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Abstract In this paper, we extend the model of the dynamics of drug re-
sistance in a solid tumor that was introduced by Lorz et al. in the Bulletin
of Mathematical Biology 77:1–22, 2015. Similarly to the original, radially-
symmetric model, the quantities we follow depend on a phenotype variable
that corresponds to the level of drug resistance.

The original model is modified in three ways: (i) We consider a more general
growth term that takes into account the sensitivity of resistance level to high
drug dosage. (ii) We add a diffusion term in space for the cancer cells, and
adjust all diffusion terms (for the nutrients and for the drugs) so that the
permeability of the resource and drug is limited by the cell concentration. (iii)
We add a mutation term with a mutation kernel that corresponds to mutations
that occur regularly or rarely.

We study the dynamics of the emerging resistance of the cancer cells un-
der continuous infusion and on-off infusion of cytotoxic and cytostatic drugs.
While the original Lorz model has an asymptotic profile in which the cancer
cells are either fully resistant or fully sensitive, our model allows the emer-
gence of partial resistance levels. We show that increased drug concentrations
are correlated with delayed relapse. However, when the cancer relapses, more
resistant traits are selected. We further show that an on-off drug infusion also
selects for more resistant traits when compared with a continuous drug in-
fusion of identical total drug concentrations. Under certain conditions, our
model predicts the emergence of a heterogeneous tumor in which cancer cells
of different resistance levels coexist in different areas in space.
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1 Introduction

Resistance to chemotherapy is a key obstacle to successful cancer treatments.
Thus, the biological mechanisms responsible for the emergence of drug resis-
tance and its propagation have been extensively studied (Gillet and Gottes-
man, 2010; Teicher, 2006). Those mechanisms involve genetic and/or epige-
netic alternations that allow cancer cells to evade one or more drugs (Gottes-
man, 2002; Gottesman et al., 2002; Fodal et al., 2011). In addition, the local
tumor environment, including the availability of resources and reduced absorp-
tion or metabolism of drugs, provides ecological opportunities for resistant cells
to evolve (Gerlinger et al., 2012; Rainey and Travisano, 1998; Panetta, 1998).
The complexity of the underlying mechanisms has encouraged the develop-
ment of mathematical models for describing the emergence and evolution of
drug resistance. Such models were used for improving early detection, quantify-
ing intrinsic and acquired resistance cells, and designing therapeutic protocols
(Lavi et al., 2012; Michor et al., 2006; Foo and Michor, 2014; Roose et al.,
2007; Swierniak et al., 2009).

Mathematical approaches for modeling the growth of tumor and resistant
cells range from deterministic to stochastic and from discrete (agent-based) to
continuum models (differential equations). Modeling the emergence of resis-
tance was initiated in a series of work by Goldie and Coldman (1979, 1983a,b).
These works predominantly concentrated on point mutations that lead to resis-
tance. Their approach was extended using stochastic models including branch-
ing process and multiple mutations to study multi-drug resistance and optimal
control of drug scheduling (Komarova, 2006; Michor et al., 2006; Kimmel et al.,
1998; Iwasa et al., 2006). Continuum deterministic models using ordinary dif-
ferential equations were used as a complementary approach to study, for exam-
ple, kinetic resistance (Birkhead et al., 1987) and point mutations (Tomasetti
and Levy, 2010). Spatial heterogeneity and vascularization were incorporated
into models using partial differential equations (Anderson and Chaplain, 1998;
Trédan et al., 2007; Wu et al., 2013), integro-differential equations (Lorz et al.,
2013; Greene et al., 2014).

Recent studies emphasize the importance of the tumor microenvironment
as a driving force for drug resistance (Gerlinger et al., 2012; de Bruin et al.,
2013). Modeling the spatial dependency becomes more significant due to lim-
ited perfusion capability of large molecules and the differences in drug expo-
sure based on their distance from the capillary bed (Minchinton and Tannock,
2006; Trédan et al., 2007; Vaupel et al., 1989). Once spatially heterogeneous
populations appear, they can also modulate the absorption and metabolism
of the resources and drugs, which further promotes heterogeneity. Thus, vari-
ous spatiotemporal models have been developed aiming at understanding the
tumor morphology and phenotypic evolution driven by selective pressure from
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the microenvironment (Anderson et al., 2006; Trédan et al., 2007; Wu et al.,
2013; Panagiotopoulou et al., 2010).

The present work is an extension of Lorz et al. (2013, 2015). The 2013
paper introduced a mathematical model for studying the effects of cytotoxic
and cytostatic drugs on cancer cells. These two types of drugs have distinct
effects on cancer cells. While cytotoxic drugs aim to destroy cancer cells, for
instance, by damaging the DNA or inhibiting mitosis that lead to cell death,
cytostatic drugs, i.e., antiproliferative drugs, suppress cell growth by arresting
the cell cycle. However, exposures to these drugs may result in the develop-
ment of numerous cell intrinsic and extrinsic drug resistance mechanisms, such
as alterations to the target of drug, activation of a compensating pathway, en-
vironmental blockade, or alterations in drug metabolism. Thus, assuming a
continuous trait variable that corresponds to the resistance level, Lorz et al.
derived the long-term temporal dynamics of the fittest traits in the regime of
small mutations. The model of Lorz et al. (2013) was extended in (Lavi et al.,
2013, 2014; Greene et al., 2014) by considering sufficiently large mutations and
including cellular density effects. An extension to a radially-symmetric spatial
model was done in Lorz et al. (2015). Their work models the selection dynam-
ics of cells taking into account the availability of resources and the diffusion
of cytotoxic and cytostatic drugs.

Building on the model of Lorz et al. (2015), we develop in this paper a
mathematical model that describes the dynamics of drug resistance in a solid
tumor involving spatial diffusion and phenotypic mutation. The fundamental
differences between our model and the original model is that we consider a
growth rate function that allows for the emergence of partial resistance levels.
This is unlike the original model for which the resistance levels asymptotically
approached one of the boundaries: over time, cancer cells ended up being ei-
ther fully-resistant or fully-sensitive. Additional changes we make in the drug
response function allow to model the effect of drug concentration in modulat-
ing the resistance level. Other two major modifications in the cell dynamics
equation include a space diffusion and a mutation term. The new diffusion
term incorporates cell motility into the model. No such effect was included in
the original model. In addition, we adjust all diffusion terms in our system to
depend on the cell density, so that the cell motility and the permeability of the
resources and drugs are leveraged by the local cell concentration. Finally, our
model involves a mutation term. We study the impact of different mutation
kernels on the emerging drug resistance dynamics.

