) has a higher affinity for Fd_r than NiR (nitrite reductase) (Knaff 1996), and so NO₃⁻ assimilation proceeds only if the availability of Fd_r exceeds that needed for NADPH formation (Backhausen et al. 2000; Robinson 1987). For most plants, this occurs when CO₂ availability limits C₃ carbon fixation (Bloom et al. 2010).
- A third mechanism involves photorespiration. Multiple lines of evidence link photorespiration with shoot NO₃⁻ assimilation in C₃ plants. (a) Photorespiration stimulates the export of malate from chloroplasts (Backhausen et al. 1998; Taniguchi and Miyake 2012; Voss et al. 2013); this malate in the cytoplasm generates NADH (Igamberdiev et al. 2001; Taniguchi and Miyake 2012) that powers the first step of NO₃⁻ assimilation, the reduction of NO₃⁻ to NO₂⁻ (Quesada et al. 2000; Rathnam 1978; Robinson 1987). (b) Conditions that decrease photorespiration—namely, elevated CO₂ and low O₂—decrease shoot NO₃⁻ reduction (Bloom et al. 2010; Rachmilevitch et al.

Fig. 8 Changes in assimilatory quotient with the shift from NO_3^- to NH_4^+ (ΔAQ) as a function of photosynthetic *PFD* (photon flux density) from shoots of *A. thaliana* cv. Columbia. (**A**) 36-day-old wild-type plants, (**B**) 48-d-old wild-type plants, (**C**) genotype with null mutations, and (**D**) overexpressing line. The plants were grown

under ambient CO_2 (360 µmol mol⁻¹) and measured under ambient CO_2 and O_2 (360 µmol mol⁻¹ CO_2 and 21 % O_2 ; *circles*), elevated CO_2 (720 µmol mol⁻¹ CO_2 and 21 % O_2 ; *triangles*), or low O_2 (360 µmol mol⁻¹ CO_2 and 2 % O_2 ; *squares*). Shown are the mean \pm SE, n = 5–8 plants. (Rachmilevitch et al. 2004)

Fig. 9 Net NO_2^- uptake (µmol mg $^{-1}$ chlorophyll min $^{-1}$) by isolated chloroplasts as a function of NO_2^- concentration when the medium contained 0 (*light symbols*) or 300 (*dark symbols*) µM HCO $_3^-$. Shown are the mean \pm SE (n=3) for wheat (*circles*) and pea (*inverted triangles*). (Bloom et al. 2002)

2004). (c) Mutants that alter malate transport or metabolism also alter both photorespiration and NO_3^- assimilation (Dutilleul et al. 2005; Schneidereit et al. 2006).

The first carboxylation reaction in the C_4 carbon fixation pathway, by contrast, generates ample amounts of malate and NADH in the cytoplasm of mesophyll cells. This explains the CO_2 independence of shoot NO_3^- assimilation in C_4 plants (Bloom et al. 2010, 2012b).

The Rubisco complex

Information about the biochemistry of RuBP oxygenation is limited. The stroma of the chloroplast contains similar amounts of Mg²⁺ (2 mM, Ishijima et al. 2003) and Mn²⁺ (2 mM, Burnell 1988; Robinson and Gibbs 1982). Rubisco may form a complex with either Mg²⁺ or Mn²⁺ (Pierce and Reddy 1986), but the affinity of Rubisco for Mn²⁺ is five times greater than that for Mg²⁺ (Christeller 1981). The stoichiometry of CO₂ trapping (Miziorko and Sealy 1980) and ³¹P and ¹³C NMR measurements (Pierce and Reddy 1986) indicate that Mn²⁺ and Mg²⁺ share a common binding site in the large subunit of Rubisco. Nearly all of the biochemistry of Rubisco has been conducted in the presence of Mg²⁺ and in the absence of Mn²⁺ because Rubisco when associated with Mn²⁺ strongly favors RuBP oxygenation, whereas Rubisco when associated with Mg²⁺ favors RuBP carboxylation (Chen and Spreitzer 1992; Christeller and Laing 1979; Houtz et al. 1988; Jordan and Ogren 1981; Raghavendra et al. 1981; Wildner and Henkel 1979).

