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Abstract ABC efflux transporters are a key factor leading to multidrug resistance
in cancer. Overexpression of these transporters significantly decreases the efficacy
of anti-cancer drugs. Along with selection and induction, drug resistance may be
transferred between cells, which is the focus of this paper. Specifically, we consider
the intercellular transfer of P-glycoprotein (P-gp), a well-known ABC transporter that
was shown to confer resistance to many common chemotherapeutic drugs.

In a recent paper, Durán et al. studied the dynamics of mixed cultures of resistant
and sensitive NCI-H460 (human non-small lung cancer) cell lines [9]. As expected,
the experimental data showed a gradual increase in the percentage of resistance cells
and a decrease in the percentage of sensitive cells. The experimental work was ac-
companied with a mathematical model that assumed P-gp transfer from resistant cells
to sensitive cells, rendering them temporarily resistant. The mathematical model pro-
vided a reasonable fit to the experimental data.

In this paper we develop a new mathematical model for the transfer of drug re-
sistance between cancer cells. Our model is based on incorporating a resistance phe-
notype into a model of cancer growth [14]. The resulting model for P-gp transfer,
written as a system of integro-differential equations, follows the dynamics of prolif-
erating, quiescent, and apoptotic cells, with a varying resistance phenotype. We show
that this model provides a good match to the dynamics of the experimental data of
[9]. The mathematical model further suggests that resistant cancer cells have a slower
division rate than the sensitive cells.
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1 Introduction

Antineoplastic resistance is often the key impediment to effective cancer treatment.
Though advances in early detection have increased survival rates across several can-
cer subtypes, resistance to chemotherapy is prevalent [1,12], and the majority of pa-
tients will relapse at a certain point following treatment. Therapeutic failure may be
attributed to intrinsic tumor heterogeneity prior to therapy (e.g., spatial localization of
cancer cells within a tumor, initial cellular genetic landscape, cell-cycle length varia-
tions, etc.) or induced tumor heterogeneity after initiation of therapy, such as altered
molecular signaling, genetic modification, and microenvironmental alterations.

Development of resistance to one drug can also lead to resistance to other struc-
turally and mechanistically unrelated drugs, a phenomenon referred to as multidrug
resistance (MDR). MDR can be understood through different biological factors and
is often identified with drug efflux [10]. There has been increasing evidence that drug
cellular uptake is regulated by transport proteins expressed on the cellular membrane,
which are responsible for drug transport across the plasma membrane and throughout
the cell. One such example is the family of ABC (ATP Binding Cassette) transporters.
ABC transporters can pump away chemotherapeutic agents, which allow certain cells
to withstand the drugs’ cytotoxic effect [13]. These non drug-specific transporters
provide a mechanism for the cells to resist unrelated drugs, which then leads to a
chemotherapy breakdown. While ABC transporters have important roles in the im-
portation of nutrients and exportation of toxic molecules [8], their overexpression is
a serious obstacle in anti-cancer therapies.

P-glycoprotein (P-gp), a product of the ABCB1 (mdr1) gene, is a well-known
ABC transporter that correlates with MDR [19,25]. It has been shown to confer re-
sistance to many common chemotherapeutic drugs [4,7,11,16]. In normal human tis-
sues it is concentrated in cells in the liver, pancreas, kidney, colon, and jejunum [24].
The MDR1 gene encodes the transmembrane P-gp pump that cells use to excrete
structurally and chemically diverse drugs [26]. A drug molecule is bound by the P-
gp’s cytoplasmic domain; the protein subsequently uses ATP hydrolysis and opens it-
self to the extracellular space and expels the drug molecule [26]. The overexpression
of P-gp can lead to resistance of more than 100 times higher than normal cells [5].

Drug resistance is often a multifactorial, complex process that arises through a
series of genetic and non-genetic changes across multiple cancers. Such changes can
be the consequence of drug administration (therapy-dependent), or can be acquired
independently of any drug (therapy-independent). The focus of this work is on drug
resistance that may be transferred between cells, e.g., via cell-to-cell communication.
Two studies in 2005 showed resistant populations can spread their resistance to sen-
sitive cells [2,20]. More recently, intracellular membrane nanotubes were shown to
carry P-gp between neighboring cells [22].

