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Abstract

The emergence of drug-resistance is a major challenge in chemotherapy. In this paper we develop a mathematical
model to study the dynamics of drug-resistance in solid tumors. Our model follows the dynamics of the tumor,
assuming that the cancer cell population depends on a phenotype variable that corresponds to the resistance level to
a cytotoxic drug. The equation for the tumor density is written as a reaction-diffusion equation with a pressure term
that depends on the local cell density. The model incorporates the dynamics of nutrients and two different types of
drugs: a cytotoxic drug, which directly impacts the death rate of the cancer cells, and a cytostatic drug that reduces
the proliferation rate. This model successfully integrates the phenotype structured drug-resistance approach with an
asymmetric tumor growth model in space. Through analysis and simulations we study the impact of spatial and
phenotypic heterogeneity on the tumor growth under chemotherapy. We demonstrate that heterogeneous cancer cells
may emerge due to the selection dynamics of the environment. Our model predicts that under certain conditions,
multiple resistant traits emerge at different locations within the tumor. We show that a higher dosage of the cytotoxic
drug may delay a relapse, yet, when this happens, a more resistant trait emerges. Moreover, we estimate the expansion
rate of the tumor boundary as well as the time of relapse, in terms of the resistance trait, the level of the nutrient, and
the drug concentration. Finally, we propose an efficient drug schedule aiming at minimizing the growth rate of the
most resistant trait. By combining the cytotoxic and cytostatic drugs, we demonstrate that the resistant cells can be
eliminated.
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1. Introduction 1998; Rainey and Travisano, 1998). The complex dy-
namics of the underlying mechanisms has encouraged
the development of mathematical models for describing
the emergence and evolution of drug resistance. Such
models were used for improving early detection, quan-
tifying intrinsic and acquired resistance cells, and de-
signing therapeutic protocols (Foo and Michor, 2014;
Lavi et al., 2012; Michor et al., 2006; Roose et al., 2007;
Swierniak et al., 2009). These approaches pave a way
towards a better understanding of clinical studies and
experimental observations by assisting to decipher the
complex mechanisms that control the dynamics of can-
cer under therapy.

Drug-resistance to chemotherapy is a key obstacle
to successful cancer treatments. The biological mech-
anisms responsible for the emergence of drug resis-
tance and its propagation have been extensively stud-
ied (Gillet and Gottesman, 2010; Teicher, 2006). Those
mechanisms involve genetic and/or epigenetic alterna-
tions that allow cancer cells to evade one or more drugs
(Fodal et al., 2011; Gottesman, 2002; Gottesman et al.,
2002). In addition, the local tumor environment, includ-
ing the availability of nutrients and reduced absorption
or metabolism of drugs, provides opportunities for re-

istant cells t lve (Gerli t al., 2012; Panetta, . . .
sistant cells to evolve (Gerlinger et a anetia A variety of modeling strategies have been devel-

oped to characterize tumor growth and the dynamics
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of drug resistance. The models range from determin-
istic to stochastic and from discrete to continuum mod-
els. Discrete models include cellular automata (Ander-
son, 2005; Mallett and De Pillis, 2006) and agent-based
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modeling (e.g., Mansury et al. (2002)). Such mod-
els simulate individual cells, whose states are updated
based on a given set of rules. Generally, it is straightfor-
ward to formulate the biological processes correspond-
ing to tumor invasion and resistance dynamics as a dis-
crete model. Unfortunately, such models suffer from
the lack of analytical tools that can be used to analyze
their properties, and the computational costs rapidly in-
crease with an increased number of agents (cells). In
larger-scale systems, continuum methods are good mod-
eling alternatives. Such models include, e.g., ordinary
differential equations (Birkhead et al., 1987; Tomasetti
and Levy, 2010), partial differential equations (Ander-
son and Chaplain, 1998; Trédan et al., 2007; Wu et al.,
2013), and integro-differential equations (Greene et al.,
2014; Lorz et al., 2013).

Models based on partial differential equations have
been extensively used to model cancer growth in space
and time (see, e.g., Bellomo et al. (2003); Byrne et al.
(2006); Cristini et al. (2008); Lowengrub et al. (2010)
and the references therein). Initial modeling approaches
were mostly based on reaction diffusion systems to de-
scribe the interaction between malignant and healthy
cells (Gatenby and Gawlinski, 1996; Greenspan, 1976).
Many extensions were proposed to include the contri-
bution of proteolytic enzymes, stress-induced limita-
tions, cell adhesion, microenvironment, and vascular-
ization (Anderson, 2005; Byrne et al., 2006; Cristini
et al., 2003; Deakin and Chaplain, 2013; Macklin and
Lowengrub, 2007; Zheng et al., 2005).

The simplest spatial models of tumor growth assume
radial symmetry. Linear and weakly nonlinear analyses
have been performed to assess the stability of spherical
tumors to asymmetric perturbations (Byrne et al., 2006).
An extension to a fully asymmetric growth has been
done by regarding the local tissue invasion of a tumor as
a free moving boundary problem. To trace the boundary,
various numerical techniques have been developed, e.g.,
boundary integral methods (Cristini et al., 2003) and
advanced level-set methods (Macklin and Lowengrub,
2007), in which the nutrients are coupled with a pres-
sure equation and a geometry-dependent jump bound-
ary conditions. This approach was used to successfully
study the effects of shape instabilities on both avascu-
lar and vascular solid tumor growth (Byrne and Chap-
lain, 1996; Cristini et al., 2003; Macklin and Lowen-
grub, 2007; Macklin et al., 2009). However, the cell
pressure in these models is governed by the nutrients
and the geometry without considering the competition
for space that is an important factor in cancer invasion
(Brt et al., 2003).

As a consequence, the concept of homeostatic pres-

sure, denoting the lower pressure that prevents cell mul-
tiplication by contact inhibition, motivated a new gen-
eration of models (Byrne and Drasdo, 2009). For ex-
ample, the porous medium equation was used in Kim
et al. (2016); Perthame et al. (2014). Multiphase mix-
ture models based on the theory of mixtures were pro-
posed in Byrne and Preziosi (2003); Chaplain et al.
(2006); Mcmaster et al. (2012); Preziosi and Tosin
(2009). In particular, Perthame et al. (2014) used the
porous medium equation to bridge the free boundary
models that mostly describe the geometric motion of the
tumor with cell population density models.

In parallel to developing models of tumor growth,
modeling drug resistance in cancer, took a central role
following the seminal works of Goldie and Coldman
(1979, 1983a,b). The Goldie and Coldman models
that were based on resistance due to point mutations,
were extended to multi-drug resistance and optimal con-
trol of drug scheduling (Iwasa et al., 2006; Kimmel
et al., 1998; Komarova, 2006; Michor et al., 2006). Re-
cent studies emphasize the importance of the tumor mi-
croenvironment as a driving force for drug resistance
(de Bruin et al., 2013; Gerlinger et al., 2012). Mod-
eling the spatial dependency becomes more significant
due to limited perfusion capability of large molecules
and the differences in drug exposure based on their dis-
tance from the capillary bed (Minchinton and Tannock,
2006; Trédan et al., 2007; Vaupel P., 1989). Once spa-
tially heterogeneous populations appear, they can also
modulate the absorption and metabolism of the nutri-
ents and drugs, which further promotes heterogene-
ity. Thus, various spatiotemporal models have been
developed aiming at understanding the tumor morphol-
ogy and phenotypic evolution driven by selective pres-
sure from the microenvironment (Anderson et al., 2006;
Panagiotopoulou et al., 2010; Trédan et al., 2007; Wu
etal., 2013).

In this paper, we develop a solid tumor growth model
that describes the dynamics of drug resistance. The
model considers a continuous trait variable that repre-
sents the level of cytotoxic drug resistance (Cho and
Levy, 2017; Greene et al., 2014; Lorz et al., 2015,
2013), which agrees with recent cytometry data analysis
that reveals continuum phenotypic spaces (Amir et al.,
2013; Bendall et al., 2011; Grover et al., 2016). This al-
lows us to study the selection dynamics under microen-
vironmental constraints, and the response to cytotoxic
and cytostatic drugs. The present model extends the
framework of Cho and Levy (2017); Lorz et al. (2015,
2013) that was restricted to a radially symmetric and
fixed boundary by constantly normalizing the radius.
We allow the tumor boundary to take a time dependent



asymmetric shape. To model such moving boundary,
we incorporate a homeostatic pressure driven growth,
given by the porous medium equation (Perthame et al.,
2014). The growth term is generalized to incorporate
the resistance trait.