Mg²⁺ has a pair of electrons in its outer shell, whereas Mn²⁺ has up to five unpaired electrons and thus participates more readily in redox reactions. In specific, Mn²⁺ participates in the catalytic process of RuBP oxygenation (Miziorko and Sealy 1984) during which it becomes excited and transfers an electron with every turnover (Lilley et al. 2003). One possibility is that Mn²⁺ transfers electrons to NADP⁺ (Fig. 11). The resultant NADPH activates Rubisco (Laing and Christeller 1976) and then converts OAA to malate for export to the cytoplasm. This malate in the cytoplasm generates NADH to convert NO₃⁻ to NO₂⁻.

Fig. 10 One possible scenario for the intermediates formed during RuBP oxygenation (Chen and Spreitzer 1992; Cleland et al. 1998; Lilley et al. 2003; Oliva et al. 2001; Tapia and Andrés 1992; Tcherkez et al. 2006)

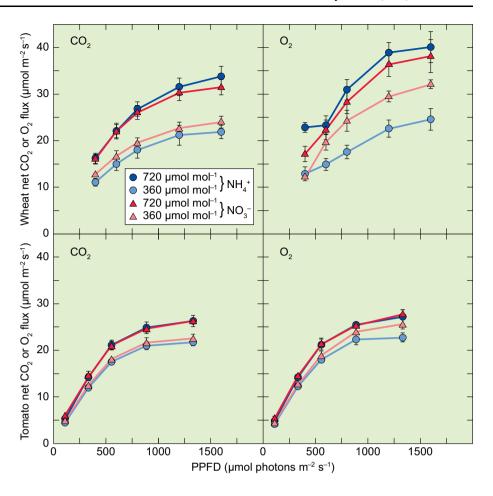
Several additional observations are consistent with this hypothesis. RuBP oxygenation releases 76.3 kcal mol⁻¹ (Frank et al. 2000), substantially more than the 52 kcal mol⁻¹ required to reduce NADP⁺ to NADPH (Taiz and Zeiger 2010). NADPH complexes strongly with Rubisco and activates the enzyme, but only when CO₂ and Mg²⁺ are present in suboptimal concentrations (Chollet and Anderson 1976; Chu and Bassham 1974; Matsumura et al. 2012; McCurry et al. 1981). NADPH binds to the catalytic site of Rubisco through metal-coordinated water molecules (Matsumura et al. 2012).

If Rubisco generates NADPH during RuBP oxygenation, C_3 carbon fixation is more efficient than previously thought, and both C_3 and C_4 carbon fixation at moderate temperatures will expend the equivalent of about 11 ATPs per CO_2 fixed. Indeed, the quantum yield of photosynthesis in an ambient CO_2 and O_2 atmosphere does not differ significantly between C_3 and C_4 species at temperatures between 25° and 30 °C (Skillman 2008). Only under hotter and drier conditions does C_4 carbon fixation become more efficient than C_3 fixation. Therefore, C_3 species continue to dominate in most locations.

Why is photorespiration still prevalent?

Several phenomena are responsible for the persistence of photorespiration through 23 million years of low atmospheric CO₂ concentrations.

Rubisco oxygenation is inseparable from Rubisco carboxylation (Moroney et al. 2013; Tcherkez et al. 2006).
 Rubisco catalyzes the carboxylation reaction through


- stabilizing the formation of the enediol conformation of RuBP (Fig. 10). This conformation, however, can react with either CO₂ or O₂. The specificity of Rubisco for CO₂ over O₂ derives from stabilizing the six-carbon intermediate before it is cleaved to form two molecules of PGA. Consequently, any mutation that increases the specificity of Rubisco for CO₂ over O₂ slows the carboxylation reaction.
- Photorespiration maintains redox homeostasis within
 plant cells (Scheibe and Dietz 2012). Photosynthesis
 generates highly reactive compounds as it captures
 solar energy and converts it into energy-rich, but stable
 compounds such as carbohydrates. Metabolic pathways, especially under stressful conditions, may
 become unbalanced, and dangerous compounds such
 as reactive oxygen species (ROS) may accumulate
 (Voss et al. 2013). Photorespiration can dissipate many
 of these potentially dangerous compounds.
- Photorespiration produces H₂O₂ in the peroxisome and thus serves as a mechanism for rapidly transferring a signal of photosynthesis to the entire plant cell (Foyer et al. 2009). This signal is involved in photoperiod detection and pathogen defense as well as responses to abiotic stress.
- Photorespiration serves as a mechanism for plants to use NO₃⁻ as a nitrogen source without diverting energy from CO₂ fixation. The following provides details about this phenomenon.