Mathematicians have previously studied MDR in correlation with tumor hetero-
geneity [15,18,17,21]. Jackson & Byrne used a PDEs model to describe the reduc-
tion of volume in vascularized tumors with discrete sensitive and resistant cells [15].
Lorz et al. [21] modeled resistance as a continuous variable and demonstrated that
the presence of a cytotoxic agent leads to diminished heterogeneity and a population
of overwhelmingly resistant cells. Lavi et al. extended the approach of Lorz to model
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intratumoral heterogeneity [18]. For a review on mathematical models of MDR we
refer to [17] and the references therein.

Relatively little attention has been given in the mathematical community to mod-
eling the transfer of drug resistance between cells. Pasquier et al. [23] studied cell-
to-cell transfers of P-gp in co-cultures combining a sensitive human breast cancer
MCF-7 cell line, and a P-gp overexpressed variant, selected for its resistance to-
wards doxorubicin. Pasquier et al. derived a Boltzmann type integro-partial differ-
ential equation structured by a continuum variable corresponding to P-gp activity.
The model was used to quantify the transfer of P-gp activity and, in conjunction with
the experimental data, to confirm the cell-to-cell transfer of functional P-gp.

A more recent work by Durán et al. [9], derived two models for P-gp transfer
assuming P-gp expression has a discrete characteristic: P-gp in a cell is either overex-
pressed or not. These models are written as a coupled system of ordinary differential
equations (ODEs) describing the behavior of sensitive cells (S), resistant cells (R),
and temporarily resistant cells (SR). Interaction between sensitive and resistant cells
allows the resistant population to transfer P-gp to the sensitive cells, which become
temporarily resistant. Since this is a phenotypic change, the progenies of these cells
revert back to a sensitive state. The resistant cells are not affected by the interaction
and exhibit logistic growth. The first model of [9] is given by
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We note that this model, while separating sensitive, resistant, and temporary-resistant
cells, does not explicitly assume any drug action.

A second model proposed in [9] extends (1) by assuming that P-gp is transfered
through the shedding of microvessicles (MVs) by resistant cells. MVs are small par-
ticles that are released via plasma membrane blebbing. In addition to their role in
mediating inflammation, coagulation, and vascular homeostasis, they are important
mediators of MDR, as they facilitate cell-to-cell communication and can deliver pro-
teins between cells [3]. The intake of MVs by sensitive cells may lead to temporary
resistance. A system of ODEs that incorporates the role of MVs (Q) in mediating
MDR is written in [9] as
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In addition to introducing the mathematical models, Durán et al. conducted ex-
periments on mixed cultures of NCI-H460 cell line (human non-small cell lung carci-
noma) cells and NCI-H460/R resistant cells that were selected from NCI-H460 cells
after three months of doxorubicin selective pressure. Cultures of only sensitive, only
resistant, and mixed cultures were seeded in ratios 1:1, 3:1, and 7:1 sensitive to re-
sistant cells and their growth was followed over time. Flow cytometry was used to
measure P-gp expression levels at time points 0, 24, 48, 72, and 96 hours, and P-gp
transfer was analyzed every 24 hours. The experimental data was used to calibrate
the parameters of the mathematical models.

In Fig. 1 we show the dynamics of the fractions of sensitive and resistant cells over
time for different seeding ratios. Shown are the experimental results and simulations
of (1). Clearly, while some general trends are common between the experimental data
and the simulations, the fit is not optimal. For example, it takes about half the simu-
lation time (50 hours) for the simulations to begin following the general growth trend
of the data. Intriguingly, the MV model, (2), produces a worse fit to the experimental
data than model (1), [9].
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Fig. 1 Fractions of resistant (left) and sensitive (right) cells over time. Dots correspond to the experimental
data of [9]. Solid lines are simulations of the model (1) of [9].