The paper is organized as follows. In Section 2, the
model involving the tumor concentration and the mi-
croenvironment variables is introduced with biological
assumptions. In Section 3 we use our model to ana-
lytically and numerically study the rate of the tumor
growth. The time of a relapse with resistant colonies
is studied in Section 4. Section 5 presents results ob-
tained when studying tumor growth in a heterogenous
environment. In Section 6 we discuss strategies to op-
timize the drug administration using a combination of
the cytotoxic and cytostatic drug. In Section 7 we use
the experiments of Mumenthaler et al. (2015) to simu-
late non-small-cell lung cancer and its resistance to er-
lotinib. Concluding remarks are provided in Section 8.

2. A model of chemotherapy for heterogeneous tu-
mors

In this section we present our model for the dynamics
of the tumor cell density n(z, x,0). We assume a two-
dimensional problem in space. The phenotype variable,
6 € [0, 1], represents the level of resistance to cytotoxic
agents, with 6 = 0 corresponding to fully-sensitive cells,
and 6 = 1 corresponding to fully resistant cells. We de-
fine the total cell density at each time and space location
as

1
o(t, x) = f n(t, x,0)do, (D
0

and the cell pressure p(t, x) in terms of cell density ac-
cording to

- L k-1
p(t7 -x) - k _ 1,0 (ta x)’ (2)

with a constant k > 1.

The tumor growth is modeled as a porous medium-
type reaction-diffusion equation

a[n([, X, 0) = G(t’ X, 6)”(1, X, 0) (3)
+v,An(t, x,0) + v,V - (n(t, x,0)Vp(t, x)).
The first term on the RHS of (3) is a growth term. The

reaction term governing the growth is modeled as

G(t,x,0) = g(t, x,0) h(p, 8), “)

where g(t, x, 6) is the growth rate and A(p, g) is an in-
dicator function that restricts the growth term consid-
ering the cell pressure p(¢, x) and homeostatic pressure

p. h(p, g) is defined with a Heaviside function H(-) as
follows,

h(p,g)=1-H(p-p)H(g). &)

This function restricts the tumor growth when p > p
and g > 0. We impose p = k/(k — 1) to ensure that the
normalized cell density is bounded as p(¢, x) < 1.

In addition to the density of tumor cells, we model
the dynamics of nutrients, s(z,7) > 0, a cytotoxic drug,
ci(t,r) = 0, and a cytostatic drug, c,(¢,r) > 0. Those
quantities impact the growth rate g(¢, x, 8) in (4)

g(t,x,0) = R(t, x,0) — D(t, x,0) — C(t, x, 0). (6)

Here, R(t, x,0) is a natural growth rate, D(¢, x,6) is a
natural death term, and C(¢, x, 6) is a death term due to
the cytotoxic drug. The natural growth rate is taken as
¢(6)

R(t,x,6;s,c5) = ms(l, X). 7
Here, () > 0 models the consumption of the nutri-
ents depending on the resistance level. It is assumed
that cells that are resistant to cytotoxic drug grow slower
than sensitive cells, corresponding to ¢’(6) < 0. The cy-
tostatic drug c,(t, x) reduces the proliferation rate, with
an uptake constant y;.

The natural death rate, D(t, x, 6; p), is assumed to be
proportional to the cell density p(z, x) with a constant
death rate d, i.e., D(p) = dp(t,x). Hence, our model
assumes a logistic population growth.

The effect of the cytotoxic drug is modeled as

C(t, x,6:c1) = (6, c)ei (2, x), ®)

where p;(-,-) > 0 is the uptake function. As the resis-
tance level increases, the cells become more resistant to
the cytotoxic drug, thus we assume that dgu; (-, c;) < O.
The uptake function y(6, c;) also depends on the cyto-
toxic drug c;. This provides a more accurate description
of the drug induced resistance, Cho and Levy (2017).
The second term on the RHS of (3) is a diffusion term
with a diffusion coeflicient v,,. The last term on the RHS
of (3) involves the cell pressure p(t, x) (2). It is in the
form of Darcy’s law with cell velocity v,Vp(z, x). If we
consider a single trait value, then p(¢, x) = n(¢, x, 6) and
the last term in (3) can be rewritten as vank, which
recovers the porous medium equation, Vazquez (2006).
Simpler versions of the model (3) are often used in
free boundary problems, including tumor growth mod-
els, e.g., Perthame et al. (2014). In particular, the limit-
ing behavior of porous medium PDEs with a pressure of
the form (2) in the limit as k — oo has been studied in



Kim et al. (2016); Mellet et al. (2015); Perthame et al.
(2014). However, our model extends this framework to
multiple trait space considering heterogeneous drug re-
sistance and a more complex growth term that depends
on the microenvironment.

The dynamics of the nutrients and drugs are modeled
as a steady state reaction diffusion equation in the inte-
rior of the tumor. Thus, we first identify the boundary
of the tumor as Qy = {x € Q|n(t, x,0) > iy} assuming a
critical cell density level 7ig. This allows us to write the
following system for x € Qy,

1
veAs(t, x) = |y, + f go(@)n(t,x,&)d@] s(t,x),  (9)
0

1
VC]Acl(ts -x) = 761 +f ﬂl(g)n(t9 x’ g)dg] Cl(ts X), (10)
0

Ve,Acy(t, x) =

1
Ve, + 12 f n(t, x, G)de] c(t,x). (11)
0

Here, the v’s are the diffusion constants, and the y’s pro-
vide a decay of the corresponding terms. The boundary
conditions are imposed as Dirichlet conditions on 9€),

s(t, Vloq, = So, cilt, Vo, = Cis i=z12.  (12)

Here, S, C1, and C, model the nutrients and drug envi-
ronment. They may all depend on space and time.

The resulting model (3) with (9)—(11), incorporates
the nutrients and the two types of drugs into the can-
cer population model. This model is an extension of
a simpler model that assumed a radially symmetric tu-
mor and environment, Cho and Levy (2017); Lorz et al.
(2015, 2013). In contrast to the previous works, the
current model assumes a porous medium-type pressure
term that controls the motion of the tumor’s boundary.
Such a term did not exist in the previous radially sym-
metric works as the boundary of the tumor was always
scaled to match the boundary of the domain. Neverthe-
less, the results of the radially symmetric model provide
motivation for studying the heterogeneous emergence of
drug resistance.

The work in Cho and Levy (2017); Lorz et al. (2015,
2013) provided insights on the mechanisms that con-
trol the emergent spatial and phenotypic heterogeneity,
driven by the local environment and the tumor growth.
In the following section, we study the impact of spa-
tial and phenotypic heterogeneity on the tumor growth
and relapse under chemotherapy. In particular, we are
interested in the emergence of heterogeneous resistant
colonies.

—— R(0; Sy = 12)
——C(0;0,=2)
——C(0;01 = 1)
—a—C(0;C, = 6)
——C(0;C,=38)

0 0.5 1 0 0.5 1
0 0

Figure 1: The natural growth rate R (left) and the drug effect C (right)
in Eq. (13) as a function of the resistance level 6. So = 12 and C = 4.

2.1. Functional form and parameters

In order to numerically simulate the mathematical
model introduced in Section 2, we take the computa-
tional domain as x € [—1, 1]%, and measure the time ¢ in
days. The spatial scale is measured in centimeters con-
sidering the maximum invasion distance of the cancer
cells at the early stage of invasion being approximately
lcm (Anderson, 2005). The cell density is assumed to
be normalized as p = 1 with respect to the carrying ca-
pacity, for instance, using the tumor cell diameter in the
range of 107°-10~2cm (Melicow, 1982) or the tumor
cell volume 107°-3 x 108cm?® (Casciari et al., 1992;
Folkman and Hochberg, 1973) depending on the type of
tumor. Also, we need to determine several terms that
were left in general forms.