Nitrate as a nitrogen source

The element nitrogen is a constituent of many organic compounds including all amino acids and nucleic acids. As

Fig. 11 Response of net CO₂ consumption (left panels) and net O₂ evolution (right panels) to photosynthetic photon flux density (PPFD) in wheat (upper panels) and tomato (lower panels) leaves when the plants received NH₄⁺ (blue) or NO₃⁻ (red) nutrition and were exposed to an atmosphere containing 720 (dark colors) or 360 (light colors) µmol mol⁻¹ CO_2 . Shown are the mean \pm SE for six wheat plants and 6-9 tomato plants per treatment. Notice that in both species, CO₂ fluxes do not differ with N source, and that O2 fluxes are faster under NO_3^- nutrition than NH₄⁺ nutrition, but only at higher light levels and 360 μ mol mol⁻¹ CO₂. (Cousins and Bloom 2004; Searles and Bloom 2003)

such, plants require a greater amount of nitrogen than any other mineral element, and its availability generally limits the productivity of natural and agricultural ecosystems (Epstein and Bloom 2005). Conversions among various nitrogen compounds are among the most energy-intensive reactions in life. Consider that plants are generally between 1 and 2 % organic nitrogen on a percentage dry weight basis, but that the conversion of NO₃⁻ into organic nitrogen expends about 25 % of the total energy in shoots (Bloom et al. 1989) and roots (Bloom et al. 1992). These processes expend the energy equivalent of 12 ATP per NO₃⁻ assimilated, whereas most biochemical reactions expend the energy equivalent of one or perhaps two ATP.

Most organisms prefer higher energy forms of nitrogen such as $\mathrm{NH_4}^+$ or amino acids. Phytoplankton (Dortch 1990), fungi (Hodge et al. 2010), cyanobacteria (Ohashi et al. 2011), and bacteria (Luque-Almagro et al. 2011) absorb and assimilate $\mathrm{NO_3}^-$ only in the absence of $\mathrm{NH_4}^+$. In many soils, microorganisms quickly absorb $\mathrm{NH_4}^+$ and either assimilate it into amino acids or nitrify it to $\mathrm{NO_3}^-$. $\mathrm{NH_4}^+$ also becomes adsorbed on the soil cation exchange matrix. Because soil microorganisms often ignore $\mathrm{NO_3}^-$ and because $\mathrm{NO_3}^-$ as an anion moves relatively freely

through the soil, NO₃⁻ is often the predominant form of nitrogen available to plants (Epstein and Bloom 2005).

Nitrogen nutrition, NH₄⁺ versus NO₃⁻, neither influences net CO₂ consumption (Fig. 11) nor cyclic electron flow around photosystem I at low light levels (Walker et al. 2014). This is consistent with the lack of competition for reductant between CO₂ fixation and NO₃⁻ assimilation (Robinson 1988) because, as discussed previously, FNR has a higher affinity for Fd_r than NiR. At high light levels and ambient CO₂ and O₂ concentrations, net O₂ evolution is faster (Figs. 11 and 12) and cyclic electron flow around photosystem I is higher (Walker et al. 2014) when plants receive NO₃⁻ rather than NH₄⁺ as a nitrogen source. Presumably, plants use reductant generated from the light-dependent reactions rather than mitochondrial respiration to assimilate NO₃⁻ when CO₂ concentration limits CO₂ fixation.

When factors other than CO_2 limit CO_2 fixation, plants may delay assimilating the NO_3^- that they have absorbed. Free NO_3^- may comprise as much as 60 % of the total nitrogen in a plant (Maynard et al. 1976). This NO_3^- serves as a metabolically benign osmoticant that balances other ions such as potassium in plant tissues and helps to