This paper is organized as follows. In section 2, we review the model and
the biological assumptions introduced in Lorz et al. (2015), which then leads
us to introducing our model. Section 3 is divided into three subsections in
which we study the three main modifications made with respect to the orig-
inal model: the growth term, the diffusion term, and the mutation term. We
demonstrate that our model provides an asymptotic trait distribution that is
not necessarily concentrated on the boundaries of the domain. This stands in
contrast to the model of Lorz et al. (2015) in which the cancer cells end up
as a delta function being either fully resistant of fully sensitive. Since in our
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case, the distribution is not necessarily attracted to the boundary of the trait
variable, we can study how the various parameters impact the emerging dy-
namics of the drug resistance. Specifically, we demonstrate that an increased
drug concentration results with a delayed relapse of the cells. However, once a
relapse occurs, a higher drug dosage selects for more resistant cells. This also
implies that an on-off drug schedule selects for more resistant cells than the
cells that are selected by a corresponding continuous drug schedule (with the
same total drug concentration). Finally, we demonstrate that when combining
spatial diffusion with mutations, a tumor may become spatially heterogeneous
by developing regions in which different levels of resistance are expressed. Con-
clusions and future directions are discussed in section 4.

2 Model and assumptions

We start with a brief overview of the model in (Lorz et al., 2015). This model
describes the dynamics of the population density of the tumor cells n(t, r, θ).
The model assumes a 2D radially symmetric setup with a normalized planar
distance of cells from the center, given by r ∈ [0, 1]. The variable θ ∈ [0, 1]
describes the normalized expression level of a cytotoxic-resistant phenotype,
i.e., the level of resistance to cytotoxic agents. This can be related to a gene
expression in a cellular level of cytotoxic drug resistance and proliferative po-
tential, such as ALDH1, CD44, CD117, or MDR1 (Amir et al., 2013; Hanahan
and Weinberg, 2011; Medema, 2013). In addition to the density of tumor cells,
the model follows the dynamics of nutrients, s(t, r) ≥ 0, a cytotoxic drug,
c1(t, r) ≥ 0 and a cytostatic drug, c2(t, r) ≥ 0. The model is written as

∂tn(t, r, θ) = [R(t, r, θ)−D(ρ(t, r))− µ1(θ)c1(t, r)]n(t, r, θ) (1)

−αs∆s(t, r) +

[
γs +

∫ 1

0

p(θ)n(t, r, θ)dθ

]
s(t, r) = 0, (2)

−αc1∆c1(t, r) +

[
γc1 +

∫ 1

0

µ1(θ)n(t, r, θ)dθ

]
c1(t, r) = 0, (3)

−αc2∆c2(t, r) +

[
γc2 + µ2

∫ 1

0

n(t, r, θ)dθ

]
c2(t, r) = 0. (4)

The first term on the RHS of Eq. (1) is a growth term,

R(t, r, θ) = R(t, r, θ; s, c2) =
p(θ)

1 + µ2c2(t, r)
s(t, r).

Here, p(θ) > 0 models the consumption of the resource depending on the resis-
tance level. In Section 3 we will demonstrate that the choice of an appropriate
consumption function p(θ) plays a key role in controlling the emerging dy-
namics. It is assumed that cells that are resistant to cytotoxic drugs use their
resources to developing and maintaining the drug resistance mechanism (Mu-
menthaler et al., 2015; Wosikowski et al., 2000), corresponding to p′(θ) < 0.
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The cytostatic drug c2(t, r) reduces the proliferation rate, with an uptake con-
stant µ2.

The second term on the RHS of Eq. (1) is a death rate D(ρ), which we
assume is of the form D(ρ) = dρ(t, r). It is proportional to the local number
of cells ρ(t, r)

ρ(t, r) =

∫
n(t, r, θ)dθ, (5)

with a constant death rate d. The third term on the RHS of Eq. (1) represents
the death of cancer cells due to the action of the cytotoxic drug c1(t, r), where
µ1(θ) is the drug uptake function. We assume that as the resistance level
increases, the cells become more resilient to cytotoxic drugs, that is, µ′1(θ) < 0.

In Eqs. (2)–(4), ∆ denotes the Laplacian operator describing the diffusion
in the radial direction, the α’s are the diffusion constants, and the γ’s provide
a decay of the corresponding terms.

The system is augmented with zero Neumann boundary conditions at r =
0, and a source term at r = 1, written as Dirichlet boundary conditions

∂rs(t, r = 0) = 0, s(t, r = 1) = S1,

∂rci(t, r = 0) = 0, ci(t, r = 1) = Ci(t), i = 1, 2. (6)

The model (1)–(4) provides a framework for studying the emergence of drug
resistance, incorporating the resource and the two types of drugs. However,
while the spatial heterogeneity is determined by the local environment, the
heterogeneity in the phenotypic space is driven by the growth term includ-
ing the resource consumption p(θ) and cytotoxic drug uptake µ1(θ). Thus,
the dependency of these factors on the phenotypic variable can be further
studied. In addition, at each spatial location, the cancer cell equation is only
governed by an exponential growth term, that lacks the effect of spatial diffu-
sivity and resistance driven by mutation. As will be demonstrated in section 3,
the model (1)–(4) asymptotically converges to a distribution of cells that are
concentrated on the boundary of the interval, either fully-resistant or fully-
sensitive cells.