Our goal in this paper is to develop a new mathematical model for the transfer
of drug resistance between cancer cell subpopulations that will provide a better fit
to the experimental data of [9]. Since neither the experiments nor models of [9]
include a drug, we propose a model that incorporates no action of a drug. Building
on the idea of separating the cancer cells into three subtypes: sensitive, resistant, and
temporary resistant, we aim at providing a more accurate model by better capturing
the cancer growth dynamics. Accordingly, we incorporate the three subpopulations
into a cancer growth model of Greene et al. [14]. This model considers cells in three
states: quiescent, proliferating, and apoptotic, with transition rates that depend on the
cellular density. The model was shown in [14] to provide an accurate fit to the growth
dynamics of OVCAR-8, an ovarian cancer cell line. By incorporating drug resistance
and a mechanism of resistance transfer into the model of [14] we provide a better
match to the NCI-H460 experimental data of [9].
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The structure of this paper is as follows: In section 2 we derive our new model
for the P-gp transfer between cancer cells. Simulations of the model and a sensitivity
study of the model parameters are shown in section 3. Since the model (1) produces
more accurate results than (2), we use (1) as the reference model to which we compare
our results. Concluding remarks are provided in section 4.

2 A model of P-gp transfer between cancer cells

Our starting point is the cancer growth model of Greene et al. [14]. In this model,
cancer cells are divided into three compartments: proliferating (P), quiescent (Q),
and apoptotic (A) cells (see Fig. 2). The transition rates between the compartments
are assumed to depend on the cellular density. Quiescent cells can either remain qui-
escent, start proliferating, or commit apoptosis. Proliferating cells complete the cell
cycle unless they transition to apoptosis. Once the cell cycle is completed and a cell
divides, both cells transition to the quiescent compartment. Once a cell commits to
apoptosis, it stays in the apoptotic compartment until it dies. The duration of the cell-
cycle is assumed to be normally distributed, and the time spent in the apoptotic cycle
follows a gamma distribution. The model was designed to predict variations in growth
as a function of the intrinsic heterogeneity originating from the varying duration of
the cell-cycle and apoptosis. The model parameters were fitted in [14] to experimen-
tal data coming from OVCAR-8, an ovarian cancer cell line. However, the model is
generic and could be used to describe the growth of other cancers.

To describe resistance transfer during cancer growth, we incorporate drug resis-
tance into the PQA model of [14]. We split the quiescent compartment, Q, into sensi-
tive (Sq) and resistant (Rq) subtypes. The proliferative compartment, P, is also divided
into sensitive (Sp) and resistant (Rp) cells. In addition, the proliferative compartment
also includes a temporarily resistant phenotype (Tp). Similarly to the original PQA
model, we leave the apoptotic stage as a single compartment since we assume that
cells that enter apoptosis are committed to it. In our model the transfer of P-gp hap-
pens as the quiescent cells start proliferating. We assume that once cells have begun
proliferating they maintain their phenotype. We define ξ to be the fraction of sensitive
quiescent cells that become temporarily resistant as they transition to a proliferating
state. Since P-gp transfer only leads to temporary resistance we stipulate that the
progeny of temporarily resistant cells are sensitive cells. The amount of P-gp in a
temporarily resistant proliferating cell is divided between the daughter cells so we
consider both offsprings to be sensitive. Clearly, a more accurate model can include
a larger range of resistance levels (temporary or permanent). With the rather limited
experimental data at our disposal, we prefer the simpler approach presented here. A
diagram corresponding to our model is shown in Fig. 3.