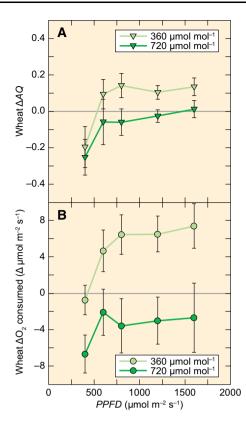


Fig. 12 Responses of wheat shoots (mean \pm SE, n=6) to photosynthetic photon flux density (*PPFD*). (A) Changes in assimilatory quotient (AQ= net CO_2 consumed/net O_2 evolved) with the shift from NO_3^- to NH_4^+ as a N source. (B) Changes in the gross O_2 consumed (gross O_2 evolved minus net O_2 evolved) with the shift from NO_3^- to NH_4^+ as a N source. As light levels increased and 360 µmol mol $^{-1}$ CO_2 limited carbon fixation, exposure to NO_3^- stimulated the light-dependent reactions of photosynthesis to split water, evolve oxygen, and transfer electrons to NO_3^- and NO_2^- rather than to CO_2 , and decreased gross O_2 consumption (Cousins and Bloom 2004)

maintain a favorable cellular water status (Bloom et al. 2012a; Burns et al. 2010; Hanson and Hitz 1983; McIntyre 1997; Veen and Kleinendorst 1986).

In summary, the linkage between photorespiration and NO₃⁻ assimilation provides higher plants with a relatively abundant nitrogen source that other organisms cannot afford to use, but that C₃ plants can use with little additional cost. Yes, photorespiration may sacrifice 20–35 % of CO₂ fixation, but plants that are dependent on NO₃⁻ as a nitrogen source are spared the expense of either devoting 25 % of their photosynthate to NO₃⁻ assimilation or suffering protein deprivation. Apparently, over the last 23 million years, 96 % of higher plant species have adapted to this tradeoff.

Acknowledgments This work was funded in part by NSF IOS-13-58675. We thank J. Clark Lagarias and George H. Lorimer for their insights about redox reactions and the reviewers for their suggestions.

Conflicts of interest The author has no conflicts of interest with regards to this research.

References

- Aranjuelo I, Cabrerizo PM, Arrese-Igor C, Aparicio-Tejo PM (2013) Pea plant responsiveness under elevated [CO₂] is conditioned by the N source (N₂ fixation versus NO₃⁻ fertilization). Environ Exp Bot. doi:10.1016/j.envexpbot.2013.06.002
- Backhausen JE et al (1998) Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. Planta 207:105–114
- Backhausen JE, Kitzmann C, Horton P, Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64:1–13
- Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336. doi:10.1016/j.tplants.2010.03.006
- Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 91:352–356
- Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99:1294–1301
- Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA 99:1730–1735
- Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and *Arabidopsis*. Science 328:899–903. doi:10.1126/science. 1186440
- Bloom AJ, Randall L, Taylor AR, Silk WK (2012a) Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J Exp Bot 63:1997–2006. doi:10.1093/jxb/err410
- Bloom AJ, Rubio-Asensio JS, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA (2012b) CO₂ enrichment inhibits shoot nitrate assimilation in C₃ but not C₄ plants and slows growth under nitrate in C₃ plants. Ecology 93:355–367
- Bloom AJ, Burger M, Kimball BA, Pinter PJ (2014) Nitrate assimilation is inhibited by elevated CO₂ in field-grown wheat. Nat Clim Change 4:477–480. doi:10.1038/nclimate2183
- Burnell JN (1988) The biochemistry of manganese in plants. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic, Dordrecht, pp 125–137
- Burns IG, Zhang KF, Turner MK, Edmondson R (2010) Iso-osmotic regulation of nitrate accumulation in lettuce. J Plant Nutr 34:283–313. doi:10.1080/01904167.2011.533328
- Carlisle E, Myers SS, Raboy V, Bloom AJ (2012) The effects of inorganic nitrogen form and CO₂ concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci 3:195. doi:10.3389/fpls.2012.00195
- Cavagnaro TR, Gleadow RM, Miller RE (2011) Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct Plant Biol 38:87–96. doi:10.1071/fp10124
- Cen Y-P, Turpin DH, Layzell DB (2001) Whole-plant gas exchange and reductive biosynthesis in white lupin. Plant Physiol 126:1555–1565
- Chen Z, Spreitzer RJ (1992) How various factors influence the CO₂/O₂ specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res 31:157–164