We start with the proliferation and drug uptake func-
tions in Egs. (7) and (8). These functions are assumed
to be in the form

b

1+ byos” (13)

a
g) = —1 0,c)) =
@(0) T+a 1106, ¢1)

2 6P

Here, a; is the maximum proliferation rate per unit re-
source per day and b; is the maximum death rate per
unit cytotoxic drug per day. The parameters a,, b,, and
b3 control the reduced proliferation rate and drug effect
for the resistant traits. We take a;, a, and b; as positive
constants, while b, := by(c;) and b3 := bs(cy) are pos-
itive functions. The simpler choice of linear functions
for () and (6, -) was shown to lead to a blowup in the
phenotype distribution at the fully-sensitive or fully re-
sistant levels (i.e., 6 = 0, 1) (Grothey, 2006; Lorz et al.,
2015). The nonlinear dependence of the uptake function
on the drug intensity effectively models the emergence
of drug induced resistance and was shown to prevent the
asymptotic convergence of cells to the fully-sensitive or
fully-resistant states, Cho and Levy (2017). The param-
eters we choose for our simulations satisfy the Norton-
Simon hypothesis (Simon and Norton, 2006) in which
the rate of regression under chemotherapy is related to
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Figure 2: The mean of the resistant phenotype level in the initial den-
sity E[ng(x, 6)].
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Figure 3: Examples of nutrients s(z, x) with §¢ = 12. (a) constant; (b)
diffusive; (c) highly heterogeneous.

the rate of tumor growth by

a b
oc .
1+ a 1+ b2
We further follow Corbett et al. (1975); Grothey (2006)
and assume that the average proliferation rate and the

average mortality rate due to the effect of cytotoxic drug
satisfies

(14)

1 1
f w(6)do ~ 0.2, f ui(6,c1)dé = 0.8. (15)
0 0

In particular, we choose a; = 0.22, a; = 1.2, and
by = 1.5, and the functions b>(c;) = 5 + 1.25¢; and
b3(c1) = 2 + 0.5¢y, so that the order of magnitude of
these parameters are consistent with the existing liter-
ature (de Pillis et al., 2005, 2014; Lorz et al., 2015).
The resource concentration is taken according to the
average time for mitosis being approximately 0.3 - 1
day (Calabresi and Schein, 1993). The corresponding
growth and drug effect functions are plotted in Figure 1
for s = 12 and different values of ¢;. The cell motility
constants are taken as 107° < v, vy < 10~* where the
maximum order is chosen as 10~%cm?/sec (Bray, 2000).
Other parameters are chosen similarly as in Lorz et al.
(2015),

=8, Vvs=v, =V, =0.08,
d=1448, vi=7ve =7, =1
Initially, the tumor is assumed to be circular

no(x,6) =

e R Nt
Po(l—(exp[mh ]Qow). (16)

€x

Here, ry is the initial radius, pg is the maximum magni-
tude of the initial density, and €, determines the sharp-
ness of the tumor boundary, which we set as €, = 0.01.
Qo(0) represents the initial distribution in the resistant
trait space, where we either consider a truncated Gaus-
sian with mean @ and variance e,

—(0- é)2]

€y

1
000 = o exp[ 17
[¢]
or a uniform distribution as Qy(#) = 1/Cp on 6 € [0, 1].
In both cases, Cy is the normalizing constant so that

fol Q0(0)d6 = 1. Assuming that the initial tumor is close
to a single cell clone at each location in space, we set
€ = 0.01.

For distinct colonies in space, we consider a lin-
ear combination of functions in the form of Eq. (16).
Figure 2 shows examples of the mean resistant trait
E[no(x, 6)] used in our simulation. In Figure 2(a), the
phenotype distribution with mean & = 0.5 is spatially
uniform within a tumor of radius ry = 0.25. However,
in Figure 2(b), a small region within the tumor is as-
sumed to be more resistant. While the majority of the
cells are taken to be distributed as Gaussian with mean
6 = 0.2, the resistant portions are mixed with mean trait
6 = 0.7 and 6 = 0.9. This scenario models a tumor right
after an occurrence of local mutation. To study more
heterogenous cases, we consider a larger portion of re-
sistant colonies such as those shown in Figure 2(c,d). In
this case, two resistant traits of mean 8 = 0.2 or 6 = 0.8
are considered.

For the nutrients and drugs, we consider three differ-
ent boundary conditions for Eq. (12). We first assume a
constant infusion with fixed intensities S5, C%, and C%,
that is,

So(x) =85, Cix) = C7, iz12.

Alternatively, the nutrients and drugs are diffused from
the boundary resembling diffusion from a large artery.
In this case, we solve

VIASo=S0=0, VoAC;=Ci =0, 12,

with Dirichlet boundary conditions. For instance, we
impose Dirichlet conditions at the upper boundary as
So(xl, 1) = Sg, C](Xl, 1) = Cb, and Cz(xl, l) = Cb,
and zero Neumann conditions elsewhere. The diffusion
coeflicients are normalized with respect to the decay co-
efficient, and are chosen as v = vﬁ’l = va = 0.25 unless
stated otherwise. Finally, we follow Peng et al. (2016)
and consider a highly heterogeneous microenvironment.
Given

44 sin(8xllx + (1, DII) + 2 sin8all(1, 1) — x]))
- - ,

w(x)



we set So = w(x)Sh, Ci = w(x)C?, and C; = w(x)C5. In
all three cases, S5, C?, and C} determines the (possibly
time-dependent) intensity of each quantity. Figure 3(a-
c) show examples of the nutrients s(¢, x) for the three
scenarios we consider, namely, the constant, diffusive,
and highly heterogeneous environment. s(z, x) is com-
puted by Eq. (9) with S? = 12.

In our simulations, we discretize the physical space
with 150 grid points and the phenotypic space with 25—
50 grid points, and solve the differential equation using
a fourth-order finite difference method. For the time in-
tegration, we use a fourth-order Runge-Kutta scheme
with time step dt = 0.05. The simulation results are an-
alyzed by the following quantities including the tumor
density p(t, x), the total number of cancer cells

pl(n = f p(t, x)dx 2 f p(t, x)dx,
Q Q

and the relative size with respect to time fy, i.e.,
pl(0]pg, where pj = p(t). To study the trait space,
we compute the mean phenotype as to quantify the dom-
inant resistant level'

I on(t, x,6)d

E[n(t, x,0)] = ,
Ji' n(t, x,6)d6

and |[E[n(t, x, 0)]llq, in case the tumor is spatially uni-
form.

3. Modeling tumor growth

In this section we study cancer growth with respect
to the parameters that govern the tumor expansion, in-
cluding the motility constants v, and v,,, and the growth
term G(t, x, 0).

Figure 4 shows several examples of radially symmet-
ric tumor growth in two-dimensions for different motil-
ity constants, v, and v, at t = 20. The initial tumor is
taken as a ball with radius ry = 0.25, and the results are
computed with a single trait # = 0.5 and a constant nu-
trients level S = 12. The pressure is fixed as k = 6. We

'The heterogeneity in the trait space and the physical space can be
computed by the variance as

(6 - Eln(t, x.0))? n(t, x, 6)d6
|y n(t, x.6)d6

o2 n(t, x,0)] =

and

2
'(E[n(t, x,0)] = [E[n(t, x, )]l ) HQ , respectively. We present
0

E[n(t, x, 6)] and ||[E[n(z, x, §)]|lq, in this paper only when the variances
are sufficiently small so that the mean is relevant to the dominating
trait.

Figure 4: The tumor at + = 20 for different motility constants v,
and vy, (a) (v, vp) = (1076,107) ; (b) (vu,vp) = (107,107 ; (c)
Vnsvp) = (1074,107%). The emergence of a necrotic core is observed.
The corresponding cross sections are plotted in Figure 5.
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Figure 5: The cross section of a 2D radially symmetric tumor for
different motility constants v, and v,. The tumor expands faster for
large values of v, and v, and v, contributes to the smoothness of the
boundary as well.

observe that the population increases up to p = 1 and
becomes restricted by the homeostatic pressure p, after
which it starts to expand in space. In addition, while
the tumor density in the periphery is kept as p = 1, the
population in the center decreases, revealing a necrotic
region. For this necrotic region, it is important to note
that the Heaviside function / depends on the sign of the
growth rate g. The size of the necrotic region can be
controlled by v, /vy;.