Two equivalent model formulations were introduced in [14]: a stochastic agent-
based model, and an integro-differential (IDE) model. In this paper we choose to
work with the IDE model and extend it to incorporate drug resistance. Our model
equations are written as a system of six IDEs. The first two equations provide the



6 Matthew Becker, Doron Levy

Fig. 2 Diagram representing the PQA model from [14]. Here, P denotes the proliferative compartment,
with NP(t) cells at time t. Proliferating cells can either transition to apoptosis, A, or to quiescence Q, upon
completion of the cell-cycle. At time t there are NA(t) apoptotic cells and NQ(t) quiescent cells. Quiescent
cells can either transition to P with rate αp(t), or to A with rate αaq (t). The implicit transition rates due to
the completion of the cell cycles are shown in dashed lines.

dynamics of the quiescent cells:

dSq

dt
=−αspSq(t)−αasqSq(t)

+2
∫ t

0
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Fig. 3 Diagram representing the proposed model (3)–(5). The quiescent cells, Q, are divided into two
types: resistant quiescent cells, Rq(t), sensitive quiescent cells, Sq(t). The proliferating cells, P, are di-
vided into three compartments: resistant proliferating cells, Rp(t), temporary resistant proliferating cells,
Tp(t), and sensitive proliferating cells, Sp(t). Resistant proliferating cells become resistant quiescent cells
upon completing the cell cycle. Sensitive and temporary resistant proliferating cells become sensitive qui-
escent cells when they complete the cell cycle. Proliferating and quiescent cells may become apoptotic
cells, a compartment they leave only when they die. The time spent in the proliferating cycle is normally
distributed with parameters that may vary depending on whether the proliferating cells are resistant or not.

Three equations follow the dynamics of proliferating cells:

dSp

dt
= (1−ξ )αspSq(t)−αaspSp(t)

−
∫ t

0
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A sixth equation describes the dynamics of apoptotic cells:

dA
dt

= αasqSq(t)+αarqRq(t)+αaspSp(t)+αarpRp(t)+αatpTp(t)

−
∫ t

0
fa(t− t∗)α N(t∗)dt∗.

(5)

The first equation in (3) follows the dynamics of the sensitive quiescent cells, Sq.
The first term on the RHS, −αspSq(t), corresponds to the fraction of cells lost as
a result of the transition to the proliferative compartment P. This term encompasses
cells that stay sensitive and those that become temporarily resistant. The second term,
αasqSq(t), corresponds to the loss as a result of the transition to apoptosis. The integral
term

2
∫ t

0
fp(t− t∗; µ,σ)αspSq(t∗)

(
1−

∫ t

t∗
αasp(s)ds

)
dt∗

corresponds to the increase in Sq due to the progeny of the sensitive proliferating cells.
We assume that all proliferating cells originated from quiescent cells, so αspSq(t∗) in-
cludes all sensitive proliferating cells. There are two such terms, the first (with 1−ξ )
corresponds to sensitive proliferating cells that competed their proliferating cycle
(hence the factor of 2 in front of the integral). The second term (with ξ ) corresponds
to temporary resistant cells that completed their proliferation cycle and became sensi-
tive quiescent cells. We assume that the time spent in the proliferative compartment is
normally distributed with mean µ and standard deviation σ , both measured in hours,

fp(t; µ,σ) =
1√

2πσ
e−

(t−µ)2

2σ2 . (6)

The term 1−
∫ t

t∗ αasp(s)ds describes the cells in the cell cycle that did not move to
apoptosis before completing the proliferation cycle, where t corresponds to the time
cells entered the proliferating compartment. Overall, the full integral accounts for the
progeny for the proliferating cells whose time spent in the cell cycle has come to an
end. The somewhat complex bookkeeping in this model (expressed by the integral
terms) is due to assuming a distribution on the time cells may take to proliferate
(and die), as opposed to the more standard approach of assuming that these values
are constant. We allow the proliferation time, characterized by the parameters of the
normal distribution, µ and σ , to differ between the resistant and sensitive populations
since resistant cells may have a slower proliferation rate [6]. If these parameters are
assumed to be identical for resistant and sensitive cells, both integrals terms can be
combined into one term.

The second equation in (3) describes the dynamics of the resistant quiescent pop-
ulation, Rq. The RHS is similar to the first equation, with a loss term due to transition
into the cell cycle and another loss term due to transition to apoptosis. Since we as-
sume that these cells exhibit a resistant genotype we do not allow them to lose their
resistance and so the integral term represents the progeny from all the resistant cells
in the cell cycle that have their time span end at a certain time t.