- Cheng L et al (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO₂. Science 337:1084–1087. doi:10.1126/science.1224304
- Chollet R, Anderson LL (1976) Regulation of ribulose 1,5-bisphosphate carboxylase-oxygenase activities by temperature pretreatment and chloroplast metabolites. Arch Biochem Biophys 176:344–351, doi:10.1016/0003-9861(76)90173-9
- Christeller JT (1981) The effects of bivalent cations on ribulose bisphosphate carboxylase/oxygenase. Biochem J 193:839–844
- Christeller JT, Laing WA (1979) Effects of manganese ions and magnesium ions on the activity of soya-bean ribulose bisphosphate carboxylase/oxygenase. Biochem J 183:747–750
- Chu DK, Bassham JA (1974) Activation of ribulose 1,5-diphosphate carboxylase by nicotinamide adenine-dinucleotide phosphate and other chloroplast metabolites. Plant Physiol 54:556–559. doi:10.1104/pp.54.4.556
- Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (1998) Mechanism of Rubisco: the carbamate as general base. Chem Rev 98:549–562. doi:10.1021/cr970010r
- Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO₂ partial pressure on the global distribution of C₄ grasses: present, past, and future. Oecologia 114:441–454. doi:10.1007/s004420050468
- Cotrufo MF, Ineson P, Scott A (1998) Elevated CO₂ reduces the nitrogen concentration of plant tissues. Glob Change Biol 4:43–54
- Cousins AB, Bloom AJ (2004) Oxygen consumption during leaf nitrate assimilation in a C₃ and C₄ plant: the role of mitochondrial respiration. Plant, Cell Environ 27:1537–1545
- Cramer M, Myers J (1948) Nitrate reduction and assimilation in Chlorella. J Gen Physiol 32:93–102
- Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog 61:183–201
- Dukes JS et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829–1837
- Dutilleul C, Lelarge C, Prioul J-L, De Paepe R, Foyer CH, Noctor G (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 139:64–78
- Duval BD, Blankinship JC, Dijkstra P, Hungate BA (2012) CO₂ effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecol 213:505–521. doi:10.1007/s11258-011-9998-8
- Ehleringer JR, Cerling TE, Helliker BR (1997) C₄ photosynthesis, atmospheric CO₂, and climate. Oecologia 112:285–299
- Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO₂ across four free-air CO₂ enrichment experiments in forest, grassland and desert. Glob Change Biol 10:2121–2138
- Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. 2nd edn. Sinauer Associates. Sunderland
- Finzi AC et al (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO₂. Proc Natl Acad Sci USA 104:14014–14019
- Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484
- Frank J, Kositza MJ, Vater J, Holzwarth JF (2000) Microcalorimetric determination of the reaction enthalpy changes associated with the carboxylase and oxygenase reactions catalysed by ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO). Phys Chem Chem Phys 2:1301–1304

- Galmes J et al (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant, Cell Environ 28:571–579
- Hall DO, Rao KK, Institute of Biology (1999) Photosynthesis. Studies in biology, 6th edn. Cambridge University Press, Cambridge
- Hanson AD, Hitz WD (1983) Water deficits and the nitrogen economy. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. ASA, Madison, pp 331–343
- Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273. doi:10. 1016/i.funeco.2010.02.002
- Houtz RL, Nable RO, Cheniae GM (1988) Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. Plant Physiol 86:1143–1149. doi:10.1104/pp.86.4.1143
- Igamberdiev AU, Bykova NV, Lea PJ, Gardestrom P (2001) The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 111:427–438
- Ishijima S, Uchlbori A, Takagi H, Maki R, Ohnishi M (2003) Light-induced increase in free Mg²⁺ concentration in spinach chloroplasts: measurement of free Mg²⁺ by using a fluorescent probe and necessity of stromal alkalinization. Arch Biochem Biophys 412:126–132. doi:10.1016/s0003-9861(03)00038-9
- Jordan DB, Ogren WL (1981) A sensitive assay procedure for simultaneous determination of ribulose-1,5-bisphosphate carboxylase and oxygenase activities. Plant Physiol 67:237–245
- Kane HJ, Viil J, Entsch B, Paul K, Morell MK, Andrews TJ (1994) An improved method for measuring the CO₂/O₂ specificity of ribulosebisphosphate carboxylase-oxygenase. Funct Plant Biol 21:449–461
- Kimball BA, Idso SB, Johnson S, Rillig MC (2007) Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Glob Change Biol 13:2171–2183
- Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4., Advances in Photosynthesis. Kluwer Academic, Dordrecht, pp 333–361
- Korner C (2006) Plant CO_2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411
- Laing WA, Christeller JT (1976) A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J 159:563–570
- Lekshmy S, Jain V, Khetarpal S, Pandey R (2013) Inhibition of nitrate uptake and assimilation in wheat seedlings grown under elevated CO₂. Indian J Plant Physiol 18:23–29
- Lilley RMC, Wang XQ, Krausz E, Andrews TJ (2003) Complete spectra of the far-red chemiluminescence of the oxygenase reaction of Mn²⁺-activated ribulose-bisphosphate carboxylase/oxygenase establish excited Mn²⁺ as the source. J Biol Chem 278:16488–16493
- Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628
- Luque-Almagro VM, Gates AJ, Moreno-Vivián C, Ferguson SJ, Richardson DJ, Roldán M (2011) Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans 39:1838–1843
- Matsumura H et al (2012) Crystal structure of rice Rubisco and implications for activation induced by positive effectors NADPH and 6-phosphogluconate. J Mol Biol 422:75–86
- Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase

- activity when tobacco is growing on ammonium nitrate. Plant, Cell Environ 24:1119–1137
- Maynard PN, Barker AV, Minotti PL, Peck NH (1976) Nitrate accumulation in vegetables. Adv Agron 28:71–119
- McCurry SD, Pierce J, Tolbert NE, Orme-Johnson WH (1981) On the mechanism of effector-mediated activation of ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 256:6623–6628
- McIntyre GI (1997) The role of nitrate in the osmotic and nutritional control of plant development. Aust J Plant Physiol 24:103–118
- Miziorko HM, Sealy RC (1980) Characterization of the ribulosebisphosphate carboxylase-carbon dioxide-divalent cation-carboxypentitol bisphosphate complex. Biochemistry 19:1167–1171. doi:10.1021/bi00547a020
- Miziorko HM, Sealy RC (1984) Electron spin resonance studies of ribulose bisphosphate carboxylase: identification of activator cation ligands. Biochemistry 23:479–485
- Moroney J, Jungnick N, DiMario R, Longstreth D (2013) Photorespiration and carbon concentrating mechanisms: two adaptations to high O₂, low CO₂ conditions. Photosynth Res 117:121–131. doi:10.1007/s11120-013-9865-7
- Maeda S-i, Konishi M, Yanagisawa S, Omata T (2014) Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol 55:1311–1324. doi:10.1093/pcp/pcu075
- Myers SS et al (2014) Increasing CO_2 threatens human nutrition. Nature 510:139–142. doi:10.1038/nature13179
- Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO₂ enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373. doi:10.1073/pnas.1006463107
- Ohashi Y et al (2011) Regulation of nitrate assimilation in cyanobacteria. J Exp Bot 62:1411–1424. doi:10.1093/jxb/erq427
- Oliva M, Safont VS, Andres J, Tapia O (2001) Transition structures for D-ribulose-1,5-bisphosphate carboxylase/oxygenase-catalyzed oxygenation chemistry: role of carbamylated lysine in a model magnesium coordination sphere. J Phys Chem A 105:4726–4736
- Osborne CP, Beerling DJ (2006) Nature's green revolution: the remarkable evolutionary rise of C_4 plants. Philos Trans R Soc B Biol Sci 361:173–194. doi:10.1098/rstb.2005.1737
- Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333
- Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730. doi:10.1093/jxb/ers336
- Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699
- Pierce J, Reddy GS (1986) The sites for catalysis and activation of ribulosebisphosphate carboxylase share a common domain. Arch Biochem Biophys 245:483–493
- Pleijel H, Uddling J (2012) Yield vs. quality trade-offs for wheat in response to carbon dioxide and ozone. Glob Change Biol 18:596–605. doi:10.1111/j.1365-2486.2011.2489.x
- Quesada A, Gomez-Garcia I, Fernandez E (2000) Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. Trends Plant Sci 5:463–464
- Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101:11506–11510
- Raghavendra AS, Carrillo NJ, Vallejos RH (1981) Differential modulation of carboxylase and oxygenase activities of ribulose 1, 5-bisphosphate carboxylase/oxygenase released from freshly ruptured spinach chloroplasts. Plant Cell Physiol 22:1113–1117