For reference, we plot in Figure 5 the cross section of
aradially symmetric tumor for different values of motil-
ity constants v, and v,. With a fixed value of v,, = 1079,
Figure 5(top) shows that the tumor expands faster as v,
increases. Similarly, the tumor grows faster for larger
values of v, as shown in Figure S(bottom). However,
while v, becomes effective only when the cell pres-
sure is large enough, v, governs the overall cell motil-
ity. This results with a faster expansion, as well as a
smoother region in the periphery outside from where
the maximum level of cell density is achieved. In the
following simulations, assuming that the tumor growth
is mainly driven by the pressure, we choose v, < v,
typically, v, = v,,/10 with v, = 1074, 1073 and k = 6.

The following estimation of the tumor expansion
rate can provide insights for the selection of motil-
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Variable/Parameter Range Biological interpretation

X [0, 172 Spatial variable (cm)

0 [0, 1] Cytotoxic drug resistance level

t R, Time (days)

n(t, x,0) R, Cell density with phenotype 6 at (z, x)
s(t, x) R, Concentration of resources

ci(t, x) R, Concentration of cytotoxic drugs
c(t, x) R, Concentration of cytostatic drugs
p(t, x) R, Total cell density at (z, x)

p(t, x) R, Cell pressure at (¢, x)

©(6) R, Proliferation rate

d R, Death rate

w18, cy), w2 R, Drug uptake rate

Vn, Vp R, Cell motility

Vs Veys Voo R, Microenvironment permeability
Vo Yers Ve R, Microenvironment decay

Table 1: List of variables, response functions, and model parameters with their biological interpretation.

p(t, x) n(t, x, 6)
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Figure 6: Cell density p(z, x) at t = 50 computed with initial condi-
tions taken as (a) a truncated Gaussian; and (b) a uniform distribution
with mean § = 0.5. The right figures show the relative density of
n(t, x, 0) with fixed trait values 6 = 0.1,0.2, ..., 1.0. While the overall
density p(t, x) is similar in both cases, the traits distribution is signifi-
cantly different.
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ity constants. We assume a radially symmetric tumor
n, centered at the origin with radius r(¢) as Qu(t) =
{xlp(t,x) > 0} = By;(0). In the limit as k — oo,
when v,, = 0, the speed of the boundary for the two-
dimensional problem can be estimated as

V= /2v,GO)p,

(see Appendix A and Perthame et al. (2014)). In this
case, the tumor boundary moves proportionally to the
motility constant /v, and the growth rate vG(6). For
nonzero v, the velocity is given by

1l21/pG(6)p+vnj‘ —ds+f nds, (18)
rt) S 0)

where the last term vanishes in the case of v, = 0 be-
cause n, = 0 outside of the identified tumor boundary,
r(t). For the purpose of estimating the speed of the
boundary, we neglect the contribution of the last two
terms on the RHS of (18) even in the case where v,, # 0,
as we expect this contribution to be minor.

For a heterogeneous tumor with regions of different
resistance level, we claim that the cell expansion rate v
can be predicted by the dominant trait. We first illus-
trate the nature of coexistence of multiple phenotypes
embedded in our model. Figure 6 compares the cell
density p(z, x) and n(t, x, 6) of trait 6 for two different
initial phenotype distribution. Those are chosen as a
truncated Gaussian with mean & = 0.5 and a uniform
distribution on [0, 1]. n(z, x, ) is plotted for trait val-
ues @ = 0.1, i = 1,...,10. In both cases, the Gaussian
and the uniform, the total population p(t, x) is similar.
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Figure 7: The growth of the radius of the tumor, r(¢), for different

traits = 0.2,..., 1.0 (a) and nutrients level Sg = 4,...,12 (b). The
radius increases linearly in time.
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Figure 8: The speed of the tumor boundary with radius r(¢), v = r(¢)
as a function of (a) the level of nutrients Sg; and (b) VG*(So). The
speed of the boundary linearly depends on vVG*(Sg).

However, in the Gaussian case, n(z, x,0) with 8 ~ 0.5
occupies the largest proportion in p(t, x), while in the
uniform case, a broader range of phenotypes, mostly in
the range, 0.0 < 6 < 0.4, is observed.

To verify the dependency of the cell expansion rate
v on the dominant trait, we compute the radius of the
tumor 7(¢) identified as Qu(t) = {x|o(t,x) > 1073} =
B,»(0) and its velocity v = #/(¢). The blue lines shown
in Figure 7(a) are computed with a single colony of dif-
ferent resistance level 6. The radius of the tumor grows
linearly in time, which justifies our estimation of v. In
addition, due to the form of the proliferation function
() that governs the growth rate G(6), the tumor grows
in a somewhat similar speed for 6 < 0.5, but notice-
ably slower for higher resistance levels. The red line is
computed with multiple colonies initially distributed as
a truncated Gaussian with mean # = 0.5 which over-
laps with the lines corresponding to the sensitive cells
including 8 = 0.5.

We also study the cell expansion rate as a function of
the level of the nutrients S . Figure 7(b) shows that the
expansion rate constantly increases as S increases for
k = 6. Figure 8 plots the slope v for different values of
the parameters v, and k. In contrast to k = 6, the choice
of k = 20 restricts the tumor growth when S is not
large enough so that the capacity of the logistic growth
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Figure 9: The cross section of a radially symmetric tumor with dif-
ferent drug dosages C; = 2,4,6,8. The solution is shown at time
t = 20, 45, 80. A higher dosage of the cytotoxic drug results with a
late relapse.
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Figure 10: The evolution of the mean phenotype for drug dosages
Cy =4 (top) and C; = 6 (bottom), starting from a Gaussian distribu-
tion in the trait space. A higher dose of the cytotoxic drug results with
a later relapse, yet a more resistant tumor emerges.
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is less than 1. Thus, a tumor with its expansion strictly
restricted by the pressure can be modeled with large val-
ues of k. Figure 8(b) also verifies that v is proportional
to /v, and VYG(6). By considering the dominant trait
as @ = 0.5, that is, G* = G(0.5;S), v is proportional to
v/G* for both cases of vy = 10~* and Vp = 1073, Also, v
is almost three times larger when v, = 107 compared to

= 1073, We note that these estimates can potentially
assist in determining the parameters from experiment
data.

4. Studying tumor relapse with resistant colonies

In this section we study the tumor growth under treat-
ment with a cytotoxic drug. We set v, = 1076

= 1073, Figure 9 shows the path to a tumor relapse
for different levels of cytotoxic drug dosage C;. The ini-
tial tumor is taken to be a ball with radius ry = 0.2 and
distributed as a Gaussian with mean 8 = 0.5 in the trait
space. We allow the tumor to grow until time ¢ = 10
with S = 12, and then apply the drug. The relapse oc-
curs by ¢t = 20, 45, 80 for drug dosages C; = 4, 6, 8,
respectively. The mean phenotypes corresponding to
C; = 4 and C; = 6 are plotted in Figure 10, where
the dominant cells with dosage C; = 6 turns out to be
more resistant compared with C; = 4



We further study the time of the relapse in terms of
the drug dosage and the resistant trait, as well as its re-
lation with the tumor growth. For simplicity, we neglect
the diffusion and growth terms. For a fixed phenotype
variable 6 and space location, p(f) = n(t, -, 0) satisfies

a,p(1) = (R(0) — D(O)p(t) — C(0)) h(p, g)p(1),  (19)
with initial density p(t = 0) = pg. The solution to (19)
can be written as

Kpoe(R(g)—C(f)))l

p() = { K + poe®O-C@N
L, K>1&t>tg,

K<1,or K>1&t<tg,

with the cell capacity K = K(6) = (R(6) — C(6))/D(0)
and tx = (R(®) — C(®))"' In(K/(Kpo — po)), for K > 1.
Thus, for phenotypes such that R(6) — C(6) > 0, the time
of relapse #,;,; when the total cell density p(#) reaches
the level pys, can be computed as

1 Koy -
ln( PM = PoPM

s = . Q0
"rs = R@) - C0) Kpo—popM) 20

Here, we assume that py, satisfies min(K, 1) > py > po,
that is, the cell capacity is larger than the relapse density,
which is a valid assumption for a local estimate in space.
In addition, #,,, is bounded below by the relapse time
considering the exponential growth, that is,

Pm
" R - o) " ( P )
which can be used as a lower bound. This inequality be-
comes sharp when K > py; > po and it depicts a clear
relationship to the parameters, that is, f,;,, is inversely
proportional to the growth rate R(6) — C(6) and propor-
tional to In(p, 1) depending on the preexisting resistant
cells. For a time independent constant infusion of the
nutrients and drug, the relapse time in terms of the drug
dosages C and C, becomes

1 RECT STy — popu

In ,
R(8;Cy) - C(6;C) %PO—WPM

and Oc, typs > 0 and dc,tps > 0 since dc,R(6, C) <
0 and 0¢,C(0,Cy) > 0. Thus, the time of relapse is
delayed as the drug dosage increases.