Similar equations are provided for the three types of cells in the proliferative
compartment, described in (4). The first term on the RHS of the first equation for the
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sensitive proliferative population, Sp, represents the fraction of sensitive quiescent
cells that started proliferating but stayed sensitive and did not acquire any temporary
resistance. We include an apoptotic term and the same integral seen in (3), represent-
ing the end of the cell cycle in which each proliferating cell that has not transitioned
into apoptosis divides into two new quiescent cells. The second equation, for the re-
sistant proliferating cells, Rp, includes a transition term from resistant quiescent to
resistant proliferative and another term representing transition to apoptosis term with
the integral from the second equation in (3) showing the loss due to division at the
end of the cell cycle, as cells transition to the resistant quiescent cells compartment.
The third equation, for the temporary resistant proliferating cells, Tp, has the same
three types of terms, with ξ multiplying the transition term from sensitive quiescent
showing the fraction of cells that acquired temporary resistance.

Finally, (5) describes the apoptotic compartment. Once cells start apoptosis we
no longer distinguish between resistant or sensitive cells. Equation (5) includes the
five growth terms that correspond to the transitions from all compartments in (3)–(4).
The length of time spent in apoptotic state is assumed to be a Gamma distribution,

fa(t) =
λ ω

Γ (ω)
tω−1e−λ t , (7)

with λ and γ the rate and shape parameters of the apoptotic process and Γ (·) the
gamma function. Once cells complete the time committed to apoptosis, they are re-
moved from the system. The integral term describes this removal for all cells that die
at time t. In this term we denote the total loss by α N(t) := αasqSq(t)+αarqRq(t)+
αaspSp(t)+αarpRp(t)+αatpTp(t).

The transitions rates from [14] are functions of β (ρ) and d, the equilibrium frac-
tion of proliferating cells and the fraction in apoptosis, which we take to be constant.
We set βm and ρm as the maxima for β , and ρ , respectively, and define

β (ρ) =
{

βme−a(ρ−ρm)
2/ρ(1+ε−ρ)2

if 0 < ρ < 1+ ε,
0 otherwise.

(8)

Here, ε is a parameter governing the shape of β (ρ), and

a =
ε log(βm/d)
(1−ρm)2 . (9)

We define the transitions αsp(t) and αrp(t) as the rates from sensitive quiescent
to sensitive or temporarily resistant proliferating and resistant quiescent to resistant
proliferating, respectively. We make the assumption that P-gp expression is indepen-
dent of the transition. Hence, we set αsp(t) = αrp(t). The intrinsic death terms from
quiescent to apoptotic are αasq(t) and αarq(t), with the death terms from prolifera-
tive to apoptotic being αasp(t),αarp(t), and αatp(t). We again consider no effect of
P-gp transfer on these terms and thus have αasq(t) = αarq(t) and αasp(t) = αarp(t) =
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αatp(t). These transition rates are shown below.

αsp(t) = αrp(t) = c
(β (ρ(t))N(t)−P(t))+

Q(t)
, (10)

αasp(t) = αarp(t) = αatp(t) = cγ
(dN(t)−A(t))+

P(t)
, (11)

αasq(t) = αarq(t) = c(1− γ)
(dN(t)−A(t))+

Q(t)
. (12)

Here, Q(t), P(t), and A(t) are the total number of cells in each respective compart-
ment and N(t) = Q(t) + P(t) + A(t) with ρ(t) = N(t)/K for a carrying capacity
K. The transition from Q to P is a function of the difference between the current
proliferative population, P(t), and the desired (or equilibrium) proliferative popula-
tion, β (ρ(t))N(t). Similarly, the transitions into apoptosis are functions of the differ-
ence between current apoptotic population A(t), and the desired fraction in apoptosis
dN(t), where d is taken to be a small constant < 0.05. c is the cellular reaction rate
and γ describes the rate difference between the proliferating cells and quiescent cells
when entering apoptosis.