To address these issues, we replace the model (1)–(4) by the following
system

∂tn(t, r, θ) = [((1− w)R(t, r, θ)−D(ρ(t, r))− C(t, r, θ))]n(t, r, θ) (7)

+αn(ρ(t, r))∆n(t, r, θ) + w

∫
R(t, r, ϑ)M(θ, ϑ)n(t, r, ϑ)dϑ,

−αs(ρ(t, r))∆s(t, r) +

[
γs +

∫ 1

0

p(θ)n(t, r, θ)dθ

]
s(t, r) = 0, (8)

−αc1(ρ(t, r))∆c1(t, r) +

[
γc1 +

∫ 1

0

µ1(θ)n(t, r, θ)dθ

]
c1(t, r) = 0, (9)

−αc2(ρ(t, r))∆c2(t, r) +

[
γc2 + µ2

∫ 1

0

n(t, r, θ)dθ

]
c2(t, r) = 0. (10)
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Equation (7) involves three terms: a reaction term describing the growth rate,
a spatial diffusion term, and a mutation term represented by an integral op-
erator. The growth term consists of a natural growth rate R(t, r, θ), a natural
death term D(ρ), and a death term due to the cytotoxic drug C(t, r, θ). Both
R and D are assumed to be of the same form as in Eq. (1). The effect of the
cytotoxic drug is modeled as C(t, r, θ; c1) = µ1(θ, c1)c1(t, r), where µ1(·, ·) > 0
is an uptake function that not only depends on θ, but also depends on the
cytotoxic drug c1. Similar to Eq. (1), we assume that ∂θµ1(·, c1) < 0 as to
model the resilience of the resistance cells, but also, ∂c1µ1(·, c1) < 0 for drug
induced resistance. This is motivated from the experiments in Mumenthaler
et al. (2015) where the net growth rate of a certain type of resistant cells are
distinctive in different levels of drug concentration. As will be demonstrated
later, it is important to consider an uptake function µ1(θ, c1) that also de-
pends on the cytotoxic drug c1. This allows us to more realistically model the
dynamics of the effectiveness of the cytotoxic drug.

We consider a spatial diffusion in the cancer cell density equation with a
coefficient αn in order to model the cell motility. We assume a zero Neumann
boundary condition at both boundaries for the cells concentration,

∂rn(t, r = 0) = ∂rn(t, r = 1) = 0.

The diffusion in the resource, cytotoxic drug, and cytostatic drug is known to
play an important role in spatial heterogeneity (Lorz et al., 2015). In addition,
the tumor pressure is identified as one of the critical features that affect the
efficacy of cancer treatment (Ariffin et al., 2014). Unlike the original model
where the diffusion coefficients αs, αc1 , and αc2 were assumed to be constants,
we assume that the diffusion coefficients are functions of the number of cells
ρ(t, r). Our model allows to consider the influence of density of the tumor on
the motility and permeability of the nutrients and the drugs.

The integral term in the cell density equation accounts for the mutation.
The weight 0 ≤ w ≤ 1 denotes the fraction of cells with phenotype θ that
undergoes mutation and the remaining 1 − w undergo faithful division. More
generally, the weight can be modeled as a function of the trait variable, i.e., w =
w(θ). The Mutation kernel M(θ, ϑ) ≥ 0 is the probability that phenotype ϑ will

be mutated into phenotype θ. Thus, we assume conservation,
∫ 1

0
M(θ, ϑ)dϑ = 1

for ∀θ ∈ [0, 1]. All model parameters including their ranges and biological
interpretation are listed in Table 1.

3 Model and simulation

In this section, we study the role of each term in the model (7)–(10) in detail,
namely, the growth rate, the diffusion terms, and the mutation term. The
numerical results are analyzed by comparing the phenotype distribution of
the cancer cells and the total number of cells defined as

q(t, θ) :=

∫ 1

0

n(t, r, θ)r2dr, ρT (t) :=

∫ 1

0

∫ 1

0

n(θ, r, t)r2drdθ,
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Table 1: List of variables and functions.

Variable/function Range Biological interpretation
r [0, 1] Radial spatial variable
θ [0, 1] Resistance level
t R+ Time
n(t, r, θ) R+ Concentration of cells with phenotype θ at (t, r)
s(t, r) R+ Density of resources
c1(t, r) R+ Density of cytotoxic drugs
c2(t, r) R+ Density of cytostatic drugs
ρ(t, r) R+ Total number of cells at (t, r)
d R+ Death rate
µ1(θ, c1), µ2 R+ Drug uptake rate
M(θ, ϑ) [0, 1] Probability of mutation from phenotype ϑ to θ
w [0, 1] Proportion of cells undergoing mutation
αn, αs, αc1 , αc2 R+ Cell motility and permeability
γs, γc1 , γc2 R+ Decay coefficient
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Fig. 1: Drug infusion schemes used in our simulations, either a constant infu-
sion Ca(t) and Cc(t) or an on-off infusion Cb(t) and Cd(t).

respectively. In addition, we denote the normalized probability density function
of the phenotype as Q(t, θ) := q(t, θ)/ρT (t).

Following Lorz et al. (2015) the initial distribution of the cancer cells is
taken as

n(t = 0, r, θ) = C0 exp

[
−(θ − 0.5)2

ε

]
. (11)

This mimics a biological scenario where most of the cells are characterized
by the intermediate level of resistance θ = 0.5 to therapies. We also take
C0 = 0.005 � 1 and ε = 0.005 � 1 assuming, following Lorz et al. (2015),
that we are dealing with a tumor spheroid of small size where micro-tumors
are derived from a single cell clone.

The resource is supplied in a constant level as S1 = 12 that is imposed
as the boundary condition in Eq. (6). For the drug infusion, we consider a
combination of two types of dose schemes, either a continuous infusion Ca(t)
or an on-off infusion Cb(t) as shown in Figure 1. We denote the interval of
the on-off scheme being nonzero on interval Ibb = ∪n∈N0

[nT, nT + Tbb], that
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is, Cc(t /∈ Ibb) = 0. Here, T is the period and Tbb is the time where the drug
is infused. For a fair comparison between different drug schemes, the dosages
are selected in such a way that the total dose delivered remains the same over
a time interval [0, T ]. For instance, Cc(t) = 0.24Ca(t) and Cd(t) = 0.84Cb(t)

for T = 14 and Tbb = 4, so that
∫ T
0
Cc(t)dt =

∫ T
0
Cd(t)dt. Following Lorz

et al. (2015) we choose three different dose schedules. The first two include no
cytostatic drug and either a constant or an on-off infusion for the cytotoxic
drug C1(t), that is,

Schedule 1: C1(t) = kCa(t), C2 = 0,

Schedule 2: C1(t) = kCb(t), C2 = 0,

with some constant k. In addition, we consider a combination of the cytotoxic
and cytostatic drug

Schedule 3: C1(t) = Cd(t), C2(t) = Cc(t).