For multiple colonies, if the initial phenotype distri-
bution is uniform, the cells with phenotype

®" = arg max,(R(0) — C(6)) 1)

will increase the fastest and the cell population will be a
multimodal function centered at the values in ®*. For
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Figure 11: The dynamics of the radius of a radially symmetric tumor
for different levels of drug dosage C; = 2,4,..., 8 with different ini-
tial densities. (a) single colony with 6 = 0.5. (b) Gaussian distribution
with mean € = 0.5. (¢) Uniform distribution on [0, 1]. (top) Relative
total number of cells. (bottom) Tumor radius.

non-uniform initial distributions, we can estimate the
dominant phenotypes by observing the trend of

N Kno(6)eRO-CO
0" = arg maXy 2 10(0) RO -CO

until a certain time ¢#. Then, the relapse time will be
determined by those resistant traits as

. 1 Koy —nopwm
Lips = > ’ 22
rs = 026" R() - C(6) ( Ko — fiopu ¢

where 7 is the effective initial density.

Let us include the spatial component and compute the
relapse time when the total cell population reaches PL-
When the tumor is uniform in space and pL < area(€)-
min(K, 1), Eq. (22) is valid with py = pL/area(Qo).
Otherwise, the relapse will occur after the tumor ex-
pands. Using the expansion rate estimated from the pre-
vious section,

1 T
bips = 1k + ———— | [ 2 — |, @3)
J2,GOp| \ ™

for K > 1. tx is similar to the previous estimation
without the growth which is inversely proportional to
R(6) — C(0). In addition, the relapse time is delayed as
much as the second term that is inversely proportional
to /v, and to VG(6) that also includes R(6) — C(6). A
similar relation can be obtained for K < 1.

We now present our numerical results and verify our
estimates. Figure 11 compares the relative total number
of cells p” (1)/p{ and the tumor radius r(¢) for different
initial phenotype distributions. We consider three cases:
a single trait = 0.5, a Gaussian distribution with mean
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Figure 12: The time of cancer relapse for different values of the initial
density and the drug dosage. (a) The time of cancer relapse #,/,5 with
respect to the drug dosages C1 = 3,..., 8 and the initial densities py =
1073,...,107°. The estimate based on the single colony provides a
lower bound for the actual time of relapse. (b) s as a function of
log(plTw /pg) for different dosages. A linear relation is obtained.
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Figure 13: Comparison of a constant and on-off cytotoxic drug ad-
ministration with the same total drug dosage folo Ci(Hdt = 40. (a)

Drug dosage C;(#). (b) Total number of cancer cells pT(t)/p(%. (c)
Mean phenotype |[E[n(t, x, 0)]||. Shorter and stronger bursts, lead to
the emergence of bigger tumors during the off times, expressing more
resistant traits.

6 = 0.5, and a uniform distribution on [0, 1], where
the proportion of resistant cells in the initial density in-
creases in this order. Figure 11(a) corresponds to the
case of a single colony with trait & = 0.5. In this case,
a relapse occurs only with the lowest dosage, C; = 2.
However, in both other cases, a relapse occurs even for
higher drug dosages and the relapse time is delayed as
the dosage increases. In the case of a uniform distribu-
tion, shown in Figure 11(c), the tumor relapses almost
immediately due to a high level of preexisting resistant
cells np. In all cases, the slope of r(¢) is smaller com-
pared with the results in the previous section, since the
tumor expansion rate is reduced due to the application
of drug, recalling that vVG(6) in v is reduced due to C(6).

In Figure 12, we compute the time of relapse #,,, for
different initial densities and drug dosages. Initially the
tumor is taken as a ball with radius ry = 0.2 and in-
tensity pg = 1074, ..., 1078, uniformly distributed in the
trait space. We consider the actual time of relapse when
p'(#) > pyrim and compare it with the estimation in
Eq. (22) computed with py; = 0.01 and ny = py/50.
The effective initial density takes into account the trait

10

space discretization. Figure 12(a) shows the actual time
of relapse together with the estimated time according
to (22). Each bullet corresponds to a different drug
dosage C, taking 6 = 6°(C;) as the dominant trait
value for each dosage as in Eq. (21). For instance,
6 =0.83, 0.95, 0.99 for C| = 4, 6, 8. Our results show
that the estimate based on a single dominant trait pro-
vides a lower bound for the actual time of relapse. In
addition, Figure 12(b) verifies the expected linear rela-
tion between 1, and log(p},/p)-

So far we have tested our results for a time-
independent drug administration. In Figure 13, we com-
pare the constant and on-off cytotoxic drug infusion and
demonstrate that the on-off schedule results in a delayed
relapse, but more resistant traits (as observed in the radi-
ally symmetric model, Cho and Levy (2017)). We start
the treatment at ¢+ = 10 with a fixed total drug dosage
folo Ci(t)dt = 40 during period T, = 10. Thus, for
treatment lengths T, = 4 and T,; = 3, we set the drug
intensities as C? = 10 and C% = 40/3, respectively. The
results are shown in Figure 13. Figure 13(a) shows the
three different drug schedules. The relative total num-
ber of cells p” (1)/p} are shown in Figure 13(b) and the
mean resistance levels ||[E[n(z, x, 8)]|| are shown in Fig-
ure 13(c). The on-off scheme yields a delayed relapse
with an increased level of resistant trait. Moreover, the
total number of cancer cells reaches higher levels dur-
ing the off time periods of the on-off schedules, com-
pared with the constant drug infusion case. Overall, the
drug should be administered taking into account the het-
erogeneity of the cancer cells. We will discuss how to
design an effective drug scheme considering a combina-
tion of cytotoxic and cytostatic drugs in Section 6.

5. Modeling tumor growth in heterogeneous mi-
croenvironments

We now present simulations of cancer growth in se-
tups that are beyond the scope of our analysis. We
consider a mixture of different traits in the initial tu-
mor and study the effect of heterogeneous nutrients and
drug environment. The initial density and microenvi-
ronment intensity for our test cases are shown in Fig-
ures 2 and 3. In the remaining sections we set v, = 107>
and v, = 107*, Bray (2000).

Figure 14 shows the cell density p(¢, x) and the mean
resistance level E[n(t, x, 8)] for different cytotoxic drug
dosages, corresponding to the initial density shown in
Figure 2(c) with two different resistance levels 6 = 0.2
and 6 = 0.8. Similar results, corresponding to the initial
density in Figure 2(d) are shown in Figure 15. The nu-
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Figure 14: The dynamics of the tumor and the evolution of its traits Figure 15: The dynamics of the tumor and the evolution of its traits
under varying drug dosages. The initial density is given by Figure 2(c) under varying drug dosages. The initial density is given by Figure 2(d)
with two different resistance levels § = 0.2 and 8 = 0.8, as a mixture with two different resistance levels § = 0.2 and 6 = 0.8, as a mixture
of sensitive and resistant cells. (a) Density of cancer cell p(t, x). (b) of sensitive and resistant cells. (a) Density of cancer cell p(t, x). (b)
Mean resistant level. The nutrients and the drug are diffused from the Mean resistant level. The nutrients and the drug are diffused from the
upper boundary x, = 1 with Sg = 12 and different cytotoxic drug upper boundary x, = 1 with Sg = 12 and different cytotoxic drug
dosages C'l’ =0,2,4,8. dosages C’l’ =0, 2,4,8.
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Figure 16: Time-dependent drug schedule. (a) Three protocols for
Cy(¢) with period T, treatment length T, half-life of drug 7}, and
intensity Cﬁ’ = 4. (b) The total number of cells with Cé’ =4. (c) The
total number of cells with C’]’ = 8. Figures (b) and (c) correspond to
the dynamics shown in Figure 17.
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Figure 17: The dynamics of the tumor and the evolution of its traits
under a time-dependent drug schedule. (a) Density of cancer cells.
(b) Mean resistance level with a time-dependent infusion of cytotoxic
drug T), = 2T = 4T}, = 10 for different dosages C’I’ =4, 8.