3 Results

3.1 Numerical Methods

We use a four-step explicit Adams-Bashforth (AB) method to approximate solutions
of the system (3)–(5). This solver is chosen since it does not require temporary inter-
mediate values, which simplifies the calculations due to the presence of the integral
terms. The method can be written as

yn+1 = yn +
∆ t
24

(55 fn−59 fn−1 +37 fn−2−9 fn−3), (13)

with lower degree AB methods for the first 3 steps. Integrals of the form∫ t

0
h1(t, t∗)

(
1−

∫ t

t∗
h2(s)ds

)
dt∗ (14)

are discretized using the same time steps used with the AB method (13). If we denote

I(t, t∗) =
∫ t

t∗
h2(s)ds,

we can approximate I(t +∆ t, t∗) with

I(t +∆ t, t∗) =
∫ t+∆ t

t∗
h2(s)ds =

∫ t

t∗
h2(s)ds+

∫ t+∆ t

t
h2(s)ds

≈
∫ t

t∗
h2(s)ds+h2(t)∆ t = I(t, t∗)+h2(t)∆ t.

(15)



Modeling the Transfer of Drug Resistance in Solid Tumors 11

Table 1 Parameter Values & Descriptions

Parameter Range Description Reference

t [0,180] (hours) Time [9]

µ1 [10,∞) (hours) Mean length of (sensitive) cell cycle [14]

σ1 [0,10] (hours) Standard deviation of (sensitive) cell cycle [14]

µ2 [12,∞) (hours) Mean length of (resistant) cell cycle [14]

σ2 [0,10] (hours) Standard deviation of (sensitive) cell cycle [14]

ω 4.9436 Shape parameter of entire apoptotic process [14]

λ 0.19117 (per hour) Rate parameter of entire apoptotic process [14]

ρ(t) [0,∞) Density of cells at time t [14]

K 7.5×105 Carrying capacity [9]

d [0.01,0.05] Fraction of cells in apoptosis [14]

β (ρ) [0,1] Fraction in cell cycle as a function of density [14]

βm [0,1] Maximum of β (ρ) [14]

ρm [0,1] Maximizing density of β (ρ) [14]

ε [0,∞) Parameter governing shape of β (ρ) [14]

c [0,∞) (per hour) Cellular reaction rate [14]

γ [0,1] Rate difference between αap and αaq [14]

ξ [0,1] Fraction of cells becoming temporarily resistant

Equation (15) requires only one function evaluation. The complete integral (14) is
then evaluated with a composite trapezoidal rule on a uniform grid:

∫ t

0
h1(t, t∗)

(
1−

∫ t

t∗
h2(s)ds

)
dt∗ ≈

∆ t
2

N

∑
k=1

(h1(t, tk)(1− I(t, tk))

+ h1(t, tk+1)(1− I(t, tk+1))) ,

(16)

with tk the kth point and N the size of the discretization.
In our simulations, we optimized the model parameters using Matlab’s nonlin-

ear least squares function, fitting the solution of (3)–(5) to the experimental data
of [9]. We set d = 0.03, which corresponds to the same fraction of cells in apoptosis
from [14]. The full list of parameters and their ranges is given in Table 1. The optimal
values used in the simulations are given in Table 2 for the case in which resistant cells
and sensitive cells have different growth parameters, and in Table 3 for the case when
the growth parameters are identical for both sensitive and resistant cells.
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Table 2 Parameters values used in simulations with different growth parameters for the sensitive and
resistant cells

Parameter µ1 σ1 µ2 σ2 ω λ K

Value 10.0258 9.2818 12.0033 5.8467 4.9436 0.19117 7×105

Parameter d βm ρm ε c γ ξ

Value 0.03 0.8 0.0458 0 15.4753 0.8331 0.0412

Table 3 Parameters Values Used in Simulations with identical growth parameters for the sensitive and
resistant cells

Parameter µ1 σ1 µ2 σ2 ω λ K

Value 10.2365 4.3263 10.2365 4.3263 4.9436 0.19117 7×105

Parameter d βm ρm ε c γ ξ

Value 0.03 0.8 0.2 0.2346 1.6732 0.5011 0.4828

3.2 Simulations
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Fig. 4 The dynamics of the total population of resistant and sensitive cells over 200 hours simulated
with (3)–(5). We consider the three initial ratios of sensitive to resistant cells: 1:1, 3:1, and 7:1.