- Rasse DP, Peresta G, Drake BG (2005) Seventeen years of elevated CO₂ exposure in a Chesapeake Bay Wetland: sustained but contrasting responses of plant growth and CO₂ uptake. Glob Change Biol 11:369–377
- Rathnam CKM (1978) Malate and dihydroxyacetone phosphatedependent nitrate reduction in spinach leaf protoplasts. Plant Physiol 62:220–223. doi:10.1104/pp.62.2.220
- Reich PB et al (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO₂. Nature 440:922–925
- Robinson JM (1987) Interactions of carbon and nitrogen metabolism in photosynthetic and non-photosynthetic tissues of higher plants: metabolic pathways and controls. In: Newman DW, Stuart KG (eds) Models in Plant Physiology and Biochemistry, vol 1. CRC Press, Boca Raton, pp 25–35
- Robinson JM (1988) Spinach leaf chloroplast CO₂ and NO₂⁻ photoassimilations do not compete for photogenerated reductant manipulation of reductant levels by quantum flux density titrations. Plant Physiol 88:1373–1380
- Robinson JM, Gibbs M (1982) Hydrogen peroxide synthesis in isolated spinach chloroplast lamellae: an analysis of the Mehler reaction in the presence of NADP reduction and ATP formation. Plant Physiol 70:1249–1254
- Sage RF (2002) Variation in the $k_{\rm cat}$ of Rubisco in C_3 and C_4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620
- Sage RF, Li M, Monson RK (1999) The taxonomic distribution of C₄ photosynthesis. In: Sage RF, Monson RK (eds) C₄ Plant Biology. Academic Press, San Diego, pp 551–584
- Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C₄ photosynthesis. Annu Rev Plant Biol 63:19–47
- Scheibe R, Dietz KJ (2012) Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant, Cell Environ 35:202–216. doi:10.1111/j.1365-3040.2011. 02319.x
- Schneidereit J, Hausler RE, Fiene G, Kaiser WM, Weber APM (2006)
 Antisense repression reveals a crucial role of the plastidic
 2-oxoglutarate/malate translocator DiT1 at the interface between
 carbon and nitrogen metabolism. Plant J 45:206–224
- Searles PS, Bloom AJ (2003) Nitrate photoassimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. Plant, Cell Environ 26:1247–1255
- Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152
- Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. J Exp Bot 59:1647–1661. doi:10.1093/Jxb/Ern029
- Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob Biogeochem Cycles 17:6-1-6-14
- Studer RA, Christin P-A, Williams MA, Orengo CA (2014) Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci 111:2223–2228. doi:10.1073/pnas. 1310811111
- Swedish Energy Agency (2003) Artificial photosynthesis. Eskilstuna, Sweden
- Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates, Sunderland, MA
- Talhelm AF et al (2014) Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob Change Biol 20:2492–2504. doi:10.1111/gcb. 12564
- Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 15:252–260. doi:10.1016/j. pbi.2012.01.014

- Tapia O, Andrés J (1992) Towards an explanation of carboxylation/ oxygenation bifunctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol. Mol Eng 2:37–41. doi:10.1007/BF00999521
- Taub DR, Wang XZ (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO₂? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374. doi:10.1111/j. 1744-7909.2008.00754.x
- Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251
- Tolbert NE (1994) Role of photosynthesis and photorespiration in regulating CO₂ and O₂. In: Tolbert NE, Preiss J (eds) Regulation of CO₂ and O₂ by Photosynthetic Carbon Metabolism. Oxford University Press, New York, pp 8–33
- Van Niel CB, Allen MB, Wright BE (1953) On the photochemical reduction of nitrate by algae. Biochim Biophys Acta 12:67–74. doi:10.1016/0006-3002(53)90124-3
- Veen BW, Kleinendorst A (1986) The role of nitrate in osmoregulation of Italian ryegrass. Plant Soil 91:433–436. doi:10.1007/bf02198139
- von Caemmerer S, Quick WP, Furbank RT (2012) The development of C₄ rice: current progress and future challenges. Science 336:1671–1672

- Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722. doi:10.1111/j. 1438-8677.2012.00710.x
- Walker BJ, Strand DD, Kramer DM, Cousins AB (2014) The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation. Plant Physiol 165:453–462
- Warburg O, Negelein E (1920) Über die Reduktion der Salpetersäure in grünen Zellen. Biochem Z 110:66–115
- Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature's CO₂-sequestering enzyme Rubisco. Plant Physiol 155:27–35. doi:10.1104/pp.110. 164814
- Wildner GF, Henkel J (1979) The effect of divalent metal ions on the activity of Mg⁺⁺ depleted ribulose-1, 5-bisphosphate oxygenase. Planta 146:223–228
- Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B Biol Sci 355:1517–1529
- Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159
- Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261. doi:10.1146/annurev-arplant-042809-112206