trients and the drug are diffused from the upper bound-
ary x, = 1 with Sg = 12 and C[f =0,2,4,8 as in
Figure 3(b), and the drug is applied at time ¢ = 10. Fig-
ures 14(a) and 14(b) (also Figures 15(a) and (b)) show
the dynamics of p(z, x) and E[u(z, x, 8)]. In the absence
of a drug, the sensitive cells grow faster and dominate
the tumor. In particular, we observe a high density of
cells growing near the top boundary where the nutrients
has high intensity. As the drug dosage is increased, the
number of sensitive cells decreases, while the resistant
cells survive, and for C; > 4, only the resistant cells re-
main. The tumor vanishes when C; > 8, since we do
not consider the resistant traits 6 > 0.8.

The following results are computed with a small por-
tion of the initial population being resistant as in Fig-
ure 2(b). We consider a time-dependent drug adminis-
tration as in Figure 16(a) with a period T, treatment

12

Figure 18: The dynamics of the tumor and the evolution of its traits
with different time-dependent drug schedules. (a) Density of cancer
cells. (b) Mean resistance level with a time-dependent infusion of
cytotoxic drug: (¢c) Tp = 2Ty = 10T, = 10; and (d) T = 5Ty =
107}, = 10; for drug dosage C? =4, 8. In both cases, the tumor grows
faster than Figure 17.

length T,, and the half-life of drug T} (see Appendix
B). The initial tumor density is assumed to be py = 0.5
and the drug is infused starting at ¢ = 0. Figure 17 shows
the tumor growth under drug intensities Cll’ =4, 8 and
scheduling 7, = 10, Ty, = 5, and T, = 2.5. For
C’l’ = 4, we observe that the tumor emerges at the ini-
tial location of the resistant cells. However, the cancer
cells with less resistant traits also emerge in other re-
gions at later times. With a higher drug dosage C’l’ =8,
only the tumor part that has sufficient amount of pre-
existing resistant cells remains and starts growing. The
corresponding total number of cells are shown in Fig-
ure 16(b,c). A similar pattern emerges when the ratio
T,=T4/2 =Ty/2is kept.

Figure 18 shows the dynamics of the tumor growth
using different drug scheduling. Figure 18(c) corre-
sponds to the case when the drug’s half-life is reduced to
Ty = Ty4/5. Figure 18(d) corresponds to the case when
the drug duration is reduced to Ty = T,/5. In both
cases, we observe a faster growth of the tumor, com-
pared with Figure 17.

We proceed to demonstrate that tumors with hetero-
geneous resistant trait can arise even when the initial
phenotype distribution is uniform in space as in Fig-
ure 2(a). Such an example is shown in Figure 19, where
the initial tumor has a Gaussian phenotype distribution



©

Figure 19: The emergence of heterogenous resistant traits starting
from a uniform phenotype distribution. (a) Density of cancer cells.
(b) Mean resistance level at t+ = 40 with (¢) a constant infusion of
the nutrients and the drug; and (d) infusion of the nutrients and the
drug from the top boundary. These results demonstrate that a hetero-
geneous resistance colony can arise in different locations even when
the initial state is uniform.

of mean trait & = 0.5. In particular, we consider the
case when the permeabilities of the drug and the nutri-
ents differs, that is, vi/ys # v, /7., in the cell interior
and V2 # vfl in the exterior environment. Figure 19(c)
shows the tumor at r = 40 where the nutrients perme-
ability is increased to v, = 0.25, while v, = 0.08. We
take a constant infusion of S¢ = 12 and C; = 4. The
population near the center of the tumor grows faster, but
with a less resistant trait compared with the cells near
the boundary (compare with Figure 10). Figure 19(d)
presents the case when the nutrients and the cytotoxic
drug are diffused from the top boundary with 2 = 2.5,
vfl = 0.25, and intensities Sg = 12 and C’l’ = 4. The tu-
mor grows faster further from the upper boundary where
the nutrients are more diffused compared with the drug,
and it is dominated by the sensitive cells. On the other
hand, the tumor grows less in the upper area, but it con-
sists of resistant cells.

Finally, we consider a highly heterogeneous nutri-
ents and drug environment as in Figure 3(c). Figure 20
shows the cancer growth when the maximum level of
the nutrients is S g = 12 without the drugs. The rela-
tive magnitude of the nutrients environment is shown in
the background of the tumor. The shape of the tumor be-
comes irregular since the tumor front grows faster where
more nutrients are available. However, the necrotic re-
gion still has a smooth boundary. Tumor growth under
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t=20
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Figure 20: Tumor evolution in a highly heterogeneous nutrients envi-
ronment (and no drugs). (a) Density of cancer cells. (b) Resistance
level. The tumor boundary becomes irregular.

t =30 t=40 t =50

Figure 21: Tumor evolution in a highly heterogeneous nutrients envi-
ronment with a time-dependent drug infusion. (a) Density of cancer
cells. (b) Resistance level. The drug is administered with T, = 2T, =
4T}, = 10 and dosages C? =4, 8.
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Figure 22: Tumor evolution in a highly heterogeneous nutrients envi-
ronment with a time-dependent drug infusion. (a) Density of can-

cer cells. (b) Resistance level. The drug is administered with (c)
T, =2T4 = 10T, = 10; (d) T = 5Ty = 10T, = 10, and dosages
Cb=4,38.
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Figure 23: Long time evolution of the tumor with a heterogeneous
infusion of nutrients and drug until # = 100. (a) Density of cancer
cells. (b) Resistance level. The scattered tumor grows into a single
resistant patch at later times.
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Figure 24: Tumor evolution in a highly heterogeneous environment
at t = 40. (a) Density of cancer cells. (b) Mean resistance level. (c)
Nutrients diffuse from the upper boundary in a highly heterogeneous
drug environment. (d) The drug diffuses from the upper boundary in a
highly heterogeneous nutrient environment. Cancer cells with distinct
resistant trait arise in different location.

the infusion of time-dependent scheduling with different
drug treatment period T, and drug half-life 7}, is shown
in Figures 21 and 22. For Cll’ = 4, the results are sim-
ilar to the constant infusion case except for the irregu-
lar boundary and slightly more heterogeneous colonies.
However, with a higher drug dosage of C’l’ = 8, the tu-
mor grows in a scattered pattern with highly resistant
cells. Figure 23 shows the cancer growth for a longer
period until = 100. Here, we take a time-independent
dosage with a constant level C; = 4. The scattered tu-
mors eventually merge, aligning with the nutrients envi-
ronment.

In addition, we present two examples where distinct
patterns of heterogeneous tumors emerge. The nutrients
and the drug intensity are set as S (b) = 12 and C?
Figure 24(c) corresponds to the case of a nutrient that
is diffused from the upper boundary in a highly hetero-
geneous drug environment. We observe distinct levels
of resistant traits between the cells in the tumor inte-
rior and on the tumor boundary. The latter consists of
less resistant cells. Figure 24(d) corresponds to the case
when the nutrients are highly heterogenous and the drug
diffuses from the top of the domain. The tumor grows in
a scattered pattern with distinct resistance levels emerg-
ing in different locations.
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Figure 25: Growth rate R(6*; C2)— C(6"; C1) of the most resistant trait
6" = 1 for different cytotoxic and cytostatic drug dosages, C; and Cy,
respectively. Each line corresponds to a fixed value of C1 + C; = ¢
and the maximum decay rate is achieved where C} is slightly less than
c.
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Figure 26: Density of cancer cells, starting from a tumor with a Gaus-
sian phenotype distribution, treated with the optimal drug dosage for
the case C1 + C2 = 2 as in (24). The tumor constantly shrinks and
does not relapse.