Our first simulations show the total population of sensitive and resistant cells over
time for three different initial conditions. Following the setup of [9] we run separate
simulations for a 1:1, 3:1, and 7:1 initial ratio of sensitive to resistant cells. The
resistant subtype, as described in [9], are cells that have been given Doxorubicin for
three months and survived. At time t = 0 all cells are assumed to be quiescent. Fig. 4
shows growth up to a carrying capacity and then a small decline, which compares
well to the data shown in [9]. The trend of the population growth is similar in all
three cases.
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We next look at the how the fractions of sensitive and resistant cells change over
time. The results are shown in Fig. 5. We compared simulations of our model (3)–(5)
with simulations of the model of [9] given by (1). The simulations results are plotted
on top of the experimental data of [9]. A comparison between the results produced by
both models shows that the new model (3)–(5) provides a substantially better match to
the experimental data over the simulated 96 hours, compared with the model (1), both
in terms of the absolute error, as well as the overall trend. We see an early inflection
point in our model due to the faster proliferation rate of the sensitive cells. Initially the
growth of the sensitive cell fraction outpaces the resistant cell fraction. After about 12
hours the resistant cells begin to catch up. Then the transfer of resistance contributes
to a rise in the fraction of resistant cells.

To verify that the results are not due to overfitting sparse data, we significantly
oversampled the data, which is straightforward due to its monotonicity, and repeated
all simulations. The fits we obtained using the oversampled data were nearly identical
to those obtained with the experimental dataset.

We test the sensitivity of the model (3)–(5) to changes in four of the parameters, d,
c, ε , and ξ . Fig. 6 shows how the overall population varies when d, c, and ε , respec-
tively, are changed. We ran simulations to compare how the sensitive and resistant
fractions change but these result with only negligible changes so we focus on total
cell population. Changes to d, the parameter governing the fraction of cells in apop-
tosis, are shown in the top left graph in Fig. 6. There is a small effect on the overall
population once it has reached carrying capacity with a larger death parameter corre-
lating with a faster decline but the system overall does not change much as d changes.
The cellular reaction rate c amplifies the magnitude of cells moving from quiescent
stage into the cell cycle. The simulation shown in the top right graph in Fig. 6 con-
firms that a low c value correlates with slower growth. However, for larger values of
c, the growth is mostly independent of c. The parameter ε governs the shape of β (ρ),
the equilibrium, or desired, amount of cells in the cell-cycle. The bottom left graph
in Fig. 6 demonstrates that the total population is sensitive to changes in ε . While the
sensitive and resistant fractions remain consistent, any deviation from ε = 0 leads to
a significant decrease in the overall growth. ε = 0 implies that β (ρ) = βm, a constant.
This corresponds to a lack of dependence on density. We expect this to be the best fit
as both the model and the experimental data address a local phenomenon.

The parameter ξ , which governs the fraction of sensitive quiescent cells that be-
come temporarily resistant as they enter the cell cycle, is the final parameter we var-
ied. Resistant cells proliferate at a slower rate but we see that the difference is not
enough to induce change on the overall population. However, there is a shift in the
sensitive and resistant fractions, as would be expected. Fig. 7 shows the population
and the two fractions while Fig. 8 shows a zoomed on version of Fig. 7 to highlight
the shift towards more resistance as ξ is raised. The larger ξ is, the more cells become
temporarily resistant and so the overall resistant fraction rises.

We also ran simulations in which we allowed the sensitive and resistant cells
to have the same growth parameters (i.e., a normal distribution with identical mean
and standard deviations for the cell cycle length). Without the slower proliferation
our optimized parameters have a much larger value for ξ , the fraction of sensitive
quiescent cells that become temporarily resistant. In these simulations we have almost
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Fig. 5 Fractions of resistant (left) and sensitive (right) cells over time. Top: initial ratio 1:1. Middle: initial
ratio 3:1. Bottom: initial ratio 7:1. Dots correspond to the experimental data of [9]. Dashed lines are
simulations with the model (1) of [9]. Solid lines are simulations of (3)–(5).

half of them becoming resistant (ξ = 0.4828). The results of these simulations are
shown in Fig. 9 (compare with Fig. 5 where resistant cells are assumed to grow slower
than the sensitive cells). Even in this case, our model (3)–(5) provides a better match
in capturing the trend of the data compared with the model of [9].