Schedule 3 is shown in Lorz et al. (2015) to be the best dose scheme for the
model (1)-(4) when taking into account the cell growth and the resistance
level.

3.1 Phenotype selection depending on cytotoxic drug

We start by investigating the growth rate in Eq. (7). This growth rate is based
on three terms: the natural division rate R(t, r, θ), the death rate D(ρ), and
the response to the cytotoxic drug C(t, r, θ). Here, to focus on the role of these
terms, we neglect the diffusion in n(t, r, θ) and the mutation terms by taking
αn = 0 and w = 0.

First, we show that the long time dynamics of the system in Lorz et al.
(2015) can be categorized into few distinct scenarios as it has been proven in
Lorz et al. (2013); Greene et al. (2014). To simplify the analysis, we consider
constant infusion of resources and cytotoxic drugs for the boundary condi-
tion in Eq. (6). We also assume that the death rate D is independent of the
total cell density ρ. With an appropriate choice of numerical discretization,
the semi-discretized system of Eq. (7) can be considered as a system of or-
dinary differential equations of the grid point values rk of the solution, that
is, nk = n(t, rk, θ). For instance, we can take a finite difference discretization
or collocation basis functions at the grid points, such as Lagrangian polyno-
mials. In addition to time independent boundary conditions, we assume that
Eqs. (8)-(10) have constant decay coefficients,12 then the system becomes

∂tnk =
(
R̂k(θ)− D̂(θ)− Ĉk(θ)

)
nk, (12)

1 Since the perturbations in the decay coefficients are small, for instance, γs �∫ 1
0 p(θ)n(t, r, θ)dθ, this estimation is similar to our simulation.
2 The solutions can be explicitly written in terms of a modified Bessel function of the first

kind I0(r) as s(r) = S1I0
(√
λsr
)
/I0

(√
λs
)
, where λs = γs/αs, and similarly for c1(r) and

c2(r). Then, R̂k(θ) =
p(θ)

1+µ2c2(rk)
s(rk) and Ĉk(θ) = µ1(θ)c1(rk).,
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Fig. 2: Comparison of the growth term R(t, r, θ) and the drug effect C(t, r, θ).
The second row plots the net growth rate R(θ)− C(θ). (a) linear uptake and
drug functions (Lorz et al., 2015). (b) nonlinear functions (13). In both figures,
s(t, r) = 12 and c1(t, r) = c1.

and we can directly apply Theorem 1 in (Lorz et al., 2013; Greene et al., 2014).
The theorem describes the two qualitatively distinct scenarios as follows:

Theorem 1 Consider Eq. (12) with initial condition nk(0, θ). If R̂k(θ) <
D̂(θ) + Ĉk(θ), ∀θ ∈ [0, 1], then

lim
t→∞

nk(t, θ) = 0, ∀θ ∈ [0, 1], lim
t→∞

ρk(t) = 0.

Alternatively, if there exists a θ ∈ [0, 1] such that R̂k(θ) > D̂(θ) + Ĉk(θ), then

lim
t→∞

nk(θ, t)

ρk(t)
=

m∑
i=1

aiδ (θ − θi) ,

where δ(·) denotes the Dirac-delta function, ai are positive constants such that∑m
i=1 ai = 1, and

θi = arg max0≤θ≤1

(
R̂k(θ)− D̂(θ)− Ĉk(θ)

)
.

The simplest form of the proliferation and drug uptake functions is linear
(Grothey, 2006; Brodie, 1992), i.e., p(θ) = a1θ + a2 and µ(θ) = b1θ + b2,
respectively. As described in Section 2, both functions should have a negative
derivative with respect to the phenotype θ, i.e., a1 < 0 and b1 < 0. Figure 2
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Fig. 3: The trait distribution of the cancer cells q(t, θ) for t ∈ [0, 200]. The
shown results are computed with (a) the linear resource and uptake functions
(Lorz et al., 2015); and (b) nonlinear functions. The left column is calculated
with no drug and the right column is calculated with an on-off infusion of the
cytostatic drug. In the linear model, the trait distribution becomes a delta
function at the (fully-sensitive) boundary θ = 0. The nonlinear model exhibits
dynamics in which the limit distribution is heterogeneous and is not necessarily
concentrated on the boundary.

(left) shows the growth term R(t, r, θ) and the drug effect C(t, r, θ) for the
linear model with the coefficients prescribed as in Lorz et al. (2013). We note
that the maximum growth rate without the cytotoxic drug, R(θ), is achieved
at the boundary of the trait θ = 0, which also corresponds to the case of only
using cytostatic drugs. On the other hand, when a sufficiently large amount of
cytotoxic drug is applied, the growth rate R(θ)−C(θ) is maximized at θ = 1.
Thus, by Theorem 1, the density function of the traits approaches a delta
function that is concentrated at the boundary. For example, with a sufficient
amount of cytotoxic drug using schedules 1 or 2, the density function of the
traits approaches a delta function located at θ = 1, while for cytostatic drug
or no drug, the density function of the traits approaches a delta function at
θ = 0. This corresponds to the first row of Figures 3 and 4.

To overcome an asymptotic solution in the form of a delta function at
θ = 0 or θ = 1, we propose to replace the linear proliferation and drug uptake
functions by nonlinear functions, inspired by Greene et al. (2014). We assume
functions of the form:

p(θ) =
a1

1 + a2θ5
, µ1(θ, c1) =

b1
1 + b2θb3

. (13)

Here, a1, a2, b1 are positive constants, and b2 := b2(c1), b3 := b3(c1) are
positive functions. Since ∂θp(0) � 1 and ∂θµ1(0) � 1, this choice avoids a
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Fig. 4: The trait distribution of cancer cells q(t, θ). (a) linear resource and
uptake functions (Lorz et al., 2015). (b-c) nonlinear resource and uptake func-
tions Eq. (13). Figures (a) and (b) correspond to schedule 1 while figure (c)
corresponds to schedule 2. The columns (from left to right) represent increased
dosage. The figures for the linear model with dosage C1(t) = 4, 6 are zoomed
on 0.9 ≤ θ ≤ 1 to emphasize the asymptotic concentration of the density at
θ = 1. In the nonlinear model, a higher dosage of the cytotoxic drug results
with a delayed relapse with higher resistance levels.
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blowup at θ = 0. The parameters chosen for the simulations are estimated as
follows: First, we assume the Norton-Simon hypothesis (Simon and Norton,
2006) in which the rate of regression under chemotherapy is related to the rate
of tumor growth:

a1
1 + a2

∝ b1
1 + b2

. (14)