6. Modeling optimized drug scheduling

In the previous sections we demonstrated that due to
the preexisting resistant cells, a relapse is unavoidable
regardless of the dosage of the cytotoxic drug. A com-
mon approach is therefore to combine drugs that target
different mechanisms. In this section we propose a strat-
egy of combining cytotoxic and cytostatic drugs. While
the cytotoxic drug, C;, directly impacts the death rate
of the cancer cells, the cytostatic drug, C,, reduces the
proliferation rate.

The general drug scheduling optimization problem is
complex, and is beyond the scope of this paper. Here,
we aim at a simpler problem, in which for a fixed total
drug concentration C| + C,, we look for the dosage that
minimizes the growth rate of the most resistant trait 6 =
1. Let us assume a constant infusion of Cy and C,. Then
the growth rate of the tumor with trait 8* at the boundary
becomes

. . r(@)So .
RO ;C)-CO;C) = ——— —11(0°,C)C
( 2) = C( 1) T+ 10, i ( 1Ci
F1So i c.

1+ G - ﬂ%Cl +[1?

where 7y, fiz, ﬁ%, ﬂ%, ﬂ? are constants from our choice

—--Ci4 Oy =2
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Figure 27: Total number of cancer cells pr(t)/p(% with different drug
schedules. The thick lines correspond to the result with the optimal
dosage C1 + C2 = c given by (24). The thin lines are with an equal
dosage C; = C, = c¢/2. The optimal dosage results with a faster
shrinkage of the tumor.

of system parameters that are specified in Section 2.1.
Thus, in order to shrink the tumor, we require a dosage
for which R(6*; C,) — C(6*; Cy) < O for all §*. In addi-
tion, assuming a constant total drug dosage ¢ = C; +C»,
the minimizer of the growth rate at 6 = 1 can be com-
puted as

fac+ 1 - Aji

1= s CQZC—Cl, (24)

fir + Afiy
where A = ,/ﬁzflSo/ﬂ}ﬂ?. This can be further ex-
tended to adapting the dosage according to the dynamics
of the dominant trait.

Figure 25 shows the growth rate R(6*; C,) — C(6*; Cy)
for different level of total drug dosage ¢ = 1,2,4,6,8
with respect to the cytotoxic dosage C;. Each curve cor-
responds to a fixed value of ¢ and the cancer cells decay
when ¢ > 2. The right endpoint of each curve corre-
sponds to the case of using the cytotoxic drug C; = ¢
only. It illustrates that when only the cytotoxic drug is
applied, the most resistant cells have a positive growth
rate. However, adding the cytostatic drug resolves this
issue. The growth rate becomes negative as we move
left on the curve, and the maximum decay rate, (24), is
achieved. We denote this as the optimal drug dosage
and use it in the following simulations.

We first consider the time independent constant in-
fusion for both the cytotoxic and cytostatic drug. Fig-
ure 26 shows the density of the tumor that is initially
uniform in space with a Gaussian phenotype distribu-
tion of mean g = 0.5. We apply the drug with a fairly
low dosage, ¢ = 2. In contrast to the results in section
4, the tumor constantly shrinks and the relapse does not
happen. The total number of cells p” (1)/p for different
drug schedules are shown in Figure 27. In addition to
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Figure 28: (a) Density of cancer cells p(f, x). (b) Mean resistance
level. The initial tumor consists of a mixture of sensitive and resistant
cells. The cytotoxic drug is given as T, = 2T4 = 4T, = 10 and the
cytostatic drug is provided as a constant infusion. Using the drug in-
tensity computed by our optimal dosage, the tumor can be eliminated
without a relapse.

the optimal drug dosage using ¢ = 2, 4, 6, 8, we also
present the case of an equal dosage of C; = C, = ¢/2.
We verify that for a fixed ¢, the optimal dosage (24) in-
deed provides a better decay rate.

Next, we test the outcome when the initial tumor in-
cludes a small region that is dominated by the resis-
tant cells as in Figure 2(b). We apply a time-dependent
dosage with a period T, = 2T; = 4T, = 10 for the
cytotoxic drug, and a time independent constant dosage
for the cytostatic drug. The effectiveness of such drug
schedule has been demonstrated for a simpler model
in Lorz et al. (2015). We apply the drugs as follows.
We denote the case C} + C3 = ¢ being comparable
to the dosage C(¢) used in Figure 16(a) with C? =c
ie. [I'CrHo) + CE)dr = [ Ci(ndt. Still, the inten-
sities of the drugs are computed by (24). The tumor
density and the corresponding resistance levels are plot-
ted in Figure 28. The total number of cells is plotted in
Figure 29. Once again, this demonstrates that a relapse
can be prevented by our proposed strategy, and it can be
completely eliminated with Cf + CJ Z 3.
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Figure 29: Total number of cancer cells pT(t)/p(; corresponding to
Figure 28.

7. Simulation of non-small-cell lung cancer and re-
sistance to erlotinib

Erlotinib is a targeted drug used to treat non-small
cell lung cancer (NSCLC), pancreatic cancer, and sev-
eral other types of cancer. The drug acts on the epi-
dermal growth factor receptor as a receptor tyrosine ki-
nase inhibitor. Resistance to Erlotinib is known to de-
velop rapidly after treatment. In particular, resistance
to Erlotinib in NSCLC has been studied by various au-
thors, including Garvey et al. (2016); Mumenthaler et al.
(2011, 2015). In this section, we consider the experi-
mental data of Garvey et al. (2016); Mumenthaler et al.
(2015) to set our model parameters and study the prop-
agation of resistance to Erlotinib in NSCLC.

When subjected to low level of resources (Oxygen
1% and Glucose 0g/L) the growth rate of the sensitive
NSCLC cells is 0.24/day. This rate increases to 0.84/day
in a high resource environment (Oxygen 20% and Glu-
cose 2g/L). Therefore, we take a; = 0.84 with Sy = 1
indicating a high resource concentration. On the other
hand, the growth rate of resistant cell is reduced by ap-
proximately 70%. Thus, we set a, = 0.5385. Experi-
mentally, the cytotoxic effects of erlotinib are explored
in the range 0.001 uM — 10 uM with both sensitive
and resistant cells (see Figure 3 in Mumenthaler et al.
(2015)). While the drug is effective to parental cells, it
has almost no effect to resistant cells harboring the MET
amplification form of resistance, particularly in high re-
source concentration. Therefore, we take the drug effect
parameters as

by = { 0.84cy,
"7 0.04c; + 0.8,

c1 <1,
C]>1,



b, = 6.833, and b3 = 5 + ¢y, to approximate the data
provided in Mumenthaler et al. (2015).

In the following results, we focus on comparing het-
erogeneous and homogeneous microenvironments. The
heterogeneity of the microenvironment in Mumenthaler
et al. (2015) is modeled using a weighted series of
compartments reflecting drug, oxygen, and glucose lev-
els disseminating from blood vessels within the tumor,
which is similar to the diffusive infusion in our simula-
tions. The homogeneous microenvironment is taken as
the case of a constant infusion with the concentration
being the average of the diffusive case.

Figure 30 compares the diffusive (heterogeneous) and
constant (homogeneous) case in moderate and high drug
dosages. We take the drug concentrations as C; = 1.2
and C; = 4, and the resource level as S¢o = 1.2 in
the diffusive case, and their spatial average in the con-
stant case. The initial condition assumes 1% of preex-
isting resistant cells, which is taken to be the sum of two
Gaussian distributions (17) with mean 0.2 and 0.8, and
normalizing constant Co with ratio 100 to 1. The ini-
tial density py is taken as 0.01 with a uniform noise of
magnitude 0.005 to resemble the tumor in Figure 5 of
Garvey et al. (2016). As shown in Figure 30, when the
drug concentration is low to moderate, the total num-
ber of cancer cells is substantially higher in the diffuse
case compared with the constant resources case. The
corresponding total number of cancer cells in the case
of high drug concentrations shows significantly closer
numbers. The mean resistance level E[n(¢, x, 6)] indi-
cates that this is caused due to the resistant cells sur-
viving in high drug concentration. However, in the dif-
fusive case, we still observe larger variance compared
with the constant case, which has a larger potential of
tumor growth when the microenvironment changes.