We note that the parameters are optimized based on the available experimental
data that was collected over the first 96 hours. When simulating our model beyond 96
hours with identical growth distributions for the sensitive and the resistance cells, the
fractions of sensitive and resistant cells trend back towards their initial values. The
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Fig. 6 Sensitivity study of (3)–(5) for the case of an initial sensitive to resistant ratio of 3:1. All graphs
show the total cell population over time. Top Left: varying d, the fraction of cells in apoptosis. Top Right:
varying c, the cellular reaction rate that governs the transition from quiescent to proliferative. Bottom:
varying ε , the shape parameter for β (ρ).

model (1) exhibits a limit dynamics in which the sensitive and resistant cells settle
towards equilibrium values albeit values that are different than the initial distribution.

It is easy to understand the reason for this asymptotic behavior when the growth
distributions of sensitive and resistant cells are identical. In this case, we can assume
that Rp changes at a similar rate to Sp+Tp. When the carrying capacity is approached,
β (ρ) gets increasingly small. This means that the transition rates from quiescence to
the proliferative compartment shrink. Once all the temporarily resistant proliferat-
ing cells divide into sensitive quiescent cells, the transition rates are too small to
repopulate Tp. The overwhelming majority of cells are quiescent, either resistant or
sensitive. When temporary resistant cells make up a small fraction of the population,
the asymptotic distribution of cells reverts to the initial values. This can all be avoided
by allowing the resistant population to proliferate at a slower rate than the sensitive
cells, which is a biologically solid assumption [6].

4 Conclusions

Mathematical models of the mechanisms of cellular growth may assist in studying
and understanding the emergence and evolution of MDR. The cell-to-cell transfer of
P-gp and its effect have not been extensively studied by the mathematical community.
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Fig. 7 Top Left: Fraction of sensitive cells as ξ , the fraction of sensitive quiescent cells that transition
to temporarily resistant when in the proliferative state, varies. Top Right: Fraction of resistant cells as ξ

varies. Bottom: Total Population as ξ varies.

Fig. 8 Left: A close up for the fraction of sensitive cells as ξ , the fraction of sensitive quiescent cells that
transition to temporarily resistant when in the proliferative state, varies. Right: A close up for the fraction
of resistant cells as ξ varies.

In this paper we propose a model for the resistance transfer between cells. Our
model assumes that cells are either quiescent, proliferative, or in the apoptotic stage.
Cells in the quiescent and proliferative stages are designated either resistant or sen-
sitive, with an extra compartment for temporarily resistant proliferative cells. We
assume that a certain fraction of sensitive cells become temporarily resistant due to
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Fig. 9 Fractions of resistant (left) and sensitive (right) cells over time assuming identical growth param-
eters for the sensitive and the resistant cells. The parameters used in this figure are given in Table 3. Top:
initial ratio 1:1. Middle: initial ratio 3:1. Bottom: initial ratio 7:1. Dots correspond to the experimental data
of [9]. Dashed lines are simulations with the model (1) of [9]. Solid lines are simulations of (3)–(5).

P-gp transfer as they become proliferative and enter the cell cycle. This model is an
extension of the cancer growth model of Greene et al. [14] to which we incorporated
drug resistance.

We fit our model to the experimental data from [9] and show that the more de-
tailed description of the growth dynamics in our model provides a better fit to the
experimental data than the fit that can be obtained using the original model of [9]. We
demonstrate that a better match to the experimental data is obtained when resistant
cells are allowed to grow at a different rate than the sensitive cells. The best fit is
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obtained when the resistant cells grow more slowly than the sensitive cells, which is
consistent with known experimental data.
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