We further set the average proliferation rate and the average mortality rate
due to the effect of cytotoxic drugs to the following constants (Corbett et al.,
1975; Grothey, 2006).∫ 1

0

p(θ)dθ ≈ 0.2,

∫ 1

0

µ1(θ, c1)dθ ≈ 0.8. (15)

In particular, we choose a1 = 0.22, a2 = 1.2, and b1 = 1.5, and the functions
b2(c1) = 5 + 1.25c1 and b3(c1) = 2 + 0.5c1, see de Pillis et al. (2005, 2014).
The corresponding growth and drug effect functions are plotted in Figure 2
for different values of c1. We observe that both functions are less steep near
θ = 0 and the maximal value of R(t, r, θ) − C(t, r, θ) is achieved away from
θ = 1.

Figure 3 compares the growth of the cancer cells in the linear and nonlinear
models for the cases without the cytotoxic drug. Shown are the cell concen-
tration with respect to the traits q(t, θ) computed up to t = 200, without the
drug and with the cytostatic drug. As expected from the theorem, without the
cytotoxic drug, the trait distribution using the linear model becomes a delta
function at θ = 0. On the other hand, the nonlinear model (13) prevents the
density function from blowing up at the boundary. Figure 4 shows the results
of using the drug schedules for the cytotoxic drug. The linear model (shown
in the first row) with sufficiently large dosage, for instance, C1(t) = 6, 8, sends
the trait distribution to a delta function at θ = 1. We note that the figures
are plotted in the range 0.9 ≤ θ ≤ 1 to visualize the concentration of den-
sity at θ = 1. In our parameter setting, the threshold dosage is 2.25, and
a dosage lower than the threshold asymptotically results with a distribution
that approaches a delta function at θ = 0. This is demonstrated for C1(t) = 2
in Figure 4 (upper-left), where the computation is carried out until t = 600.
In contrast to the linear case, the nonlinear model results in an asymptotic
distribution centered around an intermediate resistance level 0 < θ < 1. The
width of the asymptotic distribution shown in Figure 4 is still rather narrow.
We will later study factors that control this spread in heterogeneity.

As shown in Figure 2, the maximum value of R(t, r, θ)−C(t, r, θ) is achieved
at a higher level of resistance trait as the cytotoxic drug dosage c1 increases.
In Figure 4 (b, c) we plot the cell concentration with respect to the traits
q(t, θ) using continuous Ca(t) and on-off Cb(t) drug schemes for the cytotoxic
drug C1(t). The corresponding total number of cells relative to the initial
value are plotted in Figure 5. We observe that a high dosage of cytotoxic
drug delays the time of relapse. However, when a relapse occurs, cells with
higher resistance level are selected. In particular, the delayed relapse in our
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simulations is consistent with the experiments in Mumenthaler et al. (2015);
Garvey et al. (2016), where the resistant cells have positive but less growth
rates in higher drug dosages. In addition, the on-off scheme for the cytotoxic
drug selects for more resistant cells than those selected by the corresponding
continuous schedule with the same total dose. Temporarily, there is a reduction
in the cancer cell population. Asymptotically, larger populations emerge with
a higher resistance level. We note that considering different distributions in
the initial density other than (11) affects the time of relapse, although the
dominating resistance trait will be similar.

Finally, we comment that with an appropriate death rate function D(ρ),
the boundedness of the total number of cancer cell is provided by Theorem 2 in
(Greene et al., 2014). Based on the assumption of the theorem, the death rate
function must satisfy limρ→∞D(ρ) =∞. In particular, we choose D(ρ) = d̄ρ,
with a constant death rate d̄. Then, for the semi-discretized version of Eq. (7),

∂tnk =
(
R̂k(θ)− d̄ρ̂k − Ĉk(θ)

)
nk, (16)

and the diffusion Eqs. (8)-(10) with time independent boundary conditions and
decay coefficients, Theorem 2 in (Greene et al., 2014) provides the following
result,

Theorem 2 In the semi-discretized system Eq. (16), with finite positive con-
stants RMk and Cmk

3, there exists ∃ρ̂Mk <∞ such that

0 < ρ̂k(t) ≤ ρ̂Mk , ∀t ≥ 0,

and ρT (t) ≤ maxk ρ̂
M
k

Our simulation results shown in Figure 5 confirm the results of Theorem 2.

3.2 Phenotype variability depending on spatial diffusion

It is well known that the spatial component and the diffusion play a crucial
role in heterogeneous cancer growth (Lorz et al., 2015; Anderson et al., 2006;
Trédan et al., 2007; Wu et al., 2013; Panagiotopoulou et al., 2010). In this
section, we study how the diffusion terms effect the cancer growth and the
phenotypic heterogeneity in the resistance level. The diffusion terms in our
system can be classified into two groups: (i) the cell motility modeled as a
diffusion process with coefficient αn in Eq. (7); and (ii) the permeability of the
resource and the drugs with coefficients αs, αc1 , and αc2 in Eqs. (8)-(10). We
aim to examine the role of these diffusion terms in our model. The coefficients
are initially taken as constants, which allows us to study the sensitivity with
respect to the magnitude of each term. We then model the coefficient as a
function of ρ(t, r) to further include the influence of cell density.

3 RMk = maxθ

[
p(θ)

1+µ2c2(rk)
s(rk)

]
, Cmk = minθ [µ1(θ)c1(rk)]. Space independent bounds

can be given as RM = maxθ

[
p(θ)

1+µ2C2/I0(
√
λc2 )

S1

]
and Cm = minθ

[
µ1(θ)C1/I0(

√
λc1 )

]
,

where I0(r) is a modified Bessel function of the first kind, λc1 = γc1/αc1 , and λc2 = γc2/αc2 .
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Fig. 6: The surface of cancer cell concentration n(t, r, θ) at time t = 100 for
different values of αs and αc1 without cell diffusion. As the resource becomes
more permeable, the cancer cell growth near the center (r = 0) is expedited.
This increases the overall heterogeneity particularly when the drug permeabil-
ity is low (first row).
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Fig. 7: Phenotype distribution q(t, θ) on time interval t ∈ [0, 200] for different
values of αs and αc1 without cell diffusion. The phenotype heterogeneity be-
comes relatively large when the resource is more permeable compared to the
drug (upper-right corner).
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Fig. 8: The surface of cancer cell concentration n(t = 100, r, θ) with nonzero
cell diffusion αn. The results shown are for different values of αn and αs with
fixed αc1 = 0.08. The cells become homogeneous along r as cell motility, αn,
increases.