In addition, we demonstrate that the optimal drug
dosage considering the high-dose pulse schedule (Mu-
menthaler et al., 2015) differs depending on the hetero-
geneity of the microenvironment. The high-dose pulse
can only be given for a period of time considering drug
toxicity (Foo and Michor, 2009). Thus, the dose pulse
from C; = 1to C; = 10 is given for a time specified
in the constraint provided in Figure 7 of Mumenthaler
et al. (2015), and for the remainder of the treatment, a
low dosage of C| = 1 is given. We consider a resource
level Sy = 1.2 in the diffusive case and Sy = 1 in the
constant case, and the initial condition assumes 0.1%
of preexisting resistant cells. Figure 31 shows that the
optimal drug dosage differs depending on the microen-
vironment, and the tumor growth is more sensitive to
the high-dose pulse in the diffusive case, where the re-
lapse size varies more severely depending on the drug
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Figure 30: Comparison of tumor growth between constant and diffu-
sive (homogeneous and heterogeneous in Mumenthaler et al. (2015))
in different drug concentrations, (a) moderate dosage, C; = 1.2 and
(b) high dosage, C; = 4. The figures show total number of cancer
cells pT(t)/p(;, tumor density p(t, x) at ¢ = 20, and mean and variance
of resistance level, E[n(z, x, 6)] and o2[n(t, x, 0)] at t = 20. The trends
of tumor growth in the constant and diffusive case become similar in
high drug environment.

dosage. Hence, it is critical to include the heterogeneity
in the microenvironment when designing optimal drug
schemes.

8. Conclusion

In this paper, we developed a tumor growth model
that describes the emergence of heterogeneous resistant
cancer cells during chemotherapy. Tumor invasion is
modeled by the pressure term that is inspired by the
porous medium equation depending on the density of
cancer cells. A diffusion term yields a smooth bound-
ary resembling the proliferating rim. The growth term is
restricted by the homeostatic pressure and the carrying
capacity, which naturally gives rise to a necrotic region.
In addition, the model incorporates the dynamics of the
nutrients and two types of drugs: a cytotoxic drug that
impacts the death rate, and a cytostatic drug that slows
down the proliferation. This model extends the exist-
ing literature of heterogeneous resistance models (Cho
and Levy, 2017; Lorz et al., 2015, 2013) to an asymmet-
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Figure 31: Total number of cancer cells pr () /p(} att = 28 for different
level of high-dose pulse C;. The dosage that minimizes the tumor is
less in the diffusive case than in the constant case, and the tumor size
in the diffusive case is more sensitive to the dosage.

ric tumor growth model that significantly enhances the
practicality of this approach and enables translational in
silico exploration.

We test our model in various scenarios including spa-
tially homogeneous case, diffusive infusion, and highly
heterogeneous environment. The tumor behavior dif-
fers significantly depending on the environment and on
the initial state of the tumor prior to the treatment. Our
model demonstrates how multiple resistant traits can
emerge at distinct locations. In particular, we consider
NSCLC and its resistance to erlotinib using the data of
Garvey et al. (2016); Mumenthaler et al. (2015). We
demonstrate the importance of considering heteroge-
neous microenvironment and resistance levels.

In addition, we estimated the speed of propagation
of the tumor boundary and the relapse time in terms of
the dominant resistance trait and the concentrations of
the nutrients and the drugs. Our model demonstrates
that chemotherapy using the cytotoxic drug with strong
intensity delays the cancer relapse, but yields highly re-
sistant traits that cannot be eliminated with the cytotoxic
drug only. Moreover, the on-off drug schedule results in
more resistant traits compared with the constant drug in-
fusion with the same total drug dosage in a given period.
Finally, we propose a strategy of drug scheduling focus-
ing on the elimination of the resistant cells. It consists of
accurately combining the cytotoxic and cytostatic drugs.
The effectiveness of such treatment is demonstrated in
our simulations.

We would like to note that the model considered in
this manuscript is a significantly extended version of the
model we studied in Cho and Levy (2017). The main
differences include: (i) Here we consider the spatially
anisotropic two-dimensional case with a moving bound-
ary, while the paper in Cho and Levy (2017) considered
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the radially symmetric case with a fixed boundary; (ii)
Since we consider the full two-dimensional case, we can
simulate the heterogeneous and asymmetric initial con-
ditions and microenvironments from Mumenthaler et al.
(2015); Peng et al. (2016). This was not possible with
the previous radially symmetric toy model; (iii) The
present work includes estimates of the expansion rate
of the tumor boundary and of the relapse time; and (iv)
An optimal drug strategy combining cytotoxic and cyto-
static drugs is explored, showing that the most resistant
trait can be eliminated using our proposed protocol.

Future work includes extending our model to vascu-
larized systems (Anderson et al., 2006; Trédan et al.,
2007) and combining it with complex microdynam-
ics systems such as extracellular matrices and various
proteolytic enzymes (Anderson, 2005; Chaplain et al.,
2006; Deakin and Chaplain, 2013). This will lead to
a multiscale model which requires an effective algo-
rithm involving adaptive refinement at the tumor bound-
ary, Peng et al. (2016). In addition, incorporating the
healthy cells into the model will yield more interest-
ing dynamics driven by the competition between the
healthy and cancer cells (Lorz et al., 2015). In the
regime of resistance modeling, we further aim to study
the multi-drug resistance (Panagiotopoulou et al., 2010)
by considering a multi-dimensional trait variable sub-
ject to different classes of drugs and other phenotypes.
The most challenging work involves validating the pa-
rameters with available experimental and imaging data
(Alexander et al., 2008; Weiger et al., 2013). Additional
challenges include matching our continuum model with
and also coordinating our continuum model with dis-
crete and probabilistic models, e.g., agent based mod-
els, Byrne and Drasdo (2009), or game theoretic mod-
els, Kaznatcheev et al. (2017).

Appendix A. Estimation of tumor boundary speed

The tumor growth can be quantified using the esti-
mation of the velocity of tumor boundary in the limit
k — oo (Kim et al., 2016; Mellet et al., 2015; Perthame
et al., 2014). Let us consider a single resistant trait
6* and assume a radially symmetric tumor, so that
p(t,r) = n(tr0%). We follow the assumption in
Perthame et al. (2014) that the initial condition satisfies
n(0,r) = ny(r) > 0 and p(0,r) = %no(r)k_l < p, and
the growth term (4) satisfies G’(p) < 0 and G(p) = O.
Then the limiting solution, when k — oo, denoted as 7.,
and p, satisfies

O0iheo = VulAheo = VpAPoo = NeeG(Poo). (A.1)



The asymptotic constant speed can be estimated as fol-
lows. Since the limiting solution is similar to an indica-
tor function except at the boundary, we assume that the
tumor at time ¢ is a ball with radius r(¢) centered at the
origin as Q(f) = {x| peo(t, x) > 0} = {x|ne(t, x) = 1} =
B,1(0). We let pp(r — Vi) = neo(t) and pr(r—Vit) = peo(1),
and substitute our ansatz in Eq. (A.1) to obtain

V= prO) +vad =1 | Zdr+GO) | nr,
) r(0)

in d-dimensions. By using the complementary relation
Poo(VpAPos + G(pos)) = 0, the first term becomes

P
2 f G(gydq = \[2v,G"p.
V4 0 4

where G* = r(6*)S o — D(6).

v, (r(0)) =

Appendix B. Drug administration

We consider the time dependent drug administration
with a period T, a treatment length T, and a half-life
of drug T, as Ci(f) = CYI.(t). Here, C? is the drug
intensity, and /.(¢) describes the temporal dynamics as

ALI (1 =27+ A,, te 0, T4l,
1.(t) = 1 —dat (,AaTs _
Lot (e 1), telTs Tp),
where A1 = InQQ)/Th, A; = (1 = 2779)/(1 - A3),

Ay = e tTr(e~daTa — 1)/A,, and A3 = 1 —e~*1T¢, These
constants are computed so that /.(¢) is continuous and
periodic on [0, T,]. Figure 16(a) shows some examples
of Cy(t) with Cf =4.
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