We first consider a constant infusion scheme of the cytotoxic drug C1(t) =
4Ca(t) and test for different values of permeability of the resource and the
cytotoxic drug without cell mobility, i.e. setting αn = 0. We vary αs and αc1
by an order of magnitude from 0.08 to 0.8. In order to consider the same
amount of the resource and drug across different permeability, we impose the

boundary condition in Eq. (6) so that
∫ 1

0
s(t = 0, r)r2dr is preserved. Here,

s(t = 0, r) is the solution to Eq. (8) with n(t, r, θ) = 0 assuming that no cancer
cells are present. The reference solution is taken as the case of αs = 0.08 and
S1 = 12. Then the boundary condition for αs = 0.25 and αs = 0.8 becomes
S1 = 9.08 and S1 = 7.91, respectively.

The cell concentration surface n(t, r, θ) at t = 100 and the phenotype
distribution q(t, θ) up to time t = 200 for different values of αs and αc1 are
plotted in Figures 6 and 7. We observe that the cancer cell distribution changes
significantly depending on the magnitude of these diffusion coefficients. In
Figure 6, the growth of cancer cells near the center r = 0 is accelerated as the
permeability of resource increases, while the resistance level of the cell differs
depending on the drug permeability. In particular, when the drug permeability
is low, the cell population becomes more heterogeneous due to the larger drug
dose next to the boundary r = 1. Such phenomena is clearly depicted in
Figure 7, where we observe a larger variance in the phenotype distribution
when the cytotoxic drug is less permeable compared to the resource.

Next, we study the effect of cell motility by considering nonzero αn. In
Figures 8 and 9, we take αn as 10−4, 10−3, 10−2 and test different values of αs
with fixed αc1 = 0.08. These are comparable to the first row of Figures 6 and 7.
In contrast to the diffusivity of the resource and the cytotoxic drug, the cell
diffusion reduces phenotypic heterogeneity. The cell resistance level becomes
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Fig. 9: Phenotype distribution q(t, θ) on t ∈ [0, 200] with nonzero cell diffusion
αn. The results are shown for different values of αn and αs with fixed αc1 =
0.08. As αn increases, the increased phenotypic homogeneity is reflected in the
reduced variance.

more homogeneous in the direction of r as shown in Figure 8. When αn = 10−2,
the cell phenotype density becomes uniform in r as in the lower-right corner
of Figure 6. The phenotype distribution q(t, θ) in Figure 9 also illustrates that
the cells concentrate around a single trait with smaller variance. In addition,
we observe an instance of cell clustering yielded by a certain amount of cell
mobility, when cells are sufficiently diversified. For instance, in Figure 8, when
αn = 10−3 and αs is large, the cells near the center and the boundary tend to
cluster around different resistance levels, although they eventually merge into
a single cluster when αn ≥ 10−2.

With our parameter setting, the cancer cell population increases by two or-
ders of magnitude depending on the drug dosage (See Figure 5), which makes
it reasonable to assume that this will affect the cell motility and the perme-
ability of the resources and the drugs. Therefore, we propose to consider the
diffusion coefficient as a function of the local cell concentration ρ(t, r). The
cell diffusion in Eq. (7) is assumed to be of the following form

αn(ρ) =
α̃n

1 + β̄n
ρ(r,t)
ρ(r,0)

, (17)

where α̃n = ᾱn(1+ β̄n) with ᾱn as the initial magnitude of diffusion coefficient
and β̄n being the sensitivity constant to the cell density. The diffusion coef-
ficient decreases with an increased cancer cell population. The coefficient is
bounded by zero and the initial value ᾱn, i.e., 0 < αn(ρ) ≤ ᾱn. The diffusion
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ᾱ
n
=

1
0
−
4

θ
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Fig. 10: The surface of cancer cell concentration n(t = 100, r, θ) with the scaled
diffusion, Eq. (17). The cell population becomes more variant compared with
the constant coefficient model. Different effects of cell mobility ᾱn and resource
permeability ᾱs are observed.

terms in the other equations are taken similarly as

αs(ρ) =
ᾱs(1 + β̄s)

1 + β̄s
ρ(r,t)
ρ(r,0)

, αc1(ρ) =
ᾱc1(1 + β̄c1)

1 + β̄c1
ρ(r,t)
ρ(r,0)

, αc2(ρ) =
ᾱc2(1 + β̄c2)

1 + β̄c2
ρ(r,t)
ρ(r,0)

.

In our simulations, we set the sensitivity constants as β̄n = β̄s = β̄c1 = β̄c2 =
0.1.

The results showing the effect of scaled diffusion are plotted in Figures
10 and 11. To compare with the constant diffusion model shown in Figures 8
and 9. we test different values of ᾱs and ᾱn with fixed ᾱc1 = 0.08. With the
scaled diffusion, the overall heterogeneity in the resistance level increases. In
addition, the combined effect of resource permeability ᾱs and cell mobility ᾱn,
that increases and lessens the cell variation, respectively, can yield multiple
clusterings in the cell population. In particular, the phenotype distribution
q(t, θ) plotted in Figure 11 shows not only the increased variance, but also
cells gathering around two different trait values. This is shown more clearly in
Figure 12 where we compare the phenotype distribution q(t, θ) at t = 200 be-
tween the constant and the scaled diffusion coefficient model. Furthermore, in
Figure 13, we consider the case where the resource is infused with an increased
level of resource as S1 = 12. The separation of the resistance level between the
center and the boundary is more apparent, and the corresponding phenotype
distribution becomes a bimodal function.
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ᾱs = 0.25

0 100 200

1

0.5

0
t

θ
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Fig. 11: Phenotype distribution q(t, θ) on t ∈ [0, 200] with the scaled diffusion,
Eq. (17). The scaled diffusion model provides increased heterogeneity in the
resistance level.
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ᾱ
s
=

8 θ

0  0.5 1  

1  

0.5

0  
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observe that with an increased level of resource and cell diffusion, the cell
clustering near the center and the boundary become more apparent, and the
phenotype distribution becomes a bimodal function.

0  100 200
0

50

100

t

ρ
T
(t
)/

ρ
T
(0

)

ᾱ c1 = 0.08
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ᾱn = 10−2
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Fig. 15: Total number of cancer cells ρT (t)/ρT (0) using drug schedule 3 (◦)
and double the dosage of schedule 3 (×). The resource diffusion and the cell
diffusion are fixed as ᾱs = 0.25 and ᾱn = 10−3, respectively. The cancer cell
growth is sensitive to the permeability of the drugs. For the case of ᾱc1 =
ᾱc2 = 0.08, doubling the dosage does not prevent the relapse.

Figures 11-13 demonstrate that our model can capture the dynamics that
leads to a heterogeneous tumor in space, where different level of heterogeneity
are expressed in different locations in space. It is a one-dimensional caricature
of what we expect to see in 3D tumors in vivo. Cells that become drug resis-
tant at certain locations in space may develop into aggregates that have local
characteristics of resistance.

We study the quantitative features of the cancer cell population in Fig-
ure 14. The relative total number of cell ρT (t)/ρT (0), standard deviation of
the phenotype distribution σ[n(t)], and the deviation from the initial popula-
tion DKL(Q0||Qt)4 are compared for different values of diffusion coefficients.
The resource and cytotoxic drug diffusion influences all three measures in op-
posing directions. While both resource and drug diffusion are critical to the
size and the variance of cancer cells, the resource diffusion has slightly more in-
fluence on the emerging heterogeneity. However, the deviation from the initial
distribution is more affected by the diffusion of the drug.

We also test the combination of an on-off cytotoxic drug and constant cyto-
static drug, given by drug schedule 3. This schedule was shown to be effective
in eliminating cancer cells (Lorz et al., 2015), which is the reason as of why we
study the impact of diffusion on this schedule. Figure 15 shows the total num-

4 DKL(Q0||Qt) is the K-L divergence from the initial distribution Q0(θ) := Q(t = 0, θ),

DKL(Q0||Qt) :=

∫ 1

0
Q0(θ) log

Q0(θ)

Q(t, θ)
dθ,

that represents the divergence of the phenotype distribution from initial time.
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Fig. 16: Cancer cell distribution using drug schedule 3 as in Figure 15. Cancer
cells either die or grow depending on the permeability of the drugs. n(t =
200, r, θ) shows that the surviving cells are located close to the center of the
initial distribution.

ber of cancer cells ρT (t)/ρT (0) for different values of the diffusion coefficient
for the cytotoxic drug, ᾱc1 , and the cytostatic drug, ᾱc2 . The resource diffusion
and the cell diffusions are fixed with coefficients ᾱs = 0.25 and ᾱn = 10−3,
respectively, and the cytostatic uptake rate is taken as µ2 = 100. We see that,
as expected, the total number of cells increases when the diffusion of the cyto-
static drug is low (as the growth is not effectively inhibited). By doubling the
drug dosage to C1 = 0.5 and C2 = 1.7, the drug schedule is more effective in
reducing the population of cancer cells except for the case of a low diffusion in
both the cytotoxic an cytostatic drugs (upper-left corner) that demonstrates
that a relapse is still possible. In particular, the cell concentration surface and
the phenotype distribution are plotted in Figure 16 for the cases when the
cells survive (ᾱc1 = ᾱc2 = 0.08) and when they die out (ᾱc1 = ᾱc2 = 0.8). In
the former case, the cells that grow are shown to stay close to the center of the
initial distribution. Still, this dosage scheme has its advantage as it keeps the
level of resistance under control in a moderate range. It also keeps the number
of cancer cells relatively smaller than the relapse occurred by the cytotoxic
drug.

3.3 Phenotype selection depending on mutation kernel

Mutation is a key factor that affects the dynamics of resistance in cancer.
Here, we aim to model the mutation kernel M(θ, θ′) in Eq. (7) to explore
its impact on the phenotype distribution. The kernel M(θ, θ′) represents the
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(dashed line) and with mutation (solid line) using a Gaussian mutation kernel
(18) and w = 0.1. This mutation expedites the occurrence of resistant cells,
while preventing an extreme localization at a single trait.

probability of mutation from a mother cell with phenotype θ′ to a daughter
cell with phenotype θ. In modeling the mutation kernel we encode for the
asymmetry of mutations in the forward (more resistant) and backward (less
resistant) directions. In addition, by considering either a smooth function or a
discontinuous function for the mutation kernel, we can model mutations either
as a continuous process or as a jump process.

We consider the mutation kernel in the following form,

M(θ, θ′) = K(θ′) exp

[
−|θ − θ

′|2

`(θ, θ′)
2

]
, θ, θ′ ∈ [0, 1], (18)

where ` is the correlation length that determines the mutation range in the
trait space. The correlation length is taken as a function `(θ, θ′) so that the
characteristics of mutation can be readily modeled with respect to the re-
sistance level. To model asymmetry, we consider one ` in the domain that
increases the resistance level, `u(θ, θ′) on θ > θ′, and a second ` in the comple-
mentary domain, `d(θ, θ

′) on θ ≤ θ′. For a regular occurrence of the mutation
that depends on the phenotype, we consider `u as a linear function in terms
of θ̄ := (θ + θ′)/2, that is,

`u(θ, θ′) = `u(θ̄) = (cur − cul) θ̄ + cul, (19)
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Fig. 19: Comparison of the phenotype distribution q(t, θ) without mutation
(dashed line) and with mutation (solid line) using a piecewise linear muta-
tion kernel (20) and w = 0.1. This mutation kernel allows for less frequent
mutations in certain trait values.
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Fig. 20: Effect of mutation on the cell concentration measured by the mean
E[n(t)] and standard deviation of the phenotype σ[n(t)] , and the KL diver-
gence DKL(Q0||Qt).

where the correlation length changes linearly from cul at phenotype zero to
cur at phenotype one. Similarly, we denote `d(θ, θ

′) = (cdr − cdl) θ̄ + cdl. The
irreversibility of the mutation can be imposed by `d = 0, and less strictly by
taking smaller correlation lengths when θ ≤ θ′ compared to θ > θ′, i.e., cur ≥
cdr and cul ≥ cdl. In our simulations, we choose cul = 0.02, cur = 0.01, cdl =
10−10, and cdr = 0.01 (see Figure 17). The mutation in the upper direction is
reduced by considering a negative slope for `u, and to avoid saturation at the
highest resistance level, we allow backward mutation near θ = 1.

Although a Gaussian kernel with a smooth correlation function can model
the mutations that occur regularly, we consider a second mutation kernel that
reduces the probability of mutation occurring at certain trait values. This can
be obtained, e.g., by considering a mutation kernel based on piecewise linear
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functions defined on nD partitions,

M(θ, θ′) =

{∑nD

i=1K(θ′)(θ − θi−1)χ
(θ,θ′)
Ωi×Ωi

, θ ≥ θ′,
0, otherwise,

(20)

where {Ωi}nD
i=1 is a partition of [0, 1] with boundaries denoted as Ωi = [θi−1, θi],

and χA is an indicator function on A. The boundary values of Ωi correspond to
phenotype values that may be more difficult to mutate away from5. Figure 17
shows an example of a mutation kernel using this form of correlation function.
We take nD = 10 uniform partition of [0, 1]. We emphasize that these are
arbitrary choices.

To study the impact of these mutation kernels, we test for the case when
the diffusion constants are ᾱn = 10−3, ᾱs = 0.8, 0.08, and ᾱc1 = 0.08 using
drug schedule 1. We fix w = 0.1, and compare the result with the reference
phenotype distribution without mutation, w = 0. Figures 18 and 19 show
the phenotype distribution q(t, θ) corresponding to the two mutation kernels
shown in Figure 17, using the Gaussian kernel (18) and piecewise linear (20)
functions. In Figure 18, we observe that smooth linear correlation lengths
increase the variance in q(t, θ) and regularize the distribution. In spite of the
diffusion terms, our model still has a tendency to concentrate near the point
where the maximum growth rate is achieved. This type of mutation kernel
prevents the phenotype distributions from being well localized after long time
simulations (Greene et al., 2014). In addition, the phenotype distribution is
smoothly shifted toward the higher resistance levels due to the asymmetry
in the kernel. The quantitative effect of mutation comparable to Figure 14 is
shown in Figure 20. The correlation length of the mutation increases all three
features including the mean E[n(t)] and standard deviation σ[n(t)] of the
resistance level, and the deviation from the initial distribution DKL(Q0||Qt).

In contrast to the linear case, the phenotype distribution using a piecewise
linear mutation kernel shows distinctive features. In Figure 19, we observe that
cancer cells accumulate before crossing the bottleneck trait values. This makes
the phenotype distribution different from the reference distribution that is
rather close to a symmetric unimodal function. In the case of αs = αc1 = 0.08
at time t = 100, an even higher peak shows next to θ = 0.8, yet, a small
number of cells begin to cross the blockage point at t = 150.

In most studies, modeling mutations using integral transformations results
with an increased variance due to the smoothening of the cell distribution.
Our approach provides possible alternative sources for obtaining irregularity
in the cell distribution.

5 Similar behavior can be modeled using the Gaussian kernel (18) by considering a piece-
wise continuous correlation length on {Ωi}. For instance, `u(θ, θ′) = `i(θ̄) on each θ̄ ∈ Ωi,
where `i(θ̄) is a quadratic function that decays as θ̄ approaches the partition boundary.
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4 Conclusion

In this paper, we developed a mathematical model that describes the evolu-
tion of drug resistance in cancer cells with regards to the spatial dynamics of
the resource and drugs, cell motility, and phenotypic mutation. In contrast to
the original Lorz model, our model allows the emergence of partial resistance
levels. We emphasize that this modification is shown to result with tumor dy-
namics that is more relevant to the biology. Moreover, by assuming a drug
response that depends on the concentration, we encode for the sensitivity of
the resistance level to high drug dosages, that is consistant with the observa-
tions made in Mumenthaler et al. (2015); Garvey et al. (2016). We show that
increased drug concentrations are correlated with a delayed relapse, though
with higher resistant traits being selected. f We further show that an on-off
therapy schedule also selects for more resistant traits when compared with a
continuous schedule of identical total drug concentrations.

Our model incorporates cell diffusion and mutation into the resistance dy-
namics. While the resource permeability increases the phenotypic heterogene-
ity by allowing various level of cells to grow in distinct locations, increased level
of diffusion in the cell motility and the drug permeability play an opposite role.
Since the cell population is highly sensitive to the diffusion, we emphasize that
it is important to consider diffusion coefficients that depend on the local cell
concentrations. The combined effect of the diffusion terms in our model yields
distinctive cell populations. We also show that under certain conditions, our
model predicts the emergence of a heterogeneous tumor in which cancer cells
of different resistance levels coexist in different areas in space. Finally, the mu-
tation term, parametrized by the range of mutation allowed in each resistance
level, increases the phenotypic variation.

Although the assumption of radial symmetry is consistent with experimen-
tal evidence on tumor spheroids of small size (Yu et al., 2004), it is no longer
valid for larger, vascularized tumors (Anderson et al., 2006; Trédan et al.,
2007). We intend to extend our model to a full 2D system. This will allow us
to investigate the spatial dependency of intra-tumor heterogeneity in a more
general setting. In addition, we propose to extend our theoretical results by
combining them with more recent analytical results of phenotypic structured
selection models (Mirrahimi and Perthame, 2015; Jabin and Schram, 2016).
Another drawback of our model is that the trait variable represents the re-
sistance level regarding the cytotoxic drug without considering the cytostatic
drug. We aim to study multi-drug resistance (Panagiotopoulou et al., 2010)
by considering a multi-dimensional trait variable subject to different classes of
drugs and other phenotypes. It will be of great interest to extend the present
model to specific clinical problems. Although mapping the heterogeneity in the
physical and phenotypic space in vivo is not possible with current technology,
we look forward to validating and quantifying our model observations, and
exploring various optimal chemotherapy scheduling (Schättler and Ledzewicz,
2015) while incorporating the heterogeneity of the drug response.